Measurement of tectonic surface uplift rate in a young collisional mountain belt
Abbott, L.D.; Silver, E.A.; Anderson, R. Scott; Smith, R.; Ingle, J.C.; Kling, S.A.; Haig, D.; Small, E.; Galewsky, J.; Sliter, W.
1997-01-01
Measurement of the rate of tectonically driven surface uplift is crucial to a complete understanding of mountain building dynamics. The lack of a suitable rock record typically prevents determination of this quantity, but the unusual geology of Papua New Guinea's Finisterre mountains makes measurement of this rate possible. The tectonic surface uplift rate at the Finisterre range is 0.8-2.1 mm yr-1, approximately that expected to arise from crustal thickening.
Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya
Tremblay, Marissa M.; Fox, Matthew; Schmidt, Jennifer L.; Tripathy-Lang, Alka; Wielicki, Matthew M.; Harrison, T. Mark; Zeitler, Peter K.; Shuster, David L.
2015-01-01
Exhumation of the southern Tibetan plateau margin reflects interplay between surface and lithospheric dynamics within the Himalaya–Tibet orogen. We report thermochronometric data from a 1.2-km elevation transect within granitoids of the eastern Lhasa terrane, southern Tibet, which indicate rapid exhumation exceeding 1 km/Ma from 17–16 to 12–11 Ma followed by very slow exhumation to the present. We hypothesize that these changes in exhumation occurred in response to changes in the loci and rate of rock uplift and the resulting southward shift of the main topographic and drainage divides from within the Lhasa terrane to their current positions within the Himalaya. At ∼17 Ma, steep erosive drainage networks would have flowed across the Himalaya and greater amounts of moisture would have advected into the Lhasa terrane to drive large-scale erosional exhumation. As convergence thickened and widened the Himalaya, the orographic barrier to precipitation in southern Tibet terrane would have strengthened. Previously documented midcrustal duplexing around 10 Ma generated a zone of high rock uplift within the Himalaya. We use numerical simulations as a conceptual tool to highlight how a zone of high rock uplift could have defeated transverse drainage networks, resulting in substantial drainage reorganization. When combined with a strengthening orographic barrier to precipitation, this drainage reorganization would have driven the sharp reduction in exhumation rate we observe in southern Tibet. PMID:26371325
Quantification of surface uplift by using paleo beach deposits (Oman, Northern Indian Ocean)
NASA Astrophysics Data System (ADS)
Hoffmann, Gösta; Schneider, Bastian; Monschau, Martin; Mechernich, Silke
2017-04-01
The study focusses on a coastal area along the Arabian Sea in Oman. Here, a staircase of marine terraces is seen as geomorphological evidence suggesting sub-recent uplift of a crustal block in the northeast of the Arabian Peninsula. The erosional terraces are cut into Paleocene to Early Eocene limestone formations. These limestone formations are underlain by allochtonous ophiolites. We mapped the terraces over a distance of 60 km and identified at least 8 terrace levels in elevations up to 350 m above present sea level. The uppermost terraces are erosional, whereas the lower ones are depositional in style. Mollusc and coral remains as well as beach-rock are encountered on the terrace surfaces. The formations are dissected by NW-SE trending faults. Some of the terraces are very pronounced features in the landscape and easy to trace, others are partly eroded and preserved as remnants only. The deposit along the shoreline angle act as a datum making use of the fact that the rocks formed in a defined horizontal level which is the paleo-sea level. Hence, any offset from the primary depositional level is evidence for neotectonic movements. We utilise differential GPS to map the elevation of beachrock deposits. Age constraints on terrace formation is derived by sampling the beachrock deposits and dating using cosmogenic nuclii. The results indicate ongoing uplift in the range of less than a millimetre per year. The uplift is differential as the terraces are tilted. We mapped oblique normal and strike-slip faults in the younger terraces. We hypothesise that the mechanism responsible for the uplift is not tectonics but driven by the serpentinisation of the ophiolite that underlie the limestone formations. One process during the serpentinisation is the hydration of the mantle rocks which is responsible for a decrease in density. The resulting buoyancy and significant solid volume increase lead to the observed deformation including uplift.
Focused exhumation along megathrust splay faults in Prince William Sound, Alaska
Haeussler, Peter J.; Armstrong, Phillip A; Liberty, Lee M; Ferguson, Kelly M; Finn, Shaun P; Arkle, Jeannette C; Pratt, Thomas L.
2015-01-01
Megathrust splay faults are a common feature of accretionary prisms and can be important for generating tsunamis during some subduction zone earthquakes. Here we provide new evidence from Alaska that megathrust splay faults have been conduits for focused exhumation in the last 5 Ma. In most of central Prince William Sound, published and new low-temperature thermochronology data indicate little to no permanent rock uplift over tens of thousands of earthquake cycles. However, in southern Prince William Sound on Montague Island, apatite (U–Th)/He ages are as young as 1.1 Ma indicating focused and rapid rock uplift. Montague Island lies in the hanging wall of the Patton Bay megathrust splay fault system, which ruptured during the 1964 M9.2 earthquake and produced ∼9 m of vertical uplift. Recent geochronology and thermochronology studies show rapid exhumation within the last 5 Ma in a pattern similar to the coseismic uplift in the 1964 earthquake, demonstrating that splay fault slip is a long term (3–5 my) phenomena. The region of slower exhumation correlates with rocks that are older and metamorphosed and constitute a mechanically strong backstop. The region of rapid exhumation consists of much younger and weakly metamorphosed rocks, which we infer are mechanically weak. The region of rapid exhumation is separated from the region of slow exhumation by the newly identified Montague Strait Fault. New sparker high-resolution bathymetry, seismic reflection profiles, and a 2012 Mw4.8 earthquake show this feature as a 75-km-long high-angle active normal fault. There are numerous smaller active normal(?) faults in the region between the Montague Strait Fault and the splay faults. We interpret this hanging wall extension as developing between the rapidly uplifting sliver of younger and weaker rocks on Montague Island from the essentially fixed region to the north. Deep seismic reflection profiles show the splay faults root into the subduction megathrust where there is probable underplating. Thus the exhumation and extension in the hanging wall are likely driven by underplating along the megathrust décollement, thickening in the overriding plate and a change in rheology at the Montague Strait Fault to form a structural backstop. A comparison with other megathrust splay faults around the world shows they have significant variability in their characteristics, and the conditions for their formation are not particularly unique.
NASA Technical Reports Server (NTRS)
Sobel, Edward R.; Oskin, Michael; Burbank, Douglas; Mikolaichuk, Alexander
2005-01-01
The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest and most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New apatite fission-track (AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastwards over the last 7-11 Myr. Based on the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the time scale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and slow surface upliftrates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and develop steep river valleys, fluvial and glacial erosion become more powerful and exhumation rates once again increase. Independently determined range-noma1 shortening rates have also varied over time, suggesting a feedback between erosional efficiency and shortening rate.
Differential uplift and incision of the Yakima River terraces, central Washington State
Bender, Adrian M.; Amos, Colin B.; Bierman, Paul R.; Rood, Dylan; Staisch, Lydia; Kelsey, Harvey M.; Sherrod, Brian
2016-01-01
The fault-related Yakima folds deform Miocene basalts and younger deposits of the Columbia Plateau in central Washington State. Geodesy implies ~2 mm/yr of NNE directed shortening across the folds, but until now the distribution and rates of Quaternary deformation among individual structures has been unclear. South of Ellensburg, Washington, the Yakima River cuts a ~600 m deep canyon across several Yakima folds, preserving gravel-mantled strath terraces that record progressive bedrock incision and related rock uplift. Here we integrate cosmogenic isochron burial dating of the strath terrace gravels with lidar analysis and field mapping to quantify rates of Quaternary differential incision and rock uplift across two folds transected by the Yakima River: Manastash and Umtanum Ridge. Isochron burial ages from in situ produced 26Al and 10Be at seven sites across the folds date episodes of strath terrace formation over the past ~2.9 Ma. Average bedrock incision rates across the Manastash (~88 m/Myr) and Umtanum Ridge (~46 m/Myr) anticlines are roughly 4 to 8 times higher than rates in the intervening syncline (~14 m/Myr) and outside the canyon (~10 m/Myr). These contrasting rates demonstrate differential bedrock incision driven by ongoing Quaternary rock uplift across the folds at rates corresponding to ~0.13 and ~0.06 mm/yr shortening across postulated master faults dipping 30 ± 10°S beneath the Manastash and Umtanum Ridge anticlines, respectively. The reported Quaternary shortening across the anticlines accounts for ~10% of the ~2 mm/yr geodetic budget, suggesting that other Yakima structures actively accommodate the remaining contemporary deformation.
NASA Astrophysics Data System (ADS)
Maravelis, A. G.; Pantopoulos, G.; Tserolas, P.; Zelilidis, A.
2015-06-01
Architecture of the well-exposed ancient forearc basin successions of northeast Aegean Sea, Greece, provides useful insights into the interplay between arc magmatism, accretionary prism exhumation, and sedimentary deposition in forearc basins. The upper Eocene-lower Oligocene basin fill of the southern Thrace forearc basin reflects the active influence of the uplifted accretionary prism. Deep-marine sediments predominate the basin fill that eventually shoals upwards into shallow-marine sediments. This trend is related to tectonically driven uplift and compression. Field, stratigraphic, sedimentological, petrographic, geochemical, and provenance data on the lower Oligocene shallow-marine deposits revealed the accretionary prism (i.e. Pindic Cordillera or Biga Peninsula) as the major contributor of sediments into the forearc region. Field investigations in these shallow-marine deposits revealed the occurrence of conglomerates with: (1) mafic and ultramafic igneous rock clasts, (2) low-grade metamorphic rock fragments, and (3) sedimentary rocks. The absence of felsic volcanic fragments rules out influence of a felsic source rock. Geochemical analysis indicates that the studied rocks were accumulated in an active tectonic setting with a sediment source of mainly mafic composition, and palaeodispersal analysis revealed a NE-NNE palaeocurrent trend, towards the Rhodopian magmatic arc. Thus, these combined provenance results make the accretionary prism the most suitable candidate for the detritus forming these shallow-marine deposits.
Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.
Roy, Mousumi; Jordan, Thomas H; Pederson, Joel
2009-06-18
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
Glacial isostatic uplift of the European Alps
Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.
2016-01-01
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth’s viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions. PMID:27830704
Glacial isostatic uplift of the European Alps.
Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R
2016-11-10
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.
Climatic vs. tectonic control on glacial relief
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Herman, Frederic; Robl, Jörg
2017-04-01
The limiting effect of a climatically-induced glacial buzz-saw on the height of mountain ranges has been extensively discussed in the geosciences. The buzz-saw concept assumes that solely climate controls the amount of topography present above the equilibrium line altitude (ELA), while the rock uplift rate plays no relevant role. This view is supported by analyses of hypsometric patterns in orogens worldwide. Furthermore, numerical landscape evolution models show that glacial erosion modifies the hypsometry and reduces the overall relief of mountain landscapes. However, such models often do not incorporate tectonic uplift and can only simulate glacial erosion over a limited amount of time, typically one or several glacial cycles. Constraints on glacial end-member landscapes from analytical, time-independent models are widely lacking. Here we present a steady-state solution for a glacier equilibrium profile in an active orogen modified from the mathematical conception presented by Headley et al. (2012). Our approach combines a glacial erosion law with the shallow ice approximation, specifically the formulations of ice sliding and deformation velocities and ice flux, to calculate ice surface and bed topography from prescribed specific mass balance and rock uplift rate. This solution allows the application of both linear and non-linear erosion laws and can be iteratively fitted to a predefined gradient of specific mass balance with elevation. We tested the influence of climate (fixed rock uplift rate, different ELAs) and tectonic forcing (fixed ELA, different rock uplift rates) on steady-state relief. Our results show that, similar to fluvial orogens, both climate and rock uplift rate exert a strong influence on glacial relief and that the relation among rock uplift rate and relief is governed by the glacial erosion law. This finding can provide an explanation for the presence of high relief in high latitudes. Headley, R.M., Roe, G., Hallet, B., 2012. Glacier longitudinal profiles in regions of active uplift. Earth and Planetary Science Letters, 317-318, 354-362.
Tightness of Salt Rocks and Fluid Percolation
NASA Astrophysics Data System (ADS)
Lüdeling, C.; Minkley, W.; Brückner, D.
2016-12-01
Salt formations are used for storage of oil and gas and as waste repositiories because of their excellent barrier properties. We summarise the current knowledge regarding fluid tightness of saliferous rocks, in particular rock salt. Laboratory results, in-situ observations and natural analogues, as well as theoretical and numerical investigations, indicate that pressure-driven percolation is the most important mechanism for fluid transport: If the fluid pressure exceeds the percolation threshold, i.e. the minor principal stress, the fluid can open up grain boundaries, create connected flow paths and initiate directed migration in the direction of major principal stress. Hence, this mechanism provides the main failure mode for rock salt barriers, where integrity can be lost if the minor principal stress is lowered, e.g. due to excavations or thermomechanical uplift. We present new laboratory experiments showing that there is no fluid permeation below the percolation threshold also at high temperatures and pressures, contrary to recent claims in the literature.
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Zhang, Huiping; Zheng, Dewen; von Dassow, Wesley; Zhang, Zhuqi; Yu, Jingxing; Pang, Jianzhang
2017-05-01
In order to test the hypothesis that the stationary nature of the Yarlung Tsangpo Gorge is tectonically controlled, the rock uplift pattern in the southeast Tibetan Plateau and the critical condition to sustain a stable knickpoint must be derived. Via slope-area analysis and the integral approach, we first quantify the pattern of channel steepness in southeast Tibet and find that the steepness index shows higher values around the gorge but lower values toward the inner land and the mountain front. Such a pattern of channel steepness indicates that the active rock uplift is restricted in the zone just around the Yarlung Tsangpo Gorge. Then, we derive a general knickpoint migration model that accounts for spatially variant rock uplift rates. From the model, a critical condition for maintaining a stable knickpoint is concluded that the difference of incision rates in the downstream and upstream reaches of the knickpoint should match that of rock uplift. Employing a stream-power river incision model, we calculate the incision rate in the gorge and find a higher correspondence with differential rock uplift rates in the downstream and upstream reaches of the knickpoint. Therefore, we favor tectonic control as the primary mechanism to explain the stability of the knickpoint within the Yarlung Tsangpo Gorge.
Lewan, Michael D.; Dutton, Shirley P.; Ruppel, Stephen C.; Hentz, Tucker F.
2002-01-01
Timing of oil and gas generation from Turonian and Smackover source rocks in the central Gulf CoastInterior Zone was determined in one-dimensional burial-history curves (BHCs) using hydrous-pyrolysis kinetic parameters. The results predict that basal Smackover source-rock intervals with Type-IIS kerogen completed oil generation between 121 and 99 Ma, and Turonian source-rocks with Type-II kerogen remain immature over most of the same area. The only exception to the latter occurs in the northwestern part of the Mississippi salt basin, where initial stages of oil generation have started as a result of higher thermal gradients. This maturity difference between Turonian and Smackover source rocks is predicted with present-day thermal gradients. Predicted oil generation prior to the Sabine and Monroe uplifts suggests that a significant amount of the oil emplaced in Cretaceous reservoirs of these uplifts would have been lost during periods of erosion. Hydrous-pyrolysis kineticparameters predict that cracking of Smackover oil to gas started 52 Ma, which postdates major uplift and erosional events of the Sabine and Monroe uplifts. This generated gas would accumulate and persist in these uplift areas as currently observed. The predicted timing of oil and gas generation with hydrous-pyrolysis kinetic parameters is in accordance with the observed scarcity of oil from Turonian source rocks, predominance of gas accumulations on the Sabine and Monroe uplifts, and predominance of oil accumulations along the northern rim of the Interior Zone.
NASA Astrophysics Data System (ADS)
Duffy, Brendan; Kalansky, Julie; Bassett, Kari; Harris, Ron; Quigley, Mark; van Hinsbergen, Douwe J. J.; Strachan, Lorna J.; Rosenthal, Yair
2017-05-01
New sedimentary geochemistry and petrographic analyses provide the most extensive sedimentary documentation yet of the rapid denudation of the young Timor orogen. The data from three basins including two widely-separated, well-dated sections of the Synorogenic Megasequence of Timor-Leste, and a re-dated DSDP 262, constrain the source and timing of detrital sediment flux during forearc-continent collision along the Timor sector of the Banda Arc. The exhumed synorogenic piggy-back basins formed above a mélange unit that developed at the expense of a weak stratigraphic horizon in the Mesozoic stratigraphy, and was exhumed to the sea floor in latest Messinian time. Following an interval of deep marine chalky marl sedimentation, an increasingly muddy sediment flux indicates that the island of Timor became emergent and shed sediment by 4.5 Ma. Comparison of exhumed sections with similar patterns in the DSDP262 chemistry suggests that the sediment source was probably located some 50-60 km distant from the basin, which is consistent with the Aileu region of Timor-Leste that shows an appropriate exhumation history. All sedimentation between 4.5 and 3.2 Ma was probably derived from a low-relief, rapidly eroding, and mudstone-dominated landscape with geochemical affinities to the Triassic-mudstone-derived synorogenic mélange. The mélange unit overlies and surrounds the Banda Terrane, and was presumably structurally emplaced by propagation of a decollement through the Triassic rocks during the collision. After 3.2 Ma, sedimentation was dominated by hard rock lithologies of the Banda Terrane, consisting of forearc cover and basement, the latter including elements of metamafic rocks and metapelites. This phase of sedimentation was accompanied by rapid uplift, which may have been partly driven by a transient imbalance between rock uplift and denudation as resistant lithologies emerged from below mélange-like mudstone. Previous work has suggested that the timing of collision in Timor-Leste and West Timor was substantially different. Our reevaluation of DSDP 262 facies migration history in the context of the re-dating presented here, favours a relatively synchronous onset of uplift in both halves of the island, but with different partitioning of strain between the foreland and hinterland in each half of the island.
NASA Astrophysics Data System (ADS)
Schoettle, E.; Burbank, D. W.; Bookhagen, B.
2014-12-01
California's Sierra Madre Mountains lie at the junction of the Coast and Transverse Ranges, where they form an arcuate range crest with peak elevations of nearly 1,800 m. Near the range crest, a gently sloping paleovalley in the Southern Sierra Madre is being consumed by the headward migration of a prominent knickpoint, with an ~250-m-high headwall abutting below the gently sloped paleovalley. This paleovalley at 1400 m elevation and other low-relief, high-elevation remnants in the Sierra Madres at elevations from 800-1400 m show that the range is young enough to have regions not yet in equilibrium with the modern base level and uplift rate. Toward the western end of the Sierra Madre, the Cuyama River cuts a bedrock canyon through the range. The canyon planform describes a meandering river that has now incised ~400 m into the range. The combination of (i) high-altitude, low-relief surfaces in the Sierra Madre including the paleovalley with (ii) a meandering planform that has been incised into bedrock by a transverse river suggests (1) a low-altitude meandering proto-Cuyama river preceded significant rock uplift, and (2) the river's incision records the rock uplift of the range. Using cosmogenic nuclides to measure both the bedrock-lowering rate of the high-elevation paleovalley and the erosion rate of the steep catchment eroding into it, we can place some limits on the timing and magnitude of rock uplift in the range. By dating bedrock straths along the river canyon's walls, we can directly quantify the pace of channel incision. Together these new estimates will yield an improved reconstruction of the timing, magnitude, and rate of rock uplift of the Sierra Madre.
Middle Proterozoic uplift events in the Dunbar dome of northeastern Wisconsin, USA
Peterman, Z.E.; Sims, P.K.; Zartman, R.E.; Schulz, K.J.
1985-01-01
Isotopic ages of granitic and metamorphic rocks exposed in the Dunbar structural dome of northeastern Wisconsin identify a protracted series of tectonic and "hydrothermal" events that culminated in major regional uplift during Middle Proterozoic (Keweenawan; ca 1,100 Ma) continental rifting and volcanism. The major rock-forming events and the structural development of the dome occurred during the interval 1,862+/-4 Ma to 1,836+/-6 Ma. Whole-rock Rb-Sr ages are partly reset in response to a widely recognized but cryptic event in Wisconsin and Michigan at about 1,630 Ma. The scale and systematic character of the whole-rock resetting strongly suggests the presence of a fluid phase derived in situ from water dissolved in the silicates or externally from a subthrust plate of low-grade metamorphic rocks. The regional nature of the 1,630-Ma disturbance possibly indicates that it is related to a major tectonic event such as an active plate margin far to the south. Rb-Sr biotite ages for the Dunbar dome (this study), the southern complex of the Marquette district (Van Schmus and Woolsey 1975) and the Felch trough area (Aldrich and others 1965) provide a remarkably coherent pattern that reflects multiple episodes of differential uplift. Younger events superimposed on a regional 1,630-Ma imprint are recorded at 1,330 Ma and 1,140 Ma. The 1,330 Ma disturbance could reflect stabilization following intrusion of the Wolf River batholith at 1,485 Ma. The 1,140-Ma uplift event occurred during Keweenawan rifting and volcanism as a result of stresses imposed on a mosaic of fault-bounded blocks with possible subcrustal influence. The remarkably small variance in the 1,140-Ma biotite age peak argues for rapid uplift and cooling, and hence rapid erosion. Detritus from the uplift probably was being shed into nearby tectonic basins most of which did not survive subsequent uplift and erosion. ?? 1985 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Nishikawa, O.
2016-12-01
Thermoluminescence (TL) dating is one of the geochronometry with a low closure temperature, which covers a wide range of younger ages from 1k to 1m yrs, and used to be applied to young volcanics and archeological burnt materials. These materials experienced an instant temperature drop under the closure temperature just after they are generated. If crust is rapidly uplifting, it may possible to apply TL dating even for basement rocks to reconstruct a young history of orogeny. TL age applied to basement is not the age of rock itself, but the age since the rock rising from the deeper part crossed the depth of the closure temperature. Therefore TL age of basement rock is the function of both uplifting rate and geothermal gradient. In this study, in order to evaluation of the late Quaternary uplifting of the central Shikoku, Japan, TL dating of quartz grain derived from the Sambagawa metamorphic rocks has been performed. The ages are in 100-1000 kyr orders and much older than TL ages obtained from the hanging wall of Alpine fault, New Zealand (Nishikawa et al., 2015; AGU Fall meeting). This can be due to the difference of geothermal gradient and uplifting rate between two orogenic belts, and interpreted that the hanging wall of the Alpine fault has been rapidly lifted up from the shallower closure temperature depth, while the rocks in central Shikoku have been rising slowly from deeper part.
A compilation of information and data on the Manson impact structure
NASA Technical Reports Server (NTRS)
Hartung, Jack B.; Anderson, Raymond R.
1988-01-01
A problem for the impact hypothesis for the Cretaceous-Tertiary (K-T) mass extinction is the apparent absence of an identifiable impact site. The Manson Impact Structure is a candidate because it is the largest recognized in the U.S.; it is relatively close to the largest and most abundant shocked quartz grains found at the K-T boundary; and its age is indistinguishable from that of the K-T boundary based on paleontological evidence, fission track dates, and preliminary Ar-40/Ar-39 measurements. The region of northwest central Iowa containing the Manson Impact Structure is covered by Quaternary glacial deposits underlain by Phanerozoic sedimentary rocks (mostly flat-lying carbonates) and Proterozoic red clastic, metamorphic, volcanic, and plutonic rocks. In a circular area about 22 miles (35 km) in diameter around Manson, Iowa, this normal sequence is absent or disturbed and near the center of the disturbed area granitic basement rocks have been uplifted some 20,000 ft (6000m). Attention was drawn to Manson initially by the unusual quality of the groundwater there. Within the structure three roughly concentric zones of rock associations have been identified: (1) displaced strata; (2) completely disrupted strata, and igneous and metamorphic rocks. Manson was established as an impact structure based on its circular shape, its central uplift, and the presence of shocked quartz within the granitic central uplift. A gravity survey identified locations of low-density brecciated rocks and high-density uplifted crystalline rocks, but the outer boundary of the structure could not be established. Aeromagnetic and ground magnetic surveys showed locations and depths of shallowly buried crystalline rock and the locations of faults. A refraction seismic survey identified the crystalline central uplift, determined that the average elevation of bedrock is 70 ft (20 m) higher outside the structure than within, and was used to map the bedrock topography within the structure. A connection between the Manson impact and the K-T boundary may be established or refuted through study of the impact energy, the impact time, and composition of host rock, possible impactors, and impact melts.
Raising the Gangdese Mountains in southern Tibet
NASA Astrophysics Data System (ADS)
Zhu, Di-Cheng; Wang, Qing; Cawood, Peter A.; Zhao, Zhi-Dan; Mo, Xuan-Xue
2017-01-01
The surface uplift of mountain belts is in large part controlled by the effects of crustal thickening and mantle dynamic processes (e.g., lithospheric delamination or slab breakoff). Understanding the history and driving mechanism of uplift of the southern Tibetan Plateau requires accurate knowledge on crustal thickening over time. Here we determine spatial and temporal variations in crustal thickness using whole-rock La/Yb ratios of intermediate intrusive rocks from the Gangdese arc. Our results show that the crust was likely of normal thickness prior to approximately 70 Ma ( 37 km) but began to thicken locally at approximately 70-60 Ma. The crust reached (58-50) ± 10 km at 55-45 Ma extending over 400 km along the strike of the arc. This thickening was likely due to magmatic underplating as a consequence of rollback and then breakoff of the subducting Neo-Tethyan slab. The crust attained a thickness of 68 ± 12 km at approximately 20-10 Ma, as a consequence of underthrusting of India and associated thrust faulting. The Gangdese Mountains in southern Tibet broadly attained an elevation of >4000 m at approximately 55-45 Ma as a result of isostatic surface uplift driven by crustal thickening and slab breakoff and reached their present-day elevation by 20-10 Ma. Our paleoelevation estimates are consistent not only with the C-O isotope-based paleoaltimetry but also with the carbonate-clumped isotope paleothermometer, exemplifying the promise of reconstructing paleoelevation in time and space for ancient orogens through a combination of magmatic composition and Airy isostatic compensation.
A Precise 6 Ma Start Date for Fluvial Incision of the Northeastern Colorado Plateau Canyonlands
NASA Astrophysics Data System (ADS)
Thomson, S. N.; Soreghan, G. S.; Reiners, P. W.; Peyton, S. L.; Murray, K. E.
2015-12-01
Outstanding questions regarding late Cenozoic Colorado Plateau landscape evolution include: (1) the relative roles of isostatic rebound as result Colorado River incision versus longer-term geodynamic processes in driving overall rock uplift of the plateau; and (2) whether incision was triggered by river integration or by a change in deep-seated mantle lithosphere dynamics. A key to answering these questions is to date more precisely the onset of incision to refine previous estimates of between 6 and 10 Ma. We present new low-temperature thermochronologic results from bedrock and deep borehole samples in the northeastern Colorado Plateau to show that rapid river incision began here at 6 Ma (5.93±0.66 Ma) with incision rates increasing from 15-50 m/Myr to 160-200 m/Myr. The onset time is constrained independently by both inverse time-temperature modeling and by the break-in-slope in fission track age-elevation relationships. This new time constraint has several important implications. First, the coincidence in time with 5.97-5.3 Ma integration of the lower Colorado River through the Grand Canyon to the Gulf of California strongly favors downstream river integration triggering carving of the canyonlands of the upper Colorado River system. Second, it implies integration of the entire Colorado River system in less than 2 million years. Third, rock uplift of the plateau driven by the flexural isostatic response to river incision is restricted to just the last 6 Ma, as is associated increased sediment budget. Fourth, incision starting at 6 Ma means that previous estimates of upper Colorado River incision rates based on 10-12 Ma basalt datum levels are too low. This also changes the dependency of measured time interval on incision rate from a non-steady-state negative power-law dependence (exponent of -0.24) to a near steady-state dependence (exponent of 0.07) meaning that long-term upper Colorado river incision rates can provide a reliable proxy for rock uplift rates.
What Can Modern River Profiles Tell Us about Orogenic Processes and Orogen Evolution?
NASA Astrophysics Data System (ADS)
Whipple, K. X.
2008-12-01
Numerous lines of evidence from theory, numerical simulations, and physical experiments suggest that orogen evolution is strongly coupled to atmospheric processes through the interrelationships among climate, topography, and erosion rate. In terms of orogenic processes and orogen evolution, these relationships are most important at the regional scale (mean topographic gradient, mean relief above surrounding plains) largely because crustal deformation is most sensitive to erosional unloading averaged over sufficiently long wavelengths. For this reason, and because above moderate erosion rates (> 0.2 mm/yr) hillslope form becomes decoupled from erosion rate, attention has focused on the river network, and even on particularly large rivers. We now have data that demonstrates a monotonic relationship between erosion rate and the channel steepness index (slope normalized for differences in drainage area) in a variety of field settings. Consequently, study of modern river profiles can yield useful information on recent and on-going patterns of rock uplift. It is not yet possible, however, to quantitatively isolate expected climatic and lithologic influences on this relationship. A combination of field studies and theoretical analyses are beginning to reveal the timescale of landscape response, and thus the topographic memory of past conditions. At orogen scale, river profile response to a change in rock uplift rate is on the order of 1-10 Myr. Because of these long response times, the modern profiles of large rivers and their major tributaries can potentially preserve an interpretable record of rock uplift rates since the Miocene and are insensitive to short-term climatic fluctuations. Only significant increases in rock uplift rate, however, are likely to leave a clear topographic signature. Strategies have been developed to differentiate between temporal and spatial (tectonic, climatic, or lithologic) influences on channel profile form, especially where spatially distributed data on recent incision rates is available. A more difficult question is one of cause and effect. Only in some circumstances is it possible to determine whether rivers are steep in response to localized rock uplift or whether localized rock uplift occurs in response to rapidly incising steep rivers.
NASA Astrophysics Data System (ADS)
Thouret, Jean-Claude; Gunnell, Yanni; Jicha, Brian R.; Paquette, Jean-Louis; Braucher, Régis
2017-12-01
Based on an 40Ar/39Ar- and U/Pb-based chronostratigraphy of ignimbrite sheets and the geomorphological features of watersheds, river profiles and slope deposits in the Ocoña-Cotahuasi-Marán (OCM) and Colca valleys of southwest Peru, we reconstruct the valley incision history of the western Central Andes over the last c. 25 Myr. We further document the Pleistocene and Holocene evolution of deep valleys on the basis of 14 10Be surface-exposure ages obtained on debris-avalanche deposits and river straths. The data suggest that uplift was gradual over the past 25 Myr, but accelerated after c. 9 Ma. Valley incision started around 11-9 Ma and accelerated between 5 and 4 Ma. Incision was followed by several pulses of valley cut-and-fill after 2.3 Ma. Evidence presented suggest that the post-5 Ma sequence of accelerated canyon incision probably resulted from a combination of drainage piracy from the Cordilleran drainage divide towards the Altiplano, accentuated flexural tilting of the Western Cordillera towards the SE, and increased rainfall on the Altiplano after late Miocene uplift of the Eastern Cordillera. The valley deepening and slope steepening driven by tectonic uplift gave rise to large occurrences of rockslope failure. The collapsed rock masses periodically obstructed the canyons, thus causing abrupt changes in local base levels and interfering with the steadiness of fluvial incision. As a result, channel aggradation has prevailed in the lower-gradient, U-shaped Pacific-rim canyons, whereas re-incision through landslide deposits has occurred more rapidly across the steeper V-shaped, upper valleys. Existing canyon knickpoints are currently arrested at the boundary between the plutonic bedrock and widespread outcrops of middle Miocene ignimbritic caprock, where groundwater sapping favouring rock collapse may be the dominant process driving headward erosion.
Masses of Fluid for Cylindrical Tanks in Rock With Partial Uplift of Bottom Plate
Taniguchi, Tomoyo; Katayama, Yukihiro
2016-01-01
This study proposes the use of a slice model consisting of a set of thin rectangular tanks for evaluating the masses of fluid contributing to the rocking motion of cylindrical tanks; the effective mass of fluid for rocking motion, that for rocking–bulging interaction, effective moment inertia of fluid for rocking motion and its centroid. They are mathematically or numerically quantified, normalized, tabulated, and depicted as functions of the aspect of tanks for different values of the ratio of the uplift width of the tank bottom plate to the diameter of tank for the designer's convenience. PMID:27303110
Kirschbaum, M.A.
1986-01-01
This deltaic Upper Cretaceous Rock Springs Formation of the Mesaverde Group was deposited during early Campanian time near the end of the regressive phase of the Niobrara cyclothem. On the southwest end of the Uplift, part of the delta system is exposed near the seaward edge of a series of transgressive/regressive sequences, which consist of intertonguing prodelta, delta-front, and delta-plain deposits. Eight major delta-front sandstones are vertically stacked and laterally continuous throughout the main study area.-from Author
NASA Astrophysics Data System (ADS)
Castillo, Miguel; Ferrari, Luca; Muñoz-Salinas, Esperanza
2017-08-01
Rivers are known to respond to changes in the rate of rock uplift by propagating knickpoints through the fluvial network. Downstream of knickpoints, river incision increases local relief producing also the steepening of hillslopes. Thus, knickpoints convey information about the amount of rock uplift to which the fluvial system must respond. Because the incisional pulse produced by the rapid rock uplift is recorded in the topography of channels, the analysis of longitudinal profiles can be used for evaluating the response of landscape to tectonic activity. Here we analyse the longitudinal profile of rivers (n = 84) and the river basin topography (n = 72) with the aim of unravelling the evolution of the Amatlán de Cañas half-graben (ACHG), a Plio-Quaternary structure located in the northern sector of the Jalisco Block (west-central Mexico). Our results indicate that two rock uplift pulses formed the footwall of the ACHG. The distance of knickpoint retreat from the fault scarp exhibit a strong correlation with the stream length (R2 = 0.80), highlighting the importance of stream discharge on knickpoint migration. Clustering of high values of relief, river incision and normalised channel steepness index (ksn) around the centre of the footwall confirms that this is the zone of maximum throw. The propagation of knickpoints along Ameca river is producing the degradation of fans and relief rejuvenation. Using compiled data of knickpoint retreat rates of other tectonically active landscapes, it was found that the stream discharge and the timing and rate of rock uplift are together a first order control on the rate of knickpoint recession. This study supports the idea that the understanding of knickpoints is crucial to unravel the evolution of tectonically active landscapes.
Slate Islands, Lake Superior, Canada: A mid-size, Complex Impact Structure
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Sharpton, V. L.; Copeland, P.
1999-01-01
The target rocks of the 30-32-km diameter Slate Islands impact structure in northern Lake Superior, Canada, are Archean supracrustal and igneous rocks and supracrustal Proterozoic rocks. Shatter cones, pseudotachylites, impact glasses, and microscopic shock metamorphic features were formed during the contact and compression phase of the impact process, followed, during excavation and central uplift, by polymict, clastic matrix breccias in the uplifted target, and by allogenic fall-back breccias (suevite and bunte breccia). Monomict, autoclastic breccias were mainly observed on Mortimer Island and the other outlying islands of the archipelago and were probably generated relatively late in the impact process (central uplift and/or crater modification). The frequency of low index planar shock metamorphic features in quartz was correlated with results from shock experiments to estimate shock pressures experienced by the target rocks. The resulting shock attenuation plan across the archipelago is irregular, probably because the shock wave did not expand from a point or spherical source, and because of the destruction of an originally more regular shock attenuation plan during the central uplift and crater modification stages of the impact process. No impact melt rock bodies have been positively identified on the islands. An impact melt may be present in the annular trough around the islands, though and-based on a weighted mixture of target rocks-may have an intermediate-mafic composition. No such impact melt was found on the archipelago. An Ar-40-Ar-39 release spectrum of a pseudotachylite provides an age of about 436 Ma for the impact structure, substantiating age constraints based on various stratigraphic considerations.
Geology of the north end of the Ruby Range, southwestern Montana
Tysdal, Russell G.
1970-01-01
This study consists of two parts: stratigraphy and sedimentation, and structure of rocks in the northern one-third of the Ruby Range of southwestern Montana. Detailed studies of Cambrian marine dolomite rocks in the Red Lion Formation and in the upper part of the Pilgrim Limestone resulted in their division into distinct rock units, termed lithofacies. These lithofacies contain features suggestive of subtidal, intertidal, and supratidal environments similar to those presently forming in the Persian Gulf. Stromatolltic structures occurring in the uppermost part of the Red Lion Formation are similar to those presently forming in Shark Bay, Australia. The Ruby Range within the map area is broken into a series of northwest-plunging basement (Precambrian metamorphic rock) blocks, differentially uplifted during the Cretaceous-Tertiary orogenic period. These blocks are bordered by upthrust faults, which are nearly vertical in their lower segments and are .low-angle in their uppermost parts. Asymmetrical folds in Paleozoic sedimentary rocks formed in response to the differential uplift of the blocks; thus they too plunge to the northwest. Displaced masses of rock border the range on the three sides within the map area and are interpreted as gravity-slide features resulting from uplift of the range. Normal faulting began blocking out the present range margins by Oligocene time.
Climate dominated topography in a tectonically active mountain range
NASA Astrophysics Data System (ADS)
Adams, B. A.; Ehlers, T. A.
2015-12-01
Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.
An Oblique View of Uplifted Rocks
2017-05-24
This image from NASA's Mars Reconnaissance Orbiter shows part of the central uplifted region of an impact crater more than 50 kilometers wide. That means that the bedrock has been raised from a depth of about 5 kilometers, exposing ancient materials. The warm (yellowish-reddish) colors mark the presence of minerals altered by water, whereas the bluish and greenish rocks have escaped alteration. Sharp-crested ridges and smooth areas are young windblown materials. https://photojournal.jpl.nasa.gov/catalog/PIA21640
Tool-effect: Controls on Landscape Persistence
NASA Astrophysics Data System (ADS)
Willenbring, J. K.; Brocard, G. Y.; Salles, T.; Harrison, E. J.
2017-12-01
The ability of rivers to cut through rock and to remove former land surfaces sets the pace of landscape response to mountain uplift. Because of associations between tectonism, river incision, erosion, carbon burial and silicate weathering, high rates of rock uplift are thought to initiate a cascade of processes that are linked to sequestration of CO2 over geologic timescales. However, even in some cases of landscapes experiencing rapid uplift, some portions of landscapes remain unchanged or `relict' for long periods and the fluxes of chemical weathering and physical erosion do not reflect the new tectonic regime-sometimes for millions of years following uplift. These relict portions of the landscape are often composed of subdued topography with thick soils. River incision is achieved by various processes, but one of the main contributors is bedrock abrasion by bedload. Here, we show how the presence of flat, relict landscapes in headwaters can lead to reduced incision rates and low erosion fluxes. We use a known pulse of uplift in Puerto Rico and track the river response to the uplift over time to illustrate a how landscapes in hot, humid climates can persist for millions of years even after rapid mountain uplift. We run experiments on simplified topography using numerical landscape evolution models. Typically, numerical landscape evolution models apply a standard stream power law model, whereby river incision is proportional to basal shear stress or unit stream power, and is not affected by gravel flux. We implement a formulation of the tool and cover effect model, and then we added a reinforcing effect of weathering on this process, by implementing a gravel production function. This function simulates the effect of the residence time of rocks in soil, which is expected to affect the grain-size distribution of the particles in the soil, with lower erosion rates, and longer residence time further decreasing the proportion of gravel delivered to the streams. We find that the presence of rock fragments in a landscape acts as a stream attractor and fine-grained materials retard stream incision. Thus, a relict surface with thick soils composed of sand and clays effectively protects itself from dissection.
NASA Technical Reports Server (NTRS)
Kelsey, Harvey M.; Engebretson, David C.; Mitchell, Clifton E.; Ticknor, Robert L.
1994-01-01
The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the interseismic strain that accumulates as rapid short-term uplift is not recovered by subduction earthquakes but rather contributes to rock uplift of the Coast Ranges. The conjecture that permanent rock uplift is related to interseismic uplift is consistent with the observation that those segments of the subduction zone subject to greater interseismic uplift rates are at approximately the same latitudes as those segments of the Coast Ranges that have higher magnitudes of rock uplift over the long term.
Quaternary Deformation of Sumba, Indonesia: Evidence from Carbonate Terraces
NASA Astrophysics Data System (ADS)
Dahlquist, M. P.; West, A. J.; Dolan, J. F.
2014-12-01
The Banda Arc of Indonesia remains one of the least understood tectonic domains on the modern Earth. The island of Sumba, located approximately 50 km south of Flores and 120 km north of the Java Trench, northwest of where it transitions into the Timor Trough, lies in a region of tectonic transition and potentially offers insights into regional dynamics. The Banda Arc is volcanically active, but Sumba itself is not volcanic. The northern coast of Sumba is covered in Quaternary coral terraces, with the rest of the island's surface geology composed of Mio-pliocene carbonates and uplifted Late Cretaceous-Oligocene forearc basin and volcanic rocks. The purpose of this study is to remotely map the topographic expression of the coral terraces and use the information gained to better understand deformation on Sumba since their deposition. The ages of the coral terraces, of which many platforms are exposed over significant areas of the island, have been constrained at Cape Luandi in north central Sumba, but uplift rates calculated from those ages may not be representative of the island as a whole. The lateral continuity of these dated terraces can help constrain the extent to which uplift of Sumba is spatially variable. Analysis of the terraces using SRTM digital elevation data with ArcGIS software makes it possible to trace the same terrace platforms over large distances, and shows that the north central part of the island has experienced the most uplift since the deposition of the terraces, forming an anticline with the east limb dipping more steeply than the west. The terraces are not well preserved on the southern half of the island. Exposure of older rocks and lack of terrace preservation, as well as a south-skewed drainage divide suggests the southern half of the island experiences greater exhumation, but this could be driven by climate or other factors and does not necessarily indicate more rapid uplift. Study of Quaternary deformation of Sumba can offer greater understanding of the ongoing collision of the Banda Arc with the Australian continent. A more complete picture of the region may provide insights into seismic hazards as well as the behavior of arc-continent collision systems and active margins in general.
NASA Astrophysics Data System (ADS)
Pedersen, Vivi K.; Braun, Jean; Huismans, Ritske S.
2018-02-01
The origin of high topography in Scandinavia is highly debated, both in terms of its age and the underlying mechanism for its formation. Traditionally, the current high topography is assumed to have formed by several Cenozoic (mainly Neogene) phases of surface uplift and dissection of an old peneplain surface. These same surface uplift events are suggested to explain the increased deposition observed in adjacent offshore basins on the Norwegian shelf and in the North Sea. However, more recently it has been suggested that erosion and isostatic rock uplift of existing topography may also explain the recent evolution of topography in Scandinavia. For this latter view, the increased sedimentation towards the present is assumed to be a consequence of a climate related increase in erosion. In this study we explore whether inverse modelling of landscape evolution can give new insight into Eocene to mid-Pliocene (54-4 Ma) landscape evolution in the Scandinavian region. We do this by combining a highly efficient forward-in-time landscape evolution model (FastScape) with an optimization scheme suitable for non-linear inverse problems (the neighbourhood algorithm - NA). To limit our approach to the fluvial regime, we exclude the most recent mid-Pliocene-Quaternary time period where glacial erosion processes are expected to dominate landscape evolution. The "goodness" of our landscape evolution models is evaluated using i) sediment fluxes based on decompacted offshore sediment volumes and ii) maximum pre-glacial topography from a mid-Pliocene landscape, reconstructed using geophysical relief and offshore sediment volumes from the mid-Pliocene-Quaternary. We find several tested scenarios consistent with the offshore sediment record and the maximum elevation for our reconstructed pre-glacial (mid-Pliocene) landscape reconstruction, including: I) substantial initial topography ( 2 km) at 54 Ma and no induced tectonic rock uplift, II) the combination of some initial topography ( 1.1 km) at 54 Ma and minor continued rock uplift (< 0.04 mm/yr) until 4 Ma, and III) a two-phased tectonic rock uplift of an initially low topography ( 0.1 km). However, out of these, only scenario I (no tectonic rock uplift) matches large-scale characteristics of our reconstructed pre-glacial (mid-Pliocene) topography well. Our preferred model for Eocene to mid-Pliocene landscape evolution in Scandinavia is therefore one where high topography ( 2 km) has existed throughout the time interval from 54 to 4 Ma. We do not find several phases of peneplain surface uplift necessary to explain offshore sediment volumes and large-scale topographic patterns. On the contrary, extensive peneplain dissection seems inconsistent with the low rates of erosion we infer based on the offshore sediment volumes.
An overview on source rocks and the petroleum system of the central Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Böcker, Johannes; Littke, Ralf; Forster, Astrid
2017-03-01
The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil-source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20-32 % (cuttings) and Hydrogen Index (HI) values up to 640-760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the `Lymnäenmergel' are presented and indicate oil-prone organic matter characterized by low activation energies. These sediments are considered as most important source rocks of numerous high wax oils (oil family B) in addition to the coaly source rocks from the (Lower) Pechelbronn-Schichten (Late Eocene). Migration pathways are significantly influenced by the early graben evolution. A major erosion period occurred during the latest Cretaceous. The uplift center was located in the northern URG area, resulting in SSE dipping Mesozoic strata in the central URG. During Middle Eocene times a second uplift center in the Eifel area resulted in SW-NE-directed shore lines in the central URG and contemporaneous south-southeastern depocenters during marine transgression from the south. This structural setting resulted in a major NNW-NW-directed and topography-driven migration pattern for expelled Liassic oil in the fractured Mesozoic subcrop below sealing Dogger α clays and basal Tertiary marls.
Late Cenozoic Colorado River Incision and Implications for Neogene Uplift of the Colorado Rockies
NASA Astrophysics Data System (ADS)
Aslan, A.; Karlstrom, K. E.; Kirby, E.; Heizler, M. T.
2012-12-01
Basalt flows and volcanic ashes serve as a datum for calculating post-10 Ma river incision rates in western Colorado. The main picture that emerges from the data is one of regional variability of incision rates, which we hypothesize to reflect differential uplift of the Colorado Rockies during the Neogene. Maximum rates (90-180 m/Ma) and magnitudes (750-1500 m) of river incision are recorded between Grand Mesa and Glenwood Canyon, and in the Flat Tops. Minimum rates (<30 m/Ma) and magnitudes (<250 m) of river incision are associated post-Laramide normal faults within the Browns Park-Sand Wash basin in northwestern Colorado and in Middle Park of north-central Colorado. Differential uplift of the Colorado Rockies during the late Cenozoic can be inferred by comparing incision rates and magnitudes at locations upstream and downstream of knickzones. Along the Colorado River, post-10 Ma incision rates and magnitudes incision remain fairly constant (rates >100 m/Ma; magnitudes >1000 m) from Grand Mesa upstream to Gore Canyon, and then decrease markedly in Middle Park (rates <10 m/Ma; magnitudes <100 m) across the Gore Canyon knickzone. Normal-faulting of ca. 10 Ma deposits in Middle Park shows that incision rate variations partly reflect late Cenozoic faulting. Along the Yampa River, post-10 Ma incision rates and magnitudes are low (rates 15-27 m/Ma; magnitudes < 230 m) immediately upstream of Yampa Canyon, and then increase significantly (rates 96-132 m/Ma; magnitudes ~1250 m) upstream near the headwaters. We interpret this upstream increase in river incision rate and magnitude to reflect Neogene uplift of the Yampa River headwaters relative to its lower reaches. Lastly, differential late Cenozoic uplift of the Colorado Rockies is suggested by differences in the timing of regional exhumation and river incision within different drainage basins. Colorado River incision and regional exhumation occurred between 9.8 and 7.8 Ma. In contrast, Yampa River incision began between 8 and 6 Ma. Because incision in both the Colorado and Yampa River systems began prior to integration of the Colorado River through Grand Canyon, it is plausible that differences in the timing of river incision in the upper Colorado Basin are related to Neogene differential uplift. Assuming river incision and rock uplift magnitudes are subequal, flexural isostatic modeling suggests that isostatic adjustments account for only 33-50% of the post-10 Ma rock uplift recorded in western Colorado, and that there has been 0.75 to 1.0 km of post-10 Ma epeirogenic rock uplift. Areas with the largest magnitudes of post-10 Ma rock uplift generally overlie areas of basaltic magmatism and anomalously low mantle P-wave velocities. We support the hypothesis that mantle buoyancy has produced 0.75-1.0 km of Neogene uplift of the Colorado Rockies.
Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn
2015-08-07
Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture. Copyright © 2015, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Rudnick, R. L.; Ashwal, L. D.; Henry, D. J.
1983-01-01
Fluid inclusions can be used to determine the compositional evolution of fluids present in high grade metamorphic rocks (Touret, 1979) along with the general P-T path followed by the rocks during uplift and erosion (Hollister et al., 1979). In this context, samples of high grade gneisses from the Kapuskasing structural zone (KSZ, Fig. 1) of eastern Ontario were studied in an attempt to define the composition of syn- and post-metamorphic fluids and help constrain the uplift and erosion history of the KSZ. Recent work by Percival (1980), Percival and Card (1983) and Percival and Krogh (1983) shows that the KSZ represents lower crustal granulites that form the lower portion of an oblique cross section through the Archean crust, which was up faulted along a northeast striking thrust fault. The present fluid inclusion study places constraints upon the P-T path which the KSZ followed during uplift and erosion.
Drainage Evolution during the Uplift of the Central Anatolia Plateau
NASA Astrophysics Data System (ADS)
Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.
2015-12-01
The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat did not produce any major changes. Top-down processes such as lake overflow and avulsion achieved most of the re-integration. They result from more positive precipitation/evaporation balances, either due to elevation change during plateau uplift or due to tectonic fragmentation of depocenters during the development of escape tectonics.
Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera
NASA Astrophysics Data System (ADS)
Bellin, N.; Vanacker, V.; Kubik, P. W.
2014-03-01
The tectonic control on landscape morphology and long-term denudation is largely documented for settings with high uplift rates. Relatively little is known about the rates of geomorphic response in areas of low tectonic uplift. Here, we evaluate spatial variations in denudation of the Spanish Betic Cordillera based on cosmogenic 10Be-derived denudation rates. Denudation rates are compared to published data on rock uplift and exhumation of the Betic Cordillera to evaluate steady-state topography. The spatial patterns of catchment-wide denudation rates (n=20) are then analysed together with topographic metrics of hillslope and channel morphology. Catchments draining the Betic ranges have relatively low denudation rates (64±54 mm kyr), but also show large variation as they range from 14 to 246 mm kyr-1. Catchment-wide denudation is linearly proportional to the mean hillslope gradient and local relief. Despite large spatial variation in denudation, the magnitude and spatial pattern of denudation rates are generally consistent with longer-term local uplift rates derived from elevated marine deposits, fission-track measurements and vertical fault slip rates. This might be indicative of a steady-state topography where rock uplift is balanced by denudation.
The formation of peak rings in large impact craters.
Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William
2016-11-18
Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.
Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.
2008-12-01
Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.
Hayes, Timothy S.; Mustafa, Mazin; Bennet, Thair
2014-01-01
Reconnaissance field visits and rock sampling were conducted at eight geologically selected locations within Mesozoic rocks on the eastern flank of the Rutbah Uplift, Anbar Province, western Iraq, in an attempt to determine if these rocks have been affected by a Mississippi Valley-Type (MVT) lead-zinc mineralizing system. Samples subsequently were studied by carbonate mineral staining, transmitted and reflected light petrology, and scanning electron microscopy with semi-quantitative energy dispersive elemental analyses. Single samples were studied by each, inductively coupled plasma mass spectrometry analyses of trace elements and fluid inclusion microthermometry. Permissive evidence indicates that there has been a MVT system present, but none of the evidence is considered definitive.
Mountain building long after plate collision. Possible mechanisms
NASA Astrophysics Data System (ADS)
Artyushkov, Eugene; Chekhovich, Peter; Korikovsky, Sergei; Massonne, Hans-Joachim
2016-04-01
It is commonly believed that mountain building occurs synchronously to plate collision. However, it was well known long ago that in most cases mountain building began 10-100 Ma later. For example, in the Middle and Southern Urals collision occurred from the Late Devonian and until the Early Permian. The shortened regions remained covered by a shallow sea. High mountains began to form rapidly 10 Ma after the termination of collision. The Verkhoyansk Range in Northeastern Asia was strongly shortened at mid-Cretaceous time. It remained at a low altitude for 100 Ma and rose by 2 km in the Pleistocene. Compressive stresses most probably were acting in the Urals during all the epoch of collision. Strong shortening however occurred only as several impulses 1-2 Ma long. This can be explained by temporary weakening of the lithosphere due to a change in the mechanism of creep under infiltration of fluids from the mantle. To sustain a thickened crust at a low altitude, a density increase in the lithosphere was necessary. A possible cause could be metamorphism in crustal rocks, both mafic and felsic, under a pressure increase during collision. Rapid uplift of the shortened crust long after collision and establishment of a new temperature distribution indicates a density decrease in the lithosphere. Thus, on the Precambrian cratons which cover about 70% of continental areas collision terminated ≥ 500 Ma ago. However, during the last several Ma most of them underwent the uplift ranging from 100-200 m to 1000-1500 m. This occurred on the African continent, in central and eastern Australia, East Siberia, East Antarctica and in many other regions. Preservation of thick mantle roots precluded delamination of the lowermost lithosphere as a mechanism for the uplift. Due to a strong denudation of cratons deeply metamorphosed rocks of the lower crust emerged to a shallow depth. Under dry conditions for a long time they remained metastable. Recent inflow of fluid from the mantle ensured a new phase of metamorphism with the formation of hydrous minerals and rock expansion. Possible density changes at different levels and the corresponding crustal uplift are calculated using phase diagrams for the main types of crustal rocks. Expansion of rocks within the crust is also indicated by numerous slopes tens of kilometers wide that formed during the recent uplift. Strong thinning of mantle lithosphere occurs under many Phanerozoic mountain ranges, e.g., in the Alpine Belt which underwent intense recent uplift. This can be attributed to rapid replacement by the asthenosphere of the lower mantle lithosphere. Its strong weakening by infiltration of mantle fluid was necessary to ensure such a replacement with the isostatic crustal uplift after a long period of relative stability. Strong lateral variations of the uplift indicate a large input in it of metamorphism within the crustal layer. Thus, infiltration of mantle fluids into the continental lithosphere appears to be a trigger for strong shortening of the crust and mountain building.
Geologic map of the northern White Hills, Mohave County, Arizona
Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.
2017-07-10
IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.
Barbados: Architecture and implications for accretion
NASA Astrophysics Data System (ADS)
Speed, R. C.; Larue, D. K.
1982-05-01
The island of Barbados exposes the crestal zone of the remarkably broad accretionary prism of the Lesser Antilles foreacrc. The architecture of Barbados is three-tiered: an upper arched cap of Pleistocene reefs that record rapid and differential uplift of the island, an intermediate zone of nappes of mainly abyssal or deep bathyal pelagic rocks, and a basal complex whose lithotypes extend to substantial depth and may be representative of the bulk of the western or inner accretionary prism. The exposed basal complex consists of generally steeply dipping ENE to NE-striking fault-bounded packets which contain rocks of one of three lithic suites: terrigenous (quartzose turbidite and mudstone), debris flow, and hemipelagic (chiefly radiolarite). Present but imcomplete rock dating indicates that the terrigenous and hemipelagic suites and the pelagic rocks of the intermediate zone are age overlapping in Early and Middle Eocene time. Deformation within packets of the basal complex is systematic, pre- or synfault, and indicative of shortening that is generally normal to packet boundaries. A unit of terrigenous materials that probably underwent local resedimentation in the Miocene is recognized in wells, but its relationship to exposed rocks is uncertain. The packet-bounding faults of the basal complex are interpreted to have been primary accretionary surfaces which may have been reactivated by later intraprism movements. Exposed sedimentary rocks of Barbados can be successfully assigned to contemporaneous depositional sites associated with an accretionary prism: terrigenous beds to a trench wedge that was connected to South American sediment sources, debris flow to trench floor or slope basin accumulations of material derived from the lower slope, hemipelagic to Atlantic plain strata, and pelagic rocks of the intermediate zone to deep outer forearc basin sites. The decollement at the base of the intermediate zone is probably due to uplift and arcward motion of the crestal zone of the accretionary prism with respect to the forearc basin during progressive prism growth. Principal uplift of the prism seems to have started, apparently abruptly, in the Miocene. Quaternary uplift of Barbados may be due partly to local diapirism. Paleogene subduction that created the arcward region of the prism probably occurred in a differently configured zone from the present one.
NASA Astrophysics Data System (ADS)
Pham, T. T.; Shellnutt, G.
2015-12-01
The Phan Si Pan uplift area of NW Vietnam is a part of the Archean to Paleoproterozoic Yangtze Block, Southwest China. This area is of particular interest because it experienced a number of Phanerozoic crustal building events including the Emeishan Large Igneous Province, the India-Eurasia collision and Ailaoshan - Red River Fault displacement. In the Phan Si Pan uplift area, there are at least three different geochronological complexes, including: (1) Late Permian, (2) Eocene and (3) Early Oligocene. (1) The Late Permian silicic rocks are alkali ferroan A1-type granitic rocks with U/Pb ages of 251 ± 3 to 254 ± 3 Ma. The Late Permian silicic rocks of Phan Si Pan uplift area intrude the upper to middle crust and are considered to be part of the ELIP that was displaced during the India-Eurasian collision along the Ailaoshan-Red River Fault shear zone and adjacent structures (i.e. Song Da zone). Previous studies suggest the Late Permian granitic rocks were derived by fractional crystallization of high - Ti basaltic magma. (2) The Eocene rocks are alkali ferroan A1-type granites (U/Pb ages 49 ± 0.9 Ma) and are spatially associated with the Late Permian granitic rocks. The trace element ratios of this granite are similar to the Late Permian rocks (Th/Nb=0.2, Th/Ta = 2.5, Nb/U = 24, Nb/La =1.2, Sr/Y=1). The origin of the Eocene granite is uncertain but it is possible that it formed by fractional crystallization of a mafic magma during a period of extension within the Yangtze Block around the time of the India-Eurasia collision. (3) The Early Oligocene granite is characterized as a peraluminous within-plate granite with U/Pb ages of 31.3 ± 0.4 to 34 ± 1 Ma. The Early Oligocene granite has trace element ratios (Th/Nb = 2.1, Th/Ta = 22.6, Nb/U = 4.4, Nb/La = 0.4, Sr/Y = 60.4) similar to crust melts. The high Sr/Y ratio (Sr/Y = 20 - 205) indicates a lower crust source that was garnet-bearing. The Phan Si Pan uplift was neither a subduction zone nor an arc environment, during the Early Oligocene thus the granite may have formed as the result of partial melting lower crust by heat from an unknown within plate hot zone (mantle plume?).
Geologic Map of the Denver West 30' x 60' Quadrangle, North-Central Colorado
Kellogg, Karl S.; Shroba, Ralph R.; Bryant, Bruce; Premo, Wayne R.
2008-01-01
The Denver West quadrangle extends east-west across the entire axis of the Front Range, one of numerous uplifts in the Rocky Mountain region in which Precambrian rocks are exposed. The history of the basement rocks in the Denver West quadrangle is as old as 1,790 Ma. Along the east side of the range, a sequence of sedimentary rocks as old as Pennsylvanian, but dominated by Cretaceous-age rocks, overlies these ancient basement rocks and was upturned and locally faulted during Laramide (Late Cretaceous to early Tertiary) uplift of the range. The increasingly coarser grained sediments up section in rocks of latest Cretaceous to early Tertiary age record in remarkable detail this Laramide period of mountain building. On the west side of the range, a major Laramide fault (Williams Range thrust) places Precambrian rocks over Cretaceous sedimentary rocks. The geologic history of the quadrangle, therefore, can be divided into four major periods: (1) Proterozoic history, (2) Pennsylvanian to pre-Laramide, Late Cretaceous history, (3) Late Cretaceous to early Tertiary Laramide mountain building, and (4) post-Laramide history. In particular, the Quaternary history of the Denver West quadrangle is described in detail, based largely on extensive new mapping.
A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc
NASA Astrophysics Data System (ADS)
Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J., III; van der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui
2015-09-01
The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant lithosphere, would result in extension and magmatism. The rock record of subduction initiation is typically obscured by younger deposits, so evaluating these possibilities has proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea. The uppermost basement rocks are areally widespread and supplied via dykes. They are similar in composition and age--as constrained by the biostratigraphy of the overlying sediments--to the 52-48-million-year-old basalts in the adjacent Izu-Bonin-Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a component of subducted lithosphere was involved in their genesis, and the lavas were derived from mantle source rocks that were more melt-depleted than those tapped at mid-ocean ridges. We propose that the basement lavas formed during the inception of Izu-Bonin-Mariana subduction in a mode consistent with the spontaneous initiation of subduction.
NASA Astrophysics Data System (ADS)
Mao, X.; Li, J. H.
2012-04-01
We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.
The key to commercial-scale geological CO2 sequestration: Displaced fluid management
Surdam, R.C.; Jiao, Z.; Stauffer, P.; Miller, T.
2011-01-01
The Wyoming State Geological Survey has completed a thorough inventory and prioritization of all Wyoming stratigraphic units and geologic sites capable of sequestering commercial quantities of CO2 (5-15 Mt CO 2/year). This multi-year study identified the Paleozoic Tensleep/Weber Sandstone and Madison Limestone (and stratigraphic equivalent units) as the leading clastic and carbonate reservoir candidates for commercial-scale geological CO2 sequestration in Wyoming. This conclusion was based on unit thickness, overlying low permeability lithofacies, reservoir storage and continuity properties, regional distribution patterns, formation fluid chemistry characteristics, and preliminary fluid-flow modeling. This study also identified the Rock Springs Uplift in southwestern Wyoming as the most promising geological CO2 sequestration site in Wyoming and probably in any Rocky Mountain basin. The results of the WSGS CO2 geological sequestration inventory led the agency and colleagues at the UW School of Energy Resources Carbon Management Institute (CMI) to collect available geologic, petrophysical, geochemical, and geophysical data on the Rock Springs Uplift, and to build a regional 3-D geologic framework model of the Uplift. From the results of these tasks and using the FutureGen protocol, the WSGS showed that on the Rock Springs Uplift, the Weber Sandstone has sufficient pore space to sequester 18 billion tons (Gt) of CO2, and the Madison Limestone has sufficient pore space to sequester 8 Gt of CO2. ?? 2011 Published by Elsevier Ltd.
Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China
NASA Astrophysics Data System (ADS)
Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu
2008-01-01
We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5-0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window ( R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.
Permanent uplift in magmatic systems with application to the Tharsis region of Mars
NASA Astrophysics Data System (ADS)
Phillips, R. J.; Sleep, N. H.; Banerdt, W. B.
1990-04-01
A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.
Permanent uplift in magmatic systems with application to the Tharsis region of Mars
NASA Technical Reports Server (NTRS)
Phillips, Roger J.; Sleep, Norman H.; Banerdt, W. Bruce
1990-01-01
A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.
Geology and ground-water resources of the Rawlins area, Carbon County, Wyoming
Berry, Delmar W.
1960-01-01
The Rawlins area in west-central Carbon County, south-central Wyoming includes approximately 634 square miles of plains and valleys grading into relatively rugged uplifts. The climate is characterized by low precipitation, rapid evaporation, and a wide range of temperature. Railroading and ranching are the principal occupations in the area. The exposed rocks in the area range in age from Precambrian through Recent. The older formations are exposed in the uplifted parts, the oldest being exposed along the apex of the Rawlins uplift. The formations dip sharply away from the anticlines and other uplifts and occur in the subsurface throughout the remainder of the area. The Cambrian rocks (undifferentiated), Madison limestone, Tensleep sandstone, Sun dance formation, Cloverly formation, Frontier formation, and Miocene and Pliocene rocks (undifferentiated) yield water to domestic and stock wells in the area. In the vicinity of the Rawlins uplift, the rocks of Cambrian age, Madison limestone, and Tensleep sandstone yield water to a few public-supply wells. The Cloverly formation yields water to public-supply wells in the Miller Hill and Sage Creek basin area. Wells that tap the Madison limestone, Tensleep sandstone, and Cloverly formation yield water under sufficient artesian pressure to flow at the land surface. The Browns Park formation yields water to springs that supply most of the Rawlins city water and supply water for domestic and stock use. Included on the geologic map are location of wells and test wells, depths to water below land surface, and location of springs. Depths to water range from zero in the unconsolidated deposits along the valley of Sugar Creek at the southern end of the Rawlins uplift to as much as 129 feet below the land surface in the Tertiary sedimentary rocks along the Continental Divide in the southern part of the area. The aquifers are recharged principally by precipitation that falls upon the area, by percolation from streams and ponds, and by movement of ground water from adjacent areas. Water is discharged from the ground-water reservoir by evaporation and transpiration, by seeps and springs, through wells, and by underflow out of the area. Although most water supplies in the area are obtained from springs, some domestic, stock, and public supplies are obtained from drilled wells, many yielding water under artesian pressure, and some flowing. Dissolved solids in the water from several geologic sources, ranging from 181 to 6,660 parts per million (ppm), indicate the varied chemical quality of ground water in the Rawlins area. Water from the Cambrian rocks, Tensleep sandstone, Cloverly formation, Frontier formation, Browns Park formation, and Miocene and Pliocene rocks is generally suitable for domestic and stock use. However, water yielded to the only well sampled in the lower part of the Frontier formation contained a high concentration of fluoride. Water from the rocks mentioned above contains less than 1,000 ppm of dissolved solids but in some places may contain iron in troublesome amounts. Water from the Madison limestone and Tensleep sandstone combined, Permian rocks, and Sundance formation contains more than 1,000 ppm of dissolved solids. Water in the Sundance, Cloverly, and Frontier :formations is very soft. More ground water can be obtained in the Rawlins area than is now being used. Many springs are undeveloped, and water can be obtained from additional wells without unduly lowering ground-water levels.
Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas.
Shirzaei, Manoochehr; Ellsworth, William L; Tiampo, Kristy F; González, Pablo J; Manga, Michael
2016-09-23
Observations that unequivocally link seismicity and wastewater injection are scarce. Here we show that wastewater injection in eastern Texas causes uplift, detectable in radar interferometric data up to >8 kilometers from the wells. Using measurements of uplift, reported injection data, and a poroelastic model, we computed the crustal strain and pore pressure. We infer that an increase of >1 megapascal in pore pressure in rocks with low compressibility triggers earthquakes, including the 4.8-moment magnitude event that occurred on 17 May 2012, the largest earthquake recorded in eastern Texas. Seismic activity increased even while injection rates declined, owing to diffusion of pore pressure from earlier periods with higher injection rates. Induced seismicity potential is suppressed where tight confining formations prevent pore pressure from propagating into crystalline basement rocks. Copyright © 2016, American Association for the Advancement of Science.
In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat
NASA Technical Reports Server (NTRS)
Oskin, Michael; Burbank, Doug
2005-01-01
Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.
NASA Astrophysics Data System (ADS)
Morag, N.; Haviv, I.; Katzir, Y.
2013-12-01
The Troodos Massif of Cyprus, rising to nearly 2000 meters above sea level, encompasses one of the world's classic ophiolites. Following its formation at a seafloor spreading center in Late Cretaceous times, this slice of the NeoTethyan oceanic lithosphere was uplifted and eventually exposed on mountain tops during the Neogene. The final uplift and exhumation of the Troodos was previously assigned to Pleistocene age by observations in the circum-Troodos sedimentary strata. However, quantitative thermochronological and geomorphological data from the Massif itself were not available. Here we use apatite (U-Th)/He low-temperature thermochronology complemented by zircon (U-Th)/He and apatite fission track data, and combined with geomorphic analysis to constrain the exhumation and uplift history of the Troodos ophiolite. Apatite (U-Th)/He ages vary with depth from ~ 22 Ma at the top of the Gabbro sequence to ~ 6 Ma at the bottom of the sequence. The deepest sample from a Gabbro pegmatitic dyke intruding the ultramafic sequence yielded an age of ~ 3 Ma. Thermal modeling of apatite (U-Th)/He and fission track data delineates Plio - Pleistocene initiation of rapid uplift and exhumation of the Troodos ophiolite. The estimated cumulative exhumation since its initiation is 2-3 km. No evidence was found for significant uplift of the central Troodos area prior to that time. The geomorphic analysis delineates a bull's-eye zone at the center of the Troodos Massif, where local relief and channel steepness index are highest. The boundaries of this zone roughly correspond with the Mt. Olympus mantle outcrop and suggest recent, differential uplift of this zone relative to its surroundings. The most likely mechanism, which could drive such a focused bull's-eye uplift pattern is hydration of ultramafic rocks (serpentinization) leading to a decrease in rock density and subsequent diapiric uplift of the serpentinized lithospheric mantle.
NASA Astrophysics Data System (ADS)
Adams, Peter N.
2018-04-01
The Merritt Island-Cape Canaveral (MICCSC) sedimentary complex consists of a series of adjacent, non-conformable, beach ridge sets that suggest a multi-phase constructional history, but the feature's geomorphic and sedimentary origins are not well-understood. In spite of its notable sedimentary volume (surface area = 1200 km2), the MICCSC lacks a clear sediment source, or supply mechanism, to explain its presence today. Previously published U/Th, radiocarbon and OSL dates indicate that beach ridge deposition was active during MIS 5 (130-80 ka) on Merritt Island, but has occurred over a shorter, younger time interval on Cape Canaveral proper (6 ka to present). In this paper, it is proposed that the MICCSC is an abandoned paleodelta whose fluvial source provided a sediment supply sufficient for coastal progradation. Although the MICCSC, today, does not receive an appreciable sediment supply, the nearly 23,000 km2 drainage basin of the St. Johns River may well have provided such a sediment supply during MIS 5 times. This low-gradient fluvial system currently empties to the Atlantic Ocean some 200 km north of the MICCSC (near Jacksonville, Florida) but may have flowed southward during the time of MICCSC sedimentary construction, then experienced flow reversal since MIS 5 times. Three possible uplift mechanisms are proposed to explain the northward down-tilting that may have reversed the flow direction of the St. Johns, abandoning deltaic construction of the MICCSC: (1) karst-driven, flexural isostatic uplift in response to carbonate rock dissolution in central Florida, (2) glacio-hydro-isostatic tilting/back-tilting cycles during loading and unloading of the Laurentide ice sheet during the Pleistocene, and (3) mantle convection-driven dynamic topography operating within southeastern North America since the Pliocene. This example testifies to the sensitivity of low-gradient, low-relief landscapes to various sources of uplift, be they isostatic or otherwise.
Wilcox group (Paleocene to Eocene) coals of the Sabine Uplift area, Texas and Louisiana
Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.
2011-01-01
The Wilcox Group (Paleocene to Eocene) of the Sabine uplift, a structural arch in northeastern Texas and northwestern Louisiana (Figure 1), has lignite zones that approach subbituminous rank (see Chapter 4, this publication). These coals are among the highest quality resources known within the Gulf Coastal Plain because of their low ash yield and sulfur content. The surface expression of the Sabine uplift is defined by the contact between coal-bearing rocks of the Wilcox Group and overlying fluvial rocks of the Carrizo Sand, which is the basal unit of the Claiborne Group (Figures 2, 3). The Sabine uplift study area includes parts of Harrison, Marion, Nacogdoches, Panola, Rusk, Sabine, San Augustine, and Shelby Counties in Texas and Bossier, Caddo, De Soto, Natchitoches, Red River, and Sabine Parishes in Louisiana (Figure 1). Adjacent counties and parishes that include the subsurface Wilcox Group extend the regional Sabine uplift area. The Wilcox in the subsurface is underlain by the Midway Group (Figure 3), a mudstone-dominated marine sequence of Paleocene age. Quaternary alluvium and terrace deposits overlying the Wilcox Group at the surface are limited to areas of modern drainage.The total thickness of the Wilcox Group within the Sabine uplift area ranges from approximately 400 ft on outcrop to 2500 ft in subsurface (Kaiser, 1990). In a few places, the contact between the overlying Carrizo Sand and Wilcox Group is erosional, but in other places, the contact is gradational.
Fractures in Carbonate-Bearing Rocks at Mars Huygens Basin
2011-03-08
This false-color image NASA Mars Reconnaissance Orbiter shows that fractures and possible layers are visible in the light-toned rock exposure containing the carbonates. The location is inside an unnamed crater on the uplifted rim of Huygens crater.
Glacial reorganization of topography in a tectonically active mountain range
NASA Astrophysics Data System (ADS)
Adams, Byron; Ehlers, Todd
2016-04-01
Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.
Evaluating Metrics of Drainage Divide Mobility
NASA Astrophysics Data System (ADS)
Forte, A. M.; Whipple, K. X.; DiBiase, R.; Gasparini, N. M.; Ouimet, W. B.
2016-12-01
Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to baselevel, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, can potentially induce changes to fluvial topography comparable to spatio-temporal variation in rock uplift, climate, or rock properties. Ultimately, reliable metrics are needed to diagnose the mobility of divides. One such recently proposed metric is cross-divide contrasts in `chi', a measure of the current topology of the drainage network, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution modeling scenarios in which we induce divide mobility under different conditions to test the utility of a suite of plausible topographic metrics of divide mobility and compare these to natural examples. Specifically, we test cross-divide contrasts in mean slope, mean local relief, channel bed elevation at a reference drainage area, and chi. Our results highlight that cross-divide contrasts in chi can only be accurately interpreted in terms of divide mobility when uplift, rock erodibility, climate, and base-level are uniform across both river networks on either side of the divide. This is problematic for application of this metric to natural landscapes as (1) uniformity of all of these parameters is exceedingly unlikely and (2) quantifying the spatial patterns of these parameters is difficult. Consequently, as shown here for both simulated and natural landscapes, simple measures of cross-divide contrasts in mean slope, mean local relief, and channel bed elevation at a reference drainage area are more robust metrics of divide mobility, correctly identifying stable or mobile divides independent of cross-divide differences in rock uplift, climate, erodibility or baselevel.
Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo Range, Colorado ( USA).
Lindsay, D.A.; Andriessen, P.A.M.; Wardlaw, B.R.
1986-01-01
Paleozoic sedimentary rocks in a wide area of the northern Sangre de Cristo Range show effects of heating during Tertiary time. Heating is tentatively interpreted as a response to burial during Laramide folding and thrusting and also to high heat flow during Rio Grande rifting. Fission-track ages of apatite across a section of the range show that rocks cooled abruptly below 120oC, the blocking temperature for apatite, approx 19 Ma ago. Cooling was probably in response to rapid uplift and erosion of the northern Sangre de Cristo Range during early Rio Grande rifting.-from Authors
Rock Uplift above the Yakutat Megathrust on Montague Island, Prince William Sound, Alaska
NASA Astrophysics Data System (ADS)
Ferguson, K.; Armstrong, P. A.; Haeussler, P. J.; Arkle, J. C.
2011-12-01
The Yakutat microplate is subducting shallowly (~6°) beneath the North American Plate at a rate of approximately 53 mm/yr to the northwest. Deformation from this flat- slab subduction extends >600 km inland and has resulted in regions of focused rock uplift and exhumation in the Alaska Range, central Chugach Mountains, and St. Elias Mountains. Many questions still remain about how strain is partitioned between these regions of focused uplift, particularly in the Prince William Sound (southern Chugach Mountains) on Montague Island. Montague Island (and adjacent Hinchinbrook Island) are ~20 km above the megathrust where there is a large degree of coupling between the subducting Yakutat microplate and overriding North American Plate. Montague Island is of particular interest because it lies between two areas of rapid rock uplift focused in the St. Elias/eastern Chugach Mountains and the western Chugach Mountains. In the St. Elias/eastern Chugach Mountains, faulting related to collisional processes and bending of fault systems causes rapid rock uplift. About 200 km farther northwest in the western Chugach Mountains, recent rock uplift is caused by underplating along the megathrust that is focused within a syntaxial bend of major fault systems and mountain ranges. Montague Island bounds the southern margin of Prince William Sound, and is steep, narrow, and elongate (81 km long and ~15 km wide). The maximum relief is 914 m, making for very steep, mountainous topography considering the narrow width of the island. During the Mw 9.2 earthquake in 1964, the Patton Bay and Hanning Bay reverse faults were reactivated, with 7 and 5 m of vertical offset, respectively. Both faults dip ~60° NW and strike NE-SW parallel to the long-axis of the island and parallel to geomorphic features including lineaments, elongate valleys, and escarpments. Prominent ~450 m high escarpments are present along the SE-facing side of the island, which suggests rapid and sustained uplift. New apatite (U-Th)/He (AHe) and fission-track (AFT) ages are 1.3 - 1.5 Ma and 4.4 Ma, respectively, at the SW end of Montague Island and AHe ages are 4.4 - 4.6 Ma at the NE end. These age and geomorphic constraints indicate that Montague Island marks a narrow zone of intense deformation probably related to thin-skinned thrust faulting and/or pop-up structures above the megathrust. The youngest AHe ages from Montague Island are similar to those from farther east along the St. Elias - Bagley fault systems implying that the south and east sides of Montague Island, and perhaps the along-trend eastern part of Hinchinbrook Island, may be the westward extension of these fault systems. Additional cooling ages will help constrain the spatial extent of this zone of deformation and potential links with other structural zones caused by Yakutat collision and subduction.
NASA Astrophysics Data System (ADS)
Margirier, A.; Robert, X.; Braun, J.; Laurence, A.
2017-12-01
The uplift and exhumation of the highest Peruvian peaks seems closely linked to the Cordillera Blanca normal fault that delimits and shape the western flank of the Cordillera Blanca. Two models have been previously proposed to explain the occurrence of extension and the presence of this active normal fault in a compression setting but the Cordillera Blanca normal fault and the uplift and exhumation of the Cordillera Blanca remain enigmatic. Recent studies suggested an increase of exhumation rates during the Quaternary in the Cordillera Blanca and related this increase to a change in climate and erosion process (glacial erosion vs. fluvial erosion). The Cordillera Blanca granite has been significantly eroded since its emplacement (12-5 Ma) indicating a significant mass of rocks removal. Whereas it has been demonstrated recently that the effect of eroding denser rocks can contribute to an increase of uplift rate, the impact of erosion and isostasy on the increase of the Cordillera Blanca uplift rates has never been explored. Based on numerical modeling of landscape evolution we address the role of erosion and isostasy in the uplift and exhumation of the Cordillera Blanca. We performed inversions of the present-day topography, total exhumation and thermochronological data using a landscape evolution model (FastScape). Our results evidence the contribution of erosion and associated flexural rebound to the uplift of the Cordillera Blanca. Our models suggest that the erosion of the Cordillera Blanca dense intrusion since 3 Ma could also explain the Quaternary exhumation rate increase in this area. Finally, our results allow to question the previous models proposed for the formation of the Cordillera Blanca normal fault.
Ferguson, Kelly M; Armstrong, Phillip A; Arkle Jeanette C,; Haeussler, Peter J.
2014-01-01
Megathrust splay fault systems in accretionary prisms have been identified as conduits for long-term plate motion and significant coseismic slip during subduction earthquakes. These fault systems are important because of their role in generating tsunamis, but rarely are emergent above sea level where their long-term (million year) history can be studied. We present 32 apatite (U-Th)/He (AHe) and 27 apatite fission-track (AFT) ages from rocks along an emergent megathrust splay fault system in the Prince William Sound region of Alaska above the shallowly subducting Yakutat microplate. The data show focused exhumation along the Patton Bay megathrust splay fault system since 3–2 Ma. Most AHe ages are younger than 5 Ma; some are as young as 1.1 Ma. AHe ages are youngest at the southwest end of Montague Island, where maximum fault displacement occurred on the Hanning Bay and Patton Bay faults and the highest shoreline uplift occurred during the 1964 earthquake. AFT ages range from ca. 20 to 5 Ma. Age changes across the Montague Strait fault, north of Montague Island, suggest that this fault may be a major structural boundary that acts as backstop to deformation and may be the westward mechanical continuation of the Bagley fault system backstop in the Saint Elias orogen. The regional pattern of ages and corresponding cooling and exhumation rates indicate that the Montague and Hinchinbrook Island splay faults, though separated by only a few kilometers, accommodate kilometer-scale exhumation above a shallowly subducting plate at million year time scales. This long-term pattern of exhumation also reflects short-term seismogenic uplift patterns formed during the 1964 earthquake. The increase in rock uplift and exhumation rate ca. 3–2 Ma is coincident with increased glacial erosion that, in combination with the fault-bounded, narrow width of the islands, has limited topographic development. Increased exhumation starting ca. 3–2 Ma is interpreted to be due to rock uplift caused by increased underplating of sediments derived from the Saint Elias orogen, which was being rapidly eroded at that time.
Tool Belts: Latitudinal-Belt Predictions for the Persistence of Landscapes
NASA Astrophysics Data System (ADS)
Willenbring, Jane; Brocard, Gilles
2016-04-01
The ability of rivers to cut through rock and re-establish equilibrium sets the pace of landscape response to uplift. Because of associations between tectonics, erosion, and weathering, high rates of rock uplift may initiate a cascade of processes that are linked to high rates of weathering and eventually sequestration of CO2 over geologic timescales. How long does it take to completely change the topographic form after uplift and where on Earth do relict landscapes persist despite uplift? Large expanses of subdued landscapes are common at high elevation in mountain ranges. Preservation of subdued fragments amongst steeply dissected regions can therefore be a simple matter of chance, reflecting the time it takes for dissection to remove any remaining parcel of the pre-existing topography after a tectonic perturbation. Some of these relicts may, however, possess characteristics - often a product of the climate - that make them intrinsically resistant to dissection. One common mode of conversion of a subdued landscape into a deeply dissected one is the propagation of upstream-migrating erosion waves that transmit the signal of uplift and base level lowering across entire landscapes. Following a shift in tectonic forcing, the Earth's surface progressively adjusts its topographic form over millions of years, seeking to re-establish equilibrium with the new forcing. Here, we show that a high degree of weathering leading to smaller average soil grains at the surface hinders the capacity of rivers to incise. We show that globally, rates of cosmogenic nuclide-derived denudation rates fall into latitudinal belts with (1) low rates of denudation in areas with high temperatures and high precipitation where rock fragments do not persist at the soil surface, (2) high rates of denudation at mid-latitudes where rock fragments exist and are carried efficiently by the river flow, and (3) low rates of denudation at high latitudes where large grains at the surface inhibit channelized flow. We hypothesize that climate sets the pace for landscape change through a balance between slope and grain size. This process acts as a governor on flux of weathering products to the oceans.
NASA Astrophysics Data System (ADS)
Bauer, F. U.; Glasmacher, U. A.; Ring, U.; Schumann, A.; Nagudi, B.
2010-10-01
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U-Th-Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time-temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.
The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona
Fuis, Gary S.
1996-01-01
The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.
Geomorphological evolution of western Sicily, Italy
NASA Astrophysics Data System (ADS)
Di Maggio, Cipriano; Madonia, Giuliana; Vattano, Marco; Agnesi, Valerio; Monteleone, Salvatore
2017-02-01
This paper proposes a morphoevolutionary model for western Sicily. Sicily is a chain-foredeep-foreland system still being built, with tectonic activity involving uplift which tends to create new relief. To reconstruct the morphoevolutionary model, geological, and geomorphological studies were done on the basis of field survey and aerial photographic interpretation. The collected data show large areas characterized by specific geological, geomorphological, and topographical settings with rocks, landforms, and landscapes progressively older from south to north Sicily. The achieved results display: (1) gradual emersion of new areas due to uplift, its interaction with the Quaternary glacio-eustatic oscillations of the sea level, and the following production of a flight of stair-steps of uplifted marine terraces in southern Sicily, which migrates progressively upward and inwards; in response to the uplift (2) triggering of down-cutting processes that gradually dismantle the oldest terraces; (3) competition between uplift and down-cutting processes, which is responsible for the genesis of river valleys and isolated rounded hills in central Sicily; (4) continuous deepening over time that results in the exhumation of older and more resistant rocks in northern Sicily, where the higher heights of Sicily are realized and the older forms are retained; (5) extensional tectonic event in the northern end of Sicily, that produces the collapse of large blocks drowned in the Tyrrhenian Sea and sealed by coastal-marine deposits during the Calabrian stage; (6) trigger of uplift again in the previously subsiding blocks and its interaction with coastal processes and sea level fluctuations, which produce successions of marine terraces during the Middle-Upper Pleistocene stages.
NASA Astrophysics Data System (ADS)
Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei
2017-08-01
There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.
NASA Astrophysics Data System (ADS)
Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei
2018-06-01
There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng
2011-01-01
Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target salinemore » aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.« less
Geologic map of the Ennis 30' x 60' quadrangle, Madison and Gallatin Counties, Montana
Kellogg, Karl S.; Williams, Van S.
1998-01-01
The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province. The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks. The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the 'Madison-Gravelly arch' that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle. Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the 'Madison-Gravelly arch,' a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben. Pleistocene glaciers sculpted the high peaks of the mountain ranges and formed the present rugged topography.
Kellogg, Karl S.; Williams, Van S.
2000-01-01
The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province. The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks. The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the 'Madison-Gravelly arch' that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle. Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the 'Madison-Gravelly arch,' a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben. Pleistocene glaciers sculpted the high peaks of the mountain ranges and formed the present rugged topography.
Peterman, Z.E.; Sims, P.K.
1988-01-01
Rb-Sr biotite ages of Archean and Early to Middle Proterozoic crystalline rocks in northern Wisconsin and adjacent Upper Peninsula of Michigan describe a regionally systematic pattern related to differential uplift. An "age low' occurs in northern Wisconsin where values range from 1070-1172 Ma for rocks with crystallization ages of 1760 to 1865 Ma. These values overlap with the main episode of mafic igneous activity (1090 to 1120 Ma) along the Midcontinent rift system (MRS). We interpret these low biotite ages as registering closure due to cooling below the 300??C isotherm as a consequence of uplift and rapid erosion of an area that we are informally naming the Goodman swell. We interpret the swell to be a forebulge imposed on an elastic crust by loading of mafic igneous rocks along and within the axis of the MRS. -from Authors
Pitman, Janet K.; Franczyk, K.J.; Anders, D.E.
1987-01-01
Thermogenic gas was generated from interbedded humic-rich source rocks. The geometry and distribution of hydrocarbon source and reservoir rocks are controlled by depositional environment. The rate of hydrocarbon generation decreased from the late Miocene to the present, owing to widespread cooling that occurred in response to regional uplift and erosion associated with the development of the Colorado Plateau. -from Authors
Baltz, E.H.; Myers, D.A.
1999-01-01
The Sangre de Cristo Mountains of south-central Colorado and north-central New Mexico are the physiographic expression of a southerly trending Cenozoic structural uplift that plunges gently south to die out in the Great Plains south of Santa Fe and Las Vegas, New Mexico. The uplift is bounded on the west by Neogene downfaulted and downwarped basins of the Rio Grande depression and, on the east, by broad Laramide basins that have sharply folded western limbs. The uplift was modified in Neogene time by local igneous-intrusive doming and normal faulting related to the Rio Grande rift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, R.B.
1985-01-01
The Front Range terminates to the south as three basement-cored uplifts located north and west of the Canon City embayment. Precambrian units consist of foliated and non-foliated granitic rocks, augen gneiss, interlayered schist and gneiss, amphibolite, quartzite, and pegmatite. Precambrian deformations include at least three phases of folding, two phases of crenulation cleavage development, and local mylonitization. Metamorphic conditions reached those of cordierite-sillimanite grade. Paleozoic and Mesozoic sediments surround and overlap the exposed uplifts to form south-plunging arches. Excellent three-dimensional exposure of structural relationships between Precambrian rocks and overlying Phanerozoic sediments is present. Deformation styles in the sedimentary cover aremore » strongly influenced by underlying Precambrian lithologies and structural orientations. Where the crystalline units are granitic, with steeply-dipping foliation or no directional fabric, uplifts are bounded by high angle faults. Some such faults show evidence of repeated movements and reversals dating back to Precambrian time. The boundary between mechanical basement and suprastructure is clearly not defined as the base of the sedimentary section. Balanced cross-sections constructed through the southern Front Range must include contemporaneous flexural folds and thrusts in Precambrian schistose and gneissic rocks as well as in Phanerozoic sedimentary layers.« less
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Zheng, Dewen; Pang, Jianzhang; Zhang, Huiping; Wang, Weitao; Yu, Jingxing; Zhang, Zhuqi; Zheng, Wenjun; Zhang, Peizhen; Li, Youjuan
2018-05-01
Studies have shown that the growth of the Qilian Shan, the northeastern margin of the Tibetan Plateau, started 10 Ma ago. However, when and how it expanded northwards is still under debate. Here we focus on the rock uplift pattern of the Yumu Shan, an active fault-related fold in the Hexi Corridor north to the Qilian Shan. Normalized channel steepness achieved from the analysis of river longitudinal profiles shows a spatially variant rock uplift pattern, with higher rates in the middle part and lower rates towards the west and east tips. The compression of the mountain is typically accommodated by fault-fold related shortening and vertical thickening. Apatite fission track thermochronology reveals that the growth of the Yumu Shan started 4 Ma ago, similar to the work on active tectonics. Combining the onset ages of the growth of the Qilian Shan (10 Ma), Laojunmiao anticline (3-4 Ma), Baiyanghe anticline (3-4 Ma), Wenshu Shan (4.5 Ma) and Heli Shan (2 Ma), we draw an conclusion that the NE margin of the Tibetan Plateau initiated growth in the mid-Miocene and expanded to the Hexi Corridor and to the south of the Alxa block in the early Pleistocene.
Central Alpine Denudation equals Rock Uplift: Steady State or Coincidence?
NASA Astrophysics Data System (ADS)
Wittmann, H.; von Blanckenburg, F.; Kruesmann, T.; Norton, K. P.; Kubik, P. W.
2006-12-01
The Central Alps of Switzerland represent a mountain belt in which an exceptional wealth of geophysical data allows the unique test of tectono-geomorphic models. Levelling measurements show that the Central Alps are uplifting today with 0.5-1.6 mm/yr (Kahle et al. 1997). Here we present a North-South denudation rate transect through the Swiss Central Alps from a study of in situ-produced cosmogenic 10Be in river-borne quartz. Denudation rates range from 0.1 to 1.5 mm/yr. They yield a mean of 0.27+/-0.14 mm/yr for the Alpine foreland, where integration times are 2-8 ky, and of 0.9+/-0.3 mm/yr for the high crystalline Central Alps, where integration times are 0.5-1.5 ky. The measured cosmogenic nuclide-derived denudation rates are in good agreement with post-LGM lake infill rates and significantly higher than recent denudation rates from river loads. We attribute this discrepancy to differences in methodology and integration time scale. Our new rates are in the same range as denudation rates from apatite fission tracks that record denudation 3-5 Ma ago. Denudation rates correlate with hill slope in the Mittelland catchments, but they are independent of slope in the high Alps. We interprete this to mean that high Alpine landscapes are at threshold hillslope, where slopes cannot increase any further before failure occurs. In general, denudation rates are high in areas of high relief and high altitude. Importantly, good spatial agreement exists between denudation rates and recent rock uplift rates. Since all of the mentioned parameters are also highest where crustal thickness is largest, a major driving force for rock uplift and concomitant denudation is likely to be isostatic. However, given that crustal thickening of the Alps has all but ceased, the relief-forming events that set the rate of denudation and uplift must be presented by transient perturbations, such as increased erosional response to climate cycling. Thereby a quasi-steady state has been achieved in which rock uplift is balanced by denudation. This means that although the landscape is never in steady state on the short term, the conditions for long-term steady state are fulfilled nevertheless. Kahle, H., et al. (1997). Recent crustal movements, geoid and density distribution: Contribution from integrated satellite and terrestrial measurements. In O. Pfiffner (Ed.), Results of the National Research Program 20 (NRP 20), pp. 251-259, Birkhaeuser Verlag, Basel.
NASA Astrophysics Data System (ADS)
Gallen, Sean F.; Wegmann, Karl W.
2017-02-01
Topography is a reflection of the tectonic and geodynamic processes that act to uplift the Earth's surface and the erosional processes that work to return it to base level. Numerous studies have shown that topography is a sensitive recorder of tectonic signals. A quasi-physical understanding of the relationship between river incision and rock uplift has made the analysis of fluvial topography a popular technique for deciphering relative, and some argue absolute, histories of rock uplift. Here we present results from a study of the fluvial topography from south-central Crete, demonstrating that river longitudinal profiles indeed record the relative history of uplift, but several other processes make it difficult to recover quantitative uplift histories. Prior research demonstrates that the south-central coastline of Crete is bound by a large ( ˜ 100 km long) E-W striking composite normal fault system. Marine terraces reveal that it is uplifting between 0.1 and 1.0 mm yr-1. These studies suggest that two normal fault systems, the offshore Ptolemy and onshore South-Central Crete faults, linked together in the recent geologic past (ca. 0.4-1 My BP). Fault mechanics predict that when adjacent faults link into a single fault the uplift rate in footwalls of the linkage zone will increase rapidly. We use this natural experiment to assess the response of river profiles to a temporal jump in uplift rate and to assess the applicability of the stream power incision model to this setting. Using river profile analysis we show that rivers in south-central Crete record the relative uplift history of fault growth and linkage as theory predicts that they should. Calibration of the commonly used stream power incision model shows that the slope exponent, n, is ˜ 0.5, contrary to most studies that find n ≥ 1. Analysis of fluvial knickpoints shows that migration distances are not proportional to upstream contributing drainage area, as predicted by the stream power incision model. Maps of the transformed stream distance variable, χ, indicate that drainage basin instability, drainage divide migration, and river capture events complicate river profile analysis in south-central Crete. Waterfalls are observed in southern Crete and appear to operate under less efficient and different incision mechanics than assumed by the stream power incision model. Drainage area exchange and waterfall formation are argued to obscure linkages between empirically derived metrics and quasi-physical descriptions of river incision, making it difficult to quantitatively interpret rock uplift histories from river profiles in this setting. Karst hydrology, break down of assumed drainage area discharge scaling, and chemical weathering might also contribute to the failure of the stream power incision model to adequately predict the behavior of the fluvial system in south-central Crete.
NASA Astrophysics Data System (ADS)
Song, Shiyu; Cao, Daiyong; Zhang, QingChao; Wang, Anming; Peng, Yangwen
2018-07-01
Low-temperature thermochronology is used widely in the Tibet plateau uplift. Some researches, however, have defined the time of rapid denudation as simply rock uplift and have neglected the fact that the rock denudation recorded by fission track (FT) data was controlled by both surface incision and rock uplift. The incision of the Yarlung Zangbo River had a significant influence on uplift history inversion in Southern Tibet. This paper simulated the bedrock denudation and river incision histories using apatite fission track (AFT) data sampled from the Gangdese conglomerate belt, which is located in the middle of Southern Tibet, and analyzed the geological meaning of the AFT age of each sample. The results showed the following: (1) In the early Miocene (22-16 Ma), both the value of the denudation rate and the incision rate were high (0.56 mm/yr and 0.24 mm/yr). (2) In the middle-late Miocene, the incision rate (0.12 mm/yr) was similar to the denudation rate (0.09-0.11 mm/yr). (3) The historical model between river incision and bedrock denudation revealed a significant difference in the denudation rate during the period ca. 8-6 Ma. Combining these data with previously published thermochronological ages and synthesizing these ages with regional geological, we arrived at the following conclusions: (1) In the early Miocene, the denudation event probably was caused by a combined result of Indian plate rollback and the incision of the Yarlung Zangbo River. (2) In the middle-late Miocene, the denudation rate was consistent with the incision rate, which suggested that the denudation episode was caused by climate change associated with Asian monsoon intensification. (3) After 8 Ma, the stable and slow incision rate indicated that regional drastic uplift had ceased. The paleo-elevation of the research area had approached, and even exceeded, the present-day elevation in the late Miocene.
Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates
NASA Astrophysics Data System (ADS)
Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.
2015-12-01
The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.
Magnetic Properties of Three Impact Structures in Canada
NASA Astrophysics Data System (ADS)
Scott, R. G.; Pilkington, M.; Tanczyk, E. I.; Grieve, R. A. F.
1995-09-01
Magnetic anomaly lows associated with the West Hawk Lake (Manitoba), Deep Bay (Saskatchewan) and Clearwater Lakes (Quebec) impact structures, are variable in lateral extent and intensity, a characteristic shared with most impact structures [1]. Drill core from the centres of these structures provides a unique opportunity to ground truth the causes of the reduction in magnetic field intensity in impact structures. Magnetic susceptibility and remanent magnetization levels have been found to be well below regional levels in melt rocks, impact breccias, fractured/shocked basement rocks in the central uplifts, and post-impact sediments. Deep Bay, formed in Pre-Cambrian paragneisses, is a complex crater with a submerged central uplift. It has been extensively infilled with non-magnetic black shales of Cretaceous age [2]. An airborne magnetic low of about 100 nT is associated with the Deep Bay structure. Below the shales and along the rim of the structure are highly brecciated country rocks with variable amounts of very fine rock flour. Susceptibility and remanent magnetization are both weak due to extensive alteration in the brecciated rocks. Alteration of the brecciated rocks, and the effect of several hundred meters of non-magnetic sedimentary infill, both contribute to the magnetic low. West Hawk Lake, a simple crater, was excavated in metavolcanic and metasedimentary rocks of the Superior Province [3], and has a ground magnetic low of about 250 nT. As with Deep Bay, West Hawk Lake has been infilled with dominantly non-magnetic sediments. Brecciation and alteration are extensive, with breccia derived from greenschist-facies meta-andesite displaying slightly higher susceptibilities and remanent magnetizations than breccia derived from the more felsic metasediments. Brecciation has effectively randomized magnetization vectors, and subsequent alteration resulted in the destruction of magnetic phases. These two factors contribute to the magnetic low over this structure. The Clearwater Lakes impact structures are two complex craters formed in Archean retrograde granulite facies rocks [4]. Clearwater West, at 36 km diameter, has an annular ring of islands and a shallowly submerged central uplift. Clearwater East, at 26 km diameter, has a more deeply submerged central uplift. The structures are characterised by highly oxidized melt rock and melt- breccia lenses exposed at the surface. Shocked crystalline basement rocks and minor amounts of breccia and melt rock occur in the central uplifts [5]. Despite relatively little alteration at depth, these rocks exhibit both susceptibilities and remanent magnetizations well below the regionally high values. The Clearwater rocks also contain a thermoremanent reversed magnetization, acquired at the time of impact, and characteristic of the Permo-Carboniferous Reversed Polarity Superchron. The magnetization is carried by titanomagnetite in Clearwater West, and both magnetite and pyrrhotite in Clearwater East. This reversed magnetization contributes to the magnetic low, but cannot account for all of it. The intense airborne magnetic low (> 500 nT) requires a significant contribution from the shocked basement at depth, produced by either alteration of magnetic phases along fractures, or reduction in magnetic properties by lower shock levels away from the point of impact [6]. References: [1] Pilkington M. and Grieve R. A. F. (1992) Rev. Geophys., 30, 161-181. [2] Innes M. J. S. et al. (1964) Publ. Dom. Obs. Ottawa, 31, 19-52. [3] Halliday I. and Griffin A. A. (1967) J. Roy. Astron. Soc. Can., 61, 1-8. [4] Simonds C. H. et al. (1978) LPS IX, 2633-2658. [5] Hische R. (1994) Unpublished Ph.D. thesis, Munster. [6] Pohl J. (1994) 3rd Intl. Wkshp., ESF Network Impact Cratering and Evol. of Planet Earth, Shockwave Behavior in Nature and Expt., Progr. Abstr., 51.
Topographic signatures of deep-seated landslides and a general landscape evolution model
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Rempel, A. W.
2012-12-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here, we propose a transport law for deep-seated landslides and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of uplift to landslide flow time scales, that predicts three distinct landscape types. The first is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates far exceeding the long term uplift rate. The second is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is largest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, quasi-planar, low angle hillslopes despite high uplift rates. The stochastic landsliding regime best captures the frequent observation that deep-seated landslides produce a large sediment flux from a small aerial extent while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and may be useful for interpreting climate-driven changes in landslide behavior.
Fridrich, Christopher J.; Shroba, Ralph R.; Hudson, Adam M.
2012-01-01
This map covers the Big Costilla Peak, New Mex.&nash;Colo. quadrangle and adjacent parts of three other 7.5 minute quadrangles: Amalia, New Mex.–Colo., Latir Peak, New Mex., and Comanche Point, New Mex. The study area is in the southwesternmost part of that segment of the Sangre de Cristo Mountains known as the Culebra Range; the Taos Range segment lies to the southwest of Costilla Creek and its tributary, Comanche Creek. The map area extends over all but the northernmost part of the Big Costilla horst, a late Cenozoic uplift of Proterozoic (1.7-Ga and less than 1.4-Ga) rocks that is largely surrounded by down-faulted middle to late Cenozoic (about 40 Ma to about 1 Ma) rocks exposed at significantly lower elevations. This horst is bounded on the northwest side by the San Pedro horst and Culebra graben, on the northeast and east sides by the Devils Park graben, and on the southwest side by the (about 30 Ma to about 25 Ma) Latir volcanic field. The area of this volcanic field, at the north end of the Taos Range, has undergone significantly greater extension than the area to the north of Costilla Creek. The horsts and grabens discussed above are all peripheral structures on the eastern flank of the San Luis basin, which is the axial part of the (about 26 Ma to present) Rio Grande rift at the latitude of the map. The Raton Basin lies to the east of the Culebra segment of the Sangre de Cristo Mountains. This foreland basin formed during, and is related to, the original uplift of the Sangre de Cristo Mountains which was driven by tectonic contraction of the Laramide (about 70 Ma to about 40 Ma) orogeny. Renewed uplift and structural modification of these mountains has occurred during formation of the Rio Grande rift. Surficial deposits in the study area include alluvial, mass-movement, and glacial deposits of middle Pleistocene to Holocene age.
The similarity of river evolution at the initial stage of channel erosion
NASA Astrophysics Data System (ADS)
Lin, Jiun-Chuan
2014-05-01
The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.
Patterns and average rates of late Neogene Recent uplift of the Betic Cordillera, SE Spain
NASA Astrophysics Data System (ADS)
Braga, Juan C.; Martín, José M.; Quesada, Cecilio
2003-02-01
The facies distribution in the sedimentary units infilling a series of Neogene basins has been used to reconstruct the relief generation and uplift across the Internal Zone of the Betic Cordillera in southern Spain. Uplift amounts and average rates can be estimated using the current elevation of the outcrops of well-dated deposits indicative of ancient sea-level positions. Coral reefs and coastal conglomerates record the initial development of emergent Betic relief during the Langhian. Continental and marginal marine deposits indicate the existence of a large island centred on the present Sierra Nevada-Sierra de los Filabres chain by the end of the Middle Miocene. The precursor of the Sierra Nevada-Sierra de los Filabres chain, originally part of this large island, remained emerged whilst the surrounding areas were re-invaded by the sea during the early Tortonian. At the end of the Tortonian the inland basins (Granada and Guadix basins) became continental, while the Sierras de la Contraviesa, Sierra de Gádor and Sierra Alhamilla emerged, separating the Alborán Basin from the Alpujarra, Tabernas and Sorbas basins, which became narrow passages of the Mediterranean Sea. In contrast, the Sierra Cabrera emerged during the late Messinian, suggesting a progressive uplift from west to east of the sierras south of the Sierra Nevada-Sierra de los Filabres chain. During the Pliocene, only the low areas closest to the present-day coast remained as marine basins and progressively emerged throughout this stage. The highest average uplift rate recorded is 280 m/Ma for the Sierra de Gádor, although the average uplift rates of upper-Neogene coastal marine rocks since depositon have maximum values of approximately 200 m/Ma. Most of the uplift of the Betic mountains took place before the early Pliocene. The recorded uplift of Neogene rocks was highest at the margins of western Sierra Nevada, where peaks higher than 3000 m occur. The average rates of uplift were lower to the east of this major relief. The main sierras and depressions in the present-day landscape correspond respectively to the emergent land, in which uplift was concentrated, and to the marine basins that existed before the final emergence of the region. The altitude of the sierras reflects the time at which they became emergent, the highest mountains being the first to rise above sea level.
NASA Astrophysics Data System (ADS)
Reimold, Wolf Uwe; Hauser, Natalia; Hansen, Bent T.; Thirlwall, Matthew; Hoffmann, Marie
2017-10-01
Besides impact melt rock, several large terrestrial impact structures, notably the Sudbury (Canada) and Vredefort (South Africa) structures, exhibit considerable occurrences of a second type of impact-generated melt rock, so-called pseudotachylitic breccia (previously often termed ;pseudotachylite; - the term today reserved in structural geology for friction melt in shear or fault zones). At the Vredefort Dome, the eroded central uplift of the largest and oldest known terrestrial impact structure, pseudotachylitic breccia is well-exposed, with many massive occurrences of tens of meters width and many hundreds of meters extent. Genesis of these breccias has been discussed variably in terms of melt formation due to friction melting, melting due to decompression after initial shock compression, decompression melting upon formation/collapse of a central uplift, or a combination of these processes. In addition, it was recently suggested that they could have formed by the infiltration of impact melt into the crater floor, coming off a coherent melt sheet and under assimilation of wall rock; even seismic shaking has been invoked. Field evidence for generation of such massive melt bodies by friction on large shear/fault zones is missing. Also, no evidence for the generation of massive pseudotachylitic breccias in rocks of low to moderate shock degree by melting upon pressure release after shock compression has been demonstrated. The efficacy of seismic shaking to achieve sufficient melting as a foundation for massive pseudotachylitic melt generation as typified by the breccias of the Sudbury and Vredefort structures has so far remained entirely speculative. The available petrographic and chemical evidence has, thus, been interpreted to favor either decompression melting (i.e., in situ generation of melt) upon central uplift collapse, or the impact melt infiltration hypothesis. Importantly, all the past clast population and chemical analyses have invariably supported an origin of these breccias from local lithologies only. Here, the first Rb-Sr, Sm-Nd, and U-Pb isotopic data for Vredefort pseudotachylitic breccias and their host rocks, in comparison to data for Vredefort Granophyre (impact melt rock), are presented. They strongly support that the pseudotachylitic breccias were exclusively formed from local precursor lithologies - in agreement with earlier isotopic results for Sudbury Breccia and chemical results for Vredefort pseudotachylitic breccias. A contribution from a Granophyre-like impact melt component to form Vredefort pseudotachylitic breccia is not indicated. The most likely process for the genesis of voluminous pseudotachylitic breccias in large impact structures remains decompression melting upon formation and collapse of the central uplift, during the modification stage of impact cratering.
Paleogeographic evolution of foldbelts adjacent to petroleum basins of Venezuela and Trinidad
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, E.D.; Koch, P.S.; Summa, L.L.
1996-08-01
The foldbelts of Venezuela and Trinidad have shaped the history of adjacent sedimentary basins. A set of paleogeographic maps on reconstructed bases depict the role of foldbelts in the development of the sedimentary basins of Venezuela. Some of the foldbelts are inverted, pre-Tertiary graben/passive margin systems. Other foldbelts are allochthonous nappes or parautochthons that override the Mesozoic passive margin hinge without inversion. The emergence of these foldbelts changed the course of existing river systems and provided a new source for sediments and maturation in adjacent deeps. The Merida Andes area was remobilized beginning in the Early Miocene as a zonemore » of lateral shear, along which the Bonaire Block has moved over 200 km to the northeast, dismembering the Maracaibo and Barinas basins. Late Miocene to Recent transpression and fault reactivation have driven rapid Andean uplift with thrust-related subsidence and maturation (e.g., SE Maracaibo foredeep). To the east, uplift and erosion of the Serrania del Interior (1) curtailed mid-Tertiary fluvial systems flowing northward from the igneous and sedimentary rocks of the Guyana Shield, deflecting them eastward, and (2) removed the thick early Miocene foredeep fill into a younger foredeep. Thus, the fold-thrust belts and sedimentary basins in this region are linked in their evolutionary histories.« less
Page, William R.; Gray, Floyd; Iriondo, Alexander; Miggins, Daniel P.; Blodgett, Robert B.; Maldonado, Florian; Miller, Robert J.
2010-01-01
Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US-Mexico border region.
O'Sullivan, P. B.; Moore, Thomas E.; Murphy, J.M.; Oldow, J.S.; Ave Lallemant, H.G.
1998-01-01
The Mt. Doonerak antiform is a northeast-trending, doubly plunging antiform located along the axial part of the central Brooks Range. This antiform is a crustal-scale duplex estimated to have a vertical displacement of ~15 km. The antiform folds the Amawk thrust, which separates relatively less displaced lower plate rocks in a window in the core of the antiform from allochthonous upper plate rocks of the Endicott Mountains allochthon. Because regional geological relations indicate that displacement on the Amawk thrust occurred between early Neocomian and early Albian time, uplift of the antiform is post-early Neocomian in age.Zircon fission-track data from the Mt. Doonerak antiform suggest -8-12 km of vertical denudation has occurred within the antiform region since -70-65 Ma. whereas apatite fission-track data indicate the antiform has experienced a minimum of -46 km of denudation since late Oligocene time. Following rapid denudation at -24 + 3 Ma, the rocks have experienced continued denudation to present surface conditions at a slower rate.We conclude from the relative relations and timing that the Mt. Doonerak duplex was constructed in part during the late Oligocene by reactivation of an older duplex formed during the latest Cretaceous to Paleocene. Deformation and uplift of Oligocene age for the axial part of the Brooks Range orogen is anomalously young, but it is the same age as the youngest episode of north-vergent contractional uplift in the northeastern Brooks Range. Because the Mt. Doonerak antiform displays structural characteristics similar to those of antiforms in the northeastern Brooks Range and because both regions experienced simultaneous rapid denudation, we suggest that the Mt. Doonerak antiform formed in response to an episode of contractional deformation that affected both areas in the late Oligocene.
Composition and stable-isotope geochemistry of natural gases from Kansas, Midcontinent, U.S.A.
Jenden, P.D.; Newell, K.D.; Kaplan, I.R.; Watney, W.L.
1988-01-01
More than 28??1012 ft.3 (79??1010 m3) of natural gas and 5.3??109 bbl (8.4??108 m3) of oil have been produced in Kansas, U.S.A., from Paleozoic carbonate and sandstone reservoirs on structural uplifts and shallow embayments along the northern margin of the Anadarko basin. A heavily-explored, geologically well-characterized state, Kansas is an excellent place to study hydrocarbon migration and to test geochemical models for the origin of natural gases. Immature to marginally-mature rocks of eastern Kansas (Cherokee and Forest City basins) produce mixed microbial and thermogenic gases. Gases in this region have wetness = 0.03-51%, methane ??13C = -65 to -43??? and methane ??D = -260 to -150???. Gases from central and western Kansas (Nemaha uplift to Hugoton embayment) are entirely thermogenic and have wetness =4-51%, methane ??13C = -48 to -39??? and methane ??D = -195 to -140???. Ethane and propane ??13C-values throughout Kansas vary from -38 to -28??? and from -35 to -24???, respectively. Mature thermogenic gas (generated from source rocks in southwestern Kansas and the Anadarko basin with 1.0% ??? Ro ??? 1.4%) is recognized throughout the state. Lateral migration into shallow reservoirs on the Central Kansas and northern Nemaha uplifts and in the Cherokee basin probably occurred along basal Pennsylvanian conglomerates and weathered Lower Paleozoic carbonates at the regional sub-Pennsylvanian unconformity. Early thermogenic gas (generated by local source rocks with Ro ??? 0.7%) is recognized in isolated fields in the Salina and Forest City basins, in Ordovician reservoirs beneath the sub-Pennsylvanian unconformity in the Cherokee basin, and in reservoirs generally above the unconformity in the Cherokee and Sedgwick basins, the eastern Central Kansas uplift and the Hugoton embayment. ?? 1988.
Thermal evolution of sedimentary basins in Alaska
Johnsson, Mark J.; Howell, D.G.
1996-01-01
The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.
NASA Astrophysics Data System (ADS)
ter Voorde, M.; de Bruijne, C. H.; Cloetingh, S. A. P. L.; Andriessen, P. A. M.
2004-07-01
When converting temperature-time curves obtained from geochronology into the denudation history of an area, variations in the isotherm geometry should not be neglected. The geothermal gradient changes with depth due to heat production and evolves with time due to heat advection, if the deformation rate is high. Furthermore, lateral variations arise due to topographic effects. Ignoring these aspects can result in significant errors when estimating denudation rates. We present a numerical model for the thermal response to thrust faulting, which takes these features into account. This kinematic two-dimensional model is fully time-dependent, and includes the effects of alternating fault activation in the upper crust. Furthermore, any denudation history can be imposed, implying that erosion and rock uplift can be studied independently to each other. The model is used to investigate the difference in thermal response between scenarios with simultaneous compressional faulting and erosion, and scenarios with a time lag between rock uplift and denudation. Hereby, we aim to contribute to the analysis of the mutual interaction between mountain growth and surface processes. We show that rock uplift occurring before the onset of erosion might cause 10% to more than 50% of the total amount of cooling. We applied the model to study the Cenozoic development of the Sierra de Guadarrama in the Spanish Central System, aiming to find the source of a cooling event in the Pliocene in this region. As shown by our modeling, this temperature drop cannot be caused by erosion of a previously uplifted mountain chain: the only scenarios giving results compatible with the observations are those incorporating active compressional deformation during the Pliocene, which is consistent with the ongoing NW-SE oriented convergence between Africa and Iberia.
NASA Astrophysics Data System (ADS)
Margirier, Audrey; Braun, Jean; Robert, Xavier; Audin, Laurence
2018-03-01
The processes driving uplift and exhumation of the highest Peruvian peaks (the Cordillera Blanca) are not well understood. Uplift and exhumation seem closely linked to the formation and movement on the Cordillera Blanca normal fault (CBNF) that delimits and shapes the western flank of the Cordillera Blanca. Several models have been proposed to explain the presence of this major normal fault in a compressional setting, but the CBNF and the Cordillera Blanca recent rapid uplift remain enigmatic. Whereas the Cordillera Blanca morphology demonstrates important erosion and thus a significant mass of rocks removal, the impact of erosion and isostasy on the evolution of the Cordillera Blanca uplift rates has never been explored. We address the role of erosion and associated flexural rebound in the uplift and exhumation of the Cordillera Blanca with numerical modeling of landscape evolution. We perform inversions of the broad features of the present-day topography, total exhumation and thermochronological data using a landscape evolution model (FastScape) to provide constraints on the erosion efficiency factor, the uplift rate and the temperature gradient. Our results evidence the not negligible contribution of erosion and associated flexural rebound to the uplift of the Cordillera Blanca and allow us to question the models previously proposed for the formation of the CBNF.
Sedimentary facies and depositional history of the Swan Islands, Honduras
NASA Astrophysics Data System (ADS)
Ivey, Marvin L.; Breyer, John A.; Britton, Joseph C.
1980-10-01
Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence. The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.
New constraints on Neogene uplift of the northern Colorado Plateau
NASA Astrophysics Data System (ADS)
Van Wijk, J. W.; Raschilla, R.
2013-12-01
The Late Cretaceous Uinta Basin is located in northeastern Utah within the northern most portion of the Colorado Plateau. The basin's uplift and subsidence history and thermal evolution have impacted the maturity of source beds in the Parachute Creek Member of the Green River Formation. Using measured data of the petroleum system of the Uinta Basin, we were able to constrain timing and amplitude of uplift of the northern Colorado Plateau. We used sixty wells in a basin modeling study of the Uinta Basin's thermal structure, tectonic history and petroleum system. The wells reached into basement, and four wells provided vitrinite reflectance measurements. Vitrinite reflectance is a measurement of the percentage of reflected light from a polished vitrinite sample. The percentage of reflected light is related to the temperature conditions the sample experienced during burial, and vitrinite reflectance is a maturity indicator that covers a broad temperature range from diagenesis through the latest stages of catagenesis and records the maximum temperature a rock experiences during its burial history All models were calibrated to measured data, including vitrinite reflectance and transformation ratios from Rock-Eval pyrolysis. The models predict that the heat flow ranges from 65 mW/m2 to 45 mW/m2 from south to north in the study area. Additionally, model calibration provides a means for estimating the amount of uplift and erosion in the Uinta Basin. Uplift predicted for the Uinta Basin ranges from ~2050 m to ~2200 m and started in the Late Miocene. Our models also predicted the maturity of the rich oil shales of the Parachute Creek Member.
Present-day uplift of the western Alps.
Nocquet, J-M; Sue, C; Walpersdorf, A; Tran, T; Lenôtre, N; Vernant, P; Cushing, M; Jouanne, F; Masson, F; Baize, S; Chéry, J; van der Beek, P A
2016-06-27
Collisional mountain belts grow as a consequence of continental plate convergence and eventually disappear under the combined effects of gravitational collapse and erosion. Using a decade of GPS data, we show that the western Alps are currently characterized by zero horizontal velocity boundary conditions, offering the opportunity to investigate orogen evolution at the time of cessation of plate convergence. We find no significant horizontal motion within the belt, but GPS and levelling measurements independently show a regional pattern of uplift reaching ~2.5 mm/yr in the northwestern Alps. Unless a low viscosity crustal root under the northwestern Alps locally enhances the vertical response to surface unloading, the summed effects of isostatic responses to erosion and glaciation explain at most 60% of the observed uplift rates. Rock-uplift rates corrected from transient glacial isostatic adjustment contributions likely exceed erosion rates in the northwestern Alps. In the absence of active convergence, the observed surface uplift must result from deep-seated processes.
Shorter contributions to stratigraphy and structural geology, 1979
,
1980-01-01
PART A: A system of anticlines lies along the trend of the sinuous course of the Colorado River for a distance of 97 km in the central Grand Canyon. Similar anticlines occur in some perennially wet side canyons. The anticlines are most abundant and well developed along northeast-trending reaches of the main canyon where it is floored by the Cambrian Muav Limestone. Dips of the folded strata are as great as 60?, and the folding locally extends more than 250 m from the river. Low-angle thrust faults in the limbs of the anticlines parallel the river and have formed in response to folding of the comparatively brittle carbonate strata. High-angle reverse kink bands, along which rocks are displaced up toward the river, also parallel the anticlines and have develop2d in response to the upward bulging of the canyon floor. The river anticlines are an unloading phenomenon. They result from lateral squeezing toward the river of saturated shaly parts of the Muav Limestone and underlying Bright Angel Shale. The driving mechanism for the deformation is a stress gradient that results from a difference in lithostatic load between the heavily loaded rocks under the 650-m-high canyon walls and the unloaded canyon floor. Saturation appears to weaken the shaly rocks sufficiently to allow deformation to take place. River anticlines are not present in the eastern Grand Canyon, where the Cambrian rocks also occur at river level. Their absence is explained by a lack of shaly rocks that could flow when saturated. PART B: The current interest in contemporary tectonic processes in the Eastern United States is turning up abundant evidence of crustal movements in late geologic time. Topographic analysis of the highland areas from the southern Blue Ridge to the Adirondack Mountains indicates that most of the landforms owe their origin to erosion of rocks of different resistance rather than to tectonic processes. Most areas of high relief and high altitude have been formed on resistant rocks. The Cambrian and Ordovician belt, containing mostly shale and carbonate rock, on the other hand, forms an extensive lowland from Alabama to the Canadian border and girdles the Adirondack Mountains. Differences in altitude can be explained by the presence of resistant rocks outside the belt; these resistant rocks form local base levels on the streams that drain the belt. A few areas may have undergone local uplift at a higher rate than areas nearby--for example, the Piedmont region northwest of Chesapeake Bay. Most estimates of erosion rates, based on the load transported by streams and of uplift rates, based on removal during a known period of time, are of the same order of magnitude, averaging almost 4x 10^-2 millimeters per year. Rates of uplift, based on study of tilted Pleistocene beaches and repeated geodetic traverses, are at least an order of magnitude higher for comparable areas. Tectonic uplift of the highlands has been slow and involves mostly warping or tilting on a large scale. Erosion rates keep up with or exceed the rate of uplift and have been sufficient to mask evidence of faulting or other differential movements. The high rates of uplift that are inferred on tilted water planes in the glaciated regions or that are measured by differences in repeated geodetic traverses cannot have been sustained for long periods of time. PART C: The Hanson Creek Formation southwest of Eureka, Nev., in the Bellevue Peak Quadrangle is composed of three lithostratigraphic members: (1) a basal dark-gray dolomite, (2) a middle silty thin- to thick-bedded, locally nodular, dark-gray, light-yellow-mottled limestone topped by light-gray dolomite, and (3) an upper dark-gray dolomite, which is herein named the Combs Canyon Dolomite Member. Detailed geologic mapping and accompanying fossil collecting prove that the same lithostratigraphic and biostratigraphic sequence is present in the Mountain Boy Range and 11 km to the south near Wood Cone Peak. Minor differences in
NASA Astrophysics Data System (ADS)
West, A.; Fox, M.; Walker, R. T.; Carter, A.; Watts, A. B.; Gantulga, B.
2012-12-01
Potential feedbacks between climate-driven erosion and the development of intra-continental topography have received relatively little attention, particularly compared to the significant efforts to understand the interplay of climate, erosion, and uplift in orogenic settings. But such links may be vital for understanding the topographic evolution of epeirogenic topography and for making inferences about geodynamic processes based on associated sedimentary and geomorphic signals. In this study, we consider the role of orographically-driven climate variability in shaping continental topography by focusing on the Hangay mountain range, a uplifted dome in central Mongolia. The work presented here is based on results from a topographic analysis of the Hangay, making use of the flat-topped peaks that effectively represent preserved remnants of a pre-erosional surface. We have determined the scale and distribution of erosion by recreating this pre-erosional surface and subtracting the present-day, dissected topography. Our results show that the extent of erosion correlates with spatial variation in mean annual precipitation, but not with the extent of total surface uplift. The morphology of the range reflects the higher, climate-driven fluvial erosion rates by northern rivers that receive higher precipitation when compared to the southern rivers, which have steeper relief as a result of the asymmetric main drainage divide. Overall asymmetry in inferred isostatic response to erosional unloading is not mirrored in asymmetry of total surface uplift, hinting at interaction between surface erosion and the forces sustaining topography. This has important implications for understanding the geodynamics of epeirogenic uplift. In addition to these main outcomes from our topographic analysis, we will also present preliminary findings from detrital thermochronology and cosmogenic analyses that help to pinpoint the location of erosion and provide a basis for quantifying rates.
The similarity of river evolution at the initial stage of channel erosion
NASA Astrophysics Data System (ADS)
Lin, J.
2011-12-01
The similarity of river evolution at the initial stage of channel erosion Jiun-Chuan Lin Department of Geography, National Taiwan University Abstract The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.
NASA Astrophysics Data System (ADS)
Cunningham, W. D.
1994-04-01
A succession of mafic rocks that includes gabbro, sheeted dikes and deformed pillow basalts has been mapped in detail on Isla Gordon, southernmost Chile and is identified as an upper ophiolitic complex representing the uplifted floor of the Late Jurassic-Early Cretaceous Rocas Verdes marginal basin. The complex was uplifted, deformed, and regionally metamorphosed prior to the intrusion of an undeformed 90 Ma granodiorite that cuts the complex. The complex appears para-autochthonous, is gently tilted to the northeast and is internally sheared by near-vertical foliation zones. No evidence for obduction was observed although the base of the complex is not exposed. The ophiolitic rocks have been regionally metamorphosed to mid-upper greenschist levels. Isla Gordon is bounded by the northwest and southwest arms of the Beagle Channel, two important structural boundaries in the southernmost Andes that are interpreted to have accommodated north-side-up and left-lateral displacements. Directly north of Isla Gordon is the Cordillera Darwin metamorphic complex that exposes the highest grade metamorphic rocks in the Andes south of Peru. On the north coast of Isla Gordon a volcaniclastic turbidite sequence that is interpreted to have been deposited above the mafic floor is metamorphosed to lower greenschist levels in strong metamorphic contrast to amphibolite-grade othogneisses exposed in Cordillera Darwin only 2 km away across the northwest arm of the Beagle Channel. The profound metamorphic break across the northwest arm of the Beagle Channel and the regional northeast tilt of the ophiolitic complex are consistent with the previously proposed hypothesis that Isla Gordon represents the upper plate to an extensional fault that accommodated tectonic unroofing of Cordillera Darwin. However, limited structural evidence for extension was identified in this study to support the model and further work is needed to determine the relative importance of contractional, extensional and strike-slip displacements during the closure of the Rocas Verdes marginal basin and uplift of Cordillera Darwin. The Isla Gordon ophiolitic complex is correlative with other regional occurrences of ophiolitic rocks including the previously studied Tortuga, Sarmiento and Larsen Harbour complexes. The existence of the Isla Gordon ophiolitic complex helps link the known occurrences of the marginal basin floor into a semi-continuous belt that sheds light on the original continuity of the basin.
Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B
2013-07-01
Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.
Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.
1968-01-01
An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2.45 and 3.9 km per sec velocity layers, respectively. The Teton Range has a maximum vertical uplift of about 7 km, as inferred from the maximum depth to basement of about 5 km. Aeromagnetic data show a 400gamma positive anomaly in the Gros Ventre Range, which trends out of the surveyed area at the east edge. Exposed Precambrian rocks contain concentrations of magnetite and hematite. A prominent anomaly of about 100gamma is associated with the Gros Ventre Range, and 100gamma anomalies are associated with the layered gneiss of the Teton Range. On this basis the unmapped Precambrian rocks of the Gross Ventre Range are interpreted as layered gneiss. The sources of the magnetic anomalies, as indicated by depth determination, are at the surface of the Precambrian rocks. A model fitted to a profile across the Gros Ventre Range gives a depth to the Precambrian surface and a susceptibility of 0.0004 emu (electromagnetic units) for the source, which is consistent with modal analyses of the layered gneisses. A residual magnetic map shows that the granitic rocks and layered gneiss probably continue beneath the floor of Jackson Hole east of the Teton fault. The location of aeromagnetic anomalies is consistent with the interpretation that the Teton fault diverges from the front of the Teton Range.
NASA Astrophysics Data System (ADS)
Enkelmann, Eva; Piestrzeniewicz, Adam; Falkowski, Sarah; Stübner, Konstanze; Ehlers, Todd A.
2017-01-01
This study presents the first comprehensive dataset of low-temperature thermochronology from 43 bedrock samples collected north of the active Yakutat-North American plate boundary. Our apatite and zircon (U-Th)/He and fission-track data reveal the cooling history of the inboard Wrangellia Composite Terrane that is dominated by rapid cooling after Late Jurassic to Early Cretaceous arc magmatism followed by very little cooling and exhumation until today. Deformation resulting in rock exhumation due to the collision of the Yakutat microplate is spatially very limited (20-30 km) and is concentrated mainly in the Chugach-Prince William Terrane and rocks near the Border Ranges Fault. Focused exhumation from greater depths of ca. 10 km with very high rates (>5 km/Myr) is localized at the syntaxis region, starting ca. 10 Ma and shifted south through time. The rapid exhumation rates are explained by the development of strong feedbacks between tectonically driven surface uplift and erosion, which started already before glaciation of the area. The shift in the location towards the south is a consequence of continuous readjusting between tectonics and climate, which is changing on local and global scales since the Late Miocene.
NASA Astrophysics Data System (ADS)
Zhou, T. Q.; Wu, C.; Zhu, W.
2017-12-01
Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed in Badaowan formation indicating that the provenance of sediments mainly derived from the Kelameili Mountains. During the late Jurassic, the rapid uplift of Bogda Mountains could result into the distinct difference in heavy mineral assemblages between the eastern segment and the central segments.
The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia
NASA Astrophysics Data System (ADS)
Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.
2018-02-01
The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.
NASA Astrophysics Data System (ADS)
Nishikawa, O.; Theeraporn, C.; Takashima, I.; Shigematsu, N.; Little, T. A.; Boulton, C. J.
2015-12-01
The Alpine Fault, New Zealand is an oblique slip thrust with significantly high slip rate, and its dip-slip component causes the rapid uplift of the Southern Alps and the extremely high geothermal gradient in it. Thermoluminescence (TL) dating is a method using the phenomenon that energy accumulated in the crystal from radiation of surrounding radioactive elements is reemitted in the form of light when heating the minerals. This method covers a wide range of age from 1,000 to 1,000,000 years, and has relatively low reset temperature for the accumulation of radiation dose. Therefore, TL dating is a feasible geochronometry for the reconstruction of the thermal history of the area with very high uplifting rate. In order to determine uplifting rates and their distribution in the Southern Alps adjacent to the Alpine fault, ten rock samples were collected for TL dating in the distance 1 km from main fault plane along the Stony Creek. All the samples commonly include quartz veins which are folded tightly or in isoclinal form parallel to the foliations. TL dating was performed using quartz grains separated from host rock. A widely ranging TL ages are obtained from the hanging wall of the fault. The rocks within 600m from present shear zone yield ages ranging from 55.2 ka to 88.8 ka, showing older ages with distance from shear zone. Within 600 m to 900 m from the fault, relatively younger ages, 54.7 to 34.4 ka are obtained. Assuming the thermal gradient of 10 °C /100 m and exhumation rate of 10 m / kyr, the zeroing depth and temperature of TL signals is estimated from 350 to 900 m and from 45 to 100 °C, respectively. The range of TL ages is very large amounted to 50,000 years in the narrow zone. This may be responsible for the variety of TL zeroing temperatures in the hanging wall rocks rather than disturbance of thermal structure and/or inhomogeneity of uplifting rate in this area. Annealing tests are necessary to clarify the real properties of TL for each sample tested.
Cox, Dennis P.; Force, Eric R.; Wilkinson, William H.; More, Syver W.; Rivera, John S.; Wooden, Joseph L.
2006-01-01
Introduction: The Ajo porphyry copper deposit and surrounding Upper Cretaceous rocks have been separated from their plutonic source and rotated by detachment faulting. Overlying middle Cenozoic sedimentary and volcanic rocks have been tilted and show evidence for two periods of rotation. Following these rotations, a granitic stock (23.7?0.2 Ma) intruded basement rocks west of the Ajo deposit. This stock was uplifted 2.5 km to expose deep-seated Na-Ca alteration.
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot.
Xing, Yaowu; Ree, Richard H
2017-04-25
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai-Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot
Xing, Yaowu; Ree, Richard H.
2017-01-01
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification—that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai–Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots. PMID:28373546
Oroclinal Bending and Mountain Uplift in the Central Andes
NASA Astrophysics Data System (ADS)
Mpodozis, C.; Arriagada, C.; Roperch, P.
2007-05-01
The large paleomagnetic database now available for the Central Andes permits a good understanding of the overall spatial and temporal variations of rotations. Mesozoic to Early Paleogene rocks along the forearc of northern Chile (23°-28°S) record significant clockwise rotations (>25°) [Arriagada et al., 2006, Tectonics, doi:10.1029/2005TC001923]. Along the forearc of southern Peru, counterclockwise rotations recorded within flat lying red-beds (Moquegua Formation) increase from about -30° at 17.5°S to - 45° at15.5°S and decrease through time from the late Eocene to the late Oligocene-early Miocene [Roperch et al., 2006, Tectonics, doi:10.1029/2005TC001882]. Recently published thermo-chronological studies show evidence for strong exhumation within Bolivian Eastern Cordillera and the Puna plateau starting in the Eocene while structural studies indicate that the majority of crustal shortening in the Eastern Cordillera occurred during the Eocene-Oligocene, although the final stages of deformation may have continued through the Early Miocene. Rotations in the Peruvian and north Chilean forearc thus occurred at the same time than deformation and exhumation/uplift within the Eastern Cordillera. In contrast Neogene forearc rocks in southern Peru and northern Chile do not show evidences of rotation but low magnitude (10°) counterclockwise rotations are usually found in mid to late Miocene rocks from the northern Altiplano. These Neogene rotations are concomitant with shortening in the Sub-Andean zone and sinistral strike-slip faulting along the eastern edge of the northern Altiplano. We interpret the rotation pattern along the southern Peru and north Chile forearc as a result of strong late Eocene- late Oligocene oroclinal bending of the Central Andes associated with shortening gradients along the Eastern Cordillera associated both with the Abancay deflection and the Arica bend. The amount and spatial distribution of pre-Neogene shortening needed to account for oroclinal bending is difficult to estimate as the rotations may be partly driven by transpression along strike slip shear zones. The large rotations strongly highlight the importance of the pre-Neogene tectonic history in the evolution of the Central Andes.
Morphology of Lonar Crater, India: Comparisons and implications
Fudali, R.F.; Milton, D.J.; Fredriksson, K.; Dube, A.
1980-01-01
Lonar Crater is a young meteorite impact crater emplaced in Deccan basalt. Data from 5 drillholes, a gravity network, and field mapping are used to reconstruct its original dimensions, delineate the nature of the pre-impact target rocks, and interpret the emplacement mode of the ejecta. Our estimates of the pre-erosion dimensions are: average diameter of 1710 m; average rim height of 40 m (30-35 m of rim rock uplift, 5-10 m of ejected debris); depth of 230-245 m (from rim crest to crater floor). The crater's circularity index is 0.9 and is unlikely to have been lower in the past. There are minor irregularities in the original crater floor (present sediment-breccia boundary) possibly due to incipient rebound effects. A continuous ejecta blanket extends an average of 1410 m beyond the pre-erosion rim crest. In general, 'fresh' terrestrial craters, less than 10 km in diameter, have smaller depth/diameter and larger rim height/diameter ratios than their lunar counterparts. Both ratios are intermediate for Mercurian craters, suggesting that crater shape is gravity dependent, all else being equal. Lonar demonstrates that all else is not always equal. Its depth/diameter ratio is normal but, because of less rim rock uplift, its rim height/diameter ratio is much smaller than both 'fresh' terrestrial and lunar impact craters. The target rock column at Lonar consists of one or more layers of weathered, soft basalt capped by fresh, dense flows. Plastic deformation and/or compaction of this lower, incompetent material probably absorbed much of the energy normally available in the cratering process for rim rock uplift. A variety of features within the ejecta blanket and the immediately underlying substrate, plus the broad extent of the blanket boundaries, suggest that a fluidized debris surge was the dominant mechanism of ejecta transportation and deposition at Lonar. In these aspects, Lonar should be a good analog for the 'fluidized craters' of Mars. ?? 1980 D. Reidel Publishing Co.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less
Geologic map of the Snoqualmie Pass 30 x 60 minute quadrangle, Washington
Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.
2000-01-01
The Snoqualmie Pass quadrangle lies at the north edge of a Tertiary volcanic and sedimentary cover, where the regional structural uplift to the north elevated the older rocks to erosional levels. Much of the quadrangle is underlain by folded Eocene volcanic rocks and fluvial deposts of an extensional event, and these rocks are overlain by Cascade arc volcanic rocks: mildly deformed Oligocene-Miocene rocks and undeformed younger volcanic rocks. Melanges of Paleozoic and Mesozoic rocks are exposed in structural highs in the northern part of the quadrangle. The quadrangle is traversed north to south by the Straight Creek Fault, and the probably partially coincident Darringon-Devils Mountain Fault. A rich Quaternary stratigraphy reveals events of the Frazer glaciation.
New insight on petroleum system modeling of Ghadames basin, Libya
NASA Astrophysics Data System (ADS)
Bora, Deepender; Dubey, Siddharth
2015-12-01
Underdown and Redfern (2008) performed a detailed petroleum system modeling of the Ghadames basin along an E-W section. However, hydrocarbon generation, migration and accumulation changes significantly across the basin due to complex geological history. Therefore, a single section can't be considered representative for the whole basin. This study aims at bridging this gap by performing petroleum system modeling along a N-S section and provides new insights on source rock maturation, generation and migration of the hydrocarbons using 2D basin modeling. This study in conjunction with earlier work provides a 3D context of petroleum system modeling in the Ghadames basin. Hydrocarbon generation from the lower Silurian Tanezzuft formation and the Upper Devonian Aouinet Ouenine started during the late Carboniferous. However, high subsidence rate during middle to late Cretaceous and elevated heat flow in Cenozoic had maximum impact on source rock transformation and hydrocarbon generation whereas large-scale uplift and erosion during Alpine orogeny has significant impact on migration and accumulation. Visible migration observed along faults, which reactivated during Austrian unconformity. Peak hydrocarbon expulsion reached during Oligocene for both the Tanezzuft and the Aouinet Ouenine source rocks. Based on modeling results, capillary entry pressure driven downward expulsion of hydrocarbons from the lower Silurian Tanezzuft formation to the underlying Bir Tlacsin formation observed during middle Cretaceous. Kinetic modeling has helped to model hydrocarbon composition and distribution of generated hydrocarbons from both the source rocks. Application of source to reservoir tracking technology suggest some accumulations at shallow stratigraphic level has received hydrocarbons from both the Tanezzuft and Aouinet Ouenine source rocks, implying charge mixing. Five petroleum systems identified based on source to reservoir correlation technology in Petromod*. This Study builds upon the original work of Underdown and Redfern, 2008 and offers new insights and interpretation of the data.
NASA Astrophysics Data System (ADS)
Nigro, Fabrizio; Renda, Pietro; Favara, Rocco
2010-05-01
In the young mountain chains underwent to emersion, the different crustal blocks which compose the belt may be subjected to differentiate tilting during uplift. The tilting process may be revealed both by the stratal pattern of the syn-uplifting deposits or deduced by the function altitude/area ratio. The prevailing of the uplift rate with respect to the tilting rate (and vice versa) result from the shape of this function. So, in young mountains the hypsometric analysis may results a useful tool for decipher how the crustal blocks are underwent to uplift. An integrate analysis based on stratigraphy, structural and morphometric data represents the correctly approach for characterise the landform evolution in regions underwent to active tectonics. In the aim to evaluate the recent tectonic history from topography in regions underwent to active deformations, by deducing the effect of tectonisms on landforms, the definition of the boundary conditions (regarding the crustal deformation) is fundamental for morphometric analysis. In fact, the morphologic style and the morphometric pattern in tectonically active settings are closely related to the dominance of rock masses exceeding for uplift (or failure for subsidence) with respect to the exogenous erosional processes. Collisional geodynamic processes induce crustal growth for faulting and folding. In this earth's sectors, the uplift of crustal blocks is a very common effect of compressional deformation. It reflects for example fold amplification and thrusting, but it is a very common process also in settings dominated by crustal thinning, where the viscoelastic properties of the lithosphere induce tilting and localised uplift of normal-faulted crustal blocks. The uplift rate is rarely uniform for wide areas within the orogens on the passive margins, but it changes from adjacent crustal blocks as the effect of space-variation of kinematics conditions or density. It also may change within a single block, as the effect of tilting, which induces synchronously mass elevation and subsidence. Not considering sea-level fluctuations and the climatic-lithologic parameters, the 2D distribution of uplift rate influences the landmass evolution in time. The tendency of rock masses to equilibrium resulting from concurrent tectonic building and denudation forces defines the geomorphic cycle. This evolution is checked by different stages, each characterised by a well-recognisable morphometric patterns. The dominance of uplift or erosion and concurrent block tilting induce characteristic a landform evolution tendency, which may be evaluated with the morphometric analysis. A lot of morphometric functions describe the equilibrium stage of landmasses, providing useful tools for deciphering how tectonics acts in typology (e.g. inducing uplift uniformly or with crustal block tilting) and resulting effects on landforms (magnitude of uplift rate vs tilting rate). We aim to contribute in the description of landforms evolution in Sicily (Central Mediterranean) under different morphoevolutive settings, where may prevails uplift, tilting or erosion, each characterised by different morphometric trends. The present-day elevation of Pliocene to upper Pleistocene deposits suggests that Northen Sicily underwent neotectonic uplift. The recent non-uniform uplift of Northern Sicily coastal sector is suggested by the different elevation of the Pliocene-Upper Pleistocene marine deposits. The maximum uplift rate characterise the NE Sicily and the minimum the NW Sicily. The overall westwards decreasing trend of uplift is in places broken in the sectors where are located a lot of morphostructures. Localised uplift rates higher than the adjacent coastal plains are suggested by the present-day elevation of the beachshore deposits of Tyrrhenian age. Northern Sicily may be divided into a lot of crustal blocks, underwent to different tilting and uplift rates. Accentuate tilting and uplift results from transtensional active faulting of the already emplaced chain units, as also suggested by seismicity and the focal plane solutions of recent strong earthquakes.
Maughan, E.K.
1983-01-01
Recent studies of the Meade Peak and the Retort Phosphatic Shale Members of the Phosphoria Formation have investigated the organic carbon content and some aspects of hydrocarbon generation from these rocks. Phosphorite has been mined from the Retort and Meade Peak members in southeastern Idaho, northern Utah, western Wyoming and southwestern Montana. Organic carbon-rich mudstone beds associated with the phosphorite in these two members also were natural sources of petroleum. These mudstone beds were differentially buried throughout the region so that heating of these rocks has been different from place to place. Most of the Phosphoria source beds have been deeply buried and naturally heated to catagenetically form hydrocarbons. Deepest burial was in eastern Idaho and throughout most of the northeastern Great Basin where high ambient temperatures have driven the catagenesis to its limit and beyond to degrade or to destroy the hydrocarbons. In southwest Montana, however, burial in some areas has been less than 2 km, ambient temperatures remained low and the kerogen has not produced hydrocarbons (2). In these areas in Montana, the kerogen in the carbonaceous mudstone has retained the potential for hydrocarbon generation and the carbon-rich Retort Member is an oil shale from which hydrocarbons can be synthetically extracted. The Phosphoria Formation was deposited in a foreland basin between the Cordilleran geosyncline and the North American craton. This foreland basin, which coincides with the area of deposition of the two organic carbon-rich mudstone members of the Phosphoria, has been named the Sublett basin (Maughan, 1979). The basin has a northwest-southeast trending axis and seems to have been deepest in central Idaho where deep-water sedimentary rocks equivalent to the Phosphoria Formation are exceptionally thick. The depth of the basin was increasingly shallower away from central Idaho toward the Milk River uplift - a land area in Montana, the ancestral Rocky Mountains. The basin is composed of land areas in Colorado, the Humboldt highland in northeastern Nevada and intervening carbonate shelves in Utah and Wyoming. The phosphorites and the carbonaceous mudstones were deposited on the foreslope between the carbonate and littoral sand deposits on the shelf and the dominantly cherty mudstone sediments in the axial part of the basin. Paleomagnetic evidence indicates that in the Permian the region would have been within the northern hemispheric trade wind belt; and wind-direction studies determined from studies of sand dunes, indicate that the prevailing winds from the Milk River uplift would have blown offshore across the Phosphoria sea. Offshore winds would have carried surface water away from the shore and generated upwelling in the sea in eastern Idaho and adjacent areas in Montana, Wyoming and Utah. Prior to deposition of the Phosphoria, the region was the site of extensive deposition of shallow-water carbonate sediments. Equivalent rocks in the northern part of the basin are dominantly sandstone derived from the adjacent Milk River uplift and similar sandstone strata in the southeastern sector were derived from the ancestral Rocky Mountains uplift. Tectonic subsidence of the Sublett basin in part of the region seems to have provided a sea-floor profile favorable for upwelling circulation and the shift in deposition from regional carbonates and local sandstone into a more complex depositional pattern that included the accumulation of the mudstone-chert-phosphorite facies that comprises the Phosphoria Formation. High biological productivity and the accumulation of sapropel on the sea floor is associated with contemporary coastal upwelling (1) and similar environmental and depositional conditions are attributed to the rich accumulations of organic matter in the Phosphoria Formation. Sapropelic mudstone and phosphorite composing the Meade Peak Member are approximately 60 m thick near the center of the Sublett basin. The Meade
NASA Astrophysics Data System (ADS)
Rahl, J. M.; Brandon, M. T.
2001-12-01
There has been a long-standing debate about the tectonic significance of the highly folded Otago schist, which is exposed in the Otago uplift on the South Island of New Zealand. This uplift marks the forearc high of a long-lived subduction wedge that flanked the Mesozoic Gondwana margin. The exhumed metamorphic rocks record temperatures up to ~450 C and depths up to ~25 km. The dominant foliation is generally gently dipping, with attitudes that follow the form of the uplift. Mesoscale folds are common, and some regional-scale fold are recognized as well. Previous workers have argued that deformation within the Otago Schist resulted from trenchward shearing above a subducting oceanic plate, but there has been little evidence for systematic fold vergence across the uplift to support this idea. We describe here a new method for analysing the average vergence of a pervasively folded unit, with the goal to test the degree of non-coaxiality associated with ductile deformation within the Otago wedge. Our analysis exploits a new database, compiled by the New Zealand IGNS, which summarizes thousands of structural measurements for the Otago Schist. Vergence is defined in the usual manner as the asymmetry of the fold relative to its axial plane. This asymmetry is attributed to shear-induced rotation at the scale of the fold. Non-coaxial shear can be locally induced, especially in strongly layered schist sequences. We want to know if the fold vergence is systematically developed at the regional scale. Each fold is represented by a vector parallel to the fold axis, with a direction defined by the right-handed rotation implied by the vergence. We argue that the net vergence is well approximated by the Fisher vector mean of the vergence vectors. In addition, we consider the spatial distribution of the vergence vectors across the uplift, with a specific focus on the structural boundary between the Caples and Torlesse, two accretionary units that make up the wedge. We find that there is no systematic vergence at the regional scale or localized along the Torlesse/Caples boundary. We do find local domains at the 10 km scale with a consistent vergence direction, but at large scales, the vergence pattern becomes averaged out. These result support the idea that the Otago schist formed by vertical shortening within a regional-scale coaxial flow field, perhaps driven by underplating beneath the uplift. Furthermore, the lack of a regional-scale vergence implies very weak coupling across the subduction zone.
Geologic Map of the Sulphur Mountain Quadrangle, Park County, Colorado
Bohannon, Robert G.; Ruleman, Chester A.
2009-01-01
The main structural element in the Sulphur Mountain quadrangle is the Elkhorn thrust. This northwest-trending fault is the southernmost structure that bounds the west side of the Late Cretaceous and early Tertiary Front Range basement-rock uplift. The Elkhorn thrust and the Williams Range thrust that occurs in the Dillon area north of the quadrangle bound the west flank of the Williams Range and the Front Range uplift in the South Park area. Kellogg (2004) described widespread, intense fracturing, landsliding, and deep-rooted scarps in the crystalline rocks that comprise the upper plate of the Williams Range thrust. The latter thrust is also demonstrably a low-angle structure upon which the fractured bedrock of the upper plate was translated west above Cretaceous shales. Westward thrusting along the border of the Front Range uplift is probably best developed in that area. By contrast, the Elkhorn in the Sulphur Mountain quadrangle is poorly exposed and occurs in an area of relatively low relief. The thrust also apparently ends in the central part of the quadrangle, dying out into a broad area of open, upright folds with northwest axes in the Sulphur Mountain area.
Geology of the Aspen 15-minute quadrangle, Pitkin and Gunnison counties, Colorado
Bryant, Bruce
1979-01-01
The Aspen area, located 170 km southwest of Denver, Colo., lies at the intersection of the northeast-trending Colorado mineral belt and the west margin of the north-trending Sawatch uplift of Laramide age; it is within the southwest part of the northwest-trending late Paleozoic Eagle basin. Precambrian shales and graywackes, perhaps as old as 2 billion years (b.y.), were converted to sillimanite-bearing gneiss and muscovite-biotite schist 1.65-1.70 b.y. ago. They were deformed into northeast-plunging folds and were migmatized, and they were intruded by quartz diorite, porphyritic quartz monzonite, and granite. Muscovite-biotite quartz monzonite intruded this older Precambrian terrane about 1.45 b.y. ago and is the predominant Precambrian rock near Aspen. Uplift, some faulting, and much erosion occurred during the 900-million year (m.y.) interval between emplacement of the plutonic rocks and deposition of Upper Cambrian sediments. From Late Cambrian through Mississippian the region was part of a broad area alternately covered by shallow seas or occupied by low-lying land. Quartzite, dolomite, and limestone 200-320 m thick, comprising the Sawatch Quartzite and Peerless Formation (Cambrian), Manitou Dolomite (Ordovician), Chaffee Group (Mississippian(?) and Devonian), and Leadville Limestone (Mississippian) were deposited during this interval. After an hiatus during which soil formation and solution of the Leadville Limestone took place in the Late Mississippian, a thick sequence of marine and nonmarine clastic rocks was deposited in the newly developing Eagle basin during the late Paleozoic and early Mesozoic. Deposition of about 300 m of carbonaceous shale, limestone, dolomite, and minor siltstone and evaporite of the Belden Formation began in a shallow sea in Early and Middle Pennsylvanian time. Facies relations indicate that the northwest-trending Uncompahgre uplift southwest of Aspen, if present at that time, had very low relief. The overlying Middle Pennsylvanian Gothic Formation of Langenheim (1952) contains calcareous sandstone, siltstone, shale, limestone, and evaporite. Its clastic debris, significantly coarser than that in the Belden, signals the initial rise of the Uncompahgre uplift bordering the Eagle basin on the southwest; the Gothic here lacks the conglomerates and fossiliferous marine limestones found closer to the uplift. Red terrigenous clastic rocks and minor limestone and evaporite of the Maroon Formation as much as 3,200 m thick, deposited mainly in a fluvial flood-plain environment during the rest of the Pennsylvanian and the Early Permian, indicate withdrawal of the sea caused by further uplift of the Uncompahgre highland. Following an hiatus accompanied by local folding, the red conglomerate, sandstone, and siltstone of the State Bridge Formation (Late Permian and Early Triassic) was deposited in a fluvial-lacustrine environment adjacent to a much-expanded Uncompahgre uplift; a significant part of the State Bridge is material recycled from the Maroon Formation exposed to erosion on the flank of the uplift. The State Bridge, absent towards the south, becomes thicker and finer grained towards the north. The Chinle Formation (Late Triassic) rests with angular unconformity on the State Bridge Formation. The Chinle contains a basal discontinuous quartz-pebble conglomerate (Gartra Member) and is chiefly calcareous siltstone and limestone, with some beds of sandstone and conglomerate composed of fragments derived from the limestone beds. The Chinle was deposited on flood plains and in lakes by streams. Storms may have disrupted the sediments in the lakes producing the limestone pebble conglomerates. The lack of feldspar in the Chinle indicates that the nearby part of the Uncompahgre uplift was not a sediment source, or was covered by a deeply weathered feldspar-free mantle. The formation, absent towards the south, thickens toward the north. Thicknesses of the Maroon, State Bridge, and Ch
Biofacies expression of Upper Cretaceous sequences in the Rock Springs uplift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.Y.; Pflum, C.E.; Wright, R.C.
1991-03-01
The sequence-stratigraphic framework and vertical succession of depositional environments in the Upper Cretaceous section of the Rock Springs uplift is expressed in the biofacies patterns as well as in the stratal stacking patterns. Vertical trends in six biofacies parameters track affinities to marine and nonmarine environments as well as proximity to the paleoshoreline. These six parameters and their environmental significance include the relative proportion of herbaceous kerogen (land-derived), amorphous kerogen (marine), dinoflagellates (marine), bisaccate pollen (land-derived but buoyant and easily transported offshore), and the abundance and diversity of benthic foraminifera (both increase offshore). Shoaling marine environments are characterized by anmore » increasing proportion of herbaceous kerogen and decreasing proportions of amorphous kerogen, dinoflagellated, bisaccates, and the abundance and diversity of benthic foraminifera. Conversely, a deepening-upward marine sedimentary succession is characterized by an opposite trend in these parameters. A synthesis of the six biofacies parameters emphasizes the third-order cyclicity of the stratal succession as reflected in the well-developed third-order downlap surfaces and condensed sections. The biofacies trends indicate the transgressive nature of the lower Rock Springs and lower Lewis formations, and the progradational nature of the upper arts of the Baxter, Blair, and Rock Springs formations. An overall progradational (i.e., shoaling) character is exhibited in the three lower sequences (Baxter through Rock Springs) by the progressively decreasing abundance of amorphous kerogen, dinoflagellates, and foraminifera.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, G.M.
1989-08-01
In the Appalachian basin and Mississippi Valley, dates for epeirogeny cluster between 250 and 300 Ma, with the completion of the uplifts at about the Permian-Triassic boundary. In the Fennoscandian shield and elsewhere, uplifts appear to be of comparable age. This was the time when the continents had collided to become supercontinent Pangea which, as a result of uplift, stood high above sea level; environments became stressful, weather patterns changed, and faunal extinctions occurred. Large-scale epeirogeny began again at about 100 Ma, with some dates at about 60 Ma marking Cretaceous-Tertiary boundary extinctions. Precambrian basements, such as the Adirondacks, themore » Canadian shield, and the Arabo-Nubian shield suffered domal uplift during the Oligocene-Miocene, especially in the Miocene to Holocene interval. Oceanic sedimentation rates were elevated in the Miocene to accommodate this increased continental erosion. Active Holocene uplift in the Arabo-Nubian shield involving several meters or even tens of meters occurred as recently as between 3,405 {plus minus} 90 years and 2,465 {plus minus} 155 years ago.« less
Devonian of the Northern Rocky Mountains and plains
Sandberg, Charles A.; Mapel, William J.
1967-01-01
5. Undivided uppermost Devonian (Famennian, to V-VI) and lowermost Mississippian (Tournaisian, cuI-lower cuIIα) carbonaceous and clastic rocks deposited in six shallow basins interspersed among areas uplifted during the penecontemporaneous Antler orogeny.
Coking-coal deposits of the western United States
Berryhill, Louise R.; Averitt, Paul
1951-01-01
Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, J.F.
1993-02-01
Precambrian metamorphic rocks in the SE Llano Uplift record NE-directed ductile thrusting and regional-scale polyphase folding. This deformation is in response to Grenville-age shortening and crustal thickening associated with the collision of a south-lying tectonic block with the southern margin of North America. In the SE Llano Uplift, the most intense and pervasive deformational event, D2, is characterized in the Packsaddle Schist (PS) and Valley Spring Gneiss (VSG) by SSE-plunging, NE-verging isoclinal folds (F2) with an associated SW-dipping axial planar metamorphic layering (S2), and SW-dipping mylonite zones with kinematic indicators showing top-to-the-NE motion. In the Red Mountain and augen-bearing Bigmore » Branch gneisses, D2 structures are SW-dipping mylonite zones parallel to S2, and a SW-plunging stretching lineation. Taken together, this suite of structures indicates tectonic transport was to the NE, perpendicular to the NW trending regional structural and metamorphic grain. D2 structures were reoriented by at least two later phases of folding. Timing of all ductile deformation in the SE Llano Uplift is constrained from post-1,215 Ma (deformed PS) to pre-1,098 Ma (undeformed melarhyolite dike). From south to north, metatonalitic, arc-derived Big Branch Gneiss ([approximately] 1,303 Ma) and older mafic schist country rock, previously interpreted as possible ophiolitic melange, structurally overlie much younger, lithologically heterogeneous PS units (1,248-1,215 Ma), previously considered as arc flank deposits. In turn, the PS has been tectonically emplaced above the predominantly felsic VSG (1,270-1,232 Ma). The presence of older zircons in the VSG, of similar age ([approximately]1360 Ma) to Western Granite-Rhyolite Terrane rocks to the north, suggests that the VSG formed in a settling proximal to North America.« less
Genetic features of petroleum systems in rift basins of eastern China
Qiang, J.; McCabe, P.J.
1998-01-01
Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes nevessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the soil source centre.Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes necessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the oil source centre.
Rare Earth Element and Trace Element Data Associated with Hydrothermal Spring Reservoir Rock, Idaho
Quillinan, Scott; Bagdonas, Davin
2017-06-22
These data represent rock samples collected in Idaho that correspond with naturally occurring hydrothermal samples that were collected and analyzed by INL (Idaho Falls, ID). Representative samples of type rocks were selected to best represent the various regions of Idaho in which naturally occurring hydrothermal waters occur. This includes the Snake River Plain (SRP), Basin and Range type structures east of the SRP, and large scale/deep seated orogenic uplift of the Sawtooth Mountains, ID. Analysis includes ICP-OES and ICP-MS methods for Major, Trace, and REE concentrations.
NASA Technical Reports Server (NTRS)
Blackstone, D. L., Jr.
1972-01-01
The author has identified the following significant results. Structurally linear elements in the vicinity of the Rock Springs Uplift, Sweetwater County, Wyoming are reported for the first time. One element trends N 40 deg W near Farson, Wyoming and the other N 65 deg E from Rock Springs. These elements confirm the block-like or mosaic pattern of major structural elements in Wyoming.
Workshop on a Cross Section of Archean Crust
NASA Technical Reports Server (NTRS)
Ashwal, L. D. (Editor); Card, K. D. (Editor)
1983-01-01
Various topics relevant to crustal genesis, especially the relationship between Archean low - and high-grade terrains, were discussed. The central Superior Province of the Canadian Shield was studied. Here a 120 km-wide transition from subgreenschist facies rocks of the Michipicoten greenstone belt to granulite facies rocks of the Kapuskasing structural zone represents an oblique cross section through some 20 km of crust, uplifted along a northwest-dipping thrust fault.
Perry, W.J.; Wardlaw, B.R.; Bostick, N.H.; Maughan, E.K.
1983-01-01
The frontal thrust belt in the Lima area of SW Montana consists of blind (nonsurfacing) thrusts of the Lima thrust system beneath the Lima anticline and the Tendoy thrust sheet to the W. The Tendoy sheet involves Mississippian through Cretaceous rocks of the SW-plunging nose of the Mesozoic Blacktail-Snowcrest uplift that are thrust higher (NE) onto the uplift. The front of the Tendoy sheet W of Lima locally has been warped by later compressive deformation which also involved synorogenic conglomerates of the structurally underlying Beaverhead Formation. To the N, recent extension faulting locally has dropped the front of the Tendoy sheet beneath Quaternary gravels. Rocks of the exposed Tendoy sheet have never been deeply buried, based on vitrinite relectance of = or <0.6%, conodont CAI (color alteration index) values that are uniformly 1, and on supporting organic geochemical data from Paleozoic rocks from the Tendoy thrust sheet. Directly above and W of the Tendoy sheet lie formerly more deeply buried rocks of the Medicine Lodge thrust system. Their greater burial depth is indicated by higher conodont CAI values. W-dipping post-Paleocene extension faults truncate much of the rear part of the Tendoy sheet and also separate the Medicine Lodge sheet from thrust sheets of the Beaverhead Range still farther W. -from Authors
Higley, Debra K.
2007-01-01
Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Raton Basin-Sierra Grande Uplift Province of southeastern Colorado and northeastern New Mexico (USGS Province 41). The Cretaceous Vermejo Formation and Cretaceous-Tertiary Raton Formation have production and undiscovered resources of coalbed methane. Other formations in the province exhibit potential for gas resources and limited production. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define two total petroleum systems and five assessment units. All five assessment units were quantitatively assessed for undiscovered gas resources. Oil resources were not assessed because of the limited potential due to levels of thermal maturity of petroleum source rocks.
Tectonic Uplift of the Danba Area in the Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Chang, C. P.; Ho, H. P.; Horng, C. S.; Hsu, Y. C.; Tan, X. B.
2017-12-01
The Danba anticline in the eastern Tibetan Plateau is located between the Longmenshan orogen to the east and the Xianshuihe sinistral fault zone to the west. This anticline has been recognized as an area with extreme exhumation by previous studies. The Tibetan plateau was built by the convergence between Indo-Australian plate and Eurasian plate since early Cenozoic. The eastward lower crustal flow under the plateau obstructed by the Yangtze craton soon after this convergence generated a very complex structural situation in the southeastern side of the Tibetan plateau. In this study, in order to understand the processes and mechanisms of the structural complexity of the Danba area, we apply two methods: stress analysis and magnetic measurement. By measuring the brittle deformation recorded in the strata, we carry out a series of stress analysis to demonstrate the stress field of this area. In addition, due to comprehend the magnetic characteristics of low-grade metamorphic rocks and volcanic rocks in this area, we process the rock magnetic measurement of hysteresis loop and X-ray diffraction analysis. The occurrence of pyrrhotite can be taken as an important isograd in low-grade metamorphic rocks, which is helpful for stratigraphic and structural studies. Based on our results, we try to explain the mechanism of this rapid uplift, which involves material, structural, and kinematic interaction.
NASA Astrophysics Data System (ADS)
van den Haute, P.
1984-11-01
Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.
DeLong, Stephen B.; Hilley, George E.; Prentice, Carol S.; Crosby, Christopher J.; Yokelson, Intan N.
2017-01-01
Relative horizontal motion along strike-slip faults can build mountains when motion is oblique to the trend of the strike-slip boundary. The resulting contraction and uplift pose off-fault seismic hazards, which are often difficult to detect because of the poor vertical resolution of satellite geodesy and difficulty of locating offset datable landforms in active mountain ranges. Sparse geomorphic markers, topographic analyses, and measurement of denudation allow us to map spatiotemporal patterns of uplift along the northern San Andreas fault. Between Jenner and Mendocino, California, emergent marine terraces found southwest of the San Andreas fault record late Pleistocene uplift rates between 0.20 and 0.45 mm yr–1 along much of the coast. However, on the northeast side of the San Andreas fault, a zone of rapid uplift (0.6–1.0 mm yr–1) exists adjacent to the San Andreas fault, but rates decay northeastward as the coast becomes more distant from the San Andreas fault. A newly dated 4.5 Ma shallow-marine deposit located at ∼500 m above sea level (masl) adjacent to the San Andreas fault is warped down to just 150 masl 15 km northeast of the San Andreas fault, and it is exposed at just 60–110 masl to the west of the fault. Landscape denudation rates calculated from abundance of cosmogenic radionuclides in fluvial sediment northeast of, and adjacent to, the San Andreas fault are 0.16–0.29 mm yr–1, but they are only 0.03–0.07 mm yr–1 west of the fault. Basin-average channel steepness and the denudation rates can be used to infer the erosive properties of the underlying bedrock. Calibrated erosion rates can then be estimated across the entire landscape using the spatial distribution of channel steepness with these erosive properties. The lower-elevation areas of this landscape that show high channel steepness (and hence calibrated erosion rate) are distinct from higher-elevation areas with systematically lower channel steepness and denudation rates. These two areas do not appear to be coincident with lithologic contacts. Assuming that changes in rock uplift rates are manifest in channel steepness values as an upstream-propagating kinematic wave that separates high and low channel steepness values, the distance that this transition has migrated vertically provides an estimate of the timing of rock uplift rate increase. This analysis suggests that rock uplift rates along the coast changed from 0.3 to 0.75 mm yr–1 between 450 and 350 ka. This zone of recent, relatively rapid crustal deformation along the plate boundary may be a result of the impingement of relatively strong crust underlying the Gualala block into the thinner, weaker oceanic crust left at the western margin of the North American plate by the westward migration of the subduction zone prior to establishment of the current transform plate boundary. The warped Pliocene marine deposits and the presence of a topographic ridge support the patterns indicated by the channel steepness analyses, and further indicate that the zone of rapid uplift may herald elevated off-fault seismic hazard if this uplift is created by periodic stick-slip motion on contractional structures.
NASA Astrophysics Data System (ADS)
Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu
2018-06-01
The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.
Climate and soil-age constraints on nutrient uplift and retention by plants.
Porder, Stephen; Chadwick, Oliver A
2009-03-01
Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.
Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China
NASA Astrophysics Data System (ADS)
Zheng, Min; Wu, Xiaozhi
2014-05-01
The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.
NASA Astrophysics Data System (ADS)
Clift, Peter D.; Blusztajn, Jerzy; Nguyen, Anh Duc
2006-10-01
Current models of drainage evolution suggest that the non-dendritic patterns seen in rivers in SE Asia reflect progressive capture of headwaters away from the Red River during and as a result of surface uplift of Eastern Asia. Mass balancing of eroded and deposited rock volumes demonstrates that the Red River catchment must have been much larger in the past. In addition, the Nd isotope composition of sediments from the Hanoi Basin, Vietnam, interpreted as paleo-Red River sediments, shows rapid change during the Oligocene, before ~24 Ma. We interpret this change to reflect large-scale drainage capture away from the Red River, possibly involving loss of the middle Yangtze River. Reorganization was triggered by regional tilting of the region towards the east. This study constrains initial surface uplift in eastern Tibet and southwestern China to be no later than 24 Ma, well before major surface uplift and gorge incision after 13 Ma.
Behrendt, John C.; Cooper, A.
1991-01-01
The Cenozoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. Various lines of evidence lead to the following interpretation: the transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of ~1 km/m.y., most recently since mid-Pliocene Time, rather than continuously at the mean rate of 100 m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. It is speculated that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. A possible synergistic relation is suggested between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time.
NASA Astrophysics Data System (ADS)
Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.
2017-12-01
The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating crust, which causes heat to be retained in the lower crust for 10s of millions of years after the thermal event has ceased. Thus, metamorphic temperatures preserved in granulites are likely higher than steady-state, suggesting that lithospheric thickness at the end of the Archean for this region was considerably more than 150 km.
NASA Astrophysics Data System (ADS)
Sissakian, Varoujan K.
2013-08-01
The Iraqi territory could be divided into four main tectonic zones; each one has its own characteristics concerning type of the rocks, their age, thickness and structural evolution. These four zones are: (1) Inner Platform (stable shelf), (2) Outer Platform (unstable shelf), (3) Shalair Zone (Terrain), and (4) Zagros Suture Zone. The first two zones of the Arabian Plate lack any kind of metamorphism and volcanism. The Iraqi territory is located in the extreme northeastern part of the Arabian Plate, which is colliding with the Eurasian (Iranian) Plate. This collision has developed a foreland basin that includes: (1) Imbricate Zone, (2) High Folded Zone, (3) Low Folded Zone and (4) Mesopotamia Foredeep. The Mesopotamia Foredeep, in Iraq includes the Mesopotamia Plain and the Jazira Plain; it is less tectonically disturbed as compared to the Imbricate, High Folded and Low Folded Zones. Quaternary alluvial sediments of the Tigris and Euphrates Rivers and their tributaries as well as distributaries cover the central and southeastern parts of the Foredeep totally; it is called the Mesopotamian Flood Plain. The extension of the Mesopotamia Plain towards northwest however, is called the Jazira Plain, which is covered by Miocene rocks. The Mesopotamia Foredeep is represented by thick sedimentary sequence, which thickens northwestwards including synrift sediments; especially of Late Cretaceous age, whereas on surface the Quaternary sediments thicken southeastwards. The depth of the basement also changes from 8 km, in the west to 14 km, in the Iraqi-Iranian boarders towards southeast. The anticlinal structures have N-S trend, in the extreme southern part of the Mesopotamia Foredeep and extends northwards until the Latitude 32°N, within the Jazira Plain, there they change their trends to NW-SE, and then to E-W trend. The Mesozoic sequence is almost without any significant break, with increase in thickness from the west to the east, attaining 5 km. The sequence forms the main source and reservoir rocks in the central and southern parts of Iraq. The Cenozoic sequence consists of Paleogene open marine carbonates, which grades upwards into Neogene lagoonal marine; of Early Miocene and evaporitic rocks; of Middle Miocene age, followed by thick molasses of continental clastics that attain 3500 m in thickness; starting from Late Miocene. The Quaternary sediments are very well developed in the Mesopotamia Plain and they thicken southwards to reach about 180 m near Basra city; in the extreme southeastern part of Iraq. The Iraqi Inner Platform (stable shelf) is a part of the Arabian Plate, being less affected by tectonic disturbances; it covers the area due to south and west of the Euphrates River. The main tectonic feature in this zone that had affected on the geology of the area is the Rutbah Uplift; with less extent is the Ga'ara High. The oldest exposed rocks within the Inner Platform belong to Ga'ara Formation of Permian age; it is exposed only in the Ga'ara Depression. The Permian rocks are overlain by Late Triassic rocks; represented by Mulussa and Zor Hauran formations, both of marine carbonates with marl intercalations. The whole Triassic rocks are absent west, north and east of Ga'ara Depression. Jurassic rocks, represented by five sedimentary cycles, overlie the Triassic rocks. Each cycle consists of clastic rocks overlain by carbonates, being all of marine sediments; whereas the last one (Late Jurassic) consists of marine carbonates only. All the five formations are separated from each other by unconformable contacts. Cretaceous rocks, represented by seven sedimentary cycles, overlie the Jurassic rocks. Marine clastics overlain by marine carbonates. Followed upwards (Late Cretaceous) by continental clastics overlain by marine carbonates; then followed by marine carbonates with marl intercalations, and finally by marine clastics overlain by carbonates; representing the last three cycles, respectively. The Paleocene rocks form narrow belt west of the Ga'ara Depression, represented by Early-Late Paleocene phosphatic facies, which is well developed east of Rutbah Uplift and extends eastwards in the Foredeep. Eocene rocks; west of Rutbah Uplift are represented by marine carbonates that has wide aerial coverage in south Iraq. Locally, east of Rutbah Uplift unconformable contacts are recorded between Early, Middle and Late Eocene rocks. During Oligocene, in the eastern margin of the Inner Platform, the Outer Platform was uplifted causing very narrow depositional Oligocene basin. Therefore, very restricted exposures are present in the northern part of the Inner Platform (north of Ga'ara Depression), represented by reef, forereef sediments of some Oligocene formations. The Miocene rocks have no exposures west of Rutbah Uplift, but north and northwestwards are widely exposed represented by Early Miocene of marine carbonates with marl intercalations. Very locally, Early Miocene deltaic clastics and carbonates, are interfingering with the marine carbonates. The last marine open sea sediments, locally with reef, represent the Middle Miocene rocks and fore reef facies that interfingers with evaporates along the northern part of Abu Jir Fault Zone, which is believed to be the reason for the restriction of the closed lagoons; in the area. During Late Miocene, the continental phase started in Iraq due to the closure of the Neo-Tethys and collision of the Sanandaj Zone with the Arabian Plate. The continental sediments consist of fine clastics. The Late Miocene - Middle Pliocene sediments were not deposited in the Inner Platform. The Pliocene-Pleistocene sediments are represented by cyclic sediments of conglomeratic sandstone overlain by fresh water limestone, and by pebbly sandstone. The Quaternary sediments are poorly developed in the Inner Platform. Terraces of Euphrates River and those of main valleys represent pleistocene sediments. Flood plain of the Euphrates River and those of large valleys represent Holocene sediments. Residual soil is developed, widely in the western part of Iraq, within the western marginal part of the Inner Platform.
Hode, Tomas; von Dalwigk, Ilka; Broman, Curt
2003-01-01
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.
Quantification of Net Erosion and Uplift Experienced by the Barmer Basin, Rajasthan Using Sonic Log
NASA Astrophysics Data System (ADS)
Mitra, K.; Schulz, S.; Sarkar, A.
2015-12-01
Barmer Basin of Rajasthan, Western India is a hydrocarbon rich sedimentary basin currently being explored by Cairn India Limited. The hydrocarbon bearing Fatehgarh Formation is being found at different depths in different oil fields (e.g. From south to north: Guda, Vijaya & Vandana, Air field High) of the basin. The net uplift and erosion in the Barmer Basin has been quantified using compaction methodology. The sonic log, which is strongly controlled by porosity, is an appropriate indicator of compaction, and hence used for quantification of net uplift and erosion from compaction. The compaction methodology has been applied to the shale rich Dharvi Dungar Formation of Barmer Basin of Late Paleocene age. The net uplift and erosion is also being checked with the help of AFTA-VR and seismic sections. The results show relatively no uplift in the southernmost part of the basin and a Guda field well is thus taken to be the reference well with respect to which the uplifts in different parts of the basin have been calculated. The northern part of the basin i.e. Air Field High wells experienced maximum uplift (~2150m). Interestingly, a few wells further south of the reference well show evidence for uplift. The study was able to point out errors in the report produced with the help of AFTA-VR which found out less uplift in Vijaya & Vandana oil fields as opposed to sonic log data. The process of finding out uplift using sonic log has a standard deviation of 200m as compared to about 500m error in AFTA-VR method. This study has major implications for hydrocarbon exploration. Maturation of source rock will be higher for any given geothermal history if net uplift and erosion is incorporated in maturation modeling. They can also be used for porosity predictions of reservoir units in undrilled targets.
Empirical evidence of climate's role in Rocky Mountain landscape evolution
NASA Astrophysics Data System (ADS)
Riihimaki, Catherine A.; Reiners, Peter W.
2012-06-01
Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on million year timescales.
Seismic influence in the Quaternary uplift of the Central Chile coastal margin, preliminary results.
NASA Astrophysics Data System (ADS)
Valdivia, D.; del Valle, F.; Marquardt, C.; Elgueta, S.
2017-12-01
In order to quantify the influence of NW striking potentially seismogenic normal faults over the longitudinal variation of the Central Chile Coastal margin uplift, we measured Quaternary marine terraces, which represent the tectonic uplift of the coastal margin. Movement in margin oblique normal faults occurs by co-seismic extension of major subduction earthquakes and has occurred in the Pichilemu fault, generating a 7.0 Mw earthquake after the 2010 8.8 Mw Maule earthquake.The coastal area between 32° and 34° S was selected due to the presence of a well-preserved sequence of 2 to 5 Quaternary marine terraces. In particular, the margin oblique normal NW-trending, SW-dipping Laguna Verde fault, south of Valparaiso (33° S) puts in contact contrasting morphologies: to the south, a flat coast with wide marine terraces is carved in both, Jurassic plutonic rocks and Neogene semi-consolidated marine sediments; to the north, a steeper scarp with narrower marine terraces, over 120 m above the corresponding ones in the southern coast, is carved in Jurassic plutonic rocks.We have collected over 6 months microseimic data, providing information on seismic activity and underground geometry of the Laguna Verde fault. We collected ca. 100 systematic measurements of fringes at the base of paleo coastal scarps through field mapping and a 5 m digital elevation model. These fringes mark the maximum sea level during the terrace's carving.The heights of these fringes range between 0 and 250 masl. We estimate a 0.7 mm/yr slip rate for the Laguna Verde fault based on the height difference between corresponding terraces north- and southward, with an average uplift rate of 0.3 mm/yr for the whole area.NW striking normal faults, besides representing a potential seismic threat to the near population on one of the most densely populated areas of Chile, heavily controls the spatial variation of the coastal margin uplift. In Laguna Verde, the uplift rate differs more than three times northward of the fault.
NASA Astrophysics Data System (ADS)
Malatesta, L. C.; Finnegan, N. J.; Kushwaha, G.
2017-12-01
Sea level defines the elevation where wave-base erosion is the dominant erosive process. Hence, submarine erosion of the margin and creation of a continental shelf depend on the time distribution of sea level relative to bedrock by correcting eustasy for local rock uplift. Eustasy and wave-base erosion also impact most fluvial systems on Earth by affecting the vertical and lateral position of their lower boundary condition, the coastline. When uplift rate is slow, the concentration of wave-base erosion on a restricted range of elevation promotes the creation of wide shelves and of a relatively stable average base level for coastal rivers. While interfluves above the shelf are steep, fluvial valleys in slow uplift regions grade into the shelf and form estuaries that trap sediment at high stand. Alternatively, a fast coastal uplift rate distributes wave-base erosion over a wide range of bedrock elevations that are quickly uplifted above the eustatic range, preventing the beveling of a shelf and the establishment of a river profile equilibrated around an average sea-level. In that case, river base level is highly dependent on the gradient of the continental slope. We show that the width of the shelf is inversely correlated with the uplift rate along the Oregon and northern California coast. The extent of the shelf can be a valuable counterpart to (often absent) marine terraces that provides a record for coastline retreat, local uplift rate and river base level.
Preliminary Geologic Map of the White Sulphur Springs 30' x 60' Quadrangle, Montana
Reynolds, Mitchell W.; Brandt, Theodore R.
2006-01-01
The geologic map of the White Sulphur Springs quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of the geologically complex area in west-central Montana. The quadrangle encompasses about 4,235 km2 (1,635 mi2), across part of the Smith River basin, the west end of the Little Belt Mountains, the Castle Mountains, and the upper parts of the basins of the North Forks of the Smith and Musselshell Rivers and the Judith River. Geologically the quadrangle extends across the eastern part of the Helena structural salient in the Rocky Mountain thrust belt, a segment of the Lewis and Clark tectonic zone, west end of the ancestral central Montana uplift, and the southwest edge of the Judith basin. Rocks and sediments in the White Sulphur Springs quadrangle are assigned to 88 map units on the basis of rock or sediment type and age. The oldest rock exposed is Neoarchean diorite that is infolded with Paleoproterozoic metamorphic rocks including gneiss, diorite, granite, amphibolite, schist, and mixed metamorphic rock types. A thick succession of the Mesoproterozoic Belt Supergroup unconformably overlies the metamorphic rocks and, in turn, is overlain unconformably by Phanerozoic sedimentary and volcanic rocks. Across most of the quadrangle, the pre-Tertiary stratigraphic succession is intruded by Eocene dikes, sills, and plutons. The central part of the Little Belt Mountains is generally underlain by laccoliths and sheet-like bodies of quartz monzonite or dacite. Oligocene andesitic basalt flows in the western and southern part of the quadrangle document both the configuration of the late Eocene erosional surfaces and the extent of extensional faulting younger than early Oligocene in the area. Pliocene, Miocene, and Oligocene strata, mapped as 11 units, consist generally of interbedded sand, gravel, and tuffaceous sedimentary rock. Quaternary and Quaternary-Tertiary sediments rest across the older Cenozoic deposits and across all older rocks. The Quaternary and Quaternary-Tertiary deposits generally are gravels that mantle broad erosional surfaces on the flanks of the mountains, gravels in stream channels, and colluvium and landslide deposits on hill sides. Glacial deposits, representing at least two stages of glaciation, are present in the northern part of the Little Belt Mountains. The geologic structure of much of the northwest part of the quadrangle is a broad uplift, in the core of which the Paleoproterozoic and Neoarchean metamorphic rocks are exposed. Down plunge to the east, the succession of Phanerozoic sedimentary rocks define an east-trending arch, cored locally by Mesoproterozoic strata of the Belt Supergroup. The north flank of the arch dips steeply north as a monocline. Stratigraphic relations among Mississippian, Pennsylvanian, and Jurassic strata document the recurrent uplift and erosion on that north flank. The broader arch of the Little Belt Mountains reflects the west plunge of the ancestral Central Montana uplift. The eastern extension of the Lewis and Clark tectonic zone is exposed in the southern half of the quadrangle where the Volcano Valley fault zone curves from west to southeast as a reverse fault along which the latest movement is up on the south side. The fault zone ends in an anticline in the south-central margin of the quadrangle. Stratigraphic overlap of Phanerozoic strata over the truncated edges of Mesoproterozoic units documents that the area of the eastern terminus of the fault zone was tectonically recurrently active. Northeast trending strike-slip faults displace Mesoproterozoic rocks in the northwest and south-central parts of the quadrangle. Several of those faults are overlain unconformably by the Middle Cambrian Flathead Sandstone. Other north-east and west-trending faults across the central part of the quadrangle are intruded by middle Eocene plutons. You
Thermobarometric studies on the Levack Gneisses: Footwall rocks to the Sudbury Igneous Complex
NASA Technical Reports Server (NTRS)
James, R. S.; Peredery, W.; Sweeny, J. M.
1992-01-01
Granulite and amphibolite facies gneisses and migmatites of the Levack Gneiss Complex occupy a zone up to 8 km wide around the northern part of the Sudbury Igneous Complex (SIC). Orthopyroxene- and garnet-bearing tonalitic and semipelitic assemblages of granulite facies grade occur within 3 km of the SIC together with lenses of mafic and pyroxenitic rock compositions normally represented by an amphibole +/- cpx-rich assemblage; amphibolite facies assemblages dominate elsewhere in this terrain. These 2.711-Ga gneisses were introduced by (1) the Cartier Granite Batholith during late Archaean to early Proterozoic time and (2) the SIC, at 1.85 Ga, which produced a contact aureole 1-1.5 km wide in which pyroxene hornfelses are common within 200-300 m of the contact. A suite of 12 samples including both the opx-gt and amphibole-rich rock compositions have been studied. Garnets in the semipelitic gneisses are variably replaced by a plg-bio assemblage. Thermobarometric calculations using a variety of barometers and thermometers reported in the literature suggest that the granulite facies assemblages formed at depths in the 21-28 km range (6-8 kbar). Textures and mineral chemistry in the garnet-bearing semipelitic rocks indicate that this terrain underwent a second metamorphic event during uplift to depth in the 5-11 km range (2-3 kbar) and at temperatures as low as 500-550 C. This latter event is distinct from thermal recrystallization caused by the emplacement of the SIC; it probably represents metamorphism attributable to intrusion of the Cartier Granite Batholith. These data allow two interpretations for the crustal uplift of the Levack Gneisses: (1) The gneisses were tectonically uplifted prior to the Sudbury Event (due to intrusion of the Cartier Batholith); or (2) the gneisses were raised to epizonal levels as a result of meteorite impact at 1.85 Ga.
Physiographic divisions and differential uplift in the Piedmont and Blue Ridge
Hack, John Tilton
1982-01-01
The Piedmont and Blue Ridge are dynamic landscapes that have undergone substantial change since the orogenies that ended in late Paleozoic or, as some believe, early Mesozoic time. The southern Blue Ridge region south of Roanoke, Va., lies on the crest of a topographic uplift that corresponds to the eastern continental drainage divide. To the north, this uplift and divide cross the Appalachian Valley and form the crest of the Appalachian Plateaus as far north as central Pennsylvania. The northern Blue Ridge Mountains as well as parts of the Piedmont are on the eastern part of the uplift area. The southeastern margin of the uplift corresponds to a line within the Piedmont physiographic province that extends northeastward from the Tallapoosa River at the Fall Zone and crosses the Rappahannock River at the Fall Zone. The differential elevation on either side of this line is sharp in some places, as, for example, northeast of Atlanta, Ga. In other places, the difference in elevation is difficult to detect, and, in effect, the line becomes a broad monoclinal slope. The region as a whole can be divided into at least six broad subregions that have somewhat different histories in late geologic time. The Piedmont Lowlands subprovince, southeast of the uplifted area, is dominated by a monotonous topography of low rounded ridges and ravines largely underlain by saprolite on crystalline rocks. Isolated ranges of hills of greater relief are scattered across the region; those investigated are directly related to the presence of erosionally resistant rocks. Stream patterns as well as broad topographic forms indicate that although the southern part of the Piedmont Lowlands was probably once covered by younger sediments, this area has been exposed to erosion for a long time. In North Carolina, the inner part of the Piedmont Lowlands has strongly trellised stream patterns, which suggest that subaerial erosion was active for an even longer time period, perhaps since the latest orogeny. North of the Cape Fear River, the outer part of the Piedmont Lowlands was covered by either fluvial or marine sediments or both, probably during Miocene time. Tectonic activity has affected the Piedmont Lowlands in late geologic time. The Fall Zone that forms the southeast border is, at least in places, controlled by faults active in Tertiary time. Late faults have also been found in the Pine Mountain area of Georgia. Minor differences in relief affecting large regions within the Piedmont Lowlands may be related to different rates of uplift in addition to rock resistance, either past or present. The Piedmont northeast of the Potomac River (Northeastern Highlands) rises to more than 300 m in altitude. The major streams have convex profiles that steepen as they near the Coastal Plain. Unusually narrow valleys and broad upland surfaces indicate an increased rate of erosion and show that the relief is now or recently has been increasing because of uplift or tilting. West of the southern end of the Piedmont Lowlands is an area herein called the Southwestern Highlands that in some respects is similar. The area is crossed by two large streams that have convex profiles. The highest mountain ranges in the area rise to altitudes greater than 600 m. Northwest of the Piedmont Lowlands, the topography and relief are higher, and in some places, the rise is gradual, forming a Foothill zone between the Piedmont Lowlands and the high Blue Ridge. This zone is morphologically more complex than the Piedmont Lowlands. North of the Roanoke River, the foothills are commonly chains of isolated hills and ridges generally underlain by resistant rocks. The hills increase in height near the Blue Ridge, an indication that they owe their height to tectonism of late geologic age. South of the Yadkin River, the hills are believed to be residual, the remnants of a larger highland that has been only partially reduced to the lower relief of the general Piedmont surface. The
Preliminary geologic map of the Bowen Mountain quadrangle, Grand and Jackson Counties, Colorado
Cole, James C.; Braddock, William A.; Brandt, Theodore R.
2011-01-01
The map shows the geology of an alpine region in the southern Never Summer Mountains, including parts of the Never Summer Wilderness Area, the Bowen Gulch Protection Area, and the Arapaho National Forest. The area includes Proterozoic crystalline rocks in fault contact with folded and overturned Paleozoic and Mesozoic sedimentary rocks and Upper Cretaceous(?) and Paleocene Middle Park Formation. The folding and faulting appears to reflect a singular contractional deformation (post-Middle Park, so probably younger than early Eocene) that produced en echelon structural uplift of the Proterozoic basement of the Front Range. The geologic map indicates there is no through-going \\"Never Summer thrust\\" fault in this area. The middle Tertiary structural complex was intruded in late Oligocene time by basalt, quartz latite, and rhyolite porphyry plugs that also produced minor volcanic deposits; these igneous rocks are collectively referred to informally as the Braddock Peak intrusive-volcanic complex whose type area is located in the Mount Richthofen quadrangle immediately north (Cole and others, 2008; Cole and Braddock, 2009). Miocene boulder gravel deposits are preserved along high-altitude ridges that probably represent former gravel channels that developed during uplift and erosion in middle Tertiary time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narr, W.; Currie, J.B.
The occurrence of natural fracture systems in subsurface rock can be predicted if careful evaluation is made of the ecologic processes that affect sedimentary strata during their cycle of burial, diagenesis, uplift, and erosional unloading. Variations in the state of stress within rock arise, for example, from changes in temperature, pore pressure, weight of overburden, or tectonic loading. Hence geologic processes acting on a sedimentary unit should be analyzed for their several contributions to the state of stress, and this information used to compute a stress history. From this stress history, predictions may be made as to when in themore » burial cycle to expect fracture (joint) formation, what type of fractures (extension or shear) may occur, and which geologic factors are most favorable to development of fractures. A stress history is computed for strata of the naturally fractured Altamont oil field in Utah's Uinta basin. Calculations suggest that fractures formed in extension, that the well-cemented rocks are those most likely to be fractured, that fractures began to develop only after stata were uplifted and denuded of overburden. Geologic evidence on fracture genesis and development is in accord with the stress history prediction. Stress history can be useful in evaluating a sedimentary basin for naturally fractured reservoir exploration plays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, W.B.; Culver, D.C.; Herman, J.S.
1995-09-01
Karst lands are produced by the action of water on soluble rocks, a process among the most dynamic of all erosive forces that counterbalance the uplifting forces of tectonics. The dissolution of carbonate rock, primarily limestone and dolomite, produces unique landscapes and poses significant hydrological and environmental concerns. The major topic areas discussed in this article include the following: processes that form karst; karst drainage basins; discharge from karst aquifers; caves as paleoclimatic recorders; caves as ecosystems; water issues in karst regions; and sinkholes, soil piping and subsidence. 20 refs., 9 figs.
Stock, Jonathan D.; Montgomery, David R.; Collins, Brian D.; Dietrich, William E.; Sklar, Leonard
2005-01-01
Until recently, published rates of incision of bedrock valleys came from indirect dating of incised surfaces. A small but growing literature based on direct measurement reports short-term bedrock lowering at geologically unsustainable rates. We report observations of bedrock lowering from erosion pins monitored over 1–7 yr in 10 valleys that cut indurated volcanic and sedimentary rocks in Washington, Oregon, California, and Taiwan. Most of these channels have historically been stripped of sediment. Their bedrock is exposed to bed-load abrasion, plucking, and seasonal wetting and drying that comminutes hard, intact rock into plates or equant fragments that are removed by higher flows. Consequent incision rates are proportional to the square of rock tensile strength, in agreement with experimental results of others. Measured rates up to centimeters per year far exceed regional long-term erosion-rate estimates, even for apparently minor sediment-transport rates. Cultural artifacts on adjoining strath terraces in Washington and Taiwan indicate at least several decades of lowering at these extreme rates. Lacking sediment cover, lithologies at these sites lower at rates that far exceed long-term rock-uplift rates. This rate disparity makes it unlikely that the long profiles of these rivers are directly adjusted to either bedrock hardness or rock-uplift rate in the manner predicted by the stream power law, despite the observation that their profiles are well fit by power-law plots of drainage area vs. slope. We hypothesize that the threshold of motion of a thin sediment mantle, rather than bedrock hardness or rock-uplift rate, controls channel slope in weak bedrock lithologies with tensile strengths below ∼3–5 MPa. To illustrate this hypothesis and to provide an alternative interpretation for power-law plots of area vs. slope, we combine Shields' threshold transport concept with measured hydraulic relationships and downstream fining rates. In contrast to fluvial reaches, none of the hundreds of erosion pins we installed in steep valleys recently scoured to bedrock by debris flows indicate any postevent fluvial lowering. These results are consistent with episodic debris flows as the primary agent of bedrock lowering in the steepest parts of the channel network above ∼0.03–0.10 slope.
NASA Technical Reports Server (NTRS)
Roddy, D. J.
1979-01-01
The geologic and core drilling studies described in the present paper show that the Flynn Creek crater has such distinctive morphological features as a broad flat hummocky floor; large central peak; locally terraced crater walls; uplifted, as well as flat-lying rim segments; and a surrounding ejecta blanket. The major structural features include a shallow depth of total brecciation and excavation as compared with apparent crater diameter; a thin breccia lens underlain by a thin zone of disrupted strata; concentric ring fault zones in inner rim, beneath crater wall, and outer crater floor regions; a large central uplift underlain by a narrow dipping zone of deeply disrupted strata; faulted, folded, brecciated, and fractured rim strata; and uplifted rim strata, which dip away from the crater, and flat-lying rim strata, which terminate as inward dipping rocks.
Pluton emplacement and magmatic arc construction: A model from the Patagonian batholith
NASA Technical Reports Server (NTRS)
Bruce, Robert; Nelson, Eric; Weaver, Stephen
1988-01-01
A model of batholithic construction in Andean arcs and its applicability to possibly similar environments in the past is described. Age and compositional data from the Patagonian batholith of southern Chile show a long history of magmatism in any given area (total age range is 15 to 157 Ma), but different regions appear to have different magmatic starting ages. Furthermore, mafic rocks seem to be the oldest components of any given region. An assembly line model involving semicontinuous magmatism and uplift was outlined, which has implications for other terranes: uplift rates will be proportional to observed ranges in age, and total uplift will be proportional to the age of the oldest pluton in any given area. It is suggested that misleading results would be obtained if only small areas of similar terranes in the Archean were available for study.
NASA Astrophysics Data System (ADS)
Foster, D. A.; Vogl, J.; Min, K. K.; Bricker, A.; Gelato, P. W.
2013-12-01
Passage of North America over the Yellowstone hotspot has had a profound influence on the topography of the northern Rocky Mountains. One of the most prominent topographic features is the Yellowstone crescent of high topography, which comprises two elevated shoulders bounding the eastern Snake River Plain (SRP) and converging at a topographic swell centered on the Yellowstone region. Kilometer-scale erosion has occurred locally within the topographic crescent, but it is unclear if rock exhumation is due to surface uplift surrounding the propagating hot spot, subsidence of the Snake River Plain after passage of the hot spot, or relief initiated by extension in the Northern Basin and Range Province. We have applied (U-Th/He) apatite (AHe) thermochronology to the Pioneer-Boulder Mountains (PBM) on the northern flank of the SRP, and the southern Beartooth Mountains (BM) directly north of the modern Yellowstone caldera, to constrain the timing, rates, and spatial distribution of exhumation. AHe ages from the PBM indicate that >2-3 km of exhumation occurred in the core of this topographic culmination since ~11 Ma. Age-elevation relationships suggest an exhumation rate of ~0.3 mm/yr between ~11 and 8 Ma. Eocene Challis volcanic rocks are extensively preserved and Eocene topographic highs are locally preserved to the north and south of the PBM, indicating minimal erosion adjacent to the PBM culmination. Spatial patterns of both exhumation and topography indicate that faulting was not the primary control on uplift and exhumation. Regional exhumation at 11-8 Ma was synchronous with silicic eruptions from the ~10.3 Ma Picabo volcanic field located immediately to the south and with S-tilting of the southern flank of the PBM that is likely the result of loading of the ESRP by mid-crustal mafic intrusions. AHe data from Archean rocks of the southern BM reveal Miocene-Pliocene cooling ages and include samples as young as ~2-6 Ma. Discordant single grain ages in samples with Miocene mean ages suggest that exhumation is now reaching to depths of the Miocene He partial retention zone. Miocene-Pliocene erosional exhumation of the South Snowy block is partly attributed to integration of the Yellowstone River drainage system and incision of the Yellowstone Canyon. The thermochronology of these two locations shows that localized uplift, exhumation and incision occurred progressively as NA moved over the hot spot, but that exhumation is not uniform and not always controlled by Neogene basin-bounding faults. This suggests a causal relationship between hotspot processes and exhumation through potential contributions of flexure and mantle dynamics to uplift, and changes in drainage networks and base-level associate with uplift and/or extension.
NASA Astrophysics Data System (ADS)
Corsaro, R. A.; Cristofolini, R.
2000-01-01
The subalkaline rocks outcropping at the Acicastello Castle Rock, Catania, Sicily, and on its abrasion platforms, are related to the oldest Etnean volcanism (500-300 ka; [Gillot, P.Y., Kieffer, G., Romano, R., 1994. The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol. 5, 81-87.]). Here, submarine lavas with pillows closely packed onto each other are associated with heterogeneous and poorly sorted volcaniclastic breccia levels with sub-vertical sharp boundaries. The present-day attitude was previously interpreted as due to a local tilt [Di Re, M., 1963. Hyaloclastites and pillow-lavas of Acicastello (Mt. Etna). Bull. Volcanol. 25, 281-284.; Kieffer, G., 1985. Evolution structurale et dynamique d'un grand volcan polygenique: stades d'edification et activitè actuelle de l'Etna (Sicile). Clermont Ferrand IIDoctorat Etat Tesi, Clermont Ferrand II.], or to the seaward sliding of the entire eastern Etnean flank [Borgia, A., Ferrari, L., Pasquarè, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231-235.], on the assumption of originally horizontal boundaries. On the contrary, our observations do not match the hypothesis of a significantly tilted succession and lead us to conclude that, apart from the strong regional uplift, the present Castle Rock exposure did not suffer any substantial change of its attitude.
The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc
NASA Astrophysics Data System (ADS)
Lai, Yu-Ming; Song, Sheng-Rong
2013-09-01
Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.
NASA Astrophysics Data System (ADS)
Walsh, L. S.; Martin, A. J.; Ojha, T. P.; Fedenczuk, T.
2009-12-01
To investigate feedbacks between tectonics and erosion in the Himalaya-Tibet orogen we compare high resolution digital topography with detailed geologic maps of the Modi Khola valley in central Nepal. We examine the influence of lithologic contacts and structures on river steepness and concavity. The trace of the Bhanuwa fault, a large normal fault in Greater Himalayan rocks, coincides with the steepest location on the river profile where river steepness (ksn) reaches 884 m0.9. Transitions in ksn also occur at 1) the Romi fault, another normal fault, 2) within the Kuncha formation, 3) within Greater Himalayan rocks at the Formation I - Formation II boundary, and 4) between quartzite- and phyllite-rich parts of the Fagfog Formation. We assess mechanisms for ksn transitions on the Modi Khola by examining the influence of precipitation variability, glacial and landslide dams, tributary junctions, changes in lithology, and rock uplift on the topography. Although changes in lithology and/or landslide dams potentially explain all ksn extrema and transitions, these changes in river steepness consistently occur at normal faults suggesting possible recent motion on some of them. In detail, the Main Central thrust appears not to be the location of a major steepness change. Correlations of ksn with normal faults and lithologic contacts exhibit an important component of the landscape evolution process occurring in central Nepal and potentially other mountain belts.
Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Neese, D.; Carsten, G.
1995-08-01
Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less
NASA Astrophysics Data System (ADS)
Smirnova, Maria; Sazonova, Lyudmila; Nosova, Anna; Kargin, Alexey; Shcherbakov, Vasiliy
2017-04-01
The study of composition and zoning of olivines from ultramafic lamprophyres of the SW Siberian craton allowed us to distinguish their main types (phenocrysts and megacrysts) and to estimate the possible P-T conditions of phenocryst crystallization. The studied rocks occur as sills and dikes in the Chadobets and Il'bokich uplifts of the Irkeneeva-Chadobets trough. The ultramafic lamprophyres of these uplifts are spaced around 80 km apart and differ in age by more than 150 Ma. The rocks of the Il'bokich Uplift are dated at Devonian, while the age of the Chadobets Complex is restricted to the Triassic. The episodes of these complexes formation were separated by the large flood basalt event. According to classification (Tappe et al., 2005), the studied rocks are aillikite and damtjernite. Olivine phenocrysts from the rocks of the Il'bokich and Chadobets complexes are represented by sub- and euhedral grains. They are composed of core, transitional zone, and rim. Olivine cores in the aillikites of the Il'bokich Complex are characterized by Mg# 89; CaO - 0.13-0.14 wt %; TiO2 around 0.03 wt %, Al - 200-380 ppm, and Cr - 130-340 ppm. The cores of phenocrysts from the Chadobets lamprophyres have Mg# 85-87, CaO varying within 0.1-0.2 wt %, and TiO2 - 0.02-0.05 wt %. The megacrysts differ from the phenocrysts of these rocks in the lower Mg# 83-84 and CaO - 0.08-0.14 wt % at higher TiO2 - 0.04-0.05 wt %. Al - 100-700 ppm, Cr - 20-65 ppm. The most striking difference between olivines of the two complexes is observed between their Mg#-Ni relations. The cores of olivine phenocrysts from the Il'bokich lamprophyres are characterized by the high Mg number (Mg# = 89) and Ni content (2800-3000 ppm), whereas olivine cores of the Chadobets aillikites have higher contents of Ni (3000-3500 ppm) at lowered (Mg# = 86-88). These characteristics reflect the compositions of their protolith. The temperature was estimated using monomineral olivine thermometer based on the contents of Cr and Al in olivine (De Hooge et al., 2010). This geothermometer was calibrated for a wide compositional range, including kimberlites, and correspondingly, may be used for alkaline-ultrabasic lamprophyres. At pressures above 4 GPa, olivine phenocrysts fall in the field of olivine-kimberlite melt equilibrium (Girnis et al., 1995). The Il'bokich olivine phenocrysts were formed at higher temperature than the Chadobets phenocrysts: from 1240 to 1340oC for the Il'bokich rocks and from 1080 to 1225oC for the Chadobets rocks. In the P-T diagram showing the geotherm of 40 mV/m2, olivines from the Il'bokich and Chadobets lamprophyres lie to the right of the geotherm, which excludes the presence of xenogenic lithospheric mantle olivine in these rocks. De Hoog J.C.M., Gall L., Cornell D.H. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry // Chem. Geol. 270.1: 196-21. Girnis A.V., Brey G.P., Ryabchikov I.D. 1995. Origin of group 1A kimberlites: fluid-saturated melting experiments at 45-55 kbar // EPSL. 134.3: 283-296. Tappe S., Foley S.F., Jenner G.A. et al. 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton // J. Petrology. 47 (7). 1261-1315.
Denny, C.S.
1982-01-01
Widely scattered terrestrial deposits of Cretaceous or Tertiary age and extensive nearshore and fluvial Coastal Plain deposits now largely beneath the sea indicate that the New England region has been above sea level during and since the Late Cretaceous. Estimates of rates of erosion based on sediment load in rivers and on volume of sediments in the Coastal Plain suggest that if the New England highlands had not been uplifted in the Miocene, the area would now be largely a lowland. If the estimated rates of erosion and uplift are of the right order of magnitude, then it is extremely unlikely that any part of the present landscape dates back before Miocene time. The only exception would be lowlands eroded in the early Mesozoic, later buried beneath Mesozoic and Cenozoic deposits, and exhumed by stream and glacial erosion during the later Cenozoic. Many of the rocks in the New England highlands are similar to those that underlie the Piedmont province in the central and southern Appalachians, where the relief over large areas is much less than in the highlands of New England. These comparisons suggest that the New England highlands have been upwarped in late Cenozoic time. The uplift took place in the Miocene and may have continued into the Quaternary. The New England landscape is primarily controlled by the underlying bedrock. Erosion and deposition during the Quaternary, related in large part to glaciation, have produced only minor changes in drainage and in topography. Shale and graywacke of Ordovician, Cambrian, and Proterozoic age forming the Taconic highlands, and akalic plutonic rocks of Mesozoic age are all highland makers. Sandstone and shale of Jurassic and Triassic age, similar rocks of Carboniferous age, and dolomite, limestone, and shale of Ordovician and Cambrian age commonly underlie lowlands. High-grade metapelites are more resistant than similar schists of low metamorphic grade and form the highest mountains in New England. Feldspathic rocks tend to form lowlands. Alkalic plutonic rocks of Mesozoic age underlie a large area in the White Mountains of New Hampshire and doubtless are a factor in their location and relief. Where the major streams flow across the regional structure of the bedrock, the location of the crossings probably is related to some other characteristic of the bedrock, such as joints or cross faults. The course of the Connecticut River is the result of the adjustment of the drainage to the bedrock geology during a long period of time. There is no ready explanation why many of the large rivers do not cross areas of calcalkalic plutonic rock, but rather take a longer course around such areas, which tend to include segments of the divide between the streams. The presence of coarse clastic materials in Miocene rocks of the emerged Coastal Plain of the Middle Atlantic States suggests uplift of the adjacent Piedmont and of the Adirondack Mountains at that time. The Miocene rocks of the submerged Coastal Plain in the Gulf of Maine and south of New England are fine grained and contain only small amounts of fluvial gravel. Perhaps the coarse clastic materials shed by the New England highlands in late Cenozoic time are buried by or incorporated in the Pleistocene glacial deposits.
NASA Astrophysics Data System (ADS)
Brocher, T. M.
2017-12-01
Amphibious seismic experiments reveal widespread underthrusting of Cascadia accretionary rocks beneath basalts of the Crescent terrane, a large igneous province in the Washington forearc. Along margin variations in the volumes of the underthrust accretionary rocks appear to modulate the faulting within the overlying Crescent terrane, which hosts nearly all of the seismicity in the Washington forearc: the underlying accretionary rocks appear to deform aseismically. The underthrusting and underplating of large volumes of accretionary rocks on the Olympic Peninsula have uplifted and completely eroded a significant volume of the Crescent terrane, affecting the load-bearing strength of the forearc. I propose that as a consequence, the remnant Crescent terrane is actively deforming, as evidenced by the concentrated seismicity within it beneath Puget Lowland. This seismicity, focal mechanisms, fault geometries, and seismic tomography indicate that clockwise rotation and north-south compression of the forearc crust inferred from GPS data are accommodated by numerous thrust and strike slip faults in the remnant Crescent terrane. In addition to the spatial association between the erosion of the Crescent terrane on the Olympic Peninsula and the crustal faulting beneath Puget Lowland, support for the interpretation that the two are related also derives from the temporal coincidence between the mid to late Miocene uplift of the Crescent terrane on the peninsula and the mid-Miocene initiation of the thrust faulting in the lowland. In contrast, the underthrusting and underplating of lower volumes of accretionary rocks in the Washington forearc south of the Olympic Peninsula correlate with lower rates of crustal seismicity. These lower volumes of accretionary rocks have not caused the removal of a significant fraction of the Crescent terrane, resulting in a stronger, more structurally coherent Crescent terrane that deforms at lower rate than to the north.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grana, Dario; Verma, Sumit; Pafeng, Josiane
We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less
Grana, Dario; Verma, Sumit; Pafeng, Josiane; ...
2017-06-20
We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less
Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado
Bryant, Bruce; Shroba, Ralph R.; Harding, Anne E.; Murray, Kyle E.
2002-01-01
New 1:24,000-scale geologic mapping in the Storm King Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new data on the structure on the south margin of the White River uplift and the Grand Hogback and on the nature, history, and distribution of surficial geologic units. Rocks ranging from Holocene to Proterozoic in age are shown on the map. The Canyon Creek Conglomerate, a unit presently known to only occur in this quadrangle, is interpreted to have been deposited in a very steep sided local basin formed by dissolution of Pennsylvanian evaporite late in Tertiary time. At the top of the Late Cretaceous Williams Fork Formation is a unit of sandstone, siltstone, and claystone from which Late Cretaceous palynomorphs were obtained in one locality. This interval has been mapped previously as Ohio Creek Conglomerate, but it does not fit the current interpretation of the origin of the Ohio Creek. Rocks previously mapped as Frontier Sandstone and Mowry Shale are here mapped as the lower member of the Mancos Shale and contain beds equivalent to the Juana Lopez Member of the Mancos Shale in northwestern New Mexico. The Pennsylvanian Eagle Valley Formation in this quadrangle grades into Eagle Valley Evaporite as mapped by Kirkham and others (1997) in the Glenwood Springs area. The Storm King Mountain quadrangle spans the south margin of the White River uplift and crosses the Grand Hogback monocline into the Piceance basin. Nearly flat lying Mississippian through Cambrian sedimentary rocks capping the White River uplift are bent into gentle south dips and broken by faults at the edge of the uplift. South of these faults the beds dip moderately to steeply to the south and are locally overturned. These dips are interrupted by a structural terrace on which are superposed numerous gentle minor folds and faults. This terrace has an east-west extent similar to that of the Canyon Creek Conglomerate to the north. We interpret that the terrace formed by movement of Eagle Evaporite from below in response to dissolution and diapirism in the area underlain by the conglomerate. A low-angle normal fault dipping gently north near the north margin of the quadrangle may have formed also in response to diapirism and dissolution in the area of the Canyon Creek Conglomerate. Along the east edge of the quadrangle Miocene basalt flows are offset by faults along bedding planes in underlying south-dipping Cretaceous rocks, probably because of diapiric movement of evaporite into the Cattle Creek anticline (Kirkham and Widmann, 1997). Steep topography and weak rocks combine to produce a variety of geologic hazards in the quadrangle.
Measuring plume-related exhumation of the British Isles in Early Cenozoic times
NASA Astrophysics Data System (ADS)
Cogné, Nathan; Doepke, Daniel; Chew, David; Stuart, Finlay M.; Mark, Chris
2016-12-01
Mantle plumes have been proposed to exert a first-order control on the morphology of Earth's surface. However, there is little consensus on the lifespan of the convectively supported topography. Here, we focus on the Cenozoic uplift and exhumation history of the British Isles. While uplift in the absence of major regional tectonic activity has long been documented, the causative mechanism is highly controversial, and direct exhumation estimates are hindered by the near-complete absence of onshore post-Cretaceous sediments (outside Northern Ireland) and the truncated stratigraphic record of many offshore basins. Two main hypotheses have been developed by previous studies: epeirogenic exhumation driven by the proto-Iceland plume, or multiple phases of Cenozoic compression driven by far-field stresses. Here, we present a new thermochronological dataset comprising 43 apatite fission track (AFT) and 102 (U-Th-Sm)/He (AHe) dates from the onshore British Isles. Inverse modelling of vertical sample profiles allows us to define well-constrained regional cooling histories. Crucially, during the Paleocene, the thermal history models show that a rapid exhumation pulse (1-2.5 km) occurred, focused on the Irish Sea. Exhumation is greatest in the north of the Irish Sea region, and decreases in intensity to the south and west. The spatial pattern of Paleocene exhumation is in agreement with the extent of magmatic underplating inferred from geophysical studies, and the timing of uplift and exhumation is synchronous with emplacement of the plume-related British and Irish Paleogene Igneous Province (BIPIP). Prior to the Paleocene exhumation pulse, the Mesozoic onshore exhumation pulse is mainly linked to the uplift and erosion of the hinterland during the complex and long-lived rifting history of the neighbouring offshore basins. The extent of Neogene exhumation is difficult to constrain due to the poor sensitivity of the AHe and AFT systems at low temperatures. We conclude that the Cenozoic topographic evolution of the British Isles is the result of plume-driven uplift and exhumation, with inversion under compressive stress playing a secondary role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrendt, J.C.; Cooper, A.
1991-04-01
The Cenzoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. It is bounded on one side by a spectacular 4-to 5-km-high rift-shoulder scarp (maximum bedrock relief 5 to 7 km) from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. Jurassic tholeiites crop out with the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed discontinuouslymore » along the lower elevation (1-2 km) section of the Transantarctic Mountains to the Weddell Sea. Various lines of evidence, no one of which is independently conclusive, lead the authors (as others have also suggested) to interpret the following. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of {approximately}1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. The authors speculate that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. They suggest a possible synergistic relation between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time.« less
NASA Astrophysics Data System (ADS)
Behrendt, John C.; Cooper, Alan
1991-04-01
The Cenozoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. It is bounded on one side by a spectacular 4- to 5-km-high rift-shoulder scarp (maximum bedrock relief 5 to 7 km) from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. Jurassic tholeiites crop out with the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed discontinuously along the lower elevation (1-2 km) section of the Transantarctic Mountains to the Weddell Sea. Various lines of evidence, no one of which is independently conclusive, lead us (as othershave also suggested) to interpret the following. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. We speculate that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. We suggest a possible synergistic relation between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time.
Transpressive mantle uplift at large offset oceanic transform faults
NASA Astrophysics Data System (ADS)
Maia, M.; Briais, A.; Brunelli, D.; Ligi, M.; Sichel, S. E.; Campos, T.
2017-12-01
Large-offset transform faults deform due to changes in plate motions and local processes. At the St. Paul transform, in the Equatorial Atlantic, a large body of ultramafic rocks composed of variably serpentinized and mylonitized peridotites is presently being tectonically uplifted. We recently discovered that the origin of the regional mantle uplift is linked to long-standing compressive stresses along the transform fault (1). A positive flower structure, mainly made of mylonitized mantle rocks, can be recognized on the 200 km large push-up ridge. Compressive earthquakes mechanisms reveal seismically active thrust faults on the southern flank of the ridge . The regional transpressive stress field affects a large portion of the ridge segment south of the transform, as revealed by the presence of faults and dykes striking obliquely to the direction of the central ridge axis. A smaller thrust, affecting recent sediments, was mapped south of this segment, suggesting a regional active compressive stress field. The transpressive stress field is interpreted to derive from the propagation of the Mid-Atlantic Ridge (MAR) segment into the transform domain as a response to the enhanced melt supply at the ridge axis. The propagation forced the migration and segmentation of the transform fault southward and the formation of restraining step-overs. The process started after a counterclockwise change in plate motion at 11 Ma initially resulting in extensive stress of the transform domain. A flexural transverse ridge formed in response. Shortly after plate reorganization, the MAR segment started to propagate southwards due to the interaction of the ridge and the Sierra Leone thermal anomaly. 1- Maia et al., 2016. Extreme mantle uplift and exhumation along a transpressive transform fault Nat. Geo. doi:10.1038/ngeo2759
Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India
NASA Astrophysics Data System (ADS)
Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.
2018-01-01
We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.
Ground movement at Somma-Vesuvius from Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Marturano, Aldo; Aiello, Giuseppe; Barra, Diana; Fedele, Lorenzo; Morra, Vincenzo
2012-01-01
Detailed micropalaeontological and petrochemical analyses of rock samples from two boreholes drilled at the archaeological excavations of Herculaneum, ~ 7 km west of the Somma -Vesuvius crater, allowed reconstruction of the Late Quaternary palaeoenvironmental evolution of the site. The data provide clear evidence for ground uplift movements involving the studied area. The Holocenic sedimentary sequence on which the archaeological remains of Herculaneum rest has risen several meters at an average rate of ~ 4 mm/yr. The uplift has involved the western apron of the volcano and the Sebeto-Volla Plain, a populous area including the eastern suburbs of Naples. This is consistent with earlier evidence for similar uplift for the areas of Pompeii and Sarno valley (SE of the volcano) and the Somma -Vesuvius eastern apron. An axisimmetric deep source of strain is considered responsible for the long-term uplift affecting the whole Somma -Vesuvius edifice. The deformation pattern can be modeled as a single pressure source, sited in the lower crust and surrounded by a shell of Maxwell viscoelastic medium, which experienced a pressure pulse that began at the Last Glacial Maximum.
Bern, C.R.; Porder, S.; Townsend, A.R.
2007-01-01
Weathering and leaching can progressively deplete the pools of soluble, rock-derived elements in soils and ecosystems over millennial time-scales, such that productivity increasingly relies on inputs from atmospheric deposition. This transition has been explored using strontium isotopes, which have been widely assumed to be a proxy for the provenance of other rock-derived elements. We compared rock versus atmospheric proportions of strontium to those for sulfur, a plant macronutrient, at several tropical forest sites in Hawaii and Costa Rica. Isotopic analyses reveal that sulfur is often decoupled from strontium in the transition to atmospheric dependence. Decoupling is likely the result of differences in chemical factors such as atmospheric input rates, mobility in the soil environment, and mineral weathering susceptibility. Strontium and sulfur decoupling appears to be accentuated by the physical process of erosion. Erosion rates are presumed to be high on the Osa Peninsula of Costa Rica, where the recent onset of rapid tectonic uplift has placed the landscape in a transient state. Decoupling is strong there, as erosion has rejuvenated the supply of rock-derived strontium but not sulfur. The landscape response to changes in tectonic uplift on the Osa Peninsula has produced decoupling at the landscape scale. Decoupling is more variable along a Hawaiian catena, presumably due to smaller scale variations in erosion rates and their influence on rejuvenation of rock-strontium inputs. These results illustrate how chemical and physical processes can interact to produce contrasting origins for different nutrient elements in soils and the ecosystems they support. ?? 2007 Elsevier B.V. All rights reserved.
Reconciling Geodetic Deformation and Long-term Exhumation Rates Across the Western Greater Caucasus
NASA Astrophysics Data System (ADS)
Avdeev, B.; Niemi, N. A.
2011-12-01
Low modern geodetic strain rates and minimal instrumentally recorded seismicity in the western Greater Caucasus contradict the the high topography, deep exhumation, and young low-temperature thermochronometric ages indicative of active tectonic deformation in this mountain range. We use new and existing low-temperature thermochronometric data to show that the rate of present-day convergence across the range is sufficient to sustain observed rates of long-term exhumation and topographic growth. Thus, it is possible that the western Greater Caucasus has existed in an erosional steady state since shortly after the onset of exhumation of the range in Pliocene. We employ a Markov chain Monte Carlo algorithm to estimate the parameters of a thermokinematic model constrained by thermochronometric data and a focal mechanism solution from the 1991 Racha earthquake. We find that the thermochronometric data are best fit by exhumation commencing at ~4 Ma and driven by 3-5 mm/y of overthrusting on the Main Caucasus thrust dipping 40-45° at the surface and becoming flat at a depth of 15-20 km. This long-term exhumation model was compared with active rates of convergence in the western Greater Caucasus using an elastic half-space deformation model to estimate the geometry and rate of slip on a buried dislocation that best fits the observed geodetic velocity field. The estimated active slip of 4-7 mm/y is comparable to the long-term rate of overthrusting and is, therefore, sufficient to produce the observed rock uplift. Up to 4 mm/y excess of active convergence may potentially be consumed by underthrusting of the Transcaucasus or on faults south of the Main Caucasus thrust. We conclude that high rates of rock uplift observed in the western Greater Caucasus are the result of focused shortening occurring on a single fault. This differs from the deformation style of the eastern Greater Caucasus, where a larger amount of shortening is distributed across the width of the range with slip occurring on numerous north and south-verging thrusts, resulting in lower uplift rates, lower relief, and lower exhumation. We hypothesize that this difference in tectonic styles is a result of differences in the lithosphere of the eastern and western Transcaucasus. To the west, the Greater Caucasus are juxtaposed against an ancient strong and buoyant micro-continent, while on the east, they are faulted against a Jurassic island arc that is likely to have a thinner, less competent lithosphere.
NASA Astrophysics Data System (ADS)
Lu, Honghua; Wu, Dengyun; Cheng, Lu; Zhang, Tianqi; Xiong, Jianguo; Zheng, Xiangmin; Li, Youli
2017-12-01
Alluvial units are important in understanding the interactions of antecedent drainage evolution with fold growth along the flanks of active orogenic belts. This is demonstrated by the Anjihai River in the northern Chinese Tian Shan foreland, which at present flows northward cutting sequentially through the Nananjihai anticline, the Huoerguos anticline, and the Anjihai anticline. Three episodes of alluviation designated as fans Fa, Fb, and Fc are identified for the Anjihai River. These three alluvial terrain features comprise a series of terraces, where the topographic characteristics, geomorphologic structure, and up-warped longitudinal profiles indicate continuous uplift and lateral propagation of the Halaande anticline and the Anjihai anticline over the past 50 ky. Shortly after 3.6 ka when the oldest terrace during the period of the fan Fb sedimentation was formed, significant rock uplift at the overlapping zone of the Anjihai anticline and the Halaande anticline led to the eastward deflection of the antecedent Anjihai River. A series of local terraces with elevation decreasing eastward indicate the gradual eastward migration of the channel of the Anjihai River during the period of the fan Fc sedimentation. Finally the Anjihai River occupied the previous course of the Jingou River when the latter was deflected eastward in response to rock uplift of the Anjihai anticline, presently flowing across the eastern tip of the Anjihai anticline.
Gravity investigations of the Chesapeake Bay impact structure
Plescia, J.B.; Daniels, D.L.; Shah, A.K.
2009-01-01
The Chesapeake Bay impact structure is a complex impact crater, ??85 km in diameter, buried beneath postimpact sediments. Its main structural elements include a central uplift of crystalline bedrock, a surrounding inner crater filled with impact debris, and an annular faulted margin composed of block-faulted sediments. The gravity anomaly is consistent with that of a complex impact consisting of a central positive anomaly over the central uplift and an annular negative anomaly over the inner crater. An anomaly is not recognized as being associated with the faulted margin or the outer edge of the structure. Densities from the Eyreville drill core and modeling indicate a density contrast of ??0.3-0.6 g cm-3 between crystalline basement and the material that fills the inner crater (e.g., Exmore breccia and suevite). This density contrast is somewhat higher than for other impact structures, but it is a function of the manner in which the crater fill was deposited (as a marine resurge deposit). Modeling of the gravity data is consistent with a depth to basement of ??1600 m at the site of Eyreville drill hole and 800 m at the central uplift. Both depths are greater than the depth at which crystalline rocks were encountered in the cores, suggesting that the cored material is highly fractured para-allochthonous rock. ?? 2009 The Geological Society of America.
Geology and Ore Deposits of the Uncompahgre (Ouray) Mining District, Southwestern Colorado
Burbank, Wilbur Swett; Luedke, Robert G.
2008-01-01
The Uncompahgre mining district, part of the Ouray mining district, includes an area of about 15 square miles (mi2) on the northwestern flank of the San Juan Mountains in southwestern Colorado from which ores of gold, silver, copper, lead, and zinc have had a gross value of $14 to 15 million. Bedrock within the district ranges in age from Proterozoic to Cenozoic. The oldest or basement rocks, the Uncompahgre Formation of Proterozoic age, consist of metamorphic quartzite and slate and are exposed in a small erosional window in the southern part of the district. Overlying those rocks with a profound angular unconformity are Paleozoic marine sedimentary rocks consisting mostly of limestones and dolomites and some shale and sandstone that are assigned to the Elbert Formation and Ouray Limestone, both of Devonian age, and the Leadville Limestone of Mississippian age. These units are, in turn, overlain by rocks of marine transitional to continental origin that are assigned to the Molas and Hermosa Formations of Pennsylvanian age and the Cutler Formation of Permian age; these three formations are composed predominantly of conglomerates, sandstones, and shales that contain interbedded fossiliferous limestones within the lower two-thirds of the sequence. The overlying Mesozoic strata rest also on a pronounced angular unconformity upon the Paleozoic section. This thick Mesozoic section, of which much of the upper part was eroded before the region was covered by rocks of Tertiary age, consists of the Dolores Formation of Triassic age, the Entrada Sandstone, Wanakah Formation, and Morrison Formation all of Jurassic age, and the Dakota Sandstone and Mancos Shale of Cretaceous age. These strata dominantly consist of shales, mudstones, and sandstones and minor limestones, breccias, and conglomerates. In early Tertiary time the region was beveled by erosion and then covered by a thick deposit of volcanic rocks of mid-Tertiary age. These volcanic rocks, assigned to the San Juan Formation, are chiefly tuff breccias of intermediate composition, which were deposited as extensive volcaniclastic aprons around volcanic centers to the east and south of the area. The Ouray area, in general, exhibits the typical effects of a minimum of three major uplifts of the ancestral San Juan Mountains. The earliest of these uplifts, with accompanying deformation and erosion, occurred within the Proterozoic, and the other two occurred at the close, respectively, of the Paleozoic and Mesozoic. The last event, known as the Laramide orogeny, locally was accompanied by extensive intrusion of igneous rocks of dominantly intermediate composition. Domal uplifts of the ancestral mountains resulted in peripheral monoclinal folds, plunging anticlines radial to the central core of the mountain mass, faults, and minor folds. The principal ore deposits of the Uncompahgre district were associated with crosscutting and laccolithic intrusions of porphyritic granodiorite formed during the Laramide (Late Cretaceous to early Tertiary) orogeny. The ores were deposited chiefly in the Paleozoic and Mesozoic sedimentary strata having an aggregate thickness of about 4,500 feet (ft) and occur beneath the early Tertiary unconformity, which in places truncated some of the uppermost deposits. A few ore deposits of late Tertiary age occur also in the sedimentary rocks near the southern margin of the district, but are restricted mostly to the overlying volcanic rocks. Ore deposits in the Uncompahgre district range from low-grade, contact-metamorphic through pyritic base-metal bodies containing silver and gold tellurides and native gold to silver-bearing lead-zinc deposits, and are zoned about the center of intrusive activity, a stock in an area referred to as The Blowout. Ore deposition within the Uncompahgre district was largely controlled by structural trends and axes of uplift established mainly in the late Paleozoic phase of deformation, but also in part by structural lin
NASA Astrophysics Data System (ADS)
Spotila, James A.; Berger, Aaron L.
2010-07-01
Syntaxial bends in convergent plate boundaries, or indentor corners, display some of the most intriguing deformation patterns on Earth and are type localities for "aneurysms" of coupled erosion, thermal weakening, and strain. The St. Elias orogen in Alaska is a small, young convergent system that has been dominated by a glacial climate for much of its history and exhibits two prominent indentor corners that are not well understood. We have added 40 new apatite (U-Th)/He ages to the already extensive dataset for the low-temperature cooling history of this orogen to constrain the pattern of exhumation in these indentor corners. Ages from the western syntaxis show minor variation across the structural hinge, suggesting that the bend has little effect on the pattern of exhumation and that structures, including the Bagley fault, connect smoothly from the orogen core to the subduction zone to the southwest. Rock uplift on the north flank of the range appears to increase steadily towards the eastern syntaxis, which represents the apex in the right-angle bend between a transform fault in the south and the collision zone in the west. Based on age-elevation relationships, zones of relative rock uplift can be defined in which the Mt. Logan massif, or the area just north of the eastern syntaxis, experienced ˜ 4.8 km greater rock uplift than background levels northwest of the western syntaxis. A bulge in relative rock uplift is symmetric about the hinge in the eastern indentor corner. However, rates of denudation in this bulge are not as rapid as the core of the fold and thrust belt and are lower than those implied by detrital cooling ages from beneath the Seward Glacier. This implies that a large bull's eye of ultra-rapid (˜ 5 mm/yr) exhumation does not occur and that the subpopulation of young detrital ages may be sourced from a narrow transpressional zone along the Fairweather fault. Unlike the Himalayan syntaxes, it thus appears that an aneurysm of coupled erosion-strain has not developed in either indentor corner of the St. Elias orogen. This may indicate a limit to the degree to which glacial erosion can partition strain in convergent orogens. Similarly, the likely existence of a through-going dextral fault, the Totschunda fault, through the eastern syntaxis implies that tectonics, rather than surface processes, exerts the main control on strain partitioning in these corners.
Influence of rock strength variations on interpretation of thermochronologic data
NASA Astrophysics Data System (ADS)
Flowers, Rebecca; Ehlers, Todd
2017-04-01
Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.
NASA Astrophysics Data System (ADS)
Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.
2015-04-01
We have undertaken a regional study of the thermo-tectonic development of East Greenland (68-75°N) and of southern Norway (58-64°N). We take advantage of the general observation that that the effects of uplift often are reflected more clearly onshore than offshore, and of the specific condition that the mountains of southern East Greenland expose thick basalts that were extruded onto a largely horizontal lava plain near sea level during breakup of the NE Atlantic at the Paleocene-Eocene transition. It is thus clear that the present-day elevation of these basalts up to 3.7 km a.s.l. were reached after breakup. Our results based on apatite fission-track analysis (AFTA) data from East Greenland reveal a long history of post-Palaeozoic burial and exhumation across the region and show that the terrains of Palaeozoic and older rocks were buried below a 2-3 km-thick cover prior to a series of Mesozoic events of uplift and exhumation. The AFTA results from southern Norway reveal events of Mesozoic uplift and exhumation that are broadly simultaneous with those in Greenland. Volcanic and sedimentary rocks accumulated on the subsiding, East Greenland margin during and following breakup and then began to be exhumed during late Eocene uplift that preceded a major, early Oligocene plate reorganization in the NE Atlantic. The Norwegian margin also experienced Eocene subsidence and burial. Our AFTA data from southern Norway show evidence of an event of midCenozoic uplift and exhumation that overlap with the early Oligocene onset of progradation of clastic wedges towards the south and with the formation of a major, late Eocene unconformity along the NW European margin. The uplift event at the Eocene-Oligocene transition that affected wide areas in the NE Atlantic domain was followed by two regional events of uplift and incision of the East Greenland margin in the late Miocene and Pliocene whereas the Neogene uplift of southern Norway began in the early Miocene and was followed by the Pliocene phase that also affected East Greenland. In East Greenland, the end-result of the three events of Cenozoic uplift and exhumation are two elevated erosion surfaces of Palaeogene and Neogene age. In southern Norway, a similar stepped landscape (the Palaeic relief) is also of Cenozoic age. In Greenland, definition of the chronology of events benefits from the availability of AFTA data from boreholes onshore where the plateau surfaces truncate Palaeogene basalts, and thus make it possible to date these surfaces and correlate them with offshore unconformities. In Norway, these factors are lacking, but the overall similarity of the onshore landscapes and Cenozoic cooling history and of the offshore sedimentary section to those in Greenland, suggests that the landscapes along these conjugate margins developed in similar fashion. This implies that the mountains of Norway also reached their present elevation in the late Cenozoic, long after Atlantic breakup.
A case of rapid rock riverbed incision in a coseismic uplift reach and its implications
NASA Astrophysics Data System (ADS)
Huang, Ming-Wan; Pan, Yii-Wen; Liao, Jyh-Jong
2013-02-01
During the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan, the coseismic displacement induced fault scarps and a pop-up structure in the Taan River. The fault scarps across the river experienced maximum vertical slip of 10 m, which disturbed the dynamic equilibrium of the fluvial system. As a result, rapid incision in the weak bedrock, with a maximum depth of 20 m, was activated within a decade after its armor layer was removed. This case provides an excellent opportunity for closely tracking and recording the progressive evolution of river morphology that is subjected to coseismic uplift. Based on multistaged orthophotographs and digital elevation model (DEM) data, the process of morphology evolution in the uplift reach was divided into four consecutive stages. Plucking is the dominant mechanism of bedrock erosion associated with channel incision and knickpoint migration. The astonishingly high rate of knickpoint retreat (KPR), as rapid as a few hundred meters per year, may be responsible for the rapid incision in the main channel. The reasons for the high rate of KPR are discussed in depth. The total length of the river affected by the coseismic uplift is 5 km: 1 km in the uplift reach and 4 km in the downstream reach. The downstream reach was affected by a reduction in sediment supply and increase in stream power. The KPR cut through the uplift reach within roughly a decade; further significant flooding in the future will mainly cause widening instead of deepening of the channel.
NASA Astrophysics Data System (ADS)
Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.
2016-04-01
We have undertaken a regional study of the thermo-tectonic development of East Greenland (68-75°N; Bonow et al. 2014; Japsen et al. 2014) and of southern Norway (58-64°N) based on integration of apatite fission-track analysis (AFTA), stratigraphic landscape analysis and the geological record onshore and offshore. Volcanic and sedimentary rocks accumulated on the subsiding, East Greenland margin during and following breakup and then began to be exhumed during late Eocene uplift that preceded a major, early Oligocene plate reorganization in the NE Atlantic. The Norwegian margin also experienced Eocene subsidence and burial; there are hemipelagic, deep-marine sediments of Eocene age along the coast of southern Norway. End-Eocene uplift of the NW European margin led to the formation of a major unconformity along the entire margin and to progradation of clastic wedges from Norway towards the south. Our AFTA data from East Greenland and southern Norway reveal a long history of Mesozoic burial and exhumation across the region, with a number of broadly synchronous events being recorded on both margins. AFTA data from East Greenland show clear evidence for uplift at the Eocene-Oligocene transition whereas the data from Norway do not resolve any effects of exhumation related to this event. AFTA data from the East Greenland margin show evidence of two Neogene events of uplift and incision of the in the late Miocene and Pliocene whereas results from southern Norway define Neogene uplift and erosion which began in the early Miocene. A Pliocene uplift phase in southern Norway is evident from the stratigraphic landscape analysis and from the sedimentary sequences offshore. In East Greenland, a late Eocene phase of uplift led to formation of a regional erosion surface near sea level (the Upper Planation Surface, UPS). Uplift of the UPS in the late Miocene led to formation of the Lower Planation Surface (LPS) by incision below the uplifted UPS, and a Pliocene phase led to incision of valleys and fjords below the uplifted LPS, leaving mountain peaks reaching 3.7 km above sea level. In southern Norway (as also in southern Sweden), the sub-horizontal Palaeic surfaces truncate the tilted, sub-Mesozoic erosion surface along the coasts. Lidmar-Bergström et al. (2013) used this relationship to conclude that the Palaeic relief is of Cenozoic age. In Greenland, definition of the chronology of events benefits from the availability of AFTA data from boreholes onshore where the plateau surfaces truncate Palaeogene basalts, and thus make it possible to date formation of these surfaces and correlate them with offshore unconformities. In Norway, the absence of post-rift rocks onshore precludes such integrated analysis. However, the presence of offshore unconformities, coupled with similar onshore landscapes and Cenozoic cooling history suggest a similar overall style of evolution. The similarities between the two margins lead us to us suggest that these margins developed in broadly similar fashion, and that the mountains of Norway also reached their present elevation long after Atlantic breakup. Bonow, Japsen, Nielsen 2014. Global and Planetary Change 116. Japsen, Green, Bonow, Nielsen, Chalmers 2014. Global and Planetary Change 116. Lidmar-Bergström, Bonow, Japsen 2013. Global and Planetary Change 100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pindell, J.L.; Drake, C.L.; Pitman, W.C.
1991-03-01
For several decades, Cretaceous arc collision was assumed along northern Venezuela based on isotopic ages of metamorphic minerals. From subsidence histories in Venezuelan/Trinidadian basins, however, it is now clear that the Cretaceous metamorphic rocks were emplaced southeastward as allochthons above an autochthonous suite of rocks in the Cenozoic, and that the pre-Cenozoic autochthonous rocks represent a Mesozoic passive margin. The passive margin rocks have been metamorphosed separately during overthrusting by the allochthons in central Venezuela, but they are uplifted but not significantly metamorphosed in Eastern Venezuela and Trinidad. There, in the Serrania del Interior and Central Ranges of Venezuela/Trinidad, Mesozoic-Paleogenemore » passive margin sequences were uplifted in Neogene time, when the Caribbean Plate arrived from the west and transpressionally inverted the passive margin. Thus, this portion of South America's Atlantic margin subsided thermally without tectonism from Jurassic to Eocene time, and these sections comprise the only Mesozoic-Cenozoic truly passive Atlantic margin in the Western Hemisphere that is now exposed for direct study. Direct assessments of sedimentological, depositional and faunal features indicative of, and changes in, water depth for Cretaceous and Paleogene time may be made here relative to a thermally subsiding passive margin without the complications of tectonism. Work is underway, and preliminary assessments presented here suggest that sea level changes of Cretaceous-Paleogene time are not as pronounced as the frequent large and rapid sea level falls and rises that are promoted by some.« less
NASA Astrophysics Data System (ADS)
Taylor, F. W.; Lavier, L. L.; Frohlich, C.; Thirumalai, K.; Papabatu, A. K.
2015-12-01
In the forearcs of subduction zones, the characteristics of both short-term (temporary earthquake cycle) and longer-term permanent vertical deformation offer insights into processes by which plates subduct. But permanent vertical deformation may be a product of several simultaneous processes, including tectonic erosion/underplating, changing dip of the slab, upward displacement due to buoyancy or bathymetric features, and plastic shortening/extension of the forearc wedge. Here we note the rarely recognized, but possibly common, phenomenon of intermediate time scale transient vertical movements (TVM's). Both the central New Hebrides and Western Solomon forearcs have uplifted ≥500 m over time scales of 105 yr. Uplift started abruptly (over ≤10 ky) and proceeded at localized rates up to 7-8 mm/yr. Both initial uplifts terminated preceding rapid subsidence of similar dimensions and rates that, in turn, had followed yet older uplift. However, these uplifts and subsidences are superimposed on a yet longer-term trend of uplift on time scales >105 yr. The most recent uplifts extended 100-200 km along-arc and 60-90 km cross-arc while plate convergence was <10 km. These 105 yr vertical oscillations are most likely due to plastic shortening/extension driven by strong horizontal forces related to rugged seafloor bathymetry impinging on the outer forearc. Subsidence follows uplift when horizontal force abates temporarily and uplift is no longer supported by enhanced interplate coupling. Over the 105 yr time frame when interplate slip is <10 km, it is difficult to account for the timing, geography, and amounts of up and down motion by processes such as buoyancy or volumetric displacement of downgoing bathymetric features or by tectonic underplating/erosion. Instead, ~1% of shortening within the upper plate is sufficient to account for up to several hundred m of uplift across a large area of the forearc.
Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change
Bevis, Michael; Wahr, John; Khan, Shfaqat A.; Madsen, Finn Bo; Brown, Abel; Willis, Michael; Kendrick, Eric; Knudsen, Per; Box, Jason E.; van Dam, Tonie; Caccamise, Dana J.; Johns, Bjorn; Nylen, Thomas; Abbott, Robin; White, Seth; Miner, Jeremy; Forsberg, Rene; Zhou, Hao; Wang, Jian; Wilson, Terry; Bromwich, David; Francis, Olivier
2012-01-01
The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010. This anomalous uplift is spatially correlated with the 2010 melting day anomaly. PMID:22786931
Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body
Perkins, Jonathan P.; Ward, Kevin M.; de Silva, Shanaka L.; Zandt, George; Beck, Susan L.; Finnegan, Noah J.
2016-01-01
The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production. PMID:27779183
Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body.
Perkins, Jonathan P; Ward, Kevin M; de Silva, Shanaka L; Zandt, George; Beck, Susan L; Finnegan, Noah J
2016-10-25
The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.
NASA Astrophysics Data System (ADS)
Cochran, William J.; Spotila, James A.; Prince, Philip S.; McAleer, Ryan J.
2017-11-01
The effect of rapid erosion on kinematic partitioning along transpressional plate margins is not well understood, particularly in highly erosive climates. The Blue Mountains restraining bend (BMRB) of eastern Jamaica, bound to the south by the left-lateral Enriquillo-Plantain Garden fault (EPGF), offers an opportunity to test the effects of highly erosive climatic conditions on a 30-km-wide restraining bend system. No previous thermochronometric data exists in Jamaica to describe the spatial or temporal pattern of rock uplift and how oblique (> 20°) plate motion is partitioned into vertical strain. To define the exhumation history, we measured apatite (n = 10) and zircon (n = 6) (U-Th)/He ages, 40Ar/39Ar (n = 2; amphibole and K-spar) ages, and U/Pb zircon (n = 2) crystallization ages. Late Cretaceous U/Pb and 40Ar/39Ar ages (74-68 Ma) indicate rapid cooling following shallow emplacement of plutons during north-south subduction along the Great Caribbean Arc. Early to middle Miocene zircon helium ages (19-14 Ma) along a vertical transect suggest exhumation and island emergence at 0.2 mm/yr. Older zircon ages 10-15 km to the north (44-35 Ma) imply less rock uplift. Apatite helium ages are young (6-1 Ma) across the entire orogen, suggesting rapid exhumation of the BMRB since the late Miocene. These constraints are consistent with previous reports of restraining bend formation and early emergence of eastern Jamaica. An age-elevation relationship from a vertical transect implies an exhumation rate of 0.8 mm/yr, while calculated closure depths and thermal modeling suggests exhumation as rapid as 2 mm/yr. The rapid rock uplift rates in Jamaica are comparable to the most intense transpressive zones worldwide, despite the relatively slow (5-7 mm/yr) strike-slip rate. We hypothesize highly erosive conditions in Jamaica enable a higher fraction of plate motion to be accommodated by vertical deformation. Thus, strike-slip restraining bends may evolve differently depending on erosivity and local climate.
Mantle uplift and exhumation caused by long-lived transpression at a major transform fault
NASA Astrophysics Data System (ADS)
Maia, Marcia; Sichel, Susanna; Briais, Anne; Brunelli, Daniele; Ligi, Marco; Campos, Thomas; Mougel, Bérengère; Hémond, Christophe
2017-04-01
Large portions of slow-spreading ridges have mantle-derived peridotites emplaced either on, or at shallow levels below the sea floor. Mantle and deep rock exposure in such contexts results from extension through low-angle detachment faults at oceanic core complexes or, along transform faults, to transtension due to small changes in spreading geometry. In the Equatorial Atlantic, a large body of ultramafic rocks at the large-offset St. Paul transform fault forms the archipelago of St. Peter & St. Paul. These islets are emplaced near the axis of the Mid-Atlantic Ridge (MAR), and have intrigued geologists since Darwin's time. They are made of variably serpentinized and mylonitized peridotites, and are presently being uplifted at a rate of 1.5 mm/yr, which suggests tectonic stresses. The existence of an abnormally cold upper mantle or cold lithosphere in the Equatorial Atlantic was, until now, the preferred explanation for the origin of these ultramafics. High-resolution geophysical data and rock samples acquired in 2013 show that the origin of the St. Peter & St. Paul archipelago is linked to compressive stresses along the transform fault. The islets represent the summit of a large push-up ridge formed by deformed mantle rocks, located in the center of a positive flower structure, where large portions of mylonitized mantle are uplifted. The transpressive stress field can be explained by the propagation of the northern MAR segment into the transform domain. The latter induced the overlap of ridge segments, resulting in the migration and segmentation of the transform fault and the creation of a series of restraining step-overs. A counterclockwise change in plate motion at 11 Ma initially generated extensive stresses in the transform domain, forming a flexural transverse ridge. Shortly after the plate reorganization, the MAR segment located on the northern side of the transform fault started to propagate southwards, adjusting to the new spreading direction. Enhanced melt supply at the ridge axis, possibly due to the Sierra Leone thermal anomaly, induced the robust response of this segment.
Cochran, William J.; Spotila, James A.; Prince, Philip S.; McAleer, Ryan J.
2017-01-01
The effect of rapid erosion on kinematic partitioning along transpressional plate margins is not well understood, particularly in highly erosive climates. The Blue Mountains restraining bend (BMRB) of eastern Jamaica, bound to the south by the left-lateral Enriquillo-Plantain Garden fault (EPGF), offers an opportunity to test the effects of highly erosive climatic conditions on a 30-km-wide restraining bend system. No previous thermochronometric data exists in Jamaica to describe the spatial or temporal pattern of rock uplift and how oblique (> 20°) plate motion is partitioned into vertical strain. To define the exhumation history, we measured apatite (n = 10) and zircon (n = 6) (U-Th)/He ages, 40Ar/39Ar (n = 2; amphibole and K-spar) ages, and U/Pb zircon (n = 2) crystallization ages. Late Cretaceous U/Pb and 40Ar/39Ar ages (74–68 Ma) indicate rapid cooling following shallow emplacement of plutons during north-south subduction along the Great Caribbean Arc. Early to middle Miocene zircon helium ages (19–14 Ma) along a vertical transect suggest exhumation and island emergence at ~ 0.2 mm/yr. Older zircon ages 10–15 km to the north (44–35 Ma) imply less rock uplift. Apatite helium ages are young (6–1 Ma) across the entire orogen, suggesting rapid exhumation of the BMRB since the late Miocene. These constraints are consistent with previous reports of restraining bend formation and early emergence of eastern Jamaica. An age-elevation relationship from a vertical transect implies an exhumation rate of 0.8 mm/yr, while calculated closure depths and thermal modeling suggests exhumation as rapid as 2 mm/yr. The rapid rock uplift rates in Jamaica are comparable to the most intense transpressive zones worldwide, despite the relatively slow (5–7 mm/yr) strike-slip rate. We hypothesize highly erosive conditions in Jamaica enable a higher fraction of plate motion to be accommodated by vertical deformation. Thus, strike-slip restraining bends may evolve differently depending on erosivity and local climate.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.
2013-06-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.
NASA Astrophysics Data System (ADS)
Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol
2016-09-01
The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly above the imaged LVZs, suggesting that these anomalies are also the source of Cenozoic volcanic rocks throughout the study area.
NASA Astrophysics Data System (ADS)
Xue, L.; Abdelsalam, M. G.
2017-12-01
Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.
Geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington
Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.
1987-01-01
Summary -- The Chelan quadrangle hosts a wide variety of rocks and deposits and display a long geologic history ranging from possible Precambrian to Recent. Two major structures, the Leavenworth and Entiat faults divide cross the quadrangle from southeast to northwest and bound the Chiwaukum 'graben', a structural low preserving Tertiary sedimentary rocks between blocks of older, metamorphic and igneous rocks. Pre-Tertiary metamorphic rocks in the quadrangle are subdivided into five major tectonostratigraphic terranes: (1) the Ingalls terrane, equivalent to the Jurassic Ingalls Tectonic Complex of probable mantle and deep oceanic rocks origin, (2) the Nason terrane, composed of the Chiwaukum Schist and related gneiss, (3) the Swakane terrane, made up entirely of the Swakane Biotite Gneiss, a metamorphosed, possibly Precambrian, sedimentary and/or volcanic rock, (4) the Mad River terrane composed mostly of the rocks of the Napeequa River area (Napeequa Schist), a unit of oceanic protolith now considered part of the Chelan Mountains terrane (the Mad River terrane has been abandoned, 2001), and (5) the Chelan Mountains terrane, dominated by the Chelan Complex of Hopson and Mattinson (1971) which is composed of migmatite and gneissic to tonalite of deep-seated igneous and metamorphic origin.During an episode of Late Cretaceous regional metamorphism, all the terranes were intruded by deepseated tonalite to granodiorite plutons, including the Mount Stuart batholith, Ten Peak and Dirty Face plutons, and the Entiat pluton and massive granitoid rocks of the Chelan Complex. The Duncan Hill pluton intruded rocks of the Chelan Mountains terrane in the Middle Eocene. At about the same time fluvial arkosic sediment of the Chumstick Formation was deposited in a depression. The outpouring of basalt lavas to the southeast of the quadrangle during the Miocene built up the Columbia River Basalt Group. These now slightly warped lavas lapped onto the uplifted older rocks. Deformation, uplift, and erosion recorded in the rocks and deposits of the quadrangle continued into post-Miocene time. Quaternary deposits reflect advances of glaciers down the major valleys, a complicated history of catastrophic glacial floods down the Columbia River, the formation of lakes in the Columbia and Wenatchee river valleys by landslides and flood backwaters, and hillslope erosion by large and small landslides and debris flows.
Pitman, Janet K.; Fouch, T.D.; Goldhaber, M.B.
1982-01-01
The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors
Timing of uplift peripheral to the Red Sea, Saudi Arabia
Naeser, C.W.; Zimmermann, R.A.; Bohannon, R.G.; Schmidt, D.L.; ,
1990-01-01
A Prominent escarpment is found along the western margin of the Arabian Shield. Elevations along this escarpment are up to 3200 m above the Red Sea. Between the Red Sea and the crest of the escarpment is a relatively featureless coastal plane that is ??? 50 km across. The coastal plane abruptly gives way to the steep mountainous terrain, the elevation of which increases abruptly towards the high crest. The elevation slowly decreases to the east of the high crest. Forty-four apatite fission-track ages have been determined on rocks from the Proterozoic Arabian Shield in southwestern Saudi Arabia. These ages range from 13.8 to 568 Ma. In general, the youngest ages are found at low elevations along the base of the escarpment near the eastern edge of the coastal plane. The oldest ages are from along and to the east of the crest. The fission-track data from Saudi Arabia show that there was a period of minor uplift and cooling during the Cretaceous. This was followed by a relatively stable period which lasted until the Mid to Upper Miocene. The latest uplift and erosion began slightly younger than 13.8 Ma. This latest episode resulted in a minimum uplift of 3 km and is related to the Red Sea Rift. Samples totally annealed prior to this latest episode of uplift and cooling have not yet reached the surface.
Late Cretaceous fluvial systems and inferred tectonic history, central Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, T.F.
1983-08-01
Upper Campanian nonmarine sedimentary rocks exposed between the Wasatch Plateau and the Green River in central Utah record a tectonic transition from thin-skinned deformation in the thrust belt to basement-cored uplift in the foreland region. Sandstones within the section consist of two distinct compositional suites, a lower quartzose petrofacies and an upper lithic petrofacies. The volcanic lithic grains of the Farrer and Tuscher Formations were derived from more distal arc sources to the southwest, and transported through the thrust belt somewhere west of the Kaiparowits region, where time-equivalent sedimentary rocks are also rich in volcanic lithic fragments. Disappearance of volcanicmore » lithics and appearance of pebbles at the top of the Tuscher Formation is interpreted to reflect a latest Campanian reorganization of drainage patterns that marked initial growth of the San Rafael swell and similar basement uplifts to the south of the swell. Contemporaneous fluvial systems that deposited the uppermost part of the Price River Formation in the Wasatch Plateau were apparently unaffected by the uplift and continued to flow northeast. Depositional patterns thus indicate that initial growth of the San Rafael swell was probably concurrent with late deformation in the thrust belt. Depositional onlap across the Mesaverde Group by a largely post-tectonic assemblage of fluvial and lacustrine strata (North Horn Formation) indicates a minimum late Paleocene age for growth of the San Rafael swell and deformation within the thrust belt.« less
Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska
Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew
2013-01-01
High-resolution sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.
Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska
NASA Astrophysics Data System (ADS)
Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew
2013-10-01
sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Cosentino, D.; Caruso, A.; Yildirim, C.; Echtler, H.; Strecker, M. R.
2011-12-01
The Central Anatolian plateau in Turkey borders one of the most complex tectonic regions on Earth, where collision of the Arabian plate with Eurasia in Eastern Anatolia transitions to a cryptic pattern of subduction of the African beneath the Eurasian plate, with concurrent westward extrusion of the Anatolian microplate. Topographic growth of the southern margin of the Central Anatolian plateau has proceeded in discrete stages that can be distinguished based on the outcrop pattern and ages of uplifted marine sediments. These marine units, together with older basement rocks and younger continental sedimentary fills, also record an evolving nature of crustal deformation and uplift patterns that can be used to test the viability of different uplift mechanisms that have contributed to generate the world's third-largest orogenic plateau. Late Miocene marine sediments outcrop along the SW plateau margin at 1.5 km elevation, while they blanket the S and SE margins at up to more than 2 km elevation. Our new biostratigraphic data limit the age of 1.5-km-high marine sediments along the SW plateau margin to < 7.17 Ma, while regional lithostratigraphic correlations imply that the age is < 6.7 Ma. After reconstructing the post-Late Miocene surface uplift pattern from elevations of uplifted marine sediments and geomorphic reference surfaces, it is clear that regional surface uplift reaches maximum values along the modern plateau margin, with the SW margin experiencing less cumulative uplift compared to the S and SE margins. Our structural measurements and inversion modeling of faults within the uplifted region agree with previous findings in surrounding regions, with early contraction followed by strike-slip and extensional deformation. Shallow earthquake focal mechanisms show that the extensional phase has continued to the present. Broad similarities in the onset of surface uplift (after 7 Ma) and a change in the kinematic evolution of the plateau margin (after 8 Ma) suggest that these phenomena may have been linked with a change in the tectonic stress field associated with the process(es) causing post-7 Ma surface uplift. The complex geometry of lithospheric slabs beneath the southern plateau margin, early Pliocene to recent alkaline volcanism, and the localized uplift pattern with accompanying tensional/transtensional stresses point toward slab tearing and localized heating at the base of the lithosphere as a probable mechanism for post-7 Ma uplift of the SW margin. Considering previous work in the region, slab break-off is more likely responsible for non-contractional uplift along the S and SE margins. Overall there appears to be an important link between slab dynamics and surface uplift across the whole southern margin of the Central Anatolian plateau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zunsheng
This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Gulick, S. P. S.; Morgan, J. V.; Gebhardt, C.; Kring, D. A.; Le Ber, E.; Lofi, J.; Nixon, C.; Poelchau, M.; Rae, A. S. P.; Rebolledo-Vieyra, M.; Riller, U.; Schmitt, D. R.; Wittmann, A.; Bralower, T. J.; Chenot, E.; Claeys, P.; Cockell, C. S.; Coolen, M. J. L.; Ferrière, L.; Green, S.; Goto, K.; Jones, H.; Lowery, C. M.; Mellett, C.; Ocampo-Torres, R.; Perez-Cruz, L.; Pickersgill, A. E.; Rasmussen, C.; Sato, H.; Smit, J.; Tikoo, S. M.; Tomioka, N.; Urrutia-Fucugauchi, J.; Whalen, M. T.; Xiao, L.; Yamaguchi, K. E.
2018-08-01
Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900-3700 m/s, 2.06-2.37 g/cm3, and 20-35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650-4350 m/s, density measurements of 2.26-2.37 g/cm3, and porosity measurements of 19-22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000-4200 m/s, 2.39-2.44 g/cm3, and 8-13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100-165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the central basin.
Performance of pile supported sign structures : final report.
DOT National Transportation Integrated Search
2015-01-01
Foundations for sign structures are subjected primarily to overturning loads, but published methods for designing driven pile groups only address groups subjected either to compression or uplift, not both simultaneously. A lateral load test of two fo...
The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada
NASA Astrophysics Data System (ADS)
Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas
2016-04-01
The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence based on stratigraphic correlation that show thinning of strata in the northeastern part of the basin. The Isachsen Formation (Valanginian or Hauterivian to late Aptian) is a sandstone unit with interbeds of mudstone, coal, volcanic, and volcaniclastic/tuffaceous rocks attributed to HALIP. Isachsen Formation has a fairly consistent thickness over most of the Sverdrup Basin, ranging from ~120 m at basin margins to 1370 m on western Axel Heiberg Island but is generally > 400 m thick, even over the large salt domes that rose almost to the surface immediately prior to its deposition. The thickness of the formation decreases from over 400 m thick at Ellef Ringnes Island and southern Axel Heiberg Island to less than 120 m across a broad area of central Ellesmere Island. We interpret NE thinning of these strata to be the result of topographic uplift associated with initial mantle plume activity of HALIP. However, the rejuvenation of Sverdrup Basin formation (nearer the plume centre) in the Hauterivian-Aptian reflects complexities in the uplift pattern. References: 1-Griffiths, R.W. and Campbell, I.H. 1991 JGR 96: 18295-18310. 2-Campbell, I.H. 2007. Chem. Geol., 241: 153-176. 3-Ernst, 2014. LIPs. Cambridge U. Press, 653 p.
Large-Scale Crustal-Block-Extrusion During Late Alpine Collision.
Herwegh, Marco; Berger, Alfons; Baumberger, Roland; Wehrens, Philip; Kissling, Edi
2017-03-24
The crustal-scale geometry of the European Alps has been explained by a classical subduction-scenario comprising thrust-and-fold-related compressional wedge tectonics and isostatic rebound. However, massive blocks of crystalline basement (External Crystalline Massifs) vertically disrupt the upper-crustal wedge. In the case of the Aar massif, top basement vertically rises for >12 km and peak metamorphic temperatures increase along an orogen-perpendicular direction from 250 °C-450 °C over horizontal distances of only <15 km (Innertkirchen-Grimselpass), suggesting exhumation of midcrustal rocks with increasing uplift component along steep vertical shear zones. Here we demonstrate that delamination of European lower crust during lithosphere mantle rollback migrates northward in time. Simultaneously, the Aar massif as giant upper crustal block extrudes by buoyancy forces, while substantial volumes of lower crust accumulate underneath. Buoyancy-driven deformation generates dense networks of steep reverse faults as major structures interconnected by secondary branches with normal fault component, dissecting the entire crust up to the surface. Owing to rollback fading, the component of vertical motion reduces and is replaced by a late stage of orogenic compression as manifest by north-directed thrusting. Buoyancy-driven vertical tectonics and modest late shortening, combined with surface erosion, result in typical topographic and metamorphic gradients, which might represent general indicators for final stages of continent-continent collisions.
Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona
Anderson, S.R.
1987-01-01
This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern Arizona. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Watkinson, I.; Elders, C.; Hall, R.
2009-04-01
New Ar-Ar data from the strike-slip faults of Peninsular Thailand indicate rapid uplift of mid-crustal ductile shear zones during the Eocene. The cooling ages are consistent with a northwards younging pattern of Ar-Ar cooling ages from the NW-trending Three Pagodas and Mae Ping faults in Northern Thailand, to the Ailao Shan-Red River fault in Vietnam and Yunnan, taken to reflect the northwards movement of India during the Cenozoic. The peninsular structures: the Khlong Marui fault (KMF) and Ranong fault (RF), are major NNE trending strike-slip faults of respectively 220 km and 420 km length. Exposed mylonitic rocks bear consistently dextral kinematic indicators, unlike the sinistral mylonites of the NW-trending structures to the north. Brittle strike-slip and dip-slip faults overprint all the shear zones. Rocks ranging from low grade mylonites to syn-kinematic amphibolite facies migmatites from the RF and KMF yield similar biotite Ar-Ar cooling ages, suggesting that uplift from all depths in the shear zone was rapid. Retrograde shear fabrics in places show that dextral shear may have continued during uplift. While the new thermochronological data show that the peninsular mylonites cooled during the Eocene, constraint from pre- and post-kinematic granitoids strongly suggests that ductile shear occurred during the Late-Cretaceous to Paleocene. Since this is well before the onset of India-Eurasia collision, much of the ductile shear must pre-date that orogeny, and therefore cannot be related to Himalayan lateral extrusion, as has been speculated. The regional cooling pattern, however, shows that Indian indentation may have triggered progressive northward exhumation of mylonitic rocks. If the model of the peninsular faults is applied to the NW-trending faults in northern Thailand, then a pre-Himalayan history may also be recorded by those mylonites, rather than a simple, lateral extrusion-related history.
NASA Astrophysics Data System (ADS)
Lee, Y. I.; Lim, H. S.; Choi, T.
2017-12-01
We studied the provenance of beach sediments of the Baton and Weaver peninsulas of King George Island, the South Shetland Islands of West Antarctica. The studied beach sand sediments of the both peninsulas are predominantly composed of volcanic-rock fragment, followed by altered grain and plutonic rock fragment in that order. In rock fragments, the volcanic rock fragments are about four times more than the plutonic rock fragments. The median quartz-feldspar-rock fragment (Q-F-R) ratios of the beach sands of the Weaver and Barton peninsulas are Q3.4-F5.5-R99.1 and Q0.5-F2.7-R96.8, respectively. These beach sands may have been originated from basaltic andesite-andesite distributed in the ice-free areas of the Barton and Weaver peninsulas and granodiorite of the Barton Peninsula. According to the geochemistry of the beach sand sediments of the two peninsulas, most of the sand samples are interpreted as originating from intermediate rocks that have experienced little chemical weathering. Taking together the modal composition and geochemical composition of the beach sand samples, the tectonic setting of the source area is interpreted as a magmatic arc setting. This interpretation is consistent with geology of the ice-free areas of the Barton and Weaver peninsulas and the tectonic setting of King George Island. However, the sand samples of the Barton Peninsula southern beach and the Weaver Peninsula beach were not derived from basement rocks currently exposed in the ice-free areas of the corresponding peninsula, but were formerly glaciomarine sediments derived from erosion of ice-covered subglacial basement rocks and transported to the submerged glacier grounding line prior to deglaciation. Sand sediments derived from wave erosion of basement rocks of paleoshoreline might have been mixed with these glaciomarine sediments. King George Island became uplifted due to deglaciation 6,000 years ago. The studied beach sediments might have been reworked after the uplift of the King George Island to the present level. Accordingly, the studied beach sand sediments of the Barton and Weaver peninsulas are interpreted to be a palimpsest deposit comprising a mixture of originally glaciomarine sediments accumulated in the shallow fjord post the Last Glacial Maximum and some detritus supplied to the beaches since deglaciation.
NASA Astrophysics Data System (ADS)
Togo, Yoko S.; Takahashi, Yoshio; Amano, Yuki; Matsuzaki, Hiroyuki; Suzuki, Yohey; Terada, Yasuko; Muramatsu, Yasuyuki; Ito, Kazumasa; Iwatsuki, Teruki
2016-10-01
This paper reports the concentration, speciation and isotope ratio (129I/127I) of iodine from both groundwater and host rocks in the Horonobe area, northern Hokkaido, Japan, to clarify the origin and migration of iodine in sedimentary rocks. Cretaceous to Quaternary sedimentary rocks deposited nearly horizontally in Tenpoku Basin and in the Horonobe area were uplifted above sea level during active tectonics to form folds and faults in the Quaternary. Samples were collected from the Pliocene Koetoi and late Miocene Wakkanai formations (Fms), which include diatomaceous and siliceous mudstones. The iodine concentration in groundwater, up to 270 μmol/L, is significantly higher than that of seawater, with the iodine enrichment factor relative to seawater reaching 800-1500. The iodine concentration in the rocks decreases from the Koetoi to Wakkanai Fms, suggesting that iodine was released into the water from the rocks of deeper formations. The iodine concentration in the rocks is sufficiently high for forming iodine-rich groundwater as found in this area. X-ray absorption near edge structure (XANES) analysis shows that iodine exists as organic iodine and iodide (I-) in host rocks, whereas it exists mainly as I- in groundwater. The isotope ratio is nearly constant for iodine in the groundwater, at [0.11-0.23] × 10-12, and it is higher for iodine in rocks, at [0.29-1.1] × 10-12, giving iodine ages of 42-60 Ma and 7-38 Ma, respectively. Some iodine in groundwater must have originated from Paleogene and even late Cretaceous Fms, which are also considered as possible sources of oil and gas, in view of the old iodine ages of the groundwater. The iodine ages of the rocks are older than the depositional ages, implying that the rocks adsorbed some iodine from groundwater, which was sourced from greater depths. The iodine concentration in groundwater decreases with decreasing chlorine concentration due to mixing of iodine-rich connate water and meteoric water. A likely scenario is that iodine-rich brine formed during the long-term basin evolution from the Cretaceous to Quaternary and that this brine was diluted by mixing with meteoric water during uplifting and denudation of the area.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2002-01-01
Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).
Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and Kīlauea
Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi
2003-01-01
Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.
Sheridan, R.E.; Maguire, T.J.; Feigenson, M.D.; Patino, L.C.; Volkert, R.A.
1999-01-01
The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/Strontium dating of the Chesapeake terrane basement yields an age of 1.025 ?? 0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment.
NASA Astrophysics Data System (ADS)
McNab, F.; Ball, P.; Hoggard, M.; White, N.
2017-12-01
The origin of Anatolia's high elevation and low relief plateaux has been the subject of much recent debate. Marine sedimentary rocks distributed across Central and Eastern Anatolia require significant regional uplift in Neogene times. This uplift cannot be explained by the present-day pattern of crustal deformation which, particularly across Central and Western Anatolia, is dominanted by strike-slip and extensional faulting. Positive long wavelength free-air gravity anomalies combined with slow upper mantle seismic wave speeds suggest that the sub-lithospheric mantle provides substantial topographic support. A range of geodynamic processes have been invoked, including complex slab fragmentation and lithospheric delamination. The temporal and spatial evolution of the Anatolian landscape should be recorded by drainage networks. Indeed, major catchments contain prominent knickzones with heights of hundreds of meters and length scales of several hundred kilometers. The stream power formulation for fluvial erosion permits these knickzones to be interpreted in terms of uplift history along a river's length. Here, we jointly invert an inventory of 1,844 river profiles to determine a spatial and temporal uplift rate history. When calibrated against independent observations of uplift rate, the resultant history provides significant new constraints for the evolution of Anatolian topography. In our model, the bulk of this topography appears to grow in Neogene times. Uplift initiates in Eastern Anatolia and propagates westward at uplift rates of up to 0.5 mm/yr. Coeval with this phase of uplift, abundant basaltic magmatism has occurred throughout Anatolia. We have compiled an extensive database of published geochemical analyses. Using this database, we analyse spatial and temporal patterns of basaltic compositions to discriminate between different modes of melt generation. Two independent techniques for estimating asthenospheric potential temperatures from the compositions of high-Mg basalts have been used. Elevated temperatures of c. 1380 ºC occur beneath Eastern Anatolia with a notable decrease towards the west. Overall, our results imply that the spatial and temporal evolution Anatolian topography is controlled by temperature variations within the asthenospheric mantle.
Where's the Beaverhead beef?. [meteorite impact structure
NASA Technical Reports Server (NTRS)
Hargraves, R. B.
1992-01-01
Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.
NASA Astrophysics Data System (ADS)
Hargraves, R. B.
Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.
Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J.
2009-01-01
Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The Geological Society of America.
From tectonics to tractors: New insight into Earth's changing surface
NASA Astrophysics Data System (ADS)
Larsen, I. J.
2017-12-01
Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally-induced topsoil loss in the Midwestern U.S., and discuss the economic and carbon cycle implications. These findings - in some cases unanticipated and exciting - highlight opportunities that stem from using a multi-faceted approach to gain new insights into the physical and chemical processes that modify Earth's changing surface.
Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry
NASA Technical Reports Server (NTRS)
Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.
1978-01-01
A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.
NASA Astrophysics Data System (ADS)
Zhang, Yuebao; Sun, Donghuai; Li, Zaijun; Wang, Fei; Wang, Xin; Li, Baofeng; Guo, Feng; Wu, Sheng
2014-09-01
Previous work has shown that aeolian Red Clay first appears at around 8 Ma in the main Chinese Loess Plateau and at 25-22 Ma in the western Loess Plateau; however, records of aeolian deposition in the North Pacific suggest that aeolian accumulation occurred throughout the Cenozoic, and that changes in aeolian flux occurred in distinct stages. Tracing the Cenozoic aeolian history of the interior of the Asian continent may help us to understand the history of Asian aridification and its driving forces. In the Lanzhou area on the western margin of the Loess Plateau and the northeastern edge of the Tibetan Plateau, the Cenozoic stratigraphic sequence consists of fluvial-lacustrine sediments in the lower part, aeolian Red Clay with intercalated fluvial layers in the middle part, and predominantly aeolian loess in the upper part. We use high resolution paleomagnetic measurements of this sequence to construct a time scale, and measurements of sediment rock magnetic properties, grain-size, and color reflectance and sedimentary facies analysis to reconstruct the paleoenvironment. The results show that prior to 33 Ma the area was dominantly a fluvial-lacustrine environment, and that subsequently an aridification trend commenced, as indicated by the appearance of aeolian sediment. This change coincided with, and is thus explained as the environmental response to global cooling. A significant increase in aeolian sediments occurred at ~ 26 Ma, suggesting that a large scale arid environment had formed in the Asian interior since the late Oligocene. Stepwise increases of aeolian sediment, and decreases in sediments of hydraulic origin, occurred at ~ 22, ~ 14, ~ 8 and 2.6 Ma and represent important stages in the aridification process. This long-term trend was interrupted by intervals dominated by fluvial sedimentation at 23.6-22 Ma and 17.1-14.1 Ma and which were probably associated with warming of the global climate and the tectonic uplift of the northeastern Tibetan Plateau. Tectonic events occurring in Lanzhou at ~ 9-8 Ma and ~ 3.5 Ma indicate strong uplift of the northeastern Tibetan Plateau.
14. INSPECTION PARTY IN AUTO DRIVEN THROUGH MILE ROCK TUNNEL, ...
14. INSPECTION PARTY IN AUTO DRIVEN THROUGH MILE ROCK TUNNEL, AUG. 26, 1915. Department of Public Works, Map and Plan Room, photo #2545. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA
The Sedimentary History of Southern Central Crete: Implications for Neogene Uplift
NASA Astrophysics Data System (ADS)
Kröger, K.; Brachert, T. C.; Reuter, M.
2003-04-01
The tectonic setting of Crete was largely extensional since Lower Miocene uplift and exhumation of HP/LT rocks. Erosion of uplifted areas resulted in the deposition of terrestrial to marine sediments in the Messara and Iraclion Basins. There are several concurring models that discuss Late Neogene uplift of the basinal margins. Neogene near shore sediments in the south of the Messara Basin record fault movements contemporaneous to sedimentation and sedimentary input from the hinterland. Therefore they provide information on the paleogeographic situation and the resulting amount of subsidence and uplift of mountain areas since the Upper Miocene. The studied sediments consist of terrestrial to shallow marine, floodplain related sediments of the Upper Miocene Ambelouzos Formation that are overlain by platform limestones of the Upper Miocene Varvara Formation. In the Messara Basin these units are overlain by the Pliocene Kourtes Formation. The stratigraphic architecture of these deposits indicates fragmentation of the basinal margin. Proximal boulder conglomerates and reworked blocks of the Ambelouzos formation indicate fault activity during the deposition of the Varvara Formation. Contents of terrigenous clastics, provided by rivers and distributed by longshore currents, are high in the Ambelouzos and the lower Varvara Formations but decrease rapidly upsection within the Varvara Formation. This indicates drowning of the fault bounded blocks and little topography of the hinterland (Asteroussia Mountains) at that time. The Pliocene marls at the southern margin of the Messara Basin contain lithoclasts of the Upper Miocene limestones and thus indicate uplift of the carbonate platform. The modern topographic elevation of formerly drowned fault bounded blocks requires a minimum uplift of 400m. Main uplift occurred at approximately orthogonal NW-SE and SW-NE striking normal to oblique faults. The present elevation of the Asteroussia Mountains indicates net uplift of at least 1000m since the Early Pliocene. At the Central Iraklion Ridge that separates the Messara and Iraclion Basins a similar history is indicated for the Psiloritis Mountains by fault movements within Neogene near shore sediments and their subsequent drowning. A structural model of the Neogene evolution of Crete therefore has to explain successive phases of uplift and subsidence in an over all extensional setting only slightly oblique to the modern direction of convergence between Africa and the Aegean microplate.
Regional Landscape Response to Wedge-Top Basin Formation
NASA Astrophysics Data System (ADS)
Ruetenik, G.; Moucha, R.; Hoke, G. D.; Val, P.
2017-12-01
Wedge-top basins are the result of regionally variable uplift along thrust faults downstream of a mountain range and provide an ideal environment to study the regional stream and surface response to local variations in rock uplift. In this study, we simulate the formation and evolution of a wedge-top basin using a landscape evolution model. In line with a previous study, we find that during deformation in the fold-and-thrust belt adjacent to a wedge-top basin, both channel slope and erosion rates are reduced, and these changes propagate as a wave of low erosion into the uplands. For a uniform background uplift rate, this reduced rate of erosion results in a net surface uplift and a decreased slope within and upstream of the wedge-top basin. Following the eventual breach of the basin's bounding thrust belt, a wave of high erosion propagates through the basin and increases the channel slope. We expand upon previous studies by testing our model against a wide range of model parameters, although in general we find that the onset of increased erosion can be delayed by up to several million years. The amount of surface uplift is highly dependent on flexural isostasy and therefore it is heavily influenced by the elastic thickness and erodbility parameters. Observed paleoerosion rates in a paired wedge-top foreland sequence in the Argentine Precordillera reveal similar histories of paleo-erosion, and present day stream profiles show evidence that support model outcomes.
NASA Astrophysics Data System (ADS)
Byrne, T. B.; Huang, C.; Ouimet, W. B.; Rau, R.; Hsieh, M.; Lee, Y.
2011-12-01
We integrate a suite of new and recently re-interpreted profiles of the 3-D crustal velocity structure from the southern Central Range of Taiwan with geomorphic data from the range and propose that the topography is supported by a crustal-scale, west-verging thrust. The extent and geometry of the thrust is indicated by contours of P-wave velocity that are progressively overturned from south to north, placing high Vp rocks above low Vp rocks. The interpreted thrust dips gently east (15-20 degrees) and carries pre-Tertiary metamorphic rocks and Eocene to Miocene rocks with a well-developed slaty cleavage in its hanging wall. The thrust is interpreted to cut up section to the west and link with the basal detachment of the fold-and-thrust belt. Leveling data1 along the South Cross-Island Highway also suggest that the thrust is active. Along-strike profiles suggest that the thrust is propagating southward, consistent with a progressive decrease in mean elevation and an increase in reset apatite fission track ages from north to south. The hanging wall of the propagating thrust also correlates with anomalous areas of low topographic relief that straddle the crest of the southern part of the range. The areas of low relief are fringed by stream channels with relatively high stream gradient indexes and do not appear related to weaker rock types, glacial erosion, or lower rock uplift rates along the range crest. We propose that the surfaces represent relict topography that formed prior to a recent acceleration in rock uplift rate, consistent with the presence of a propagating, crustal-scale thrust in the subsurface. Taken together, these results raise questions about the notion of steady state topography and critically tapered wedges in Taiwan. 1) Ching, Kuo-En, Hsieh, M.-L., Johnson, K. M., Chen, K-H., Rau, R.-J., Yang M., Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, in press, JGR.
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Cosentino, D.; Dudas, F. O.; Niedermann, S.; Strecker, M. R.; Echler, H.; Yildirim, C.
2010-12-01
Collision between Eurasia and Arabia and subsequent westward extrusion of the Anatolian microplate explains the development of major intracontinental fault systems in Anatolia that have remained active to the present-day. Concurrent, and probable episodic uplift of the Central and Eastern Anatolian plateaus (CAP and EAP), however, suggests that additional geodynamic mechanisms have contributed to the late Cenozoic morphologic development of the region. Sedimentary basins spanning the southern margin of the CAP provide insights on the timing and rates of different phases of surface uplift, giving constraints to test which geodynamic processes have contributed to surface uplift, orogenic plateau growth, and coupled landscape/climate evolution. Stratigraphic and geomorphic records of uplift and subsidence in the Mut Basin at the southern CAP margin and along the Göksu River record dynamic topographic development. Biostratigraphy and Sr isotope stratigraphy on the highest (ca. 2 km) uplifted marine sediments of the Mut basin furnish a maximum age of ca. 8 Ma for the onset of late Cenozoic uplift of the region. A Pliocene to early Pleistocene marine section, inset within the older stratigraphy at ca. 0.2 to 1.2 km elevation, reveals a history of subsidence and renewed uplift, following the initial uplift that occurred between ca. 8 Ma and Pliocene time. The most recent phase of uplift continued with possibly minor interruptions during the Quaternary, and is recorded by a series of fluvial terraces preserved between 30 and 143 m above the modern Göksu River. One terrace (143 m) reveals a 21Ne model exposure age of ca. 160 ka; ongoing exposure age determination will further constrain the uplift history. Different geodynamic mechanisms have likely contributed to surface uplift along the southern CAP margin. Initial uplift may have been associated with the predominantly sinistral Ecemis fault system that spans the southern and southeastern CAP margin. Neogene counter-clockwise rotation of Central Anatolia and changes in regional fault kinematics, which likely caused local compression along structures with previous sinistral strike-slip kinematics, may have contributed to early deformation and uplift of the region. Our stratigraphic and field data, together with regional geophysical anomalies, suggest that more recent uplift may be related to upwelling asthenosphere through a slab window, which formed when the initial slab detachment associated with the Bitlis-Zagros collision zone (southern margin of the EAP) propagated to the southwest. The intervening Pliocene to early Pleistocene subsidence was likely related to E-W stretching of the southern margin, possibly driven by oroclinal bending of the margin.
NASA Astrophysics Data System (ADS)
Moussirou, Bérangé; Bonnet, Stéphane
2018-02-01
Whether or not climatic variations play a major role in setting the erosion rate of continental landscapes is a key factor in demonstrating the influence of climate on the tectonic evolution of mountain belts and understanding how clastic deposits preserved in sedimentary basins may record climatic variations. Here, we investigate how a change in precipitation influences the erosional dynamics of laboratory-scale landscapes that evolved under a combination of uplift and rainfall forcings. We consider here the impact of a decrease in the precipitation rate of finite duration on the erosive response of a landscape forced by a constant uplift and initially at a steady state (SS1). We performed several experiments with the same amplitude but different durations of precipitation decrease (Tp). We observe that the decrease in precipitation induces a phase of surface uplift of landscapes to a new steady state condition (SS2); however, the details of the uplift histories (timing, rate) differ between the experiments according to Tp. We also observe a decrease in the erosion rate induced by the precipitation change; however, the timing and amplitude of this decrease vary according to Tp, defining a delayed and damped erosion signal. Our data show that the landscape response to precipitation change is dictated by a critical water-to-rock ratio (ratio of precipitation over uplift) that likely corresponds to a geomorphic threshold. Our study suggests that variations in precipitation that occur at a geological time scale (> 106 years) may have a weak impact on the erosion of landscapes and on the delivery of siliciclastic material to large rivers and sedimentary basins.
Vertical plate motions from ancient buried landscapes: Constraints on Icelandic plume evolution
NASA Astrophysics Data System (ADS)
Stucky de Quay, G.
2016-12-01
Convection in the Earth's mantle is strongly time-dependent (Ra 106-108). In regions that are dynamically supported, uplift and subsidence histories might therefore contain information about evolution of mantle convection. We examine uplift and subsidence histories of sedimentary basins fringing NW Europe, close to the Icelandic plume, where it has been shown short-term vertical motions disrupt post-rift thermal subsidence. These sedimentary basins contain ancient (59-53 Ma) buried fluvial landscapes which developed during inception of the Icelandic plume. Stratigraphic and seismic reflection data indicate that these terrestrial landscapes were incised by 100s of meters in only a few million years and were then rapidly submerged. We extracted a landscape buried beneath 1.5 km of sedimentary rock in the Bressay region, offshore eastern Scotland. This landscape was mapped using a three-dimensional 9000 km2 seismic dataset and seven exploration wells. First, the buried landscape was mapped using every inline and cross line (horizontal resolution 12 m). Second, the landscape was depth converted and decompacted using check-shot data. Third, drainage patterns were reconstructed by calculating flow directions across the mapped landscape. River profiles were extracted from these drainage patterns and contain three knickzones analogous to those documented in an older buried landscape in the Faereo-Shetland Basin, 400 km to the west. Fourth, we reinterpreted dinocyst records to determine the age of our landscape, allowing us to constrain erosion rates. Finally, our drainage inventory was inverted for uplift rate as a function of space and time. Results indicate three uplift events occurred between 55-57 Ma, resulting in a total cumulative uplift of 400 m. We combine these results with estimates of uplift in nearby regions to constrain the behavior of the incipient Icelandic plume both in a temporal and spatial context.
Comparative thermometry on pelitic rocks and marbles of the Llano uplift, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letargo, C.M.R.; Lamb, W.M.
1992-01-01
The Llano Uplift in central Texas is a Grenville-aged metamorphic complex consisting of amphibolite facies assemblages whose development has been attributed to the emplacement of granite plutons between 1.0--1.1 Ga. Temperatures have been obtained from garnet-biotite, garnet-ilmenite, and calcite-dolomite pairs as well as from various silicate equilibria. Application of these geothermometers yield consistent results and are thus indicative of peak conditions attending the amphibolite facies metamorphism. Temperature determined using garnet-biotite and garnet-ilmenite thermometry compare favorably with calcite-dolomite temperatures obtained from marbles in contact with granite plutons in the southeastern part of the uplift. The highest calcite-dolomite temperatures of [approximately]600 Cmore » are obtained from marbles containing an isobarically invariant assemblage consisting of calcite + dolomite + diopside + tremolite + forsterite. At pressures of 2--3 kbar, this isobarically invariant assemblage will be stable at a temperature range of [approximately]600--650 C. Also in close proximity to granites in the southeast uplift is the assemblage muscovite + quartz + k-feldspar + sillimanite [approximately] andalusite which indicate T 650 C and P 2.5 kbar. Assemblages consisting of garnet + sillimanite + quartz + plagioclase (GASP) and garnet + rutile + ilmenite + plagioclase + quartz (GRIPS) are currently being studied to provide additional constraints on pressures of amphibolite facies metamorphism.« less
NASA Astrophysics Data System (ADS)
Kamaci, Omer; Altunkaynak, Safak
2016-04-01
The most recently identified core complex of western Anatolia (Turkey), the Çataldaǧ Core Complex (ÇCC) consists of a granite-gneiss-migmatite complex (GGMC) representing deep crustal rocks of NW Turkey and a shallow level granodioritic body (ÇG: Çataldaǧ granodiorite). The GGMC is Latest Eocene-Early Oligocene and ÇG is Early Miocene in age, and both were exhumed in the footwall of the Çataldaǧ Detachment Fault Zone (ÇDFZ) in the Early Miocene. On the basis of correlation of age data and the closure temperatures of zircon, monazite, muscovite, biotite and K-feldspar, the T-time history of GGMC reveals that GGMC has experienced at least two stages of cooling and uplift, from 33.8 to 30.1 Ma and 21.3 to 20.7 Ma. In stage I, from 33.8 to 30.1 Ma, the cooling rate of GGMC was relatively slow (35°C/my) however cooling rate increase dramatically to ≥500°C/my in stage II between 21.3 and 20.7 Ma. T-time history also indicate that GGMC was elevated to the final location in at least 8-13 My according to the monazite and zircon and mica ages obtained from the same rock. Rapid slab rollback at the Hellenic trench at ca. 23 Ma may have increased extension rates leading to the development of detachment faults (i.e. ÇDFZ), core complexes and associated syn-extensional granitoids in Western Anatolia and the Aegean extensional province.
NASA Astrophysics Data System (ADS)
Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi
2018-12-01
In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.
K-Ar geochronology of basement rocks on the northern flank of the Huancabama deflection, Ecuador
Feininger, Tomas; Silberman, M.L.
1982-01-01
The Huancabamba deflection, a major Andean orocline located at the Ecuador-Peru border, constitutes an important geologic boundary on the Pacific coast of South America. Crust to the north of the deflection is oceanic and the basement is composed of basic igneous rocks of Cretaceous age, whereas crust to the south is continental and felsic rocks of Precambrian to Cretaceous age make up the basement. The northern flank of the Huancabamba Deflection in El Oro Province, Ecuador, is underlain by Precambrian polymetamorphic basic rocks of the Piedras Group; shale, siltstone, sandstone, and their metamorphosed equivalents in the Tahuin Group (in part of Devonian age); concordant syntectonic granitic rocks; quartz diorite and alaskite of the Maroabeli pluton; a protrusion of serpentinized harzburgite that contains a large inclusion of blueschist-facies metamorphic rocks, the Raspas Formation, and metamorphic rocks north of the La Palma fault. Biotite from gneiss of the Tahuin Group yields a Late Triassic K-Ar age (210 ? 8 m.y.). This is interpreted as an uplift age and is consistent with a regional metamorphism of Paleozoic age. A nearby sample from the Piedras Group that yielded a hornblende K-Ar age of 196 ? 8 m.y. was affected by the same metamorphic event. Biotite from quartz diorite of the mesozonal Maroabeli pluton yields a Late Triassic age (214 ? 6 m.y.) which is interpreted as an uplift age which may be only slightly younger than the age of magmatic crystallization. Emplacement of the pluton may postdate regional metamorphism of the Tahuin Group. Phengite from politic schist of the Raspas Formation yields an Early Cretaceous K-Ar age (132 ? 5 m.y.). This age is believed to date the isostatic rise of the encasing serpentinized harzburgite as movement along a subjacent subduction zone ceased, and it is synchronous with the age of the youngest lavas of a coeval volcanic arc in eastern Ecuador. A Late Cretaceous K-Ar age (74.4 ? 1.1 m.y.) from hornblende in amphibolite north of the La Palma fault shows that rocks there are distinct from the superficially similar rocks of the Tahuin Group to the south. Biotite from schist in the Eastern Andean Cordillera yields an Early Eocene age (56.6 ? 1.6 m.y.). Metamorphic rocks in the northern part of the Eastern Andean Cordillera are Cretaceous in age and were metamorphosed in part in early Tertiary time. They are unrelated to and were metamorphosed later than any of the diverse rocks exposed on the northern flank of the Huancabamba Deflection.
Controls on the evolution of carbonate landscapes in Provence, France using cosmogenic nuclides
NASA Astrophysics Data System (ADS)
Thomas, Franck; Godard, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Benedetti, Lucilla; Ollivier, Vincent; Rizza, Magali; Hollender, Fabrice; Team Aster; Guillou, Valéry
2016-04-01
The Provence region located in South-Eastern France has registered significant earthquakes in the last 1000 years, some reaching intensities up to IX. It is currently undergoing a very slow tectonic deformation with little seismicity and long recurrence intervals for major earthquakes (such as the 1909 magnitude 6 Lambesc earthquake). Several West-trending ranges are an important part of the landscape, and the influence of tectonic uplift compared to denudation during the Pliocene-Quaternary is not yet fully understood in the region. The geology of South-Eastern France is dominated by a thick Mesozoic series primarily consisting of carbonate rocks. The iconic ranges of Provence resulting from the Pyrenean orogeny (late Eocene) are mostly made up of uplifted lower Cretaceous. A minor reactivation occurred during the more recent Alpine late Cenozoic tectonic phase and contributed to the rejuvenation of the relief. Carbonate rocks are prone to complete chemical dissolution and are thus highly sensitive to climatic forcings such as precipitation. Moreover, the elevation and the frequency of freezing and thawing are parameters strongly influencing the geomorphic evolution in such environments. To investigate on this matter, 42 carbonate rock samples were collected for 36Cl denudation measurements on the Petit Luberon range. Denudation rates have been determined for both bedrock samples from the crest and sediments from rivers draining the southern and northern flanks of the range, allowing insights into long-term relief evolution. We observe a strong denudation contrast between the flanks lowering at 100-200 mm/ka and the summit surface, at around 30 mm/ka. These results suggest a transient evolution and a probable narrowing of the range. In addition, we collected 23 carbonate bedrock samples from other Mesozoic ranges in Provence with a wide altitude range (from 150 up to 1800 meters high asl), for similar 36Cl analysis. Our objective in this study (CEA-Cashima) is to have a regional overview of the distribution of denudation rates in an area dominated by carbonate rocks and to evaluate the influence of altitude, climate and associated processes on erosion and eventually link it to a slow regional uplift. Thus this study will allow a better understanding of the denudation processes in a carbonate dominated area characterized by slow tectonic deformations and moderate precipitations.
Geologic map of the Bailey 30' x 60' quadrangle, North-Central Colorado
Ruleman, Chester A.; Bohannon, Robert G.; Bryant, Bruce; Shroba, Ralph R.; Premo, Wayne R.
2011-01-01
The Bailey, Colo. 1:100,000-scale quadrangle lies within two physiographic and geologic provinces in central Colorado: 1) the Front Range and 2) South Park. Most of the Front Range is composed of Proterozoic rocks ranging in age from 1,790 Ma to 1,074 Ma. Along the eastern flanks and within the Denver Basin, sedimentary rocks ranging from Pennsylvanian to Cretaceous are deformed and steeply tilted to the east. Upper Cretaceous through Paleocene rocks were deposited in the foreland (that is, the Front Range eastern flank) and hinterland (that is, South Park) of this thrust and reverse fault system developed during the Late Cretaceous to Paleocene Laramide orogeny. Within South Park, rocks range in age from Pennsylvanian to Miocene with Quaternary deposits indicating tectonic subsidence of the basin. These rocks record five major geologic episodes: 1) the Paleozoic Anasazi uplift that formed the Ancestral Rockies, 2) the Late Cretaceous to Paleocene Laramide orogeny, 3) widespread Eocene to Oligocene volcanism, 4) Oligocene-Quaternary tectonics, and 5) Quaternary glacial episodes.
Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps
NASA Astrophysics Data System (ADS)
Chery, Jean; Genti, Manon; Vernant, Philippe
2016-04-01
More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.
Beneath it all: bedrock geology of the Catskill Mountains and implications of its weathering.
Ver Straeten, Charles A
2013-09-01
The Devonian-age bedrock of the Catskill Mountains has been the focus of many studies. This paper reviews the character and composition of the rocks of the Catskills, and examines weathering (rock decay) processes and their implications in the Catskills. Rocks of the Catskills and closest foothills consist of siliciclastic rocks (sandstones, mudrocks, conglomerates) with minimal, locally dispersed carbonate rocks. The former are dominated by quartz, metamorphic and sedimentary rock fragments, and clay minerals. Other minor sediment components include cements, authigenic and heavy minerals, and fossil organic matter. Physical, chemical, and biological weathering of the Catskill bedrock since uplift of the Appalachian region, combined with glaciation, have dissected a plateau of nearly horizontally layered rocks into a series of ridges, valleys, and peaks. The varied weathering processes, in conjunction with many factors (natural and anthropogenic), fragment the rocks, forming sediment and releasing various elements and compounds. These may have positive, neutral, or negative implications for the region's soils, waters, ecology, and human usage. A new generation of studies and analyses of the Catskill bedrock is needed to help answer a broad set of questions and problems across various fields of interest. © 2013 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Palamakumbura, Romesh; Robertson, Alastair; Kinnaird, Tim; van Calsteren, Peter; Kroon, Dick; Tait, Jenny
2016-04-01
The Kyrenia Range is a narrow E-W trending mountain range up to c. 180 km long by up to ca. 20 km wide, which is located <100 km south of the Anatolian orogenic plateau within the easternmost Mediterranean Sea. The Kyrenia Range structural lineament underwent tectonically driven uplift mainly during the Pleistocene in a setting dominated by incipient continental collision. The likely driver of the uplift was the collision of the Eratosthenes Seamount, an inferred promontory of north Africa, with a subduction zone located to the south of Cyprus. To help understand the tectonic processes driving the uplift of the Kyrenia Range several quantitative techniques have been used to date uplift-related terrace deposits exposed on the northern flank of the range. Uranium-series disequilibrium (U-series) dating provides ages of 127, 131 and 242 ka from solitary coral in shallow-marine deposits of the lowest terraces, whereas optically stimulated luminescence (OSL) dating gives ages of 53 and 76 ka from coastal aeolianite deposits. Prior to major tectonic uplift a shallow-marine carbonate-depositing sea existed in the vicinity of the Kyrenia Range. Some of the youngest pre-uplift marine carbonates yielded a reversed magnetic polarity, which constrains them as older than the last palaeomagnetic reversal (0.78 Ma). The combined evidence suggests that marine environments persisted into the Early Pleistocene, prior to major surface uplift of the Kyrenia Range lineament, which appears to have climaxed in the Mid-Pleistocene. The inferred uplift rates of the Kyrenia Range lineament range from >1.2 mm/yr during the Mid-Pleistocene to <0.2 mm/yr during the Late Pleistocene. The uplift rates of the Kyrenia Range appear to be, on average, significantly faster than those inferred for some adjacent regions of the Eastern Mediterranean during the Pleistocene (e.g. Lebanon coast; Anatolian plateau southern margin). The new data also suggest that the Kyrenia Range was uplifted contemporaneously with the ophiolitic Troodos Massif in southern Cyprus, which is in keeping with the model of regional-scale collision of the Eratosthenes Seamount with the Cyprus trench. The uplift of the Kyrenia Range lineament took place directly adjacent to the southern margin of the much larger Anatolian orogenic plateau, which was also mainly uplifted during the Pleistocene. The timing and processes involved in the uplift of the Kyrenia Range lineament are relevant to long-term processes of continental accretion and plateau uplift. On a longer timescale, the uplift of the Kyrenia Range in an incipient collisional setting can be seen as a step towards final accretion into a larger Anatolian orogenic plateau as collision intensifies. Terranes similar to the Kyrenia Range lineament may therefore exist embedded within the uplifted margins of orogenic plateaus in other areas of the world (e.g. southern Tibet).
Earth observations during STS-58
1993-10-22
STS058-88-017 (18 Oct-1 Nov 1993) --- The eye-catching "bullseye" of the Richat Structure adds interest to the barren Gres de Chinguetti Plateau in central Mauretania, northwest Africa. It represents domally uplifted, layered (sedimentary) rocks that have been eroded by water and wind into the present shape. Desert sands have invaded the feature from the south. The origin of the structure is unknown. It is not an impact structure, because field work showed that strata are undisturbed and flat-lying in the middle of the feature, and no shock-altered rock could be found. There is no evidence for a salt dome or shale diapir, nor is there any geophysical evidence for an underlying dome of dense igneous rock having about the same density as the sedimentary layers.
Elastic and viscoelastic model of the stress history of sedimentary rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less
Kellogg, Karl S.
2005-01-01
Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in the western Transverse Ranges as part of the U.S. Geological Survey's Southern California Areal Mapping Project (SCAMP).
Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA
Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.
1999-01-01
The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to < 3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78-1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.
Geologic control of knickpoints in eastern part of Korea
NASA Astrophysics Data System (ADS)
Kim, Jong Yeon
2010-05-01
A knickpoint (KP) is a steepened reach in the fluvial longitudinal profile, often coinciding with the sharply defined descents of waterfalls or cascades that separate graded reaches. Despite the overall simplicity of this concept, there is confusion in definitions of a KP due to differences in the scales of research. For basin-scale research, KPs are generally steepened reaches sometimes described as ‘knickzones'(e.g., Zaprowski et al., 2001; Wolkowinski and Granger, 2004), whereas at the reach scale, KPs coincide with waterfalls and bedrock steps, regardless of their spatial dimensions. Here, the term is used in former, basin-scale sense. Bedrock KPs may originate from relative base-level fall (e.g., sea-level fall [Mosley, 1984; Yodis and Kesel, 1993] and/or surface uplift [Seeber and Gornitz, 1983; Humphrey and Konrad, 2000], lithological and structural controls (Pohn, 1983; Miller, 1991; Alexandrowicz, 1994), and changes in tributary inputs and discharge and sediment supply (Penck, 1925; von Engeln, 1940; Hasbargen and Paola, 2000). Recent work has also proposed that bedrock river KPs can initiated with base-level fall and migrate headward follow the tributaries (Crosby and Whipple, 2006). The origins of KPs can be different by the geomorphic setting of the drainage basin area. Especially the role of lithologic boundaries and faulting can be regarded as primary cause of KP formation. To find the role of lithologic control of KP distribution in Korea, longitudinal profiles of 12 streams, higher than 4th order in Horton-Strahler system, are analyzed. Longitudinal profiles are extracted from 1:25,000 Map Series (Korea National Geographic Institute) and the lithologic boundaries and fault lines are drawn based on the information from KIGAM's 1:50,000 Geological map series. Most of KPs are found near of lithologic boundaries or fault lines, however there are some KPs found upstream of large tributary input. However, physical strength of each lithologies have not been studied in the field. So we visited some KPs and measured the rock strength using concrete test hammer (Schmidt hammer), where bedrock is exposed to the surfaces. Compressive strength(kg per sq. cm) of the rocks are measured and channel gradient changes are plotted against the strength changes. To find the role of sedimentary input, drainage basin sizes of tributary are compared. The study area also experienced tectonic uplift last 47Ma. Overall uplift rate of the study area is about 40m/Ma but three different period of different uplift rate were recognized. 47~37Ma, uplift was very slow (20m/Ma) and accelerated to 170m/Ma from 37~35Ma and decreased to 40m/Ma ever since. This change in uplift rate can affects the formation and headward retreat of KP along the channel. Using physically based abrasion model, effect of uplift rate change to longitudinal profile is investigated.
Kirschbaum, M.A.; Nelson, S.N.
1988-01-01
During the latest Cretaceous or earliest Paleocene, a northwest-southeast trending anticline developed in the area of the present Rock springs uplift in southwestern Wyoming. This ancestral structure was eroded to a surface of fairly low relief on which a paleosol developed. The surface was formed on the Upper Cretaceous Almond Formation throughout the study area. In the early middle Paleocene (P3 palynomorph zone), topographic lows on the erosion surface were infilled by alluvial deposits that accumulated in channel, floodplain, and backswamp environments. An organic-rich facies contains numerous coal beds and is middle to late Paleocene in age (P3 to P5 zones). The assemblage of pollen that defines the late middle Paleocene (P4 zone) is absent from the area suggesting a hiatus, although no lithologic break was observed at this boundary. The younger organic-poor facies begins in the late Paleocene (P5 zone) and continues to the top of the studied sequence. This change in facies has been used to map the contact between the Fort Union Formation of Paleocene age in this area, and the Wasatch Formation which was though to be of Eocene age. This study demonstrates that, as currently mapped, the lower part of the Wasatch Formation is Paleocene in age. Stratigraphically higher parts of the Wasatch, which presumably contain rocks of latest Paleocene (P6 zone) and earliest Eocene age, were not studied. -Authors
Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes
Korup, Oliver; Montgomery, David R.; Hewitt, Kenneth
2010-01-01
Despite longstanding research on the age and formation of the Tibetan Plateau, the controls on the erosional decay of its margins remain controversial. Pronounced aridity and highly localized rock uplift have traditionally been viewed as limits to the dissection of the plateau by bedrock rivers. Recently, however, glacier dynamics and landsliding have been argued to retard headward fluvial erosion into the plateau interior by forming dams and protective alluvial fill. Here, we report a conspicuous clustering of hundreds of natural dams along the Indus and the Tsangpo Rivers where these cross the Himalayan syntaxes. The Indus is riddled by hundreds of dams composed of debris from catastrophic rock avalanches, forming the largest concentration of giant landslide dams known worldwide, whereas the Tsangpo seems devoid of comparable landslide dams. In contrast, glacial dams such as river-blocking moraines in the headwaters of both rivers are limited to where isolated mountain ranges intersect the regional snowline. We find that to first-order, high local topographic relief along both rivers corresponds to conspicuously different knickzones and differences in the type and potential longevity of these dams. In both syntaxes, glacier and landslide dams act as a negative feedback in response to fluvial dissection of the plateau margins. Natural damming protects bedrock from river incision and delays headward knickpoint migration, thereby helping stabilize the southwestern and southeastern margins of the Tibetan Plateau in concert with the effects of upstream aridity and localized rock uplift. PMID:20212156
Tectonic controls of transient landscapes in the Bhutan Himalaya
NASA Astrophysics Data System (ADS)
Adams, B. A.; Whipple, K. X.; Hodges, K. V.; Van Soest, M. C.; Heimsath, A. M.
2013-12-01
Previous research has identified many landscapes within the Himalaya that are not easily explained by classical critical taper models of orogenic wedges. One of the most striking examples is the sharp physiographic transition between the more subdued landforms of the Lower Himalayan ranges and the Higher Himalayan ranges to the north in Nepal. This transition has been attributed to several potential causes: changes in the rheology of rocks at depth, a ramp in the basal detachment of the orogenic wedge, a blind duplex, or a north-dipping, surface-breaking thrust fault. A similar, but more subdued transition marks the northern margin of perched, low-relief landscape patches found at ca. 3000 m in Bhutan. These low-relief surfaces, characterized by bogs and thick saprolites at the surface, overlie piggyback basins within the evolving orogenic wedge, filled with hundreds of meters of colluvial and alluvial deposits. The southern boundaries of the low-relief surfaces are less regular than the physiographic transition at their northern boundaries. The surfaces occur at similar elevations but are not continuous geographically, having been dissected by a series of river systems draining southward from the crest of the range. Pronounced knickpoints have formed at the southern margins of the low-relief surfaces. Our work suggests that there is a young (Pliocene-Pleistocene) fault system coincident with the physiographic transition in Bhutan. This high-angle, north-dipping structure, the Lhuentse fault, has minor normal-sense offset and could not have been responsible for differential uplift of the rugged terrain (in the hanging wall) relative to the low-relief landscape (in the footwall). The Lhuentse fault is coincident with the back limb of a previously inferred blind duplex at depth, and thus may be associated with active deformation on a rotated horse within the duplex. This duplex may also be responsible for the creation of the low-relief landscapes to the south of the Lhuentse fault due to upstream tilting in the back limb of the antiformal rock uplift pattern. Erosion patterns modeled on the basis of newly acquired 40Ar/39Ar and (U-Th)/He thermochronometric data as well as basin-average erosion rates from detrital cosmogenic nuclide concentrations are consistent with this hypothesis. We used a landscape evolution model (CHILD) to track landscape response to an imposed antiformal rock uplift gradient produced by an active duplex at depth. Rotation associated with the back limb of such a duplex causes aggradation, surface uplift, and headward migration of knickpoints. The wedge of sediment deposited during fluvial aggradation migrates northward beyond the back limb where uplift lessens. At this position in the landscape, a subdued physiographic transition develops in the model, similar to the one observed in Bhutan. Our modeling suggests that the presence and juxtaposition of low-relief landscapes and a physiographic transition, and our observed distribution of erosion rates can be explained by a single, simple mechanism related to the growth of a blind duplex.
Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.
1978-01-01
The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic
Uplifting the Stable Crust of the Colorado Plateau through Crustal Hydration and Warming
NASA Astrophysics Data System (ADS)
Porter, R. C.; Holt, W. E.
2016-12-01
The Colorado Plateau (CP) is a high ( 2 km above sea level), low-relief, orogenic plateau located within the interior of the southwestern United States that presents several outstanding geologic questions, most notably about the timing and mechanism(s) for uplift. The CP was located below sea level during the Cretaceous and was uplifted to its modern elevation with little crustal shortening, making the cause of uplift enigmatic. Numerous mechanisms have been hypothesized to explain the uplift of this stable block and include delamination, mantle heating/phase changes, mantle convection, volatile addition, and various combinations of these. In order to better understand the crustal contribution to uplift, we utilize data from the EarthScope Transportable Array network to image the CP lithosphere and inform thermodynamic models of CP lower crustal composition. Rayleigh wave phase velocities calculated using ambient noise tomography and surface wave gradiometry were inverted for shear velocity resulting in a high-resolution velocity model of the CP crust and upper mantle. In order to provide greater context to these results, the thermodynamic modeling code Perple_X was utilized to forward model crustal densities, seismic velocities, and water content based on psuedosections calculated using published major element chemistry. Our seismic and modeling results show that uplift of the plateau is partially driven by hydration and extension of the lower crust, both of which reduce its density. Hydration of the CP crust likely occurred due to dewatering of the Farallon slab during flat-slab subduction and reduced lower crustal density by 70 kg/m3. Warming and extension further reduced the lower crustal density by 90 kg/m3 at the CP margins. Though these processes played a role in the uplift of the CP, additional mechanisms, likely due to mantle processes, are required to fully explain its high elevation. Additionally, hydration and subsequent dehydration may play an important role in the recent encroachment of deformation and volcanism into the interior of the CP.
Olivetti, Valerio; Cyr, Andrew J.; Molin, Paola; Faccenna, Claudio; Granger, Darryl E.
2012-01-01
The Sila Massif in the Calabrian Arc (southern Italy) is a key site to study the response of a landscape to rock uplift. Here an uplift rate of ∼1 mm/yr has imparted a deep imprint on the Sila landscape recorded by a high-standing low-relief surface on top of the massif, deeply incised fluvial valleys along its flanks, and flights of marine terraces in the coastal belt. In this framework, we combined river longitudinal profile analysis with hillslope erosion rates calculated by 10Be content in modern fluvial sediments to reconstruct the long-term uplift history of the massif. Cosmogenic data show a large variation in erosion rates, marking two main domains. The samples collected in the high-standing low-relief surface atop Sila provide low erosion rates (from 0.09 ± 0.01 to 0.13 ± 0.01 mm/yr). Conversely, high values of erosion rate (up to 0.92 ± 0.08 mm/yr) characterize the incised fluvial valleys on the massif flanks. The analyzed river profiles exhibit a wide range of shapes diverging from the commonly accepted equilibrium concave-up form. Generally, the studied river profiles show two or, more frequently, three concave-up segments bounded by knickpoints and characterized by different values of concavity and steepness indices. The wide variation in cosmogenic erosion rates and the non-equilibrated river profiles indicate that the Sila landscape is in a transient state of disequilibrium in response to a strong and unsteady uplift not yet counterbalanced by erosion.
NASA Astrophysics Data System (ADS)
Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier
2011-11-01
The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.
Marra, Fabrizio; Florindo, Fabio; Petronio, Carmelo
2017-05-31
Through a geomorphological study relying on statistically assessed classes of hilltop elevations, we reconstruct a suite of paleo-surfaces along the Tiber River Valley north of Rome that we identify as fluvial terraces formed by interplay between global sea-level fluctuations and regional upift. Using biostratigraphic constraints provided by marine through continental deposits of Santernian age, we recognize the oldest terrace in this area, corresponding to an early coastal plain of late Santernian-Emilian age. By assuming the simple chronological principle of a staircase geometry we correlate the sea-level highstands of MIS 21 through MIS 5 with the lowest eight paleo-surfaces. By plotting against time the cumulated terrace elevations and the average elevation of the Santernian coastline in the investigated area, we detect rates of uplift during the last 1.8 Ma. Two major pulses of uplift are recognized 0.86 through 0.5 Ma, and 0.25 Ma through the Present, which are interpreted as driven by the subduction process and uprising of metasomatized magma bodies on the Tyrrhenian Sea Margin of central Italy, superimposied on a smaller isostatic component of uplift.
Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Morford, Scott L.; Houlton, Benjamin Z.; Dahlgren, Randy A.
2016-02-01
Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system.
NASA Astrophysics Data System (ADS)
Karlstrom, K.; Kirby, E.; Kelley, S.; Aslan, A.; Ouimet, W.; Coblentz, D.; van Wijk, J.
2008-12-01
The Colorado River (CR) has a double concave-up longitudinal profile with a major knickpoint near Lee's Ferry, Arizona that separates the Lower and Upper CR basins. The knickpoint is proposed here to be a transient feature, as indicated by different incision rates above and below it, and by systematic convex profiles of tributaries below, but not above, the knickpoint. The Lower CR concave portion has evolved, and Grand Canyon has been incised, since 6 Ma due to drainage integration via lake spill-over and headward erosion interacting with tectonic forcings that involve dynamic uplift of the Colorado Plateau and accompanying differential incision due to faulting. Ongoing dynamic uplift of the edge of the Colorado Plateau is supported by mantle tomography and geodynamic modeling that suggest edge-driven mantle convection across a step in lithospheric thickness near the Plateau edge that produces a ~400 m high topographic welt and a 2-4 m geoid high. This model for dynamic surface uplift in the last 6 Ma contrasts with the notion of passive incision of Grand Canyon due solely to river integration and geomorphic response to base level fall. The Upper CR appears to have evolved somewhat separately. Slope/drainage area analysis shows low normalized gradients in the center of the Colorado Plateau and along the Green River. Steep knickzones in the Black Canyon of the Gunnison and Gore Canyon of the CR are interpreted to be transients based on differential incision across them at both long term (10 Ma) and short term (640 ka) timescales. Rapid exhumation began in the Upper CR at 6 Ma as constrained by AFT data in the MWX well and near the summit of 14,000 peaks of the Needle Mountains. This is not readily explained by climate change at ~3.5 Ma, nor by upstream propagation of incision driven by integration of the lower CR at 6 Ma. Instead, the onset of rapid incision and exhumation at 6 Ma in the Upper CR may be a response to epeirogenic uplift and formation of dynamic topography related to the Aspen mantle anomaly.
NASA Astrophysics Data System (ADS)
Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.
2017-04-01
The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is accommodated by subduction, the uplift is highly localized and focused in a shape resembling the geometry of the subducting plate. Strong erosion of the growing orogen can shift the center of uplift towards the orogen flanks facing the trench. In contrast, large amounts of slab advance lead to a less focused uplift with lower maximum velocities and the uplift peak located farther away from the trench. The observed thermochronometric ages follow the uplift pattern, but indicate a significantly deeper and more rapid exhumation for models with a higher underthrusting component. These variations in amount and style of upper plate deformation may help to deepen the understanding of the different types of orogeny observed at plate corners around the world.
NASA Astrophysics Data System (ADS)
Ferguson, Kelly M.
Deformation related to the transition from strike-slip to convergent slip during flat-slab subduction of the Yakutat microplate has resulted in regions of focused rock uplift and exhumation. In the St. Elias and Chugach Mountains, faulting related to transpressional processes and bending of fault systems coupled with enhanced glacial erosion causes rapid exhumation. Underplating below the syntaxial bend farther west in the Chugach Mountains and central Prince William Sound causes focused, but less rapid, exhumation. Farther south in the Prince William Sound, plate boundary deformation transitions from strike-slip to nearly full convergence in the Montague Island and Hinchinbrook Island region, which is ˜20 km above the megathrust between the Yakutat microplate and overriding North American Plate. Montague and Hinchinbrook Islands are narrow, elongate, and steep, with a structural grain formed by several megathrust fault splays, some of which slipped during the 1964 M9.2 earthquake. Presented here are 32 new apatite (U-Th)/He (AHe) and 28 new apatite fission-track (AFT) ages from the Montague and Hinchinbrook Island regions. Most AHe ages are <5 Ma, with some as young as 1.1 Ma. AHe ages are youngest at the southwest end of Montague Island, where maximum fault displacement occurred on the Hanning Bay and Patton Bay faults during the 1964 earthquake. AFT ages range from ˜5 Ma to ˜20 Ma and are also younger at the SW end of Montague Island. These ages and corresponding exhumation rates indicate that the Montague and Hinchinbrook Island region is a narrow zone of intense deformation probably related to duplex thrusting along one or more megathrust fault splays. I interpret the rates of rock uplift and exhumation to have increased in the last ˜5 My, especially at the southwest end of the island system and farthest from the region dominated by strike-slip and transpressional deformation to the northeast. The narrow band of deformation along these islands likely represents the northwestern edge of a broader swath of plate boundary deformation between the Montague-Hinchinbrook Island region and the Kayak Island fault zone.
NASA Astrophysics Data System (ADS)
Suriano, J.; Mardonez, D.; Mahoney, J. B.; Mescua, J. F.; Giambiagi, L. B.; Kimbrough, D.; Lossada, A.
2017-04-01
The South Central Andes at 30°S represent a key area to understand the Andes geodynamics as it is in the middle of the flat slab segment and all the morphotectonic units of the Central Andes are well developed. This work is focused in the proximal synorogenic deposits of the Western Precordillera, in the La Tranca valley, in order to unravel the uplift sequence of this belt. Nine facies associations were recognized; most of them represent piedmont facies with local provenance from Precordillera and were deposited in the wedge-top depozone, as is expected for proximal sinorogenic deposits. However there are intercalations of transference fluvial systems, which show mixed provenance indicating that Permo-Triassic igneous rocks were already exposed to the west (Frontal Cordillera). There are also lacustrine deposits which are interpreted as the result of damming by fault activity at east of the studied basin. Finally, two maximum depositional ages at ca. 11 Ma and 8 Ma of these deposits indicate that the onset of uplift of the Precordillera at 30°S is little older than 11 Ma. These data change two previous ideas about the evolution of the Precordillera: its uplift at 30° S is younger than proposed by previous works and it is nearly synchronous along strike.
NASA Astrophysics Data System (ADS)
Brookfield, M. E.
2004-12-01
Collision orogens developed between two plates result not only in shortening, uplift and erosion of the rocks, but also compression, uplift and modification of the drainage systems.Many studies now relate orogenic uplifts to the interaction of plate compression with isostatic changes due to active denudation (England and Molnar, 1990). In this paper I outline the relationships between river profiles, drainage patterns, tectonics and climate during the indentation of Asia in the Pamir range and adjacent areas: it extends a previous study of rivers draining south (Brookfield, 1998). The reasons for choosing the Pamir and Kunlun are the following. a) The indentation is relatively simple and can thus be modelled with a relatively simple rigid indentation model. The major complication is due to the different behaviour of the western and eastern edges of the indenter. The western edge involves mostly ductile deformation of the Tadjik back-arc basin to form a fold and thrust belt. The eastern edge involves strong shearing between continental crust of the Pamir and Tarim basins to form a complex collisional transform zone (marked by the Karakoram and associated faults) linking the Pamir arc with the Kunlun and Himalaya. b) The compression pattern is relatively simple and various tectonic units can mostly be traced from west to east across the Pamir indenter. Individual tectonic elements and ancient sedimentary basins can be followed almost continuously from the hardly compressed Afghan area through the highly compressed Pamir indent into the less compressed Kunlun and Tibetan plateau area. c) The displacements are enormous, relatively recent, and measurable. The Pamir arc only started developing in the Miocene around 20 ma. Since then over 800 km of internal shortening has occurred between the Indian shield and the Tien Shan(Dewey et al., 1989). Most of this post-Oligocene shortening occurred in the Pamir arc itself. And because of this, the earlier progressive Paleocene - Oligocene collisions of India with magmatic arcs south of Asia can be followed in some detail in the Pakistan Himalaya though not in the Indian Himalaya. d) The river profiles and courses can be directly related to the major tectonic development of the arc, modified by the influence of Quaternary climatic change (Molnar and England, 1990). The main drainage divide is along the crest of the fundamentally Mesozoic Hindu Kush and Karakoram ranges and extensions. Despite the late Cenozoic uplift of the Pamir, only the Pyandzh river cuts across the Pamir range in a course that corresponds with a geophysical but not a geological boundary. The rest of the rivers, with a few exceptions, tend to run in valleys parallel to the arc, except to the west and east. To the west, in northern Afghanistan the rivers still run northward from the westward extension of the Hindu Kush. To the east the main rivers have headwaters far within the Tibetan plateau and cut, with incredibly steep gradients across the Kun Lun and related ranges - testifying to the latest Tertiary development of this range. REFERENCES Brookfield, 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards. Geomorphology, 22: 285-312. Dewey, J.F., Cande, S. and Pitman III, W.C., 1989. Tectonic evolution of the India/Eurasia collision zone. Eclogae geologica Helvetica, 82: 717-734. England, P. and Molnar, P., 1990. Surface uplift, uplift of rocks and exhumation of rocks. Geology, 18: 1173-1177. Molnar, P. and England, P., 1990. Late Cenozoic uplift of mountain ranges and global climatic change: chicken or egg? Nature, 346: 29-34.
NASA Astrophysics Data System (ADS)
Niemi, T. M.; Busby, C.; Murowchick, J. B.; Martinez Gutierrez, G.; Antinao Rojas, J. L.; Graettinger, A.; Dorsey, R. J.
2017-12-01
Studies conducted during the three years of the Baja Basins REU program made progress toward solving a number of geologic questions in the Santa Rosalía Basin (SRB) of central Baja California. Geochemistry and 40Ar/39Ar geochronology on volcanic rocks within the SRB record the transition from subduction (13.32-9.95 Ma) to rifting (younger than 9.42 Ma) prior to deposition of the upper Miocene Boleo Formation. In contrast, magnesian andesite lavas and intrusions on the south margin of the SRB are dated at 6.1 +/- 0.3 Ma, and may have provided the heat engine for Boleo basin mineralization, which occurs in stratabound layers called "mantos". Mineralizing fluids in the Boleo Fm had near-neutral pH, evolved from a low Eh to more oxidizing conditions, were relatively low-temperature (near ambient T during manto ore deposition), and likely derived the Cu, Zn, Co, and Mn by leaching of mafic minerals in the volcanic rocks underlying the basin. Deposition of the ores was driven by oxidation as warm spring fluids vented to subaerial or near-shore marine environments, producing blankets of precipitated oxides interlayered with detrital fine to very coarse clastic beds. Integration of geologic map and fault data with detailed sedimentology and stratigraphic analysis provides evidence for syn-basinal tilting in two orthogonal directions during deposition of the Boleo Formation and Plio-Quaternary Tirabuzón, Infierno, and Santa Rosalia formations. Pronounced tilting toward the SE is revealed by southeastward thickening and coarsening of deposits in the Boleo Formation, and was synchronous with northeastward tilting and thickening due to slip on a network of NW-striking oblique normal faults. We hypothesize that the basin formed, subsided, and deformed as a pull-apart basin in a releasing step-over between two propagating transform faults that opened the late Miocene Gulf of California. The neotectonic evolution and uplift history of the SRB is documented through mapping of fluvial and marine terraces, characterizing pedogenic development on them, and calculation of morphometric indexes, integrated with detailed coast-parallel and long stream topographic profiles. Quantification of uplift rates is ongoing through cosmogenic surface exposure dating and luminescence geochronology.
2D Gravimetric Modeling of the Vargeão Impact Structure, Brazil
NASA Astrophysics Data System (ADS)
Giacomini, B. B.; Leite, E. P.; Ferreira, J. C.; Vasconcelos, M. A.; Crosta, A. P.
2013-05-01
Although common in other bodies of the solar system, impact craters formed in basaltic terrains are rare on Earth and only a few examples are known. One of the examples is the impact structure of Vargeão, south of Brazil, which was formed above the Paraná Basin. The impact origin of this structure was confirmed in 2009. This work focused on the construction of 2D subsurface geological models based on new ground gravimetric data obtained using a CG-5 gravity meter. These models were constrained by geological field data and one seismic section crossing the impact structure. Bouguer anomalies were calculated from gravity acceleration measured at 419 stations irregularly distributed on the area of the impact structure. The theoretical gravity acceleration at each station was calculated using the WGS84 reference ellipsoid. A regional component represented by a polynomial trend surface was extracted from the total Bouguer anomalies. The residual Bouguer map shows a well-defined circular negative anomaly on the central portion of the structure. Such gravity low can be associated with post-impact uplifting of sedimentary rocks, in this case the sandstones of Pirambóia and Botucatu Formations. The hypothesis of uplifting is supported by field observations of sandstone outcrops at the central portion of the structure. This is similar to the case of Steinheim structure in Germany. Although not spatially coincident with its edges, a strong positive anomaly surrounds its center and may be related to different levels of basalt fractures formed after the impact. Breccias near the center are more fractured leading to lower global densities. The density values of the clean and fractured basalts, sandstones and breccias were measured from rock samples and each average value was used for the gravimetric modeling. Edge structural features and a central uplift observed in the seismic section were included in the gravimetric models. The lateral extension of the uplifted sandstone in our models varies between 2000 m at the base and approximately 100 m at the top. The average thickness of the basalt layer in this region is 1000 m.
10Be Erosion Rates Controlled by Normal Fault Slip Rates and Transient Incision
NASA Astrophysics Data System (ADS)
Roda-Boluda, D. C.; D'Arcy, M. K.; Whittaker, A. C.; Allen, P.; Gheorghiu, D. M.; Rodés, Á.
2016-12-01
Quantifying erosion rates, and how they compare to rock uplift rates, is fundamental for understanding the evolution of relief and the associated sediment supply from mountains to basins. The trade-off between uplift and erosion is well-represented by river incision, which is often accompanied by hillslope steepening and landsliding. However, characterizing the relation between these processes and the impact that these have on sediment delivered to basins, remains a major challenge in many tectonically-active areas. We use Southern Italy as a natural laboratory to address these questions, and quantify the interplay of tectonics, geomorphic response and sediment export. We present 15 new 10Be catchment-averaged erosion rates, collected from catchments along five active normal faults with excellent slip rate constraints. We find that erosion rates are strongly controlled by fault slip rates and the degree of catchment incision. Our data suggests that overall 70% of the rock uplifted by the faults is being eroded, offering new insights into the topographic balance of uplift and erosion in this area. None of the erosion rates are greater than local fault slip rates, so fault activity is effectively establishing an upper limit on erosion. However, eight 10Be samples from low relief, unincised areas within the catchments, collected above knickpoints, yield consistent erosion rates of 0.12 mm/yr. In contrast, samples collected below knickpoints and below the incised sectors of the channels, have erosion rates of 0.2-0.8 mm/yr. The comparison allows us to quantify the impact that transient incisional response has on erosion rates. We show that incision is associated with frequent, shallow landsliding, and we find that the volumes of landslides stored on the catchments are highly correlated with 10Be-derived sediment flux estimates, suggesting that landslides are likely to be a major contributor to sediment fluxes; and we examine the implications that this may have on 10Be concentrations. Finally, we examine the influence that these coupled landscape responses have on the sediment exported from the catchments, and we find that coarser grain size export is associated with deeper channel incision and greater 10Be-derived sediment fluxes.
Magnetic susceptibility and AMS of the Bushveld alkaline granites, South Africa
NASA Astrophysics Data System (ADS)
Ferré, Eric C.; Wilson, Jeff; Gleizes, Gérard
1999-06-01
The Bushveld Complex in South Africa includes one of the world's largest anorogenic alkaline granite intrusions (66,000 km 2). The granite forms a composite laccolith, of 350 × 250 km in area and about 2 km in thickness, which was emplaced at about 5 km depth into sediments overlying the Kaapvaal craton, at 2054 Ma. The Bushveld granite and its roof-rocks have long been mined for Sn, W and F. The Bushveld granites have high magnetic susceptibilities ( Km from 1000 to 4000 μSI), and a quantitative model is presented, suggesting that susceptibility fabrics are primarily carried by ferromagnetic minerals. The measured AMS foliations coincide with observed subhorizontal mineral lineations and compositional layering. Magnetic lineation trends vary considerably within the horizontal plane. The existence of a weak planar fabric and, an almost absent linear component may reflect (a) laccolithic emplacement by roof uplift, causing flattening magmatic fabrics, or (b) emplacement of largely crystal-free magma crystallizing in-situ and developing horizontal compositional layering from thermal chemical diffusion fronts and gravity-driven mechanisms. Weak magnétic fabrics, like those identified in the Bushveld granites require specific sampling schemes and procedures, in addition to rigorous constraint of magnetic mineralogy and crystallization sequence.
Molenaar, C.M.; Cobban, W.A.; Merewether, E.A.; Pillmore, C.L.; Wolfe, D.G.; Holbrook, J.M.
2002-01-01
Sedimentary rocks of Cretaceous age along Transect DD'' in eastern Arizona, northern New Mexico, southern Colorado, and western Oklahoma consist mainly of sandstone, siltstone, shale, limestone, and bentonite. They accumulated as sediments in continental, nearshore marine, and offshore marine environments on the west side of a north-trending epicontinental sea. The rocks record intermittent deposition and erosion as well as regional and local subsidence and uplift possibly beginning in Aptian time (about 121-112 Ma) and occurring in Albian through Maastrichtian time (about 112-65.4 Ma). Most of the Lower Cretaceous (Berriasian through Aptian, 142-112 Ma) in this transect is represented by a basal unconformity. The Cretaceous rocks and unconformities along the transect are depicted on the attached lithostratigraphic cross sections (sheets 1 and 2); one extending from the Mogollon Rim in eastern Arizona to Pagosa Springs in southwestern Colorado and the other from Pagosa Springs, Colorado, to Kenton in western Oklahoma. The same rocks and unconformities are also represented on the attached chronostratigraphic profile (sheet 3), which was prepared mainly from surface and subsurface data shown on the lithostratigraphic cross sections.
,
2005-01-01
The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the Southwestern Wyoming Province of southwestern Wyoming, northwestern Colorado, and northeastern Utah (fig. 1). The USGS Southwestern Wyoming Province for this assessment included the Green River Basin, Moxa arch, Hoback Basin, Sandy Bend arch, Rock Springs uplift, Great Divide Basin, Wamsutter arch, Washakie Basin, Cherokee ridge, and the Sand Wash Basin. The assessment of the Southwestern Wyoming Province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy, petrophysical properties), and hydrocarbon traps (trap types, formation, and timing). Using this geologic framework, the USGS defined 9 total petroleum systems (TPS) and 23 assessment units (AU) within these TPSs, and quantitatively estimated the undiscovered oil and gas resources within 21 of the 23 AUs.
Gravity and the geoid in the Nepal Himalaya
NASA Technical Reports Server (NTRS)
Bilham, Roger
1992-01-01
Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. The process of uplift of materials within the Himalaya coupled with surface erosion is similar to the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the erosion rate which is invisible to geodetic measurements. Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya. These typically underestimate the real erosion rate since bed-load is not measured during times of heavy flood, and it is difficult to integrate widely varying suspended load measurements over many years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. If a control point moves vertically it should be accompanied by a reduction in gravity as the point moves away from the Earth's center of mass. There is a difference in the change of gravity between uplift with and without erosion corresponding to the difference between the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding thickness of rock. Essentially gravity should change precisely in accord with a change in elevation of the point in a free-air gradient if erosion equals uplift rate. We were funded by NASA to undertake a measurement of absolute gravity simultaneously with measurements of GPS height within the Himalaya. Since both absolute gravity and time are known in an absolute sense to 1 part in 10(exp 10) it is possible to estimate gravity with a precision of 0.1 mu gal. Known systematic errors reduce the measurement to an absolute uncertainty of 6 mu gal. The free air gradient at the point of measurement is typically about 3 mu gals/cm. At Simikot where our experiment was conducted we determined a vertical gravity gradient of 4.4 mu gals/cm.
NASA Astrophysics Data System (ADS)
He, Bin; Xu, Yi-Gang; Guan, Jun-Peng; Zhong, Yu-Ting
2010-09-01
The ~ 260 Ma Emeishan Large Igneous Province (ELIP) in southwest China has previously been demonstrated to provide compelling evidence for pre-volcanic crustal doming in support of the mantle plume hypothesis. However this has been questioned by Ukstins-Peate and Bryan (2008) by showing hydrothermal magmatic activity at the Daqiao section. To solve this argument, a detailed characterization of the contact between the Emeishan basalts and the Maokou Formation was carried out. The contact is shown to be an unconformity, which is characterized by paleokarst on top of the Maokou Formation, including paleokarst relief, sinkholes, caves, tower karst and its corresponding rocks (such as kaolinite, bauxite and ferruginous duricrust and collapsed breccias, etc.). This paleokarst unconformity was in turn covered or infilled by the Emeishan basalts and tuffs, suggesting that uplift and erosion occurred prior to the eruption of the ELIP. The extent of erosion of the Maokou Formation indicates the ELIP can be divided into three roughly concentric zones: the inner, intermediate, and outer zones. The paleokarst features on the top of Maokou Formation vary across the ELIP. In the inner zone, a likely sinkhole and an incision valley with 450 m relief in height are found. In the intermediate zone, various paleokarst landforms such as karst relief, sinkholes and tower karsts are well developed. Some sinkholes that developed in the Qixia Formation below the Maokou Formation imply that the paleorelief is more than 350 m in height. In the outer zone, the paleokarstic surface is a paleo-weathering layer with minor karstification and development of caves at 10-50 m. This spatial variation of the paleokarst reflects variation of uplift height across the ELIP. The extent of minimal uplift is estimated to be at least 450 m in the inner zone, 350 m in the intermediate zone, whereas uplift is minor (tens-50 m) in the outer zone. The magnitude and shape of the uplift is roughly consistent with that predicted by mantle plume models. The paleokarst was formed after the deposition of the Maokou Formation and the eruption of the Emeishan basalts at the end-Guadalupian and indicates a short duration of uplift. Thus this study lends further support to domal uplift prior to the Emeishan flood volcanism, but also to the mantle plume initiation model for the generation of the ELIP.
NASA Astrophysics Data System (ADS)
Sitaula, R. P.; Aschoff, J.
2013-12-01
Regional-scale sequence stratigraphic correlation, well log analysis, syntectonic unconformity mapping, isopach maps, and depositional environment maps of the upper Mesaverde Group (UMG) in Uinta basin, Utah suggest higher accommodation in northeastern part (Natural Buttes area) and local development of lacustrine facies due to increased subsidence caused by uplift of San Rafael Swell (SRS) in southern and Uinta Uplift in northern parts. Recently discovered lacustrine facies in Natural Buttes area are completely different than the dominant fluvial facies in outcrops along Book Cliffs and could have implications for significant amount of tight-gas sand production from this area. Data used for sequence stratigraphic correlation, isopach maps and depositional environmental maps include > 100 well logs, 20 stratigraphic profiles, 35 sandstone thin sections and 10 outcrop-based gamma ray profiles. Seven 4th order depositional sequences (~0.5 my duration) are identified and correlated within UMG. Correlation was constructed using a combination of fluvial facies and stacking patterns in outcrops, chert-pebble conglomerates and tidally influenced strata. These surfaces were extrapolated into subsurface by matching GR profiles. GR well logs and core log of Natural Buttes area show intervals of coarsening upward patterns suggesting possible lacustrine intervals that might contain high TOC. Locally, younger sequences are completely truncated across SRS whereas older sequences are truncated and thinned toward SRS. The cycles of truncation and thinning represent phases of SRS uplift. Thinning possibly related with the Uinta Uplift is also observed in northwestern part. Paleocurrents are consistent with interpretation of periodic segmentation and deflection of sedimentation. Regional paleocurrents are generally E-NE-directed in Sequences 1-4, and N-directed in Sequences 5-7. From isopach maps and paleocurrent direction it can be interpreted that uplift of SRS changed route of sediment supply from west to southwest. Locally, paleocurrents are highly variable near SRS further suggesting UMG basin-fill was partitioned by uplift of SRS. Sandstone composition analysis also suggests the uplift of SRS causing the variation of source rocks in upper sequences than the lower sequences. In conclusion, we suggest that Uinta basin was episodically partitioned during the deposition of UMG due to uplift of Laramide structures in the basin and accommodation was localized in northeastern part. Understanding of structural controls on accommodation, sedimentation patterns and depositional environments will aid prediction of the best-producing gas reservoirs.
Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya
NASA Astrophysics Data System (ADS)
Yang, Rong; Herman, Frédéric; Fellin, Maria Giuditta; Maden, Colin
2018-01-01
The Namche Barwa Syntaxis, as one of the most tectonically active regions, remains an appropriate place to explore the relationship between tectonics, surface processes, and landscape evolution. Two leading models have been proposed for the formation and evolution of this syntaxis, including the tectonic aneurysm model and the syntaxis expansion model. Here we use a multi-disciplinary approach based on low-temperature thermochronometry, numerical modeling, river profile and topographic analyses to investigate the interactions between tectonics, erosion, and landscape evolution and to test these models. Our results emphasize the presence of young cooling ages (i.e., < 1 Ma) along the Parlung River, to the north of the syntaxis. Using numerical modeling we argue that a recent increase in exhumation rate is required to expose these young ages. Our river analysis reveals spatial variations in channel steepness, which we interpret to reflect the rock uplift pattern. By establishing the relationship between erosion rates and topographic features, we find that erosion rates are poorly to weakly correlated with topographic features, suggesting that the landscape is still evolving. Altogether, these results seem better explained by a mechanism that involves a northward expansion of the syntaxis, which causes high rock uplift rates to the north of the syntaxis and a transient state of topography adjusting to an evolving tectonic setting.
Flexural bending of southern Tibet in a retro foreland setting
Wang, Erchie; Kamp, Peter J. J.; Xu, Ganqing; Hodges, Kip V.; Meng, Kai; Chen, Lin; Wang, Gang; Luo, Hui
2015-01-01
The highest elevation of the Tibetan Plateau, lying 5,700 m above sea level, occurs within the part of the Lhasa block immediately north of the India-Tibet suture zone (Yarlung Zangbo suture zone, YZSZ), being 700 m higher than the maximum elevation of more northern parts of the plateau. Various mechanisms have been proposed to explain this differentially higher topography and the rock uplift that led to it, invoking crustal compression or extension. Here we present the results of structural investigations along the length of the high elevation belt and suture zone, which rather indicate flexural bending of the southern margin of the Lhasa block (Gangdese magmatic belt) and occurrence of an adjacent foreland basin (Kailas Basin), both elements resulting from supra-crustal loading of the Lhasa block by the Zangbo Complex (Indian plate rocks) via the Great Counter Thrust. Hence we interpret the differential elevation of the southern margin of the plateau as due originally to uplift of a forebulge in a retro foreland setting modified by subsequent processes. Identification of this flexural deformation has implications for early evolution of the India-Tibet continental collision zone, implying an initial (Late Oligocene) symmetrical architecture that subsequently transitioned into the present asymmetrical wedge architecture. PMID:26174578
Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering
NASA Astrophysics Data System (ADS)
Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent
2017-04-01
The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.
Jebels Awenat and Arkenu, Libya
2018-02-22
In the far southeast corner of Libya, in the Libyan Desert, lie the uplifted massifs of Jebel Awenat and Jebel Arkenu. Both expose ancient Precambrian rocks, intruded by granites, and then overlain with sandstones. Folding and doming have produced these interesting shapes, rising above the surrounding sand sea. Presently, the area receives less than one inch of rain per year. Thousands of years ago, rainfall was more plentiful, and the Jebels were occupied by people, as attested by the numerous rock drawings. The images were acquired July 19, 2012, and July 31, 2013, cover an area of 66 by 67 kilometers, and are located at 22.1 degrees north, 24.8 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22283
Trails through time: A geologist's guide to Jefferson County open space parks
Reed, John C.
2014-01-01
Jefferson County Open Space Parks, as well as other nearby parks and National Forest lands, offer marvelousopportunities to explore the geologic story behind this singular landscape. At first the distribution of rocks of differentages and types seems almost random, but careful study of the rocks and landscape features reveals a captivatinggeologic story, a history that tells of the building of the foundations of the continent, the rise and destruction of longvanishedmountain ranges, the ebb and flow of ancient seas, and the constant shaping and reshaping of the landscape inresponse to the never-ending interplay between uplift and erosion. This historical account is constantly being improvedand expanded as new evidence accumulates and new interpretations evolve.
NASA Astrophysics Data System (ADS)
Clift, Peter D.; Carter, Andrew; Campbell, Ian H.; Pringle, Malcolm S.; van Lap, Nguyen; Allen, Charlotte M.; Hodges, Kip V.; Tan, Mai Thanh
2006-10-01
Sand samples from the mouths of the Red and Mekong Rivers were analyzed to determine the provenance and exhumation history of their source regions. U-Pb dating of detrital zircon grains shows that the main sources comprise crust formed within the Yangtze Craton and during the Triassic Indosinian Orogeny. Indosinian grains in the Mekong are younger (210-240 Ma) than those in the Red River (230-290 Ma), suggesting preferential erosion of the Qiangtang Block of Tibet into the Mekong. The Red River has a higher proportion of 700-800 Ma grains originally derived from the Yangtze Craton. 40Ar/39Ar dating of muscovite grains demonstrates that rocks cooled during the Indosinian Orogeny are dominant in both rivers, although the Mekong also shows a grain population cooling at 150-200 Ma that is not seen in the Red River and which is probably of original Qiangtang Block origin. Conversely, the Red River contains a significant mica population (350-500 Ma) eroded from the Yangtze Craton. High-grade metamorphic rocks exposed in the Cenozoic shear zones of southeast Tibet-Yunnan are minority sources to the rivers. However, apatite and zircon fission track ages show evidence for the dominant sources, especially in the Red River, only being exhumed through the shallowest 5-3 km of the crust since ˜25 Ma. The thermochronology data are consistent with erosion of recycled sediment from the inverted Simao and Chuxiong Basins, from gorges that incise the eastern flank of the plateau. Average Neogene exhumation rates are 104-191 m/Myr in the Red River basin, which is within error of the 178 ± 35 m/Myr estimated from Pleistocene sediment volumes. Sparse fission track data from the Mekong River support the Ar-Ar and U-Pb ages in favoring tectonically driven rock uplift and gorge incision as the dominant control on erosion, with precipitation being an important secondary influence.
Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.
Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song
2018-01-23
The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.
Gravity and the geoid in the Nepal Himalaya
NASA Technical Reports Server (NTRS)
Bilham, Roger
1992-01-01
Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift, the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. Although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse or the Himalaya depends on the erosion rate which is invisible to geodetic measurements. A way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. Essentially gravity should change precisely in accord with a change in elevation of the point in a free air gradient if erosion equals uplift rate. A measurement of absolute gravity was made simultaneously with measurements of GPS height within the Himalaya. Absolute gravity is estimated from the change in velocity per unit distance of a falling corner cube in a vacuum. Time is measured with an atomic clock and the unit distance corresponds to the wavelength of an iodine stabilized laser. An experiment undertaken in the Himalaya in 1991 provide a site description also with a instrument description.
NASA Astrophysics Data System (ADS)
Cosentino, Domenico; Öǧretmen, Nazik; Cipollari, Paola; Gliozzi, Elsa; Radeff, Giuditta; Yıldırım, Cengiz; Baykara, Oruc M.; Shen, Chuan-Chou
2016-04-01
Along the Mediterranean coastal area of southern Anatolia, markers of ancient sea-level have been reported west of Alanya and east of the Göksu delta. In both areas, bioconstructed fossil rims, consisting mainly of calcareous algae, are situated 0.5 m above the live counterpart. The fossil rim to the west of Alanya has been dated between 2690 to 1545 yrs BP, evidencing late Holocene rock uplift at the CAP southern margin. More recently, based on beachrocks along the coastal area from Incekum to the south of Adana, authors showed that the shoreline was raised around 0.5 m after 19 BC-200 AD. Based on new field observations along the coast between Aydı ncı k and Ayaş (Mersin, southern Turkey), together with AMS 14C dating and high-resolution U-Th chronology, a more complex uplift history can be suggested. Along the coast of Yeşilovacı k, we observed up to seven uplifted marine notches, from 0.5 m to 6.10 m above sea level. Some of them show relationships with a travertine crust that yielded U-Th ages of 2727 ± 1559 years and 5236 ± 2255 years. In the same area, a calcareous algae fossil trottoir related to a marine notch 5.40 m above sea level yielded an AMS 14C 2σ age of 32700 to 31645 years cal BP. Considering that the global ocean was 60 m below the present sea level at 32 ka, the Yeşilovacı k coastal area has been uplifted at 2 mm/yr. Moving to the east, in a small embayment at Eǧribük, two distinct well cemented beach deposits containing Murex brandaris, Cerithium vulgatum, and Columbella rustica have been uplifted at 0.3 m and 0.7 m above the present sea level. Although it is difficult to reconstruct the paleodepth of those beach deposits, AMS 14C 2σ ages of 5575 to 5445 years cal BP and 2130 to 1965 years cal BP show late Holocene uplift. In the Narlı kuyu area, up to seven different uplifted markers of sea level were observed between 0.8 and 7.2 m above the present sea level. In addition, near Ayaş new insights for late Holocene uplift are from the northern harbour of the ancient Roman town Elaiussa-Sebaste, which now is 4 m above sea level. More evidence for late Holocene uplift of the Elaiussa-Sebaste area come from a Roman pool located in the small peninsula to the east of the northern harbour. There, a fossil shell of Patella cf. aspera, collected 1 m above the highest living Patella, yielded an AMS 14C 2σ age of 850 to 1164 years cal AD. Considering an age of 1000 yrs AD and the level of the Mediterranean sea that was 0.2 m below the present sea level, we can estimate a tectonic uplift rate of 1.2 mm/yr for the last 1000 years. Although the CAP southern margin shows clear evidence of recent uplift, with uplift rates between 2 mm/yr to 1.2 mm/yr, to reconstruct a well-constrained uplift curve for the Holocene more AMS 14C and U-Th dates need to be collected.
Geology and energy resources of the Sand Butte Rim NW Quadrangle, Sweetwater County, Wyoming
Roehler, Henry W.
1979-01-01
The Sand Butte Rim NW 71-minute quadrangle occupies 56 square miles of an arid, windy, sparsely vegetated area of ridges and valleys on the east flank of the Rock Springs uplift in southwest Wyoming. The area is underlain by a succession of sedimentary rocks, about 20,000 feet thick, that includes 28 formations ranging in age from Cambrian to Tertiary. Upper Cretaceous and lower Tertiary formations crop out and dip 3?-6? southeast. They are unfaulted and generally homoclinal, but a minor anticlinal nose is present. Older rocks in the subsurface are faulted and folded. Coal resources are estimated to be nearly I billion short tons of subbituminous coal, in beds more than 2.5 feet thick, under less than 3,000 feet of overburden, in the Fort Union Formation of Paleocene age and the Lance and Almond Formations of Cretaceous age.
Geological evolution of the Afro-Arabian dome
NASA Astrophysics Data System (ADS)
Almond, D. C.
1986-12-01
The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene "trap" volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.
NASA Astrophysics Data System (ADS)
Muthusamy, Prakasam; Gupta, Anil K.; Saini, Naresh K.
2013-04-01
The Indian monsoon is one of the most interesting climatic features on Earth impacting most populous countries of South and East Asia. It is marked by seasonal reversals of wind direction with southwesterly winds in summer (June-September) and northeasterly winds in winter (December-February). The monsoon not only impacts socioeconomic conditions of Asia but also brings important changes in fauna and flora, ocean upwelling and primary productivity in the Arabian Sea. The Himalaya has undergone several phases of rapid uplift and exhumation since the early Miocene which led to major intensification of the Indian monsoon. The monsoon is driven by the thermal contrast between land and sea, and is intimately linked with the latitudinal movement of the Inter-Tropical Convergence Zone (ITCZ). The effect of Indian monsoon variability and the Himalayan uplift can be seen in numerous proxy records across the region. In this study we discussed about the Indian monsoon intensification and the Himalayan uplift since the early Miocene based on multi proxy records such as planktic foraminiferal relative abundances (Globigerina bulloides, Globigerinita glutinata and mixed layer species), total organic carbon (TOC), CaCO3 and elemental data from ODP Hole 722B (2028 mbsf), northwestern Arabian Sea. The TOC, CaCO3 and elemental variations of the ODP Hole 722B suggest multi phase of monsoonal intensification and Himalayan uplifts. Our results suggest that in the early Miocene (23.03 Ma) to ~15Ma, the wind strength and productivity were low. A major change is observed at ~15 Ma, during which time numerous proxies show abrupt changes. TOC, CaCO3 and Elemental analyses results reveal that a major change in the productivity, wind strength and chemical weathering starts around 15 Ma and extends up to 10 Ma. This suggests that a major Himalayan uplift occurred during ~15-10 Ma that drove Indian monsoon intensification. A similar change is also observed during 5 to 1 Ma. These long-term paleoclimatic trends correlated to Himalayan uplift. Major peaks in various proxy records correspond with enhanced monsoonal strength and the Himalayan uplift. Keywords: Indian monsoon; Himalayan uplift; Arabian Sea; Productivity; Planktic foraminifera; Total Organic Carbon
Basement diapirism associated with the emplacement of major ophiolite nappes: Some constraints
NASA Astrophysics Data System (ADS)
Andrews-Speed, C. P.; Johns, C. C.
1985-09-01
The association of basement uplifts with major ophiolite nappes in some Phanerozoic orogenic belts suggests that gravitational instability results in the local diapiric uplift of the basement following ophiolite emplacement. In previous analyses of diapirism in crustal silicate rocks, viscous behaviour of rocks has been assumed. It is argued that this assumption is not valid. An alternative analysis is offered to determine whether or not the stress would be sufficient for diapirism to occur. The negative buoyancy stress resulting from the emplacement of an ophiolite nappe 5-15 km thick onto continental basement may be in the range 10-50 MPa. If the horizontal deviatoric stress is zero, this will be the maximum principal compressive stress. After ophiolite emplacement the thermal profile through the ophiolite and the basement will relax from a saw-tooth form to an equilibrium profile. If the ophiolite is young and thick there will be a zone of ductile strain in the lower part of the ophiolite and in the upper part of the continental basement. Results from steady-state creep experiments suggest that temperatures in this zone may be high enough for a short time after ophiolite emplacement (3 Ma or more) for the rocks in this zone to deform at geologically significant strain rates (10 -14 or greater) in response to the negative buoyancy stress. A thin ophiolite or rapid erosion will result in this ductile zone being absent or too short-lived for significant strain. Aquaeous fluids may reduce the strength of brittle rocks by decreasing the effective normal stress or by encouraging pressure solution creep. Evidence suggests that the deviatoric stress across presently active faults may be as low at 10 MPa. Thus diapirism in response to ophiolite emplacement may occur through brittle strain. Gravity spreading within the ophiolite is an alternative mechanism for accommodating the gravitational instability. The critical evidence lies in the field.
NASA Astrophysics Data System (ADS)
Wildman, M.; Brown, R. W.; Persano, C.; Stuart, F. M.
2013-12-01
The morpho-tectonic history of the western South African continental margin and interior plateau remains enigmatic. Recent investigations of offshore sediment accumulation and interpretations of onshore structural and geomorphological observations have highlighted the complex geological evolution of South Africa throughout the Mesozoic and Cenozoic. Moreover, advances in geodynamic modelling approaches have explored the crustal response to varying styles of rifting and the influence of mantle upwelling beneath the African plate. These geological observations and models, however, require validation from quantitative constraints on the surface response (i.e. uplift and erosion) to syn- and post rift thermal and tectonic processes Over the last two decades, low temperature thermochronometry, particularly apatite fission track analysis (AFTA) and apatite (U-Th)/He, have been effective tools in providing these constraints by tracking the time-temperature history of rocks through c. 60 - 110°C and 80 - 40°C, respectively. The unique ability of AFTA to constrain both the timing and nature of sample cooling rests largely on the sensitivity of fission track annealing to temperature. Here, we present new AFT data from a suite of samples across the entire western continental margin of South Africa which contributes to a now extensive AFT dataset spanning the entire sub-continent. This dataset broadly invokes at least two discrete episodes of cooling driven by km scale denudation at c. 130 Ma, following rifting and break up of West Gondwana, and 90 Ma as a response to renewed tectonic uplift. However, the apparent lack of correlation of AFT age with elevation or with distance from the coast highlight the spatial and temporal variability of post-rift cooling that may be related to Mid-Cretaceous structural reactivation along the margin. We also present thermal history modelling using the Bayesian transdimensional inverse modelling approach of QTQt (Gallagher, 2012). Modelling was performed for several outcrop samples, including a 604 m vertical profile, and two borehole profiles from the interior plateau with bottom depths of 2.5 (QU 1/65) and 6.2 km (KC 1/70). The results of this novel modelling approach are interpreted alongside independent on and offshore geological observations to lend additional support to the occurrence of multiple, discrete episodes of denudation driven cooling at c. 150 - 130 and 90 Ma, and possibly a later Cretaceous episode of cooling at c. 70 Ma. The existence of a Late Cretaceous or younger period of enhanced denudation is being further explored through ongoing work combining new AFT data with apatite (U-Th)/He data to generate more robust thermal history information and provide new insights into the timing and magnitude of the major periods of uplift and erosion that have formed the first order topography of South Africa. Gallagher, K., 2012, Transdimensional inverse thermal history modeling for quantitative thermochronology: Journal of Geophysical Research: Solid Earth, v. 117(B2).
Three-dimensional microelectromechanical tilting platform operated by gear-driven racks
Klody, Kelly A.; Habbit, Jr., Robert D.
2005-11-01
A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.
NASA Technical Reports Server (NTRS)
Bannert, D.
1972-01-01
Apollo 9 photographs of the region northwest of the Gulf of Tadjura were studied. The occurrence of a large region of basement rocks, probably crystalline in nature, with a strongly faulted overlayer was recognized and has been named the Tadjura uplift. Study of this region is adding detailed knowledge to the literature on the phenomenon of plate drift in the southern Red Sea region.
NASA Astrophysics Data System (ADS)
Quye-Sawyer, Jennifer; Whittaker, Alexander; Roberts, Gareth; Rood, Dylan
2017-04-01
A key challenge in the Earth Sciences is to understand the timing and extent of the coupling between geodynamics, tectonics, and surface processes. In principle, the landscape adjusts to surface uplift or tectonic events, and present-day topography records a convolution of these processes. The inverse problem, the ability to find the 'best fit' theoretical scenario to match present day observations, is particularly desirable as it makes use of real data, encompasses the complexity of natural systems and quantifies model uncertainty through misfit. The region of Calabria, Italy, is known to have experienced geologically rapid uplift ( 1 mm/yr) since the Early Pleistocene, inferred from widespread marine terraces (ca. 1 Myr old) at elevations greater than 1 km. In addition, this is a tectonically active area of normal faulting with several highly destructive earthquakes in recent centuries. Since there has been some debate about the relative magnitudes of the uplift caused by regional processes or by faulting, the ability to model these effects on a regional scale may help resolve this problem. Therefore, Calabria is both a suitable and important site to model large magnitude recent geomorphic change. 1368 river longitudinal profiles have been generated from satellite digital elevation models (DEMs). These longitudinal profiles were compared to aerial photography to confirm the accuracy of this automated process. The longitudinal profiles contain numerous non-lithologically controlled knickpoints. Field observations support the presence of knickpoints extracted from the DEM and measurements of pebble imbrication from fluvial terraces suggest the planform stability of the drainage network in the last 1 Myr. By assuming fluvial erosion obeys stream power laws with an exponent of upstream area of 0.5 ± 0.1, the evolution of the landscape is computed using a linearized joint inversion of the longitudinal profiles. This has produced a spatially and temporally continuous model of cumulative uplift for the Calabria region. We have used independently-collated stratigraphic data to provide absolute ages for the inversion model. In particular, uplift rates of well-dated marine terraces constrain the inversion near the coastline and we are using cosmogenic isotope isochron burial dating to refine the timing of the onset of uplift. Preliminary inversion results show the initiation of uplift at approximately 1.9 Ma. The model output is consistent with field observations of regional uplift, later combined with fault related extension. Furthermore, these results are consistent with an increase in regional uplift rate prior to fault initiation.
Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G.
2007-01-01
The timing and duration of surface uplift associated with large igneous provinces provide important constraints on mantle convection processes. Here we review geological indicators of surface uplift associated with five continent-based magmatic provinces: Emeishan Traps (260??million years ago: Ma), Siberian Traps (251??Ma), Deccan Traps (65??Ma), North Atlantic (Phase 1, 61??Ma and Phase 2, 55??Ma), and Yellowstone (16??Ma to recent). All five magmatic provinces were associated with surface uplift. Surface uplift can be measured directly from sedimentary indicators of sea-level in the North Atlantic and from geomorpholocial indicators of relative uplift and tilting in Yellowstone. In the other provinces, surface uplift is inferred from the record of erosion. In the Deccan, North Atlantic and Emeishan provinces, transient uplift that results from variations in thermal structure of the lithosphere and underlying mantle can be distinguished from permanent uplift that results from the extraction and emplacement of magma. Transient surface uplift is more useful in constraining mantle convection since models of melt generation and emplacement are not required for its interpretation. Observations of the spatial and temporal relationships between surface uplift, rifting and magmatism are also important in constraining models of LIP formation. Onset of surface uplift preceded magmatism in all five of the provinces. Biostratigraphic constraints on timing of uplift and erosion are best for the North Atlantic and Emeishan Provinces, where the time interval between significant uplift and first magmatism is less than 1??million years and 2.5??million years respectively. Rifting post-dates the earliest magmatism in the case of the North Atlantic Phase 1 and possibly in the case of Siberia. The relative age of onset of offshore rifting is not well constrained for the Deccan and the importance of rifting in controlling magmatism is disputed in the Emeishan and Yellowstone Provinces. In these examples, rifting is not a requirement for onset of LIP magmatism but melting rates are significantly increased when rifting occurs. Models that attempt to explain emplacement of these five LIPs without hot mantle supplied by mantle plumes often have difficulties in explaining the observations of surface uplift, rifting and magmatism. For example, small-scale convection related to craton or rift boundaries (edge-driven convection) cannot easily explain widespread (1000??km scale) transient surface uplift (Emeishan, Deccan, North Atlantic), and upper mantle convection initiated by differential incubation beneath cratons (the hotcell model) is at odds with rapid onset of surface uplift (Emeishan, North Atlantic). The start-up plume concept is still the most parsimonious way of explaining the observations presented here. However, observations of surface uplift cannot directly constrain the depth of origin of the hot mantle in a plume head. The short time interval between onset of transient surface uplift and magmatism in the North Atlantic and Emeishan means that the associated starting plume heads were probably not large (??? 1000??km diameter) roughly spherical diapirs and are likely to have formed narrow (??? 100??km radius) upwelling jets, with hot mantle then spreading rapidly outward within the asthenosphere. In cases where rifting post-dates magmatism (N Atlantic Phase 1) or where the degree of lithospheric extension may not have been great (Siberia), a secondary mechanism of lithospheric thinning, such as gravitational instability or delamination of the lower lithosphere, may be required to allow hot mantle to decompress sufficiently to explain the observed volume of magma with a shallow melting geochemical signature. Any such additional thinning mechanisms are probably a direct consequence of plume head emplacement. ?? 2007 Elsevier B.V. All rights reserved.
Ice-Shelf Tidal Flexure and Subglacial Pressure Variations
NASA Technical Reports Server (NTRS)
Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut
2013-01-01
We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.
Geology along Mosca Pass Trail, Great Sand Dunes National Park and Preserve, Colorado
Lindsey, David A.; Klein, Terry L.; Valdez, Andrew; Webster, Robert J.
2012-01-01
Mosca Pass Trail takes the hiker on a journey into the Earth's crust. Here you can see the results of tremendous tectonic forces that bend and tear rocks apart and raise mountain ranges. The trail begins near the Sangre de Cristo fault, which separates the Sangre de Cristo Range from the San Luis Valley. The valley is part of the Rio Grande rift, a series of fault basins extending from southern New Mexico to central Colorado, wherein the Earth's crust has been pulled apart during the last 30 million years. Thousands of feet of sediment, brought by streams mostly from the Sangre de Cristo Range, fill the San Luis Valley beneath the Great Sand Dunes. The trail ends at Mosca Pass overlooking Huerfano Park. The park is part of the larger Raton Basin, formed by compression of the Earth's crust during the Laramide orogeny, which occurred 70–40 million years ago. Massive highlands, the remnants of which are preserved in the Sangre de Cristo Range, were uplifted and pushed over the western side of the Raton Basin. Streams eroded the highland as it rose and filled the Raton Basin with sediment. After the sediment was compacted and cemented to form sedimentary rock, the Huerfano River and other streams began to excavate the basin. Over an unknown but long timespan that probably lasted millions of years, relatively soft sedimentary rocks were removed by the river to form the valley we call "Huerfano Park." Between the ends of the trail, the hiker walks through an erosional "window," or opening, into red sedimentary rocks overridden by gneiss, a metamorphic rock, during the Laramide orogeny. This window gives the hiker a glimpse into the Laramide highland of 70–40 million years ago that preceded the present-day Sangre de Cristo Range. The window is the focus of this trail guide. At the east end of the trail, near Mosca Pass, another trail follows the ridgeline south to Carbonate Mountain. Immediately after reaching the first summit above tree line, this trail crosses a narrow valley where red rocks mark an extension of the window across the range. Stunning vistas of the Sangre de Cristo Range extend north to the horizon. The uplifted range stands in sharp contrast to the San Luis Valley on the west and Huerfano Park on the east.
NASA Astrophysics Data System (ADS)
Schaeffer, A.; Roughan, M.; Wood, J. E.
2014-08-01
Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.
Heberer, B.; Prasicek, G.; Neubauer, F.; Hergarten, S.
2017-01-01
Abstract The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA‐EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one‐dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ‐transformed channel profiles coincide spatially with the Valsugana‐Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA‐EA drainage divide imply an ongoing, north directed shift of the Danube‐ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA‐EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration. PMID:28344912
Robl, J; Heberer, B; Prasicek, G; Neubauer, F; Hergarten, S
2017-01-01
The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one-dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ -transformed channel profiles coincide spatially with the Valsugana-Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA-EA drainage divide imply an ongoing, north directed shift of the Danube-ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA-EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration.
Renken, Robert A.; Ward, W. C.; Gill, I.P.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús; ,
2002-01-01
Poorly lithified to unconsolidated carbonate and clastic sedimentary rocks of Tertiary (Oligocene to Pliocene) and Quaternary (Pleistocene to Holocene) age compose the South Coast aquifer and the North Coast limestone aquifer system of Puerto Rico; poorly lithified to unlithified carbonate rocks of late Tertiary (early Miocene to Pliocene) age make up the Kingshill aquifer of St. Croix, U.S. Virgin Islands. The South Coast aquifer, North Coast limestone aquifer system, and Kingshill aquifer are the most areally extensive and function as the major sources of ground water in the U.S. Caribbean Islands Regional Aquifer-System Analysis (CI-RASA) study area. In Puerto Rico's South Coast ground-water province, more than 1,000 meters of clastic and carbonate rocks of Oligocene to Pliocene age infill the South Coast Tertiary Basin. The pattern of lithofacies within this basin appears to have been controlled by changes in base level that were, at times, dominated by tectonic movement (uplift and subsidence), but were also influenced by eustasy. Deposition of the 70-kilometer long and 3- to 8-kilometer wide fan-delta plain that covers much of the South Coast ground-water province occurred largely in response to glacially-induced changes in sea level and climate during the Quaternary period. Tectonic movement played a much less important role during the Quaternary. The North Coast ground-water province of Puerto Rico is underlain by homoclinal coastal plain wedge of carbonate and siliciclastic rocks that infill the North Coast Tertiary Basin and thicken to more than 1,700 meters. A thin basal siliciclastic sequence of late Oligocene age is overlain by a thick section of mostly carbonate rocks of Oligocene to middle Miocene age. Globigerinid limestone of late Miocene to Pliocene age crops out and lies in the shallow subsurface areas of northwestern Puerto Rico. Oligocene to middle Miocene age rocks tentatively can be divided into five depositional sequences and associated systems tracts; these rocks record carbonate and minor siliciclastic deposition that occurred in response to changes in relative sea level. The Cibao Formation represents the most complex of these sequences and contains a varied facies of carbonate, mixed carbonate-siliciclastic, and siliciclastic rocks that reflect differential uplift, subsidence, and transgression of the sea. Uplift, graben formation, and gradual shallowing of the sea are reflected within the bathyal-dominated sedimentary facies of the Kingshill Limestone in St. Croix, U.S. Virgin Islands. Reef-tract limestone beds of Pliocene age were subject to exposure, resubmergence, and meteoric leaching of aragonitic skeletal debris; these beds contain patchy lenses of dolomite that are restricted to a small, structurally-controlled embayment. The South Coast aquifer, the principal water-bearing unit of Puerto Rico's South Coast ground-water province, consists of boulder- to silt-size detritus formed by large and small coalescing fan deltas of Pleistocene to Holocene age. Deep well data indicates that it is possible to vertically separate and group a highly complex and irregular-bedded detrital sequence that underlies distal parts of the fan-delta plain into discrete water-bearing units if correlated with 30- to 40-meter thick, eustatically-controlled depositional cycles. Lithofacies maps show that greatest hydraulic conductivity within the fan-delta plain is generally associated with proximal fan and midfan areas. Distal and interfan areas are least permeable. Alluvial valley aquifers located in the western part of the South Coast ground-water province are important local sources of water supply and appear to contain some of the same physical and hydraulic characteristics as the South Coast aquifer. Older sedimentary rocks within the basin are poor aquifers; conglomeratic beds are well-cemented, and carbonate beds do not contain well-developed solution features, except locally where the beds are over
NASA Astrophysics Data System (ADS)
Mann, Paul; Taylor, Frederick W.; Lagoe, Martin B.; Quarles, Andrew; Burr, G.
1998-10-01
The New Georgia Island Group of the Solomon Islands is one of four places where an active or recently active spreading ridge has subducted beneath an island arc. We have used coral reef terraces, paleobathymetry of Neogene sedimentary rocks, and existing marine geophysical data to constrain patterns of regional Quaternary deformation related to subduction of the recently active Woodlark spreading center and its overlying Coleman seamount. These combined data indicate the following vertical tectonic history for the central part of the New Georgia Island Group: (1) subsidence of the forearc region (Tetepare and Rendova Islands) to water depths of ˜1500 m and deposition of marine turbidites until after 270 ka; (2) late Quaternary uplift of the forearc to sea level and erosion of an unconformity; (3) subsidence of the forearc to ˜500 m BSL and deposition of bathyal sediments; and (4) uplift of the forearc above sea level with Holocene uplift rates up to at least 7.5 mm/yr on Tetepare and 5 mm/yr on Rendova. In the northeastern part of the New Georgia Island Group, our combined data indicate a slightly different tectonic history characterized by lower-amplitude vertical motions and a more recent change from subsidence to uplift. Barrier reefs formed around New Georgia and Vangunu Islands as they subsided >300 m. By 50-100 ka, subsidence was replaced by uplift that accelerated to Holocene rates of ˜1 mm/yr on the volcanic arc compared with rates up to ˜7.5 mm/yr in the forearc area of Tetepare and Rendova. Uplift mechanisms, such as thermal effects due to subduction of spreading ridges, tectonic erosion, or underplating of deeply subducted bathymetric features, are not likely to function on the 270-ka period that these uplift events have occurred in the New Georgia Island Group. A more likely uplift mechanism for the post-270-ka accelerating uplift of the forearc and volcanic arc of the New Georgia Island Group is progressive impingement of the Coleman seamount or other topographically prominent features on the subducting plate. Regional effects we relate to this ongoing subduction-related process include: (1) late Quaternary (post-270 ka), accelerating uplift of the Rendova-Tetepare forearc area in response to initial impingement of the Coleman seamount followed by exponentially increasing collisional contact between the forearc and seamount; (2) later Quaternary propagation of uplift arcward to include the volcanic arc as the area of collisional contact between the forearc and seamount increased; and (3) large-wavelength folding that has produced regional variations in late Holocene uplift rates observed in both forearc (southern Rendova, Tetepare) and volcanic arc (New Georgia Island) areas. We propose that the dominant tectonic effect of Coleman seamount impingement is horizontal shortening of the forearc and arc crust that is produced by strong coupling between the subducting seamount and the unsedimented crystalline forearc of the New Georgia Island Group. The horizontal forces due to mechanical resistance to subducting rugged ridge and seamount topography may have terminated spreading of the Woodlark spreading center entering the trench (Ghizo ridge) and converted it to a presently active strike-slip fault zone.
Application of the CO2-PENS risk analysis tool to the Rock Springs Uplift, Wyoming
Stauffer, P.H.; Pawar, R.J.; Surdam, R.C.; Jiao, Z.; Deng, H.; Lettelier, B.C.; Viswanathan, H.S.; Sanzo, D.L.; Keating, G.N.
2011-01-01
We describe preliminary application of the CO2-PENS performance and risk analysis tool to a planned geologic CO2 sequestration demonstration project in the Rock Springs Uplift (RSU), located in south western Wyoming. We use data from the RSU to populate CO2-PENS, an evolving system-level modeling tool developed at Los Alamos National Laboratory. This tool has been designed to generate performance and risk assessment calculations for the geologic sequestration of carbon dioxide. Our approach follows Systems Analysis logic and includes estimates of uncertainty in model parameters and Monte-Carlo simulations that lead to probabilistic results. Probabilistic results provide decision makers with a range in the likelihood of different outcomes. Herein we present results from a newly implemented approach in CO 2-PENS that captures site-specific spatially coherent details such as topography on the reservoir/cap-rock interface, changes in saturation and pressure during injection, and dip on overlying aquifers that may be impacted by leakage upward through wellbores and faults. We present simulations of CO 2 injection under different uncertainty distributions for hypothetical leaking wells and faults. Although results are preliminary and to be used only for demonstration of the approach, future results of the risk analysis will form the basis for a discussion on methods to reduce uncertainty in the risk calculations. Additionally, we present ideas on using the model to help locate monitoring equipment to detect potential leaks. By maintaining site-specific details in the CO2-PENS analysis we provide a tool that allows more logical presentations to stakeholders in the region. ?? 2011 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Dietmar Müller, R.; Flament, Nicolas; Matthews, Kara J.; Williams, Simon E.; Gurnis, Michael
2015-04-01
The origin of passive margin mountains is a hotly debated topic in geodynamics. The Eastern Highlands of Australia are a type example whose uplift history has been investigated for several decades, with suggested mechanisms ranging from flexural rift shoulder uplift, volcanism and underplating to mantle-convection driven dynamic topography. Most of the highlands have experienced a distinct two-phase uplift history, with the first phase being Late Cretaceous in age, followed by a mid-late Cenozoic renewal in uplift, but the timing and magnitude of uplift differs along strike. We investigate the origin of the Eastern Highlands with a coupled plate-mantle model, using a thorough parameter space analysis, including two alternative subduction boundary evolution models. The first model includes a large (~1000 km width at its maximum extent) Early Cretaceous (140-120 Ma) back-arc basin east of the Lord Howe Rise, representing the now subducted South Loyalty Basin which may have formed due to eastward rollback of the long-lived west-dipping eastern Gondwanaland subduction zone; the alternative scenario is based on the premise that west-dipping subduction is continuous to the East of the Lord Howe Rise between 140-85 Ma, without a large back-arc basin, and the South Loyalty Basin opening as a back arc basin from 85-55 Ma, which is subsequently consumed by subduction. We further investigate the influence of a low-viscosity asthenosphere and of the viscosity profile of the lower mantle on dynamic topography, as well as the effect of changing the buoyancy of the basal dense layer (LLSVP) that contributes to the long-wavelength Pacific superswell. Our best-fit model produces a total uplift up to ~400 m in the interval between 120 and 90-70 Ma, well-matched with recent published estimates from river profile inversion for the Snowy Mountains, New England and the Central Highlands. The driving mechanism is rebound from the eastwards motion of Australia over a sinking slab, first leading to transient subsidence and continental flooding followed by rebound and uplift. Our model predicts cessation of uplift from 70-40 Ma (Snowy Mountains), 90-60 Ma (New England), followed by renewed uplift of up to 200 m. In the Central Highlands we model continuing, but distinctly slower uplift from 90Ma to the present, also totaling ~200m. The mechanism represents the gradual motion of Eastern Australia over the edge of the southwest Pacific superswell. The Central Highlands experienced the influence of the perimeter of the superswell first, due to their more northerly location, more proximal to the swell's edge, resulting in a continuous history of uplift since the mid-Cretaceous, whereas the Snowy Mountains started interacting with the superswell edge ~40-50 my later, resulting in a distinct break in uplift. The magnitude of the 2nd phase of uplift from river profile inversion versus geodynamic modeling matches well for the Central Highlands, but not further south. We attribute this to the lack of plumes in our current geodynamic models; plumes have clearly played an additional, important role in exacerbating uplift in the Late Cenozoic in the southern highlands, as indicated by the abundant, time-progressive Late Cenozoic volcanism in Eastern Australia.
Keith, William J.; Theodore, Ted G.
1979-01-01
The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.
NASA Astrophysics Data System (ADS)
Kirby, Eric
2017-04-01
The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing and vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here I revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (10^4-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, I employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, I present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace formation and abandonment based on radiocarbon and OSL dating of fluvial deposits reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since at least 80 ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is 80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.
NASA Astrophysics Data System (ADS)
Kirby, Eric; Zhang, Huiping; Chen, Jie
2016-04-01
The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing an vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here we revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (104-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, we employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, we present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace tread deposits based on radiocarbon and OSL samples reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since ca. 80ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is ˜80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.
NASA Astrophysics Data System (ADS)
Stutenbecker, L. A.; Costa, A.; Schlunegger, F.
2015-10-01
The development of topography is mainly dependent on the interplay of uplift and erosion, which are in term controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables such as anthropogenic impact. While most studies have focused on the role of tectonics and climate on the landscape form and underlying processes, less attention has been paid on exploring the controls of lithology on erosion. The Central European Alps are characterized by a large spatial variability in exposed lithologies and as such offer an ideal laboratory to investigate the lithological controls on erosion and landscape form. Here, we focus on the ca. 5400 km2-large upper Rhône basin situated in the Central Swiss Alps to explore how the lithological architecture of the bedrock conditions the Alpine landscape. To this extent, we extract geomorphological parameters along the channels of ca. 50 tributary basins, whose catchments are located in either granitic basement rocks (External massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles show that all tributary rivers within the Rhône basin are in topographic transient state as testified by mainly convex or concave-convex longitudinal stream channel profiles with several knickpoints of either tectonic or glacial origin. In addition, although the entire Rhône basin shows a strong glacial inheritance (and is still partly glaciated) and some of the highest uplift rates recently measured in the Alps, the river network has responded differently to those perturbations as revealed by the morphometric data. In particular, tributary basins in the Helvetic nappes are the most equilibrated (concave river profiles, overall lower elevations, less steep slope gradients and lowest hypsometric integrals), while the tributaries located in the External massifs are least equilibrated, where streams yield strong convex long profiles, and where the tributary basins have the highest hypsometric integral and reveal the steepest hillslopes. We interpret this pattern to reflect differences in response times of the fluvial erosion in tributary streams towards glacial and tectonic perturbations, where the corresponding lengths strongly depend on the lithology and therefore on the bedrock erodibility.
NASA Astrophysics Data System (ADS)
Finnegan, N. J.; Roe, G.; Montgomery, D. R.; Hallet, B.
2004-12-01
The fundamental role of bedrock channel incision on the evolution of mountainous topography has become a central concept in tectonic geomorphology over the past decade. During this time the stream power model of bedrock river incision has immerged as a valuable tool for exploring the dynamics of bedrock river incision in time and space. In most stream power analyses, river channel width--a necessary ingredient for calculating power or shear stress per unit of bed area--is assumed to scale solely with discharge. However, recent field-based studies provide evidence for the alternative view that channel width varies locally, much like channel slope does, in association with spatial changes in rock uplift rate and erodibility. This suggests that simple scaling relations between width and discharge, and hence estimates of stream power, don't apply in regions where rock uplift and erodibility vary spatially. It also highlights the need for an alternative to the traditional assumptions of hydraulic geometry to further investigation of the coupling between bedrock river incision and tectonic processes. Based on Manning's equation, basic mass conservation principles, and an assumption of self-similarity for channel cross sections, we present a new relation for scaling the steady-state width of bedrock river channels as a function of discharge (Q), channel slope (S), and roughness (Ks): W \\propto Q3/8S-3/16Ks1/16. In longitudinally simple, uniform-concavity rivers from the King Range in coastal Northern California, the model emulates traditional width-discharge relations that scale channel width with the square root of discharge. More significantly, our relation describes river width trends for the Yarlung Tsangpo in SE Tibet and the Wenatchee River in the Washington Cascades, both rivers that narrow considerably as they incise terrain with spatially varied rock uplift rates and/or lithology. We suggest that much of observed channel width variability is a simple consequence of the tendency for water to flow faster in steeper reaches and therefore maintain smaller channel cross sections. We demonstrate that using conventional scaling relations for bedrock channel width can significantly underestimate stream power variability in bedrock channels, and that our model improves estimates of spatial patterns of bedrock incision rates.
Cannon, W.F.; Peterman, Z.E.; Sims, P.K.
1993-01-01
A structurally simple, 35-km-thick, north facing stratigraphic succession of Late Archean to Middle Proterozoic rocks is exposed near the Montreal River, which forms the border between northern Wisconsin and Michigan. This structure, the Montreal River monocline, is composed of steeply dipping to vertical sedimentary rocks and flood basalts of the Keweenawan Supergroup (Middle Proterozoic) along the south limb of the Midcontinent rift, and disconformably underlying sedimentary rocks of the Marquette Range Supergroup (Early Proterozoic). These rocks lie on an Archean granite-greenstone complex, about 10 km of which is included in the monocline. This remarkable thickness of rocks appears to be essentially structurally intact and lacks evidence of tectonic thickening or repetition.Tilting to form the monocline resulted from southward thrusting on listric faults of crustal dimension. The faults responsible for the monocline are newly recognized components of a well-known regional fault system that partly closed and inverted the Midcontinent rift system. Resetting of biotite ages on the upper plate of the faults indicates that faulting and uplift occurred at about 1060 +/−20 Ma and followed very shortly after extension that formed the Midcontinent rift system.
Volcanic rocks cored on hess rise, Western Pacific Ocean
Vallier, T.L.; Windom, K.E.; Seifert, K.E.; Thiede, Jorn
1980-01-01
Large aseismic rises and plateaus in the western Pacific include the Ontong-Java Plateau, Magellan Rise, Shatsky Rise, Mid-Pacific Mountains, and Hess Rise. These are relatively old features that rise above surrounding sea floors as bathymetric highs. Thick sequences of carbonate sediments overlie, what are believed to be, Upper Jurassic and Lower Cretaceous volcanic pedestals. We discuss here petrological and tectonic implications of data from volcanic rocks cored on Hess Rise. The data suggest that Hess Rise originated at a spreading centre in the late early Cretaceous (Aptian-Albian stages). Subsequent off-ridge volcanism in the late Albian-early Cenomanian stages built a large archipelago of oceanic islands and seamounts composed, at least in part, of alkalic rocks. The volcanic platform subsided during its northward passage through the mid-Cretaceousequatorial zone. Faulting and uplift, and possibly volcanism, occurred in the latest Cretaceous (Campanian-Maastrichtian stages). Since then, Hess Rise continued its northward movement and subsidence. Volcanic rocks from holes drilled on Hess Rise during IPOD Leg 62 (Fig. 1) are briefly described here and we relate the petrological data to the origin and evolution of that rise. These are the first volcanic rocks reported from Hess Rise. ?? 1980 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Sanchez, J.; Mann, P.
2013-12-01
The Maracaibo block in the northwestern South America is a triangular lithotectonic terrane bounded on its western edge by the Santa Marta-Bucaramanga left-lateral strike-slip fault and the Oca-Ancon right-lateral strike-slip fault on its northern edge. These faults bound two isolated Andean ranges within the Maracaibo block: the Sierra de Santa Marta massif (SSM) in the east whose highest point is 5700 m ASL, and the Serrania del Perija (SP) to the west, whose highest point is 3600 m ASL. The two ranges are separated by an elongate, NNE-trending sedimentary basin, the Cesar-Rancheria basin (CRB). Previous thermochronological studies in the region have shown three discrete exhumation pulses from Paleocene to Miocene that are attributed to various collisional and strike events along the Caribbean margin. However the tectonic origin of the late Neogene deformation that produced the isolated, high topography of the SSM and SP has remained unclear. To establish patterns of recent uplift and associate them with a specific tectonic mechanism affecting the area, we integrated the following results: 1) analysis of stream profiles using channel normalized steepness indices and identification of slope-break knickpoints as indicators of rock uplift; 2) integration of observations from geological maps; 3) interpretation of 2D onland seismic profiles; 4) analysis of published thermochronological data; and 5) analysis of 1D/2D basin model based on well subsidence analysis from the CRB. Our results from the extraction of 550 long stream profiles from different watersheds for the SSM and SP reveal: 1) undisturbed profiles at western flank of the northern SP characterized by a few vertical-step knickpoints associated with lithology changes; in contrast the eastern flank of the northern SP shows slope-break knickpoints and changes in steepness indices increasing by a factor of ~2, all indicative of active fault control affecting this area; 2) disturbed profiles in the elevated central SP show several slope-break knickpoints and changes in steepness indices by factor of ~1.9, all indicative of fault control in this area; 3) perturbations in stream profiles with change in steepness indices by a factor of ~1.6 occur in the southern SP are interpreted as the expression of the active Santa-Marta Bucaramanga fault system, 4) although most of the knickpoints in SSM profiles seem to be associated with changes in bedrock lithology, the alignments, slope-breaking character, and change in steepness indices by factor of ~1.8-2.2 indicate active ENE-WSW fault control along the south-southeastern edge of the SSM, 5) generally undisturbed profiles at northern SSM suggest current quiescence in rock uplift in this area; and 6) basin modeling of the CRB constrain the most recent uplift event as Mio-Pliocene at rates of 0.15-0.18 mm/yr. We propose that the most likely tectonic mechanism to explain widespread active fault activity and uplift within the SSM and SP is oblique, low-angle (20 degrees), southeastward subduction of the Caribbean plate beneath the area. The present rate of subduction and length of slab would have initiated uplift and fault activity at Early Miocene.
Stratigraphy and structure of eastern Syria across the Euphrates depression
NASA Astrophysics Data System (ADS)
Sawaf, Tarif; Al-Saad, Damen; Gebran, Ali; Barazangi, Muawia; Best, John A.; Chaimov, Thomas A.
1993-04-01
A N-S crustal-scale geotransect across the northern Arabian platform in eastern Syria reveals an alternating series of basement uplifts and basins separated by predominantly transpressional fault zones above an effectively uniform crust. Four major tectonic provinces are crossed along a 325 × 100 km corridor that extends from the Iraqi border in the south to the Turkish border in the north: the Rutbah uplift, the Euphrates depression, the Abd el Aziz structural zone, and the Qamichli uplift. These features are the manifestations of reactivated pre-Cenozoic structures that responded to forces acting along nearby Arabian plate boundaries, particularly Cenozoic convergence and collision along the margins of the northern Arabian platform i.e., the Bitlis suture and the East Anatolian fault in southern Turkey and the Zagros suture in Iran and Iraq. The database for this study consists of 3000 km of industry seismic reflection data, 28 exploratory wells, and geologic and Bouguer gravity maps. The deep crustal structure and, in part, the basement geometry along this transect are inferred from two-dimensional modeling of Bouguer gravity, whereas the shallow (about 8 km) structure is constrained primarily by well and seismic data. Features of the geotransect reveal: (1) A relatively uniform crustal column approximately 37 km thick with only minor crustal thinning beneath the Euphrates. Crustal thinning may be slightly more pronounced beneath the Euphrates (about 35 km) to the southeast of the transect where the Bouguer gravity anomaly is slightly higher. (2) Along the Euphrates depression, ongoing subsidence, which began during the Late Cretaceous, resulted in the deposition of at least 3 km of Late Cretaceous and Cenozoic rocks. The structural complexity of the Paleozoic and most of the Mesozoic sedimentary sections along the transect contrasts markedly with a relatively simple, flat-lying Cenozoic section along most of the transect. A notable exception is the Abd el Aziz uplift, where Cenozoic rocks are strongly deformed. (3) While Euphrates subsidence continued throughout the Cenozoic, the inversion of the E-W-trending Abd el Aziz structure into a fault-bounded tilted block began in the Miocene, perhaps as a response to the last episode of intense Miocene collision along the nearby Bitlis and Zagros suture zones.
Exposed Fractured Bedrock in the Central Pit of a Crater
2016-11-09
This HiRISE image shows the central pit feature of an approximately 20-kilometer diameter complex crater in located at 304.480 degrees east, -11.860 degrees south, just north of the Valles Marineris. Here we can observe a partial ring of light-toned, massive and fractured bedrock, which has been exposed by the impact-forming event, and via subsequent erosion that typically obscure the bedrock of complex central features. Features such as this one are of particular interest as they provide scientists with numerous exposures of bedrock that can be readily observed from orbit and originate from the deep Martian subsurface. Unlike on Earth, plate tectonics do not appear to be active on Mars. Thus, much of the Martian subsurface is not directly observable through uplift, erosion and exposure of mountain chains, which provide the majority of bedrock exposures on Earth. Exposures of subsurface materials generated by these features provides us with some of the only "windows" into the subsurface geology. This makes the study of impact craters an invaluable source of information when trying to understand, not only the impact process, but also the composition and history of Mars. Although much of what we see here is composed of massive and fractured bedrock, there are zones of rock fragmentation, called "brecciation." These fragmented rocks (a.k.a., breccias) are best viewed in the eastern portion of the central pit, which was captured in a previous HiRISE image. Additionally, we see some occurrences of impact melt-bearing deposits that surround and coat the bedrock exposed within the central pit. Several dunes are on the surface throughout the central pit and surrounding crater floor. The mechanisms behind the formation of central features, particularly central pits, are not completely understood. Geologic mapping of these circumferential "mega" blocks of bedrock indicate radial and concentric fracturing that is consistent with deformation through uplift. The exposed bedrock shows well-expressed lineament features that are likely fractures and faults formed during the uplift process. Studies of the bedrock, and such structures in this image, allows us better to understand the formative events and physical processes responsible for their formation. Current research suggests that their formation is the result of some component of uplift followed by collapse. http://photojournal.jpl.nasa.gov/catalog/PIA21205
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.
2017-12-01
The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show that it is part of the Grenville orogenic belt, characterized by 1230 Ma magmatism, and that it experienced Cryogenian-Eocambrian intraplate magmatism as well. Significant correlations between DRU and the Cuyania terrane imply that both participated in Rodinia rifting and creation of the southern Laurentian margin.
Potentiometric surface of the Minnekahta Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Minnekahta aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Minnekahta aquifer.
Potentiometric surface of the Inyan Kara Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Inyan Kara aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Inyan Kara aquifer.
Potentiometric surface of the Deadwood Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Deadwood aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Deadwood aquifer.
Potentiometric surface of the Minnelusa Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Minnelusa aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Minnelusa aquifer.
Potentiometric surface of the Madison Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory L.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Madison aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Madison aquifer.
NASA Astrophysics Data System (ADS)
Sherrod, B. L.
2014-12-01
Three reverse faults in northwestern Washington - the Seattle, Tacoma, and Birch Bay faults - experienced late Holocene earthquakes. Warped intertidal platforms in the hanging wall of each fault formed broad anticlines as a result of deformation during these three earthquakes. Estimates of past deformation rely on differencing raised shoreline features and corresponding modern features. I utilized profiles of LiDAR digital elevation models to calculate prehistoric (647 profiles) and modern shoreline angles (507 profiles) and used these angles to quantify the shape and amount of deformation of each anticline. I calculated shoreline angle elevations by visually fitting lines to modern and uplifted intertidal surfaces and adjacent shoreline cliffs. The intersection of the two fitted lines is the shoreline angle. Mean elevations of modern shoreline angles for 6 shoreline areas in northern Puget Sound and the Strait of Georgia (n=507) lie within 2-46 cm of mean tide level. Three additional shoreline areas in southern Puget Sound have modern shoreline angles closer to mean higher high water (within 22-88 cm) and lie in areas with less fetch and greater tidal range than sites in northern Puget Sound and the Straits of Georgia. A M>7 earthquake ~1.1 ka on the Seattle fault lifted a broad platform cut on sedimentary rocks out of the intertidal zone. Profiles of the platform at three locations along the western end of the Seattle fault zone define an anticline 8-10 km wide (orthogonal to the fault) with a maximum uplift during the earthquake of ~5-8 m. Another large earthquake ~1.1 ka uplifted an intertidal platform along the western part of the Tacoma fault. The raised platform formed an anticline ~10 km wide (orthogonal to the fault) with a maximum uplift of ~5 m. An earthquake ~1.2 ka raised shorelines in the hanging wall of the Birch Bay fault above an anticline observed on seismic reflection profiles near Bellingham, WA. Only part of the anticline is expressed in raised shorelines because shoreline angles are not preserved in the northern limb of the anticline. Estimated width of the anticline is ~8 km with a maximum uplift of 2.5 m. Ongoing elastic half-space modeling is intended to match profiles of each raised shoreline in order to estimate fault geometries and earthquake magnitudes required to produce the observed uplift profiles.
NASA Astrophysics Data System (ADS)
Schaaf, P. E. G.; Solis-Pichardo, G.; Hernandez-Trevino, T.; Villanueva, D.; Arrieta, G. F.; Rochin, H.; Rodriguez, L. F.; Bohnel, H.; Weber, B.
2015-12-01
Islas Marias Archipelago consists of four islands located in the mouth of the Gulf of California. Lithologically three of them (Maria Madre, San Juanito, and Maria Cleofas) are quite similar with a 165-170 Ma metamorphic basement, 75-85 Ma intrusive and extrusive rocks, and a sedimentary sandstone cover, which according to its foraminiferous content recorded multiple uplift and subsidence events related to the opening of the Gulf. However, these units are absent on Maria Magdalena island which is positioned between the other islands. Here, instead, oceanic lithosphere with pillow lavas and gabbroic sills, intercalated with sandstones form the dominant outcrops. Their geochemical and isotopic characteristics are similar to N-MORB with epsilon Nd values around +10 and 87Sr/86Sr of 0.70290. The gabbros are not older than 22 Ma. Magdalena island was obviously uplifted separately from the other islands of the archipelago, probably along a now hidden transform fault system along the East Pacific Rise. Metamorphic and igneous rocks of the other islands can be correlated to lithologically similar units in the Los Cabos Block, Baja California, or to the continental margin units in Sinaloa, Nayarit and Jalisco states when looking at their geochemical and geochronological signatures. Paleomagnetic studies on 35 sampling sites from all 4 islands give evidence for relatively small scale tectonic movements.
Dusel-Bacon, Cynthia; Bacon, Charles R.; O'Sullivan, Paul B.; Day, Warren C.
2016-01-01
The origin and antiquity of the subdued topography of the Yukon–Tanana Upland (YTU), the physiographic province between the Denali and Tintina faults, are unresolved questions in the geologic history of interior Alaska and adjacent Yukon. We present apatite fission-track (AFT) results for 33 samples from the 2300 km2 western Fortymile district in the YTU in Alaska and propose an exhumation model that is consistent with preservation of volcanic rocks in valleys that requires base level stability of several drainages since latest Cretaceous–Paleocene time. AFT thermochronology indicates widespread cooling below ∼110 °C at ∼56–47 Ma (early Eocene) and ∼44–36 Ma (middle Eocene). Samples with ∼33–27, ∼19, and ∼10 Ma AFT ages, obtained near a major northeast-trending fault zone, apparently reflect hydrothermal fluid flow. Uplift and erosion following ∼107 Ma magmatism exposed plutonic rocks to different extents in various crustal blocks by latest Cretaceous time. We interpret the Eocene AFT ages to suggest that higher elevations were eroded during the Paleogene subtropical climate of the subarctic, while base level remained essentially stable. Tertiary basins outboard of the YTU contain sediment that may account for the required >2 km of removed overburden that was not carried to the sea by the ancestral Yukon River system. We consider a climate driven explanation for the Eocene AFT ages to be most consistent with geologic constraints in concert with block faulting related to translation on the Denali and Tintina faults resulting from oblique subduction along the southern margin of Alaska.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadon, G.C.; Lorenz, J.C.; Lafrenier, L.
1996-01-01
The Molina Member of the Wasatch Formation is a primary objective for light gas sandstone production. The G-Sandstone unit of the Molina produces an average of 200 MCFGPD. The chert-rich sandstones and conglomerates of the Molina Member, which are exposed in two subparallel belts on the western and eastern sides of the basin, are strikingly different from the remainder of the Wasatch formation. The underlying Atwell Gulch Member and overlying Shire Member are composed of floodplain mudstones with well developed paleosols and rare, lenticular channel sandstones. Both units are interpreted as anastomosed fluvial deposits. The Molina Member, which varies frommore » 32-118 m thick and in places contains clasts >0.2 m, is more difficult to interpret. Different portions of individual sections contain significant proportions of parallel laminated sandstones up to 5 m thick and several hundred meters wide. These parallel laminated sandstones are most common to the north along the western outcrop bell. They are interbedded with sandstones and conglomerates that are typical of a braided fluvial deposit. The contact between the two fluvial styles is sharp but conformable. The Molina Member therefore represents a perturbation in fluvial style from suspended-load to bedload and back to suspended-load over a restricted time interval. This may be the product of a change in climate, i.e., a change in rainfall amount or timing in the source area, source rock, e.g., the unroofing of a Jurassic eolian sandstone, or an increase in the depositional slope due to uplift. The return to a mud-dominated depositional system in the Shire Member argues for either climatic or source-rock variations as the primary control of the fluvial style.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadon, G.C.; Lorenz, J.C.; Lafrenier, L.
1996-12-31
The Molina Member of the Wasatch Formation is a primary objective for light gas sandstone production. The G-Sandstone unit of the Molina produces an average of 200 MCFGPD. The chert-rich sandstones and conglomerates of the Molina Member, which are exposed in two subparallel belts on the western and eastern sides of the basin, are strikingly different from the remainder of the Wasatch formation. The underlying Atwell Gulch Member and overlying Shire Member are composed of floodplain mudstones with well developed paleosols and rare, lenticular channel sandstones. Both units are interpreted as anastomosed fluvial deposits. The Molina Member, which varies frommore » 32-118 m thick and in places contains clasts >0.2 m, is more difficult to interpret. Different portions of individual sections contain significant proportions of parallel laminated sandstones up to 5 m thick and several hundred meters wide. These parallel laminated sandstones are most common to the north along the western outcrop bell. They are interbedded with sandstones and conglomerates that are typical of a braided fluvial deposit. The contact between the two fluvial styles is sharp but conformable. The Molina Member therefore represents a perturbation in fluvial style from suspended-load to bedload and back to suspended-load over a restricted time interval. This may be the product of a change in climate, i.e., a change in rainfall amount or timing in the source area, source rock, e.g., the unroofing of a Jurassic eolian sandstone, or an increase in the depositional slope due to uplift. The return to a mud-dominated depositional system in the Shire Member argues for either climatic or source-rock variations as the primary control of the fluvial style.« less
An alternative hypothesis for the mid-Paleozoic Antler orogeny in Nevada
Ketner, Keith B.
2012-01-01
A great volume of Mississippian orogenic deposits supports the concept of a mid-Paleozoic orogeny in Nevada, and the existence and timing of that event are not questioned here. The nature of the orogeny is problematic, however, and new ideas are called for. The cause of the Antler orogeny, long ascribed to plate convergence, is here attributed to left-lateral north-south strike-slip faulting in northwestern Nevada. The stratigraphic evidence originally provided in support of an associated regional thrust fault, the Roberts Mountains thrust, is now known to be invalid, and abundant, detailed map evidence testifies to post-Antler ages of virtually all large folds and thrust faults in the region. The Antler orogeny was not characterized by obduction of the Roberts Mountains allochthon; rocks composing the "allochthon" essentially were deposited in situ. Instead, the orogeny was characterized by appearance of an elongate north-northeast-trending uplift through central Nevada and by two parallel flanking depressions. The eastern depression was the Antler foreland trough, into which sediments flowed from both east and west in the Mississippian. The western depression was the Antler hinterland trough into which sediments also flowed from both east and west during the Mississippian. West of the hinterland trough, across a left-lateral strike-slip fault, an exotic landmass originally attached to the northwestern part of the North American continent was moved southward 1700 km along a strike-slip fault. An array of isolated blocks of shelf carbonate rocks, long thought to be autochthonous exposures in windows of the Roberts Mountains allochthon, is proposed here as an array of gravity-driven slide blocks dislodged from the shelf, probably initiated by the Late Devonian Alamo impact event.
Epstein, J.B.
1986-01-01
The rocks in the area, which range from Middle Ordovician to Late Devonian in age, are more than 7620 m thick. This diversified group of sedimentary rocks was deposited in many different environments, ranging from deep sea, through neritic and tidal, to alluvial. In general, the Middle Ordovician through Lower Devonian strata are a sedimentary cycle related to the waxing and waning of Taconic tectonism. The sequence began with a greywacke-argillite suite (Martinsburg Formation) representing synorogenic basin deepening. This was followed by basin filling and progradation of a sandstone-shale clastic wedge (Shawangunk Formation and Bloomsburg Red Beds) derived from the erosion of the mountains that were uplifted during the Taconic orogeny. The sequence ended with deposition of many thin units of carbonate, sandstone, and shale on a shelf marginal to a land area of low relief. Another tectonic-sedimentary cycle, related to the Acadian orogeny, began with deposition of Middle Devonian rocks. Deep-water shales (Marcellus Shale) preceded shoaling (Mahantango Formation) and turbidite sedimentation (Trimmers Rock Formation) followed by another molasse (Catskill Formation). -from Author
The dynamics of sediment size and transient erosional signals in heterogeneous lithologies
NASA Astrophysics Data System (ADS)
Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.
2017-12-01
Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon preservation of a base level change signal in low order streams. This result implies that transient erosion signals inferred using topography can be transformed or destroyed in certain lithologies, complicating efforts to infer climatic and tectonic history from topography.
6. Photograph of a photograph in possession of Rock Island ...
6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. FIRST FLOOR, EAST WING, SHOWING BELT-DRIVEN EQUIPMENT (LATHES, DRILLS, SCREW MACHINES) USED IN MACHINING COMPONENTS FOR ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL
Convection-driven tectonics on Venus
NASA Astrophysics Data System (ADS)
Phillips, R. J.
1990-02-01
An analysis is presented of convective stress coupling to an elastic lithosphere as applied to Venus. Theoretical solutions are introduced for the response of a mathematically thick elastic plate overlying a Newtonian viscous medium with an exponential depth dependence of viscosity, and a Green's function solution is obtained for the viscous flow driven by a harmonic density distribution at a specified depth. An elastic-plastic analysis is carried out for the deformation of a model Venus lithosphere. The results predict that dynamic uplift of Venusian topography must be accompanied by extensive brittle failure and viscous flow in the lithosphere.
NASA Astrophysics Data System (ADS)
Hou, M.; Zhuang, G.; Wu, M.
2017-12-01
Topics about the deformation history and uplift mechanism of Tibetan Plateau have been largely debated in the past few decades. Different geodynamic models present different predictions on the mountain building processes and hence the surface uplift history. For example, one tectonic model suggests a rapid uplift (>1.0 to 2.0 km) of the Tibetan Plateau in the period of ca. 10 to 8 Ma as result of isostatic rebound due to the removal of over-thickened mental lithosphere beneath. Whilst the stepwise uplift model infers that the high topography was growing progressively from south to north with the Northeast Tibetan Plateau being built in the Pliocene to present. In this case, the timing of Cenozoic uplift of Northeast Tibetan Plateau would provide information for distinguishing competing geodynamic processes. The stable isotope based paleoaltimetry holds the key to answering when the high topography was built. Additionally, the evolution of Cenozoic Asian climate was argued to be closely related to the high topography built up on the Tibetan Plateau since the India-Asian collision and/or impacted by the global change. To understand when the high topography was built and how the growth of Tibetan Plateau impacted the climate, we reconstructed the long-term histories of paleohydrology from hinterland and foreland basins in the Northeast Tibetan Plateau. We applied the compound-specific isotope hydrogen analysis to leaf wax n-alkanes (δ2Hn-alk) that are preserved in well-dated stratigraphic series (ca. 24 Ma to the present) in the Northeast Tibetan Plateau. The newly reconstructed δ2Hn-alk supports the inference of high topography on the Northeast Tibetan Plateau was built during the middle to late Miocene. Our inference is consistent with sedimentary and basement rock studies that show fundamental changes in facies and provenance and exhumation history. The new δ2Hn-alk record also reveals that the regional climate became drier since the middle Miocene following the gain of high elevations on the plateau. Additionally, the late Cenozoic global cooling might impact the regional climate by influencing the precipitable moisture content.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Näslund, Jens-Ove; Fastook, James
2014-05-01
Observations of glacial isostatic adjustment (GIA) have been used both to study the mechanical properties of the Earth and to invert for Northern Hemisphere palaeo-ice-sheets. This is typically done by solving the sea-level equation using simplified scaling laws to control ice-sheet thickness. However, past ice-sheets can also be reconstructed based on thermo-mechanical modelling driven by palaeo-climate data, invoking simple analytical models to account for the Earth's response. Commonly, both approaches use dated geological markers to constrain the ice-sheet margin location. Irrespective of the approach, the resulting ice-sheet reconstruction depends on the earth response, although the interdependence between the ice model and the earth model differs and therefore the two types of reconstructions could provide complementary information on Earth properties. We compare a thermo-mechanical reconstruction of the Weichselian ice-sheet using the UMISM model (Näslund, 2010) to two GIA driven reconstructions, ANU (Lambeck et al., 2010) and ICE-5G (Peltier & Fairbanks, 2006), commonly used in GIA modelling. We evaluate the three reconstructions both in terms of ice-sheet configurations and predicted Fennoscandian surface deformation ICE-5G comprise the largest reconstructed ice-sheet whereas ANU and UMISM are more similar in volume and areal extent. Significant differences still exists between ANU and UMISM, especially during the final deglaciation phase. Prior to the final retreat of the ice-sheet, ICE-5G is displays a massive and more or less constant ice-sheet configuration, while both ANU and UMISM fluctuates with at times almost ice-free conditions, such as during MIS3. This results in ICE-5G being close to isostatic equilibrium at LGM, whereas ANU and UMISM are not. Hence, the pre-LGM evolution of the Weichselian ice-sheet needs to be considered in GIA studies. For example, perturbing the ANU or UMISM reconstructions we find that changes more recent than 36 kyr BP may change the predicted uplift velocities by more than 0.1 mm/yr, while changes more recent than 55 kyr BP may change the predicted uplift 10 kyr ago by more than 5 m. Despite their differences we find that all three reconstructions can equally well fit observations of the present day uplift in Fennoscandia, as well as the observed sea-level curve along the Ångerman river, Sweden, albeit with different optimal earth models. However, only for ANU can a single optimal earth model be determined as a bifurcation in the optimal viscosity arises from the generally faster present day rebound rates in ICE-5G and UMISM, resulting in a range of well-fitting earth models for the latter reconstructions. Studying models with a reasonable fit to observed present day uplift velocities we find general trends of over- and under-prediction, indicating that all three ice-sheet reconstructions need improvement. In general, all three reconstructions tend to over-predict the uplift rates in southwestern Fennoscandia, whereas over Finland ICE-5G generally over-predicts and ANU generally under-predicts the uplift rates. UMISM tend to under-predict the velocities over central to northern Sweden and similar trends can also be seen in ANU and ICE-5G.
NASA Astrophysics Data System (ADS)
Snyder, H.; Leva-Lopez, J.
2017-12-01
During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.
Neogene Uplift and Magmatism of Anatolia: Insights From Drainage Analysis and Basaltic Geochemistry
NASA Astrophysics Data System (ADS)
McNab, F.; Ball, P. W.; Hoggard, M. J.; White, N. J.
2018-01-01
It is agreed that mantle dynamics have played a role in generating and maintaining the elevated topography of Anatolia during Neogene times. However, there is debate about the relative importance of subduction zone and asthenospheric processes. Key issues concern onset and cause of regional uplift, thickness of the lithospheric plate, and the presence/absence of temperature and/or compositional anomalies within the convecting mantle. Here, we tackle these interlinked issues by analyzing and modeling two disparate suites of observations. First, a drainage inventory of 1,844 longitudinal river profiles is assembled. This database is inverted to calculate the variation of Neogene regional uplift through time and space by minimizing the misfit between observed and calculated river profiles subject to independent calibration. Our results suggest that regional uplift commenced at 20 Ma in the east and propagated westward. Second, we have assembled a database of geochemical analyses of basaltic rocks. Two different approaches have been used to quantitatively model this database with a view to determining the depth and degree of asthenospheric melting across Anatolia. Our results suggest that melting occurs at depths as shallow as 60 km in the presence of mantle potential temperatures as high as 1400°C. There is evidence that temperatures are higher in the east, consistent with the pattern of subplate shear wave velocity anomalies. Our combined results are consistent with isostatic and admittance analyses and suggest that elevated asthenospheric temperatures beneath thinned Anatolian lithosphere have played a first-order role in generating and maintaining regional dynamic topography and basaltic magmatism.
Feast to famine: Sediment supply control on Laramide basin fill
NASA Astrophysics Data System (ADS)
Carroll, Alan R.; Chetel, Lauren M.; Elliot Smith, M.
2006-03-01
Erosion of Laramide-style uplifts in the western United States exerted an important first-order influence on Paleogene sedimentation by controlling sediment supply rates to adjacent closed basins. During the latest Cretaceous through Paleocene, these uplifts exposed thick intervals of mud-rich Upper Cretaceous foreland basin fill, which was quickly eroded and redeposited. Cretaceous sedimentary lithologies dominate Paleocene conglomerate clast compositions, and the volume of eroded foreland basin strata is approximately twice the volume of preserved Paleocene basin fill. As a result of this sediment oversupply, clastic alluvial and paludal facies dominate Paleocene strata, and are associated with relatively shallow and ephemeral freshwater lake facies. In contrast, large, long-lived, carbonate-producing lakes occupied several of the basins during the Eocene. Basement-derived clasts (granite, quartzite, and other metamorphic rocks) simultaneously became abundant in lower Eocene conglomerate. We propose that Eocene lakes developed primarily due to exposure of erosion-resistant lithologies within cores of Laramide uplifts. The resultant decrease in erosion rate starved adjacent basins of sediment, allowing the widespread and prolonged deposition of organic-rich lacustrine mudstone. These observations suggest that geomorphic evolution of the surrounding landscape should be considered as a potentially important influence on sedimentation in many other interior basins, in addition to more conventionally interpreted tectonic and climatic controls.
Pierce, Kenneth L.; Morgan, Lisa A.
2009-01-01
Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.
Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.
Moretti, R; Troise, C; Sarno, F; De Natale, G
2018-05-29
Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.
NASA Astrophysics Data System (ADS)
Mark, Chris; Chew, David; Gupta, Sanjeev
2017-11-01
Complete subduction of an oceanic plate results in slab-window opening. A key uncertainty in this process is whether the higher heat flux and asthenospheric upwelling conventionally associated with slab-window opening generate a detectable topographic signature in the overriding plate. We focus on the Baja California Peninsula, which incorporates the western margin of the Gulf of California rift. The topography and tectonics of the rift flank along the peninsula are strongly bimodal. North of the Puertecitos accommodation zone, the primary drainage divide attains a mean elevation of ca. 1600 m above sea level (asl), above an asthenospheric slab-window opened by Pacific-Farallon spreading ridge subduction along this section of the trench at ca. 17-15 Ma. To the south, mean topography decreases abruptly to ca. 800 m asl (excluding the structurally distinct Los Cabos block at the southern tip of the peninsula), above fragments of the oceanic Farallon slab which stalled following slab tear-off at ca. 15-14 Ma. Along the peninsula, a low-relief surface established atop Miocene subduction-related volcaniclastic units has been incised by a west-draining canyon network in response to uplift. These canyons exhibit cut-and-fill relationships with widespread post-subduction lavas. Here, we utilise LANDSAT and digital elevation model (DEM) data, integrated with previously published K-Ar and 40Ar/39Ar lava crystallisation ages, to constrain the onset of rift flank uplift to ca. 9-5 Ma later than slab-window formation in the north and ca. 11-10 Ma later in the south. These greatly exceed response time estimates of ca. 2 Ma or less for uplift triggered by slab-window opening. Instead, uplift timing of the high-elevation northern region is consistent with lower-lithospheric erosion driven by rift-related convective upwelling. To the south, stalled slab fragments likely inhibited convective return flow, preventing lithospheric erosion and limiting uplift to the isostatic response to crustal unloading during rifting.
Tilting, burial, and uplift of the Guadalupe Igneous Complex, Sierra Nevada, California
Haeussler, Peter J.; Paterson, Scott R.
1993-01-01
It is often incorrectly assumed that plutons have a relatively uneventful structural history after emplacement. The 151 Ma Guadalupe Igneous Complex (GIC) in the Foothills Terrane, California, was involved in three post-emplacement events: (1) ∼30° of southwestside-up tilting during ductile regional faulting and contraction, (2) burial of the pluton from ∼4 to 12 km during crustal thickening of the wall rocks, and (3) uplift with only minor tilting in the Late Cretaceous. Tilting of the pluton is indicated by (1) southwest to northeast gradational changes from layered gabbros and diorites to granites and granophyres; (2) northeastward dips of layering in gabbro, internal contacts, and bedding of overlying coeval(?) volcanic rocks; (3) northeastward decrease in wall-rock metamorphic grade; and (4) paleomagnetic data from 14 localities across the pluton. We argue that tilting occurred between 146-135 Ma during southwest-northeast-directed regional contraction. This contraction is indicated by widespread folds and cleavages and by reverse motion on the Bear Mountains fault zone (BMFZ), a large northeast-dipping shear zone that bounds the GIC on its southwest side. Burial of the GIC, which overlapped in time but outlasted tilting, is suggested by (1) post-emplacement contractional faulting, folding, and cleavage development; (2) analyses of strains associated with widespread cleavage that indicate vertical thickening of ∼100% and (3) microstructural and mineral assemblage data that indicate shallow emplacement of the GIC, in contrast to mineral assemblage and limited geobarometric data from adjacent 120-110 Ma plutons that indicate moderate emplacement levels. Late Cretaceous uplift is indicated by 95-75 Ma sedimentary rocks that unconformably overlie the 120-110 Ma plutons.This geologic history is interesting for several reasons. First, although the GIC participated in extensive post-emplacement deformation, it lacks internal structural evidence of these events, except locally along the Bear Mountains fault zone. Second, the agreement between paleomagnetic and structural evidence for tilting suggests that no large latitudinal displacement of the GIC is required. Third, the paleomagnetic data also help to define the geometry of the magma chamber now represented by the GIC. Lack of streaking of paleomagnetic site-mean directions demonstrates that the pluton acted as a single unit after cooling through the blocking temperature (450-560 °C) of low-titanium titanomagnetite; however, variations in the dip of internal layering and contacts, from 70° at the base to 30° near the top of the pluton, indicate that not all of these features were horizontal and planar when they formed. We propose that this variation in dip of layering is most consistent with sidewall crystallization of magma resulting in drape of layering along the walls of the intrusion. Therefore, internal layering within this pluton does not record paleohorizontal.
NASA Astrophysics Data System (ADS)
Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn
2016-04-01
The caldera of Campi Flegrei is one of the active hydrothermal systems of the Mediterranean region experiencing notable unrest episodes in a densely populated area. During the last crisis of 1982-1984, nearly 40,000 people were evacuated for almost two years from the main town of Pozzuoli, the Roman Puteoli, due to the large uplifts (~2 m over two years) and the persistent seismic activity. The evacuation severely hampered the economy and the social make-up of the community, which included the relocation of schools and commercial shops as well as the harbor being rendered useless for docking. Despite the large uplifts, the release of strain appears delayed. Seismicity begins and reaches a magnitude of 4.0 only upon relatively large uplifts (~ 70-80 cm) contrary to what is generally observed for calderas exhibiting much lower deformation levels. Over and above the specific mechanism causing the unrest and the lack of identification of a shallow magmatic reservoir (< 4 km) by seismic data, there is a core question of how the subsurface rocks of Campi Flegrei withstand a large strain and have high strength. We performed a series of direct measurements on deep well cores by combining high-resolution microstructural and mineralogical analyses with the elastic and mechanical properties of well cores from the deep wells drilled in the area right before the unrest of 1982-1984 - San Vito (SV1 and SV2) and Mofete (MF1, MF2, MF5). The rock physics analysis of the well cores provides evidence for the existence of two horizons, above and below the seismogenic area, underlying a natural, coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix made of intertwining filaments of ettringite and tobemorite, resulting from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that engineering the mortar of the Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture. The importance of the findings reported in this study lies not only on the fibrous and compositionally nature of the caprock but also on its possible physicochemical deterioration. Given the P-T-XCO2 conditions regulating the decarbonation reactions, the influx of new fluids into the Campi Flegrei system lowers the temperature of the decarbonation reaction and dilutes the existing CO2, thus triggering additional CO2, methane, and steam to form. As these gases rise toward the surface, the natural cement layer halts them, leading to pore pressure increase and subsequent ground deformations.
Growth and erosion of mountain ranges at the northeastern margin of Tibet
NASA Astrophysics Data System (ADS)
Hetzel, Ralf; Palumbo, Luigi; Giese, Jörg; Guo, Jianming
2010-05-01
The hypothesis that mountain belts may reach a steady state, in which rock uplift is balanced by erosion, has been supported by numerous field studies and numerical models. The early evolution of mountain ranges, however, and especially the relation between fault growth and topographic response has received little attention. By using a space-for-time substitution we illustrate how active thrust faults and small, fault-bounded mountain ranges evolve into mature mountain chains that will ultimately be incorporated into the laterally growing Tibetan Plateau. At an early stage of development, when faults propagate laterally, slip rates are constant along strike [1-3]. As long as no significant topographic relief has developed, tectonic uplift is at least an order of magnitude faster than the rate of erosion [2,4]. During progressive relief growth and the establishment of drainage basins, erosion of the rising mountain ranges becomes more important, but the studied ranges are still in a pre-steady state and continue to grow both vertically and laterally [5]. During this stage the rate of erosion is linearly correlated to the mean hillslope gradient and the mean local relief, if differences in lithology or rock strength are negligible [6]. The rate of relief growth may be inferred from the difference between local erosion rates on ridge crests and catchment-wide denudation rates [7] - the latter may be taken as a surrogate for the rate of river incision. As hillslopes approach a threshold value, landsliding becomes the dominant process of mass transport and erosion rates increase non-linearly with slope. Once a steady state has been reached, the erosion rate is equal to the rate of rock uplift. A key problem is how the rate of rock uplift can be quantified in such regions, because the stochastic distribution of landslides causes the denudation rates inferred from 10Be in river sediment to be highly variable [8]. References [1] Hetzel et al. (2004). Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet. Terra Nova 16, 157-162. [2] Hetzel et al. (2002). Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417, 428-432. [3] Hetzel et al. (2004). Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau, Tectonics 23, TC6006, doi:10.1029/2004TC001653. [4] Goethals et al. (2009). Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103, 401-413. [5] Palumbo et al. (2009). Deciphering the rate of mountain growth during topographic presteady state: an example from the NE margin of the Tibetan Plateau. Tectonics 28, TC4017, doi:10.1029/2009TC002455. [6] Palumbo et al. (in press). Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology, doi:10.1016/j.geomorph.2009.11.019. [7] Meyer et al. (in press). Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany. Earth and Planetary Science Letters. [8] Densmore et al. (2009). Spatial variations in catchment-averaged denudation rates from normal fault footwalls. Geology 37, 1139-1142.
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.
2004-12-01
The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.
NASA Astrophysics Data System (ADS)
Berryman, Kelvin; Clark, Kate; Cochran, Ursula; Beu, Alan; Irwin, Sarah
2018-04-01
At Table Cape, Mahia Peninsula, North Island, New Zealand, four marine terraces have been uplifted coseismically during the past 3500 years. Detailed facies assessment of the terrace coverbed sequence coupled with identification of modern analogues on the active shore platform were used to infer the process of marine terrace formation and to estimate the timing and amount of past uplift events (earthquakes). The modern platform can be subdivided into seven depositional zones: subtidal, outer platform, intertidal sand pockets, inner platform, high-tide, mid-storm, and storm beach. Terrace coverbeds were characterised from two trenches excavated across the full width of the uplifted terrace sequence. Off-lapping packages of high tidal, mid-storm, and storm beach sediments were most common. Outer platform sediments occurred only rarely near the base of some uplifted shore platforms. Overlying the marine sediments were near-horizontal terrestrial deposits of airfall tephra (on the two highest terraces), subsoil, topsoil, rare wedges of colluvial sediment (slopewash) shed from terrace risers, and an anomalous deposit possibly emplaced by a tsunami. Fifty-one radiocarbon ages, obtained from molluscs in the marine coverbeds, showed a general pattern of seaward-younging across the coastal plain and across each terrace and a less pronounced pattern of decreasing age upward in each coverbed sequence. The distinctive stepped geomorphology of the terraces, the facies and age structure of the terrace deposits and historical earthquake causation of similar terraces elsewhere in New Zealand provided the data to invoke an earthquake-driven model for terrace formation. Marine terrace development following an uplift event involved rapid cutting of a new intertidal shore platform and generally regressive deposition of high-tide to storm beach deposits. Following further uplift, the platform became a geomorphic terrace (above marine influence) and was then mantled by terrestrial sediments. On the two highest terraces at Table Cape, airfall tephras mantling the marine coverbeds provided a minimum age for terrace uplift. The youngest radiocarbon ages from high-tide deposits high in the stratigraphy and near the seaward edge of each terrace provided the best estimates for the timing of uplift. Based on the new radiocarbon ages and the constraining airfall tephra ages, we revised the earthquake ages to 3530-3350, 1810-1730, 1560-1300 and 300-100 cal. YBP. Associated best estimates of the coseismic uplift amounts were 2.1, 1.4, 1.8, and 3.1 m respectively, once we accounted for eustatic sea level changes through the late Holocene.
Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock
NASA Astrophysics Data System (ADS)
Fareo, A. G.; Mason, D. P.
2016-06-01
Group invariant analytical and numerical solutions for the evolution of a two-dimensional fracture with nonzero initial length in permeable rock and driven by an incompressible non-Newtonian fluid of power-law rheology are obtained. The effect of fluid leak-off on the evolution of the power-law fluid fracture is investigated.
NASA Astrophysics Data System (ADS)
Rosenberg, R. H.; Kirby, E.; Aslan, A.; Karlstrom, K. E.; Heizler, M. T.; Kelley, S. A.; Piotraschke, R. E.; Furlong, K. P.
2011-12-01
It is increasingly recognized that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky Mountain province of the western United States, recent seismic deployments reveal intriguing correlations between anomalies in the velocity structure of the upper mantle and regions of high topography. Here, we investigate whether regional correlations between upper-mantle structure and topography are associated with the history of Late Cenozoic fluvial incision and exhumation. Major tributaries of the upper Colorado River, including the Gunnison and Dolores Rivers, which drain high topography in central and western Colorado overlie upper mantle with slow seismic wave velocities; these drainages exhibit relatively steep longitudinal profiles (normalized for differences in drainage area and discharge) and are associated with ~1000-1500 m of incision over the past 10 Ma. In contrast, tributaries of the Green River that drain the western slope in northern Colorado (White, Yampa, and Little Snake Rivers) overlie mantle of progressively higher seismic wave velocities. River profiles in northern Colorado are two to three times less steep along reaches with comparable bedrock lithologies. New Ar39/Ar40 ages on ~11 Ma basalt flows capping the Tertiary Brown's Park Formation in northern Colorado indicate that the magnitude of exhumation along these profiles ranges from ~400 - 600 m over this time interval. The correspondence of steep river profiles in regions of greater incision implies that the fluvial systems are dynamically adjusting to an external forcing. New constraints on the exhumation history of the upper Colorado River from apatite fission track ages in boreholes near Rifle, Colorado are best explained by an onset of exhumation at ca. 8-10 Ma. Thus, relative base level fall associated with development of Grand Canyon (ca. 6-5 Ma) does not explain the regional onset of incision along the western slope of the Rockies. Additionally, new cosmogenic burial ages from fan-terrace complexes near Rifle, Colorado show that Colorado River incision occurred at similar rates over both 10 Ma and 2 Ma timescales. Fluvial incision in response to relative base level fall or to changes in regional climate cannot easily explain the history of differential incision along the western slope. Given the correspondence of steep channels, large magnitude incision and regions of low seismic velocity mantle, we suggest that differential rock uplift, driven, in part, by differences in the buoyancy and/or convective flow of the mantle beneath western Colorado is the likely driver for Neogene incision.
Dechesne, Marieke; Cole, James Channing; Trexler, James H.; Cashman, Patricia; Peterson, Christopher D
2013-01-01
The Paleogene sedimentary deposits of the Colorado Headwaters Basin provide a detailed proxy record of regional deformation and basin subsidence during the Laramide orogeny in north-central Colorado and southern Wyoming. This field trip presents extensive evidence from sedimentology, stratigraphy, structure, palynology, and isotope geochronology that shows a complex history that is markedly different from other Laramide synorogenic basins in the vicinity.We show that the basin area was deformed by faulting and folding before, during, and after deposition of the Paleogene rocks. Internal unconformities have been identified that further reflect the interaction of deformation, subsidence, and sedimentation. Uplift of Proterozoic basement blocks that make up the surrounding mountain ranges today occurred late in basin history. Evidence is given to reinterpret the Independence Mountain uplift as the result of significant normal faulting (not thrusting), probably in middle Tertiary time.While the Denver and Cheyenne Basins to the east were subsiding and accumulating sediment during Late Cretaceous time, the Colorado Headwaters Basin region was experiencing vertical uplift and erosion. At least 1200 m of the upper part of the marine Upper Cretaceous Pierre Shale was regionally removed, along with Fox Hills Sandstone shoreline deposits of the receding Interior Seaway as well as any Laramie Formation–type continental deposits. Subsidence did not begin in the Colorado Headwaters Basin until after 60.5 Ma, when coarse, chaotic, debris-flow deposits of the Paleocene Windy Gap Volcanic Member of the Middle Park Formation began to accumulate along the southern basin margin. These volcaniclastic conglomerate deposits were derived from local, mafic-alkalic volcanic sources (and transitory deposits in the drainage basin), and were rapidly transported into a deep lake system by sediment gravity currents. The southern part of the basin subsided rapidly (roughly 750–1000 m/m.y.) and the drainage system delivered increasing proportions of arkosic debris from uplifted Proterozoic basement and more intermediate-composition volcanic-porphyry materials from central Colorado sources.Other margins of the Colorado Headwaters Basin subsided at slightly different times. Subsidence was preceded by variable amounts of gentle tilting and localized block-fault uplifts. The north-central part of the basin that was least-eroded in early Paleocene time was structurally inverted and became the locus of greatest subsidence during later Paleocene-Eocene time. Middle Paleocene coal-mires formed in the topographically lowest eastern part of the basin, but the basin center migrated to the western side by Eocene time when coal was deposited in the Coalmont district. In between, persistent lakes of variable depths characterized the central basin area, as evidenced by well-preserved deltaic facies.Fault-fold deformation within the Colorado Headwaters Basin strongly affected the Paleocene fluvial-lacustrine deposits, as reflected in the steep limbs of anticline-syncline pairs within the McCallum fold belt and the steep margins of the Breccia Spoon syncline. Slivers of Proterozoic basement rock were also elevated on steep reverse faults in late Paleocene time along the Delaney Butte–Sheep Mountain–Boettcher Ridge structure. Eocene deposits, by and large, are only gently folded within the Colorado Headwaters Basin and thus reflect a change in deformation history.The Paleogene deposits of the Colorado Headwaters Basin today represent only a fragment of the original extent of the depositional basin. Basal, coarse conglomerate deposits that suggest proximity to an active basin margin are relatively rare and are limited to the southern and northwestern margins of the relict basin. The northeastern margin of the preserved Paleogene section is conspicuously fine-grained, which indicates that any contemporaneous marginal uplift was far removed from the current extent of preserved fluvial-lacustrine sediments. The conspicuous basement uplifts of Proterozoic rock that flank the current relict Paleogene basin deposits are largely post-middle Eocene in age and are not associated with any Laramide synuplift fluvial deposits.The east-west–trending Independence Mountain fault system that truncates the Colorado Headwaters Basin on the north with an uplifted Proterozoic basement block is reinterpreted in this report. Numerous prior analyses had concluded that the fault was a low-angle, south-directed Laramide thrust that overlapped the northern margin of the basin. We conclude instead that the fault is more likely a Neogene normal fault that truncates all prior structure and belongs to a family of sub-parallel west-northwest–trending normal faults that offset upper Oligocene-Miocene fluvial deposits of the Browns Park–North Park Formations.
Walsh, G.J.; Aleinikoff, J.N.; Wintsch, R.P.
2007-01-01
Geologic mapping, structural analysis, and geochronology in the area of the Lyme dome, southern Connecticut provides constraints on the origin of the rocks in the core of the dome, the absolute timing of the principal deformational and thermal events attributed to Alleghanian orogenesis, and the processes that generated the dome. Detrital zircon geochronology in combination with ages on intrusive rocks brackets the deposition of quartzite in the core of the dome sometime between ca. 925 and 620 Ma. Granite and granodiorite intruded the Neoproteorozic metasedimentary rocks in the core of the dome at ca. 620 to 610 Ma. Four major early Permian events associated with the Alleghanian orogeny affected the rocks in the Lyme dome area. Syn-tectonic migmatization and widespread penetrative deformation (D1, ca. 300 - 290 Ma) included emplacement of alaskite at 290 ?? 4 Ma during regional foliation development and aluminosilicate-orthoclase metamorphic conditions. Rocks of the Avalon terrane may have wedged between Gander cover rocks and Gander basement in the core of the Lyme during D1. Limited structural evidence for diapiric uplift of the Lyme dome indicates that diapirism started late in D1 and was completed by D2 (ca. 290 - 280 Ma) when horizontal WNW contractional stresses dominated over vertical stresses. Second sillimanite metamorphism continued and syn-tectonic D2 granite pegmatite (288 ?? 4 Ma) and the Joshua Rock Granite Gniess (284 ?? 3 Ma) intruded at this time. North-northwest extension during D3 (ca. 280 - 275 Ma) led to granitic pegmatite intrusion along S3 cleavage planes and in extensional zones in boudin necks during hydraulic failure and decompression melting. Intrusion of a Westerly Granite dike at 275 ?? 4 Ma suggests that D3 extension was active, and perhaps concluding, by ca. 275 Ma. Late randomly oriented but gently dipping pegmatite dikes record a final stage of intrusion during D4 (ca. 275 - 260 Ma), and a switch from NNW extension to vertical unloading and exhumation. Monazite and metamorphic zircon rim ages record this event at ca. 259 Ma. The evolution of the Lyme dome involved D1 mylonitization, intrusion, and migmatization during north-directed contraction, limited late D1 diapirism, D2 migmatization during WNW contraction with associated flexural flow and fold interference, D3 NNW horizontal extension and decompression melting, and final D4 vertical extension and rapid exhumation. Late regional uplift, extension, and normal faulting at higher crustal levels may have been caused by diapiric rise of the lower crust, below the structural level of the Lyme dome. The rocks record no evidence of Acadian metamorphism or deformation, suggesting that the Gander zone here was not tectonically juxtaposed with Avalon until the Alleghanian orogeny.
NASA Astrophysics Data System (ADS)
Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.
2017-08-01
An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.
NASA Astrophysics Data System (ADS)
Stevens, N. T.; Keranen, K. M.; Lambert, C.
2016-12-01
Induced seismicity in northern Oklahoma presents risk for infrastructure, but also an opportunity to gain new insights to earthquake processes [Petersen et al., 2016]. Here we present a double-difference tomographic study using TomoDD [Zhang and Thurber, 2003] in northern Oklahoma utilizing records from a dense broadband network over a 1-year period, constituting a catalog of over 10,000 local seismic events. We image a shallow (depth < 4 km) high-velocity structure consistent with the Nemaha uplift [Gay, 2003a], bounded by shallow, lower-velocity regions on either side, likely sedimentary strata at this depth bounding uplifted basement. Velocities within the uplift are lower than expected in subjacent crystalline basement rock (depth > 4 km). We suggest that this low velocity anomaly stems from enhanced fracturing and/or weathering of the basement in the Nemaha uplift in northern Oklahoma. This velocity anomaly is not observed in basement off the shoulders of the structure, particularly to the southeast of the Nemaha bounding fault. Enhanced fracturing, and related increases to permeability, would ease pressure migration from injection wells linked to increased seismicity in the region, and may explain the relative absence of seismicity coincident with this structure compared to it periphery. References Gay, S. Parker, J. (2003), The Nemaha Trend-A System of Compressional Thrust-Fold, Strike-Slilp Structural Features in Kansas and Oklahoma, Part 1, Shale Shak., 9-49. Petersen, M. D., C. S. Mueller, M. P. Moschetti, S. M. Hoover, A. L. Llenos, W. L. Ellsworth, A. J. Michael, J. L. Rubinstein, A. F. McGarr, and K. S. Rukstales (2016), 2016 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes, Open-File Rep., doi:10.3133/OFR20161035. Zhang, H., and C. H. Thurber (2003), Double-difference tomography: The method and its application to the Hayward Fault, California, Bull. Seismol. Soc. Am., 93(5), 1875-1889, doi:10.1785/0120020190.
Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon
2014-01-01
Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.
Earth Observations taken by the Expedition 15 Crew
2007-06-26
ISS015-E-14584 (26 June 2007) --- The "bull's-eye" of the Richat Structure in the barren Gres de Chinguetti Plateau, central Mauritania in northwest Africa is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. It represents domally uplifted, layered (sedimentary) rocks that have been eroded by water and wind into the present shape. The 25-mile-wide structure is a 300-foot-deep landmark that has caught the eye of many an astronaut in Earth orbit.
Jayko, A. S.; Marshall, G.A.; Carver, G.A.
1992-01-01
Elevation changes, as well as horizontal displacements of the Earth's surface, are an expected consequence of dip-slip displacement on earthquake faults. the rock surrounding and overlying the fault is forced to stretch and bend to accommodate fault slip. Slip in the case of the April 25 mainshock is thought to have occurred on a gently inclined plane dipping to the northeast at a small angle (see article on preliminary seismological results in this issue).The associated fault-plane solution implies that rock overlying the fault plane (the hanging-wall block west and south of the epicenter) rose and shifted to the northeast. The map on the next page shows the location of the epicenter and approximate extent of uplift and subsidence derived from estimates of the geometry, location. and slip on the buried fault plane.
Development of the Earth's early crust: Implications from the Beartooth Mountains
NASA Technical Reports Server (NTRS)
Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.
1983-01-01
The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.
Areal and time distributions of volcanic formations on Mars
NASA Technical Reports Server (NTRS)
Katterfeld, G. N.; Vityaz, V. I.
1987-01-01
The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations.
Burton, William C.
2007-01-01
The headwaters region of the Cullasaja River is underlain by metasedimentary and meta-igneous rocks of the Neoproterozoic Ashe Metamorphic Suite, including gneiss, schist, and amphibolite, that were intruded during Ordovician time by elongate bodies of trondhjemite, a felsic plutonic rock. Deformation, metamorphism, and intrusion occurred roughly simultaneously during the Taconic orogeny, about 470 million years ago, under upper-amphibolite-facies metamorphic conditions. Two generations of foliation and three major phases of folds are recognized. The second- and third-generation folds trend northeast and exert the most control on regional foliation trends. Since the orogeny, the region has undergone uplift, fracturing, and erosion. Resistance to erosion by the plutonic rock may be the primary reason for the relatively gentle relief of the high-elevation basin, compared to surrounding areas. Amphibolite is the most highly fractured lithology, followed by trondhjemite; the latter may have the best ground-water potential of the mapped lithologies by virtue of its high fracture density and high proportion of subhorizontal fractures.
Analysis of the Exhumation Pathways Experienced in the Cascades Range
NASA Astrophysics Data System (ADS)
Giles, S. M.; Pesek, M.; Perez, N. D.
2017-12-01
The Cascades volcanic arc is the result of subduction of the Juan de Fuca plate beneath North America. The Cascades trend north to south and create a modern orographic precipitation gradient that focuses precipitation along the western flank of the range. However, the deformation style changes from shortening in the north to extension in the south. This experimental design is an ideal location to test how surface and tectonic processes contribute to rock uplift in orogens. In the Oregon Cascades, zircon U-Pb geochronology, and multiple thermochronologic techniques (apatite U-Pb, zircon U-Th/He) will be applied to an intrusive rock exposed along a west-flowing river to investigate the exhumation pathway. These intrusive rocks are capped by late Miocene basalt flows, constraining the timing of surface exposure. The results of this study will define a time-temperature pathway and be compared with existing exhumation constraints from the Washington Cascades to determine whether the exhumation pathways may correspond to the changing structural regimes or consistent climate patterns along strike.
Patrick Draw field, Wyoming - 1 seismic expression of subtle strat trap in Upper Cretaceous Almond
Ryder, Robert T.; Lee, Myung W.; Agena, Warren F.; Anderson, Robert C.
1990-01-01
The east flank of the Rock Springs uplift and the adjacent Wamsutter arch contain several large hydrocarbon accumulations. Among these accumulations are Patrick Draw field, which produces oil and gas from a stratigraphic trap in the Upper Cretaceous Almond formation, and Table Rock field, a faulted anticlinal trap that produces gas from multiple Tertiary, Mesozoic, and Paleozoic reservoirs. The principal petroleum reservoir in Patrick Draw field is a sandstone at the top of the Almond formation. This sandstone attains a maximum thickness of 35ft and piches out westward into relatively impervious silt-stone and shale that constitute the trapping facies. The objective of this investigation is to determine whether or not the stratigraphic trap at Patrick Draw can be detected on a 12 fold, common depth point seismic profile acquired by Forest Oil Corp. and its partners. The seismic line is 18.5 miles long and crosses Patrick Draw and Table Rock fields.
Hudson, T.; Smith, James G.; Elliott, R.L.
1979-01-01
A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors
NASA Astrophysics Data System (ADS)
Kendrick, K. J.; Matti, J. C.
2012-12-01
The San Gorgonio Pass (SGP) region of southern California is a locus of long-continued Quaternary deformation and landscape evolution within a structural complexity, colloquially referred to as a knot in the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complex history of geologic events involved in the formation and resolution of this structural knot. We recognize five morphologically distinct terrains in and around SGP; the San Gorgonio Block (SGB), Yucaipa Ridge (YRB), Pisgah Peak (PPB), Kitching Peak (KPB), and Devil's Garden blocks (DGB). Morphometric analyses, including drainage density, hypsometry, topographic profiles, and stream-power measurements and discontinuities, consistently demonstrate distinctions between the blocks. Our focus in this study is on the KPB and PPB terrains, both developed in crystalline rocks of San Gabriel Mountains type. KPB is bounded on the north by the Mission Creek strand of the SAF and on the east by the Whitewater Fault; PPB is bounded on the north by the San Bernardino strand of the SAF, which continues southeastward into the core of SGP and there separates PPB from KPB. KPB has significantly greater topographic relief than PPB, and the two blocks have internal morphometric and geologic characteristics that differ significantly. Canyons in KPB lack thick Quaternary alluvial fills, and hillslopes have shed numerous bedrock landslides. Canyons in PPB contain large volumes of Middle-Pleistocene through Holocene alluvium, associated with areally extensive relict geomorphic surfaces. We use the geomorphic differences, along with geologic factors, to reconstruct tectonically driven landscape evolution over the last 100-200 Ka years. The KPB and PPB both are bounded southward by contractional structures of the San Gorgonio Pass Fault zone (SGPFZ), but geologic complexity within this zone differs markedly south of each block. South of KPB, the SGPFZ consists of multiple thrust-fault strands, some older than 500 ka, has a wide spatial footprint along a N-S axis, and Holocene alluvium is disrupted by numerous fault scarps. By contrast, south of PPB the SGPFZ consists of fewer thrust-fault strands, has a relatively narrow footprint, and faults breaking Holocene deposits are uncommon. The San Bernardino strand of the SAF intersects the SGPFZ at about the boundary between these two domains. Morphometric data indicate that the KPB has undergone significantly greater uplift than the PPB since inception of the San Bernardino strand, proposed by Matti and Morton (1993) to have occurred at ~125ka. Age estimates associated with the PPB and DGB allow us to broadly estimate relative uplift rates. Drainage reconstruction of the Whitewater River and its tributaries across the YRB likewise allow us to validate and refine the uplift estimated by Spotila and others (2001). YRB has been uplifted relative to SGB since the inception of the Mill Creek Strand of the SAF.
Geology of the Cooper Ridge NE Quadrangle, Sweetwater County, Wyoming
Roehler, Henry W.
1979-01-01
The Cooper Ridge NE 7?-minute quadrangle is 18 miles southeast of Rock Springs, Wyo., on the east flank of the Rock Springs uplift. Upper Cretaceous rocks composing the Rock Springs Formation, Ericson Sandstone, Almond Formation, Lewis Shale, Fox Hills Sandstone, and Lance Formation, Paleocene rocks composing the Fort Union Formation, and Eocene rocks composing the Wasatch Formation are exposed and dip 5?-8? southeast. Outcrops are unfaulted and generally homoclinal, but a minor cross-trending fold, the Jackknife Spring anticline, plunges southeastward and interrupts the northeast strike of beds. Older rocks in the subsurface are faulted and folded, especially near the Brady oil and gas field. Coal beds are present in the Almond, Lance, and Fort Union Formations. Coal resources are estimated to be more than 762 million short tons in 16 beds more than 2.5 feet thick, under less than 3,000 ft of overburden. Nearly 166 million tons are under less than 200 ft of overburden and are recoverable by strip mining. Unknown quantities of oil and gas are present in the Cretaceous Rock Springs, Blair, and Dakota Formations, Jurassic sandstone (Entrada Sandstone of drillers), Jurassic(?) and Triassic(?) Nugget Sandstone, Permian Park City Formation, and Pennsylvanian and Permian Weber Sandstone at the Brady field, part of which is in the southeast corner of the quadrangle, and in the Dakota Sandstone at the Prenalta Corp. Bluewater 33-32 well near the northern edge of the quadrangle. Other minerals include uranium in the Almond Formation and titanium in the Rock Springs Formation.
Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun
2013-01-01
Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.
Geologic map of the Vail East quadrangle, Eagle County, Colorado
Kellogg, Karl S.; Bryant, Bruce; Redsteer, Margaret H.
2003-01-01
New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Vail East quadrangle straddles the Gore fault system, the western structural boundary of the Gore Range. The Gore fault system is a contractional structure that has been recurrently active since at least the early Paleozoic and marks the approximate eastern boundary of the Central Colorado trough, a thick late Paleozoic depocenter into which thousands of meters of clastic sediment were deposited from several uplifts, including the ancestral Front Range. The Gore fault was active during both the late Paleozoic and Upper Cretaceous-lower Tertiary (Laramide) deformations. In addition, numerous north-northwest faults that cut the crystalline rocks of the Gore Range were active during at least 5 periods, the last of which was related to Neogene uplift of the Gore Range and formation of the northern Rio Grande rift. Early Proterozoic crystalline rocks underlie the high Gore Range, north and east of the Gore fault system. These rocks consist predominantly of migmatitic biotite gneiss intruded by mostly granitic rocks of the 1.667-1.750 Ma Cross Creek batholith, part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). Southwest of the Gore fault, a mostly gently south-dipping sequence of Pennsylvanian Mimturn Formation, as thick as 1,900 m, and the Permian and Pennsylvanian Maroon Formation (only the basal several hundred meters are exposed in the quadrangle)were shed from the ancestral Front Range and overlie a thin sequence of Devonian and Cambrian rocks. The Minturn Formation is a sequence of interlayered pink, maroon, and gray conglomerate, sandstone, shale, and marine limestone. The Maroon Formation is mostly reddish conglomerate and sandstone. Glacial till of both the middle Pleistocene Bull Lake and late Pleistocene Pinedale glaciations are well exposed along parts of the Gore Creek valley and its tributaries, although human development has profoundly altered the outcrop patterns along the Gore Creek valley bottom. Landslides, some of which are currently active, are also mapped.
Revised Geologic Map of the Fort Garland Quadrangle, Costilla County, Colorado
Wallace, Alan R.; Machette, Michael N.
2008-01-01
The map area includes Fort Garland, Colo., and the surrounding area, which is primarily rural. Fort Garland was established in 1858 to protect settlers in the San Luis Valley, then part of the Territory of New Mexico. East of the town are the Garland mesas (basalt-covered tablelands), which are uplifted as horsts with the Central Sangre de Cristo fault zone. The map also includes the northern part of the Culebra graben, a deep structural basin that extends from south of San Luis (as the Sanchez graben) to near Blanca, about 8 km west of Fort Garland. The oldest rocks exposed in the map area are early Proterozic basement rocks (granites in Ikes Creek block) that occupy an intermediate structural position between the strongly uplifted Blanca Peak block and the Culebra graben. The basement rocks are overlain by Oligocene volcanic and volcaniclastic rocks of unknown origin. The volcanic rocks were buried by a thick sequence of basin-fill deposits of the Santa Fe Group as the Rio Grande rift formed about 25 million years ago. The Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts, was deposited within sediment, and locally provides a basis for dividing the group into upper and lower parts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Exposures of the sediment beneath the basalt and within the low foothills east of the Central Sangre de Cristo fault zone are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) is preserved as isolated remnants that cap high surfaces north and east of Fort Garland. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. The Central Sangre de Cristo fault zone shows evidence for latest Pleistocene to possible early Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. This revised geologic map is based on previous mapping by Wallace (1997) and new mapping, primarily of the Quaternary deposits, by Machette.
Plio-Pleistocene exhumation of the eastern Himalayan syntaxis and its domal 'pop-up'
NASA Astrophysics Data System (ADS)
Bracciali, Laura; Parrish, Randy; Najman, Yani; Smye, Andy; Carter, Andy; Wijbrans, Jan
2017-04-01
The eastern termination of the Himalayan orogen forms a structural syntaxis that is characterised by young (from 10 to < 1 Ma) mineral growth and cooling ages on a wide variety of thermochronometers and geochronometers. This region is a steep antiform that folds the suture zone between the Indian and Asian plates, with a domal 'pop-up' structure at the core corresponding to the area of youngest bedrock ages. Exceptionally high relief and one of the deepest gorges on Earth have developed where the Yarlung Tsangpo's tortuous route crosses the Namche Barwa-Gyala Peri massif (>7 km in elevation) We reviewed the extensive scientific literature that has focused on the eastern syntaxis and provide new zircon and rutile U-Pb, white mica Ar-Ar and fission track zircon data on its bedrock and erosion products to constrain the age of inception of the very rapid uplift and erosion and discuss its cause. Numerical modelling of heat flow and erosion is used to model the path of rocks from peak metamorphic conditions of 800°C to <250°C. Our new data include U-Pb bedrock rutile ages as young as 1.4 Ma from the Namche Barwa massif and 0.4 Ma from the river downstream of the syntaxis. The domal zone is comprised of Greater Himalaya rocks that equilibrated at about 700-800°C and 20-30 km depth. These conditions persisted into the latest Miocene and perhaps Pliocene time, with possible modest decompression prior to the Pleistocene. In the interval of latest Miocene to Pleistocene the northern part of the syntaxis began to buckle, fold, and fail via south-vergent thrust faulting, creating a 20 km amplitude antiformal dome, with an antecedent Yarlung Tsangpo River flowing through this core of the future syntaxis. Our new data demonstrate that rocks were >575°C only 1-2 Myr ago within the dome and that present geothermal gradients of >100°C/km are expected. Detritus within the Neogene Surma Basin of Bangladesh, representing deposits of the palaeo-Brahmaputra River, does not record evidence of rise and erosion of this dome with its distinct thermochronological signature until late Pliocene time at the earliest. In the Pleistocene between 12 and 21 km of rock were uplifted and eroded within the core of the syntaxis, exposing rocks at amphibolite facies conditions to surface erosion at rates of at least 4 km/Ma. This changed dramatically the characteristics of the sediment delivered downstream of the gorge to comprise, as it is observed today, up to 50% of the sediment load derived from the domal uplift. A decrease in lag-times (white mica Ar-Ar and ZFT data) in 6 Ma foreland Himalayan deposits (Lang et al. 2016, GSA Bull.) SW of the syntaxis followed by relatively constant lag-time value for each chronometer up section, recorded a period of rapid exhumation of a source within the syntaxis near to or along strike to the southwest of the current domal pop-up. This source could be a migrating domal feature produced by the indentation process of the Indian plate progressing north-eastwards.
NASA Astrophysics Data System (ADS)
Roering, Joshua J.; Mackey, Benjamin H.; Handwerger, Alexander L.; Booth, Adam M.; Schmidt, David A.; Bennett, Georgina L.; Cerovski-Darriau, Corina
2015-05-01
In mountainous settings, increases in rock uplift are often followed by a commensurate uptick in denudation as rivers incise and steepen hillslopes, making them increasingly prone to landsliding as slope angles approach a limiting value. For decades, the threshold slope model has been invoked to account for landslide-driven increases in sediment flux that limit topographic relief, but the manner by which slope failures organize themselves spatially and temporally in order for erosion to keep pace with rock uplift has not been well documented. Here, we review past work and present new findings from remote sensing, cosmogenic radionuclides, suspended sediment records, and airborne lidar data, to decipher patterns of landslide activity and geomorphic processes related to rapid uplift along the northward-migrating Mendocino Triple Junction in Northern California. From historical air photos and airborne lidar, we estimated the velocity and sediment flux associated with active, slow-moving landslides (or earthflows) in the mélange- and argillite-dominated Eel River watershed using the downslope displacement of surface markers such as trees and shrubs. Although active landslides that directly convey sediment into the channel network account for only 7% of the landscape surface, their sediment flux amounts to more than 50% of the suspended load recorded at downstream sediment gaging stations. These active slides tend to exhibit seasonal variations in velocity as satellite-based interferometry has demonstrated that rapid acceleration commences within 1 to 2 months of the onset of autumn rainfall events before slower deceleration ensues in the spring and summer months. Curiously, this seasonal velocity pattern does not appear to vary with landslide size, suggesting that complex hydrologic-mechanical feedbacks (rather than 1-D pore pressure diffusion) may govern slide dynamics. A new analysis of 14 yrs of discharge and sediment concentration data for the Eel River indicates that the characteristic mid-winter timing of earthflow acceleration corresponds with increased suspended concentration values, suggesting that the seasonal onset of landslide motion each year may be reflected in the export of sediments to the continental margin. The vast majority of active slides exhibit gullied surfaces and the gully networks, which are also seasonally active, may facilitate sediment export although the proportion of material produced by this pathway is poorly known. Along Kekawaka Creek, a prominent tributary to the Eel River, new analyses of catchment-averaged erosion rates derived from cosmogenic radionuclides reveal rapid erosion (0.76 mm/yr) below a prominent knickpoint and slower erosion (0.29 mm/yr) upstream. Such knickpoints are frequently observed in Eel tributaries and are usually comprised of massive (> 10 m) interlocking resistant boulders that likely persist in the landscape for long periods of time (> 105 yr). Upstream of these knickpoints, active landslides tend to be less frequent and average slope angles are slightly gentler than in downstream areas, which indicates that landslide density and average slope angle appear to increase with erosion rate. Lastly, we synthesize evidence for the role of large, catastrophic landslides in regulating sediment flux and landscape form. The emergence of resistant blocks within the mélange bedrock has promoted large catastrophic slides that have dammed the Eel River and perhaps generated outburst events in the past. The frequency and impact of these landslide dams likely depend on the spatial and size distributions of resistant blocks relative to the width and drainage area of adjacent valley networks. Overall, our findings demonstrate that landslides within the Eel River catchment do not occur randomly, but instead exhibit spatial and temporal patterns related to baselevel lowering, climate forcing, and lithologic variations. Combined with recent landscape evolution models that incorporate landslides, these results provide predictive capability for estimating erosion rates and managing hazards in mountainous regions.
Dusel-Bacon, Cynthia; Csejtey, Bela; Foster, Helen L.; Doyle, Elizabeth O.; Nokleberg, Warren J.; Plafker, George
1993-01-01
Most of the exposed bedrock in east- and south-central Alaska has been regionally metamorphosed and deformed during Mesozoic and early Cenozoic time. All the regionally metamorphosed rocks are assigned to metamorphic-facies units on the basis of their temperature and pressure conditions and metamorphic age. North of the McKinley and Denali faults, the crystalline rocks of the Yukon- Tanana upland and central Alaska Range compose a sequence of dynamothermally metamorphosed Paleozoic and older(?) metasedimentary rocks and metamorphosed products of a Devonian and Mississippian continental-margin magmatic arc. This sequence was extensively intruded by postmetamorphic mid-Cretaceous and younger granitoids. Many metamorphic-unit boundaries in the Yukon-Tanana upland are low-angle faults that juxtapose units of differing metamorphic grade, which indicates that metamorphism predated final emplacement of the fault-bounded units. In some places, the relation of metamorphic grade across a fault is best explained by contractional faulting; in other places, it is suggestive of extensional faulting.Near the United States-Canadian border in the central Yukon- Tanana upland, metamorphism, plutonism, and thrusting occurred during a latest Triassic and Early Jurassic event that presumably resulted from the accretion of a terrane that had affinities to the Stikinia terrane onto the continental margin of North America. Elsewhere in the Yukon-Tanana upland, metamorphic rocks give predominantly late Early Cretaceous isotopic ages. These ages are interpreted to date either the timing of a subsequent Early Cretaceous episode of crustal thickening and metamorphism or, assuming that these other areas were also originally heated during the latest Triassic to Early Jurassic and remained buried, the timing of their uplift and cooling. This uplift and cooling may have resulted from extension.South of the McKinley and Denali faults and north of the Border Ranges fault system, medium-grade metamorphism across much of the southern Peninsular and Wrangellia terranes was early to synkinematic with the intrusion of tonalitic and granodioritic plutons of primarily Early and Middle Jurassic age in the Peninsular terrane and Late Jurassic age in the Wrangellia terrane. Areas metamorphosed during the Jurassic episode that crop out near the Border Ranges fault system were subsequently retrograded and deformed in Cretaceous and early Tertiary time during accretion of younger units to the south. North of the Jurassic metamorphic and plutonic complex, low-grade metamorphism affected the rest of the Wrangellia terrane sometime during Jurassic and (or) Cretaceous time.North of the Wrangellia terrane and immediately south of the McKinley and Denali faults, flyschoid rocks, which were deposited within a basin that separated the Wrangellia terrane from the western margin of North America, form a northeastward-tapering wedge. Within the western half of the wedge, flysch and structurally interleaved tectonic fragments were highly deformed and weakly metamorphosed; much of the metamorphism and deformation probably occurred sometime during mid- to Late Cretaceous time. In the eastern half of the wedge, flyschoid rocks form an intermediate-pressure Barrovian sequence (Maclaren metamorphic belt). Metamorphism of the Maclaren metamorphic belt was synkinematic with the Late Cretaceous to earliest Tertiary intrusion of foliated plutons of intermediate composition. Isotopic data suggest metamorphism extended into the early Tertiary and was accompanied by rapid uplift and cooling. Low- to medium-grade metamorphism throughout the wedge was probably associated with the accretion of the outboard Wrangellia terrane, as has been proposed for the Maclaren metamorphic belt.South of the Border Ranges fault system lie variably metamorphosed sequences of oceanic rocks that comprise the successively accreted Chugach, Yakutat, Ghost Rocks, and Prince William terranes. The Chugach terrane consists of three successively accreted sequences of differing metamorphic histories. Metamorphism in all the sequences was associated with north-directed underthrusting beneath either the combined Peninsular-Wrangellia terrane or the older and inner parts of the Chugach terrane. These sequences, from innermost to outermost are: (1) intermediate- to highpressure, transitional greenschist- to blueschist-facies metabasalt and metasedimentary rocks that were metamorphosed during the Early and Middle Jurassic; (2) prehnite-pumpellyite-facies melange that was metamorphosed sometime during the Jurassic and Cretaceous; and (3) low-pressure prehnite-pumpellyite- or greenschist- facies flysch and metavolcanic rocks that were initially metamorphosed during latest Cretaceous to early Tertiary time and, in the eastern Chugach Mountains, were subsequently overprinted by low-pressure amphibolite-facies metamorphism that accompanied widespread intrusion during Eocene time. A similar low-pressure-facies series also developed within melange and flysch of the Yakutat terrane; these rocks are also intruded by Eocene plutons and are correlated with similar rocks of the Chugach terrane.Seaward of the Chugach terrane are the strongly deformed but weakly metamorphosed (prehnite-pumpellyite-facies) deep-sea metasedimentary rocks and oceanic metavolcanic rocks of the Ghost Rocks and Prince William terranes. Metamorphism and deformation occurred during underthrusting of these terranes beneath the Chugach terrane in early Tertiary time and predated, perhaps by very little, intrusion by early Tertiary granitoids.
NASA Astrophysics Data System (ADS)
Brown, A. G.; Basell, L. S.; Toms, P. S.
2015-05-01
The current model of mid-latitude late Quaternary terrace sequences, is that they are uplift-driven but climatically controlled terrace staircases, relating to both regional-scale crustal and tectonic factors, and palaeohydrological variations forced by quasi-cyclic climatic conditions in the 100 K world (post Mid Pleistocene Transition). This model appears to hold for the majority of the river valleys draining into the English Channel which exhibit 8-15 terrace levels over approximately 60-100 m of altitudinal elevation. However, one valley, the Axe, has only one major morphological terrace and has long-been regarded as anomalous. This paper uses both conventional and novel stratigraphical methods (digital granulometry and terrestrial laser scanning) to show that this terrace is a stacked sedimentary sequence of 20-30 m thickness with a quasi-continuous (i.e. with hiatuses) pulsed, record of fluvial and periglacial sedimentation over at least the last 300-400 K yrs as determined principally by OSL dating of the upper two thirds of the sequence. Since uplift has been regional, there is no evidence of anomalous neotectonics, and climatic history must be comparable to the adjacent catchments (both of which have staircase sequences) a catchment-specific mechanism is required. The Axe is the only valley in North West Europe incised entirely into the near-horizontally bedded chert (crypto-crystalline quartz) and sand-rich Lower Cretaceous rocks creating a buried valley. Mapping of the valley slopes has identified many large landslide scars associated with past and present springs. It is proposed that these are thaw-slump scars and represent large hill-slope failures caused by Vauclausian water pressures and hydraulic fracturing of the chert during rapid permafrost melting. A simple 1D model of this thermokarstic process is used to explore this mechanism, and it is proposed that the resultant anomalously high input of chert and sand into the valley during terminations caused pulsed aggradation until the last termination. It is also proposed that interglacial and interstadial incision may have been prevented by the over-sized and interlocking nature of the sub-angular chert clasts until the Lateglacial when confinement of the river overcame this immobility threshold. One result of this hydrogeologically mediated valley evolution was to provide a sequence of proximal Palaeolithic archaeology over two MIS cycles. This study demonstrates that uplift tectonics and climate alone do not fully determine Quaternary valley evolution and that lithological and hydrogeological conditions are a fundamental cause of variation in terrestrial Quaternary records and landform evolution.
Postseismic deformation following the 2015 Gorkha earthquake and implications for rheology
NASA Astrophysics Data System (ADS)
Rollins, C.; Gualandi, A.; Avouac, J. P.; Liu, J.; Zhang, Z.
2017-12-01
The 2015 Mw 7.9 Gorkha earthquake ruptured the lower, northern edge of the interseismically locked section of the Main Himalayan Thrust (MHT). Independent Component Analysis of location timeseries at GPS stations in Nepal and Tibet reveals significant transient postseismic motion following the mainshock. In order to probe the frictional properties of the MHT and the viscoelastic properties of the crust and upper mantle, we compare the extracted postseismic motions to those predicted by forward models of afterslip and viscoelastic relaxation. Postseismic displacements are minimal south of the coseismic rupture, suggesting that minimal afterslip occurred there and that the upper MHT remains mostly locked. North of the rupture, postseismic displacements feature south-southwest horizontal motion and uplift, each on the order of a few cm in the first postseismic year. A model of stress-driven afterslip extending 100 km north of the coseismic rupture reproduces the horizontal postseismic timeseries and the general pattern of uplift and subsidence; however, this model significantly overpredicts the uplift at stations overlying the rupture, and the down-dip extent of afterslip may be unrealistic. Viscoelastic relaxation in the high-temperature Tibetan crust reproduces the observed SSW motion without overpredicting the uplift; viscoelastic relaxation in the downgoing Indian mantle, however, produces northward motion and subsidence north of the rupture, i.e. opposite to the observed motions. We argue that models of coupled afterslip (confined close to the rupture) and viscoelastic relaxation can reproduce the postseismic timeseries with physically plausible parameters.
Clastic rocks associated with the Midcontinent rift system in Iowa
Anderson, Raymond R.; McKay, Robert M.
1997-01-01
The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.
Manson impact structure, Iowa: First geochemical results for drill core M-1
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe
1993-01-01
The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.
Manson impact structure, Iowa: First geochemical results for drill core M-1
NASA Astrophysics Data System (ADS)
Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe
1993-03-01
The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.
Cooley, M.E.; Harshbarger, J.W.; Akers, J.P.; Hardt, W.F.; Hicks, O.N.
1969-01-01
The Navajo and Hopi Indian Reservations have an area of about 25,000 square miles and are in the south-central part of the Colorado Plateaus physiographic province. The reservations are underlain by sedimentary rocks that range in age from Cambrian to Tertiary, but Permian and younger rocks are exposed in about 95 percent of the area. Igneous and metamorphic basement rocks of Precambrian age underlie the sedimentary rocks at depths ranging from 1,000 to 10,000 feet. Much of the area is mantled by thin alluvial, eolian, and terrace deposits, which mainly are 10 to 50 feet thick.The Navajo country was a part of the eastern shelf area of the Cordilleran geosyncline during Paleozoic and Early Triassic time and part of the southwestern shelf area of the Rocky Mountain geosyncline in Cretaceous time. The shelf areas were inundated frequently by seas that extended from the central parts of the geosynclines. As a result, complex intertonguing and rapid facies changes are prevalent in the sedimentary rocks and form some of the principal controls on the ground-water hydrology. Regional uplift beginning in Late Cretaceous time , destroyed. the Rocky Mountain geosyncline and formed the structural basius that influenced sedimentation and erosion throughout Cenozoic time.
Seafloor geology of the Monterey Bay area continental shelf
Eittreim, S.L.; Anima, R.J.; Stevenson, A.J.
2002-01-01
Acoustic swath-mapping of the greater Monterey Bay area continental shelf from Point An??o Nuevo to Point Sur reveals complex patterns of rock outcrops on the shelf, and coarse-sand bodies that occur in distinct depressions on the inner and mid-shelves. Most of the rock outcrops are erosional cuestas of dipping Tertiary rocks that make up the bedrock of the surrounding lands. A mid-shelf mud belt of Holocene sediment buries the Tertiary rocks in a continuous, 6-km-wide zone on the northern Monterey Bay shelf. Rock exposures occur on the inner shelf, near tectonically uplifting highlands, and on the outer shelf, beyond the reach of the mud depositing on the mid-shelf since the Holocene sea-level rise. The sediment-starved shelf off the Monterey Peninsula and south to Point Sur has a very thin cover of Holocene sediment, and bedrock outcrops occur across the whole shelf, with Salinian granite outcrops surrounding the Monterey Peninsula. Coarse-sand deposits occur both bounded within low-relief rippled scour depressions, and in broad sheets in areas like the Sur Platform where fine sediment sources are limited. The greatest concentrations of coarse-sand deposits occur on the southern Monterey Bay shelf and the Sur shelf. ?? 2002 Elsevier Science B.V. All rights reserved.
Breccia Formation at a Complex Impact Crater: Slate Islands, Lake Superior, Ontario, Canada
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Sharpton, V. L.
1997-01-01
The Slate Islands impact structure is the eroded remnant of a approximately 30-32 km-diameter complex impact structure located in northern Lake Superior, Ontario, Canada. Target rocks are Archean supracrustal and igneous rocks and Proterozoic metavolcanics, metasediments, and diabase. A wide variety of breccias occurs on the islands, many of which contain fragments exhibiting shock metamorphic features. Aphanitic, narrow and inclusion-poor pseudotachylite veins, commonly with more or less parallel boundaries and apophyses branching off them, represent the earliest breccias formed during the compression stage of the impact process. Coarse-grained, polymictic elastic matrix breccias form small to very large, inclusion-rich dikes and irregularly shaped bodies that may contain altered glass fragments. These breccias have sharp contacts with their host rocks and include a wide range of fragment types some of which were transported over minimum distances of approximately 2 km away from the center of the structure. They cut across pseudotachylite veins and contain inclusions of them. Field and petrographic evidence indicate that these polymictic breccias formed predominantly during the excavation and central uplift stages of the impact process. Monomictic breccias, characterized by angular fragments and transitional contacts with their host rocks, occur in parautochthonous target rocks, mainly on the outlying islands of the Slate Islands archipelago. A few contain fragmented and disrupted, coarse-grained, polymictic clastic matrix breccia dikes. This is an indication that at least some of these monomictic breccias formed late in the impact process and that they are probably related to a late crater modification stage. A small number of relatively large occurrences of glass-poor, suevitic breccias occur at the flanks of the central uplift and along the inner flank of the outer ring of the Slate Islands complex crater. A coarse, glass-free, allogenic breccia, containing shatter-coned fragments derived from Proterozoic target rocks (upper target strata), observed at two locations may be analogous to the 'Bunt Breccia' of the Ries crater in Germany. At one of these locations this breccia lies close to a crater suevite deposit. At the other, it overlies parautochthonous, monomictic breccia. The State Islands impact breccias are superbly exposed, much better than breccias in most other terrestrial impact structures. Observations, including those indicative of multiple and and sequential processes, provide insight on how impact breccias form and how they relate to the various phases of the impact process. Eventually they will lead to an improved understanding of planetary impact processes.
NASA Astrophysics Data System (ADS)
Greene, Todd Jeremy
The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland/swamp fades, Group 2 oils---Lower/Middle Jurassic marginal lacustrine fades, and Group 3 oils---Upper Permian lacusbine fades. Burial history exercises a third major control on petroleum in the Turpan-Hami basin. While relatively uninterrupted deep burial in the Tabei Depression exhausted Upper Permian source rocks and brought Lower/Middle Jurassic rocks well into the oil generative window, Late Jurassic uplift in the Tainan Depression eroded much of the Lower/Middle Jurassic section and preserved Upper Permian sourced oils as biodegraded, relict, heavy oils.* *This dissertation includes a CD that is multimedia (contains text and other applications that are not available in a printed format). The CD requires the following applications: Adobe Acrobat, UNIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, K.H.
A prolific hydrocarbon province extends across the northern margin of South America from Colombia to east of Trinidad. Two key components are a world-class source rock, formed on a regional Late Cretaceous passive margin, and a complex tectonic setting in which a variety of structural and stratigraphic traps, reservoirs, seals and hydrocarbon kitchens have evolved through time. Convergence between the Farallon and Caribbean plates with South America culminated in the late Cretaceous-early Palaeogene with emplacement of Colombia`s Central Cordillera in the west and a nappe-foreland basin system in the north. Regional hydrocarbon generation probably occurred below associated basins. Subsequent obliquemore » convergence between the Caribbean and South America, partitioned into strike-slip and compressional strain, generated an eastward migrating and ongoing uplift-foredeep (kitchen) system from central Venezuela to Trinidad. Similarly, oblique interaction of western Colombia with the Nazca Plate caused segmentation of the earlier orogen, northward extrusion of elements such as the Maracaibo Block, and eastward migration of uplift progressively dividing earlier kitchens into localized foredeeps.« less
A 3D Magnetotelluric Perspective on the Galway Granite, Western Ireland
NASA Astrophysics Data System (ADS)
Farrell, Thomas; Muller, Mark; Vozar, Jan; Feely, Martin; Hogg, Colin
2017-04-01
Magnetotelluric (MT) and audi-magnetotelluric (AMT) data were acquired at 75 locations across the exposed calc-alkaline Caledonian Galway granite batholith and surrounding country rocks into which the granite intruded. The Galway granite is located in western Ireland on the north shore of Galway bay, and has an ESE-WNW long axis. The granite is cut by trans-batholith faults, the Shannawona Fault Zone (SFZ) in the western part of the batholith, which has a NE-SW trend, and the Bearna Fault Zone (BFZ) in the eastern sector that has a NW-SE trend. Geobarometry data indicate that the central granite block between these fault zones has been uplifted, with the interpretation being that the granite in this central block is thinned. To the west of the SFZ, much of the Galway granite is below sea level, with the majority of the southern granite contact also beneath the sea in Galway bay. To the east of the batholith, the Carboniferous successions, consisting of mainly limestone with shale, overlie the basement rocks. The country rock to the north includes the metagabbro-gneiss suite, which itself intruded the deformed Dalradian successions that were deposited on the Laurentian margin of the Iapetus Ocean. The deformation of the Dalradian rocks, the intrusion of the metagabbro-gneiss suite and the intrusion of the Galway granite were major events in the protracted closure of the Iapetus Ocean. It is clear from geological mapping, from geobarometry and from the present submergence by the sea of a large part of the Galway granite, that inversion of MT data in this structurally complex geology is likely to require a 3D approach. We present a summary of 3D inversion of the Galway MT and AMT data. The study shows that the structure of the Galway granite is quite different from the pre-existing perspective. The central block, thought by its uplifting to be thinned, is shown to be the thickest part of the batholith. A geological model of granite intrusion is offered to explain this structure.
Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes
NASA Astrophysics Data System (ADS)
Osinski, G. R.
2015-12-01
Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt rocks. Second, it is proposed that layered ejecta deposits on Earth and Mars form from a common multi-stage emplacement model. Third, in terms of the origin of central pit craters it is shown that based on current definitions, these central uplift morphologies also occur on Earth, which offers important insights in their formation.
NASA Astrophysics Data System (ADS)
Watkinson, I. M.; Hall, R.; Hennig, J.; Forster, M.
2012-12-01
Low-angle mylonitic fabrics from the metamorphic basement of central Sulawesi reveal a complex history of extension from the late Miocene to the present-day. Sulawesi is situated in the convergent triple junction between the Australian, Eurasian and Philippine Sea plates. The island is cut by the Palu-Koro and Matano faults, major active strike-slip zones that were initiated no earlier than about 5 Ma and have previously been attributed to collision-related processes. Within, and to the north and east of the strike-slip faults, are a suite of metamorphic complexes that include mica schists, schistose amphibolites, gneisses, migmatites, granulites, eclogites, marbles and ultramafic rocks including garnet peridotites. Mylonitic fabrics are widespread throughout the metamorphic rocks. The orientation of the mylonitic foliation is highly variable but typically dips less than 30°. Kinematic indicators record transport directions dominantly between top-to-the-NW and top-to-the-NE. Medium to high-grade mylonites, particularly in the south and west, are associated with ductile boudinage of eclogite and kyanite-bearing layers, 'snowball' garnet porphyroclasts, dynamic recrystallisation of feldspar and amphibole, and mylonitic deformation was locally synchronous with partial melting. Medium to high-grade mylonites are commonly overprinted by isoclinal asymmetric similar folds. Low grade mylonites are characterised by quartz recrystallisation only. Mica growth during mylonitic deformation is recorded by young 40Ar-39Ar plateaux between 5.05 ± 0.01 Ma and 2.07 ± 0.03 Ma in the west and 11.33 ± 0.02 Ma in the east. Undeformed aplitic dykes of similar composition to the migmatite leucosomes locally cross-cut the migmatitic mylonites and have yielded a biotite 40Ar-39Ar plateau of 3.62 ± 0.02 Ma. In the east the mylonitic fabric is cut by a low-angle detachment surface expressed as anomalously corrugated topography. On the basis of lithologic variation, shear-sense directions, 40Ar-39Ar ages and topographic character it is possible to divide the central Sulawesi metamorphic complexes into a series of low-angle ductile shear zones, cut by an upper brittle detachment in the east which may still be active. Uplift of the metamorphic rocks has been largely in response to sequential unroofing along these structures. The system is bounded in the west by the Palu-Koro Fault, which links to subduction beneath north Sulawesi, and which may flatten at depth into a basal detachment below central Sulawesi. Early extension is synchronous with spreading in the North Banda Sea, and may have been driven by east-directed rollback of the Banda Sea. Later extension (post-5 Ma) was driven by subduction rollback in the north, and much of the extensional deformation in central Sulawesi represents the crustal 'tear' marking the southern limit of the effects of northward extension.
Crustal structure, and topographic relief in the high southern Scandes, Norway
NASA Astrophysics Data System (ADS)
Stratford, W.; Thybo, H.; Frassetto, A.
2010-05-01
Resolving the uplift history of southern Norway is hindered by the lack of constraint available from the geologic record. Sediments that often contain information of burial and uplift history have long since been stripped from the onshore regions in southern Norway, and geophysical, dating methods and geomorphological studies are the remaining means of unraveling uplift history. New constraints on topographic evolution and uplift in southern Norway have been added by a recent crustal scale refraction project. Magnus-Rex (Mantle investigation of Norwegian uplift Structure, refraction experiment) recorded three ~400 km long active source seismic profiles across the high southern Scandes Mountains. The goal of the project is to determine crustal thickness and establish whether these mountains are supported at depth by a crustal root or by other processes. The southern Scandes Mountains were formed during the Caledonian Orogeny around 440 Ma. These mountains, which reach elevations of up to ~2.5 km, are comprised of one or more palaeic (denudation) surfaces of rolling relief that are incised by fluvial and glacial erosion. Extreme vertical glacial incision of up to 1000 m cuts into the surfaces in the western fjords, while the valleys of eastern Norway are more fluvial in character. Climatic controls on topography here are the Neogene - Recent effects of rebound due to removal of the Fennoscandian ice sheet and isostatic rebound due to incisional erosion. However, unknown tectonic uplift mechanisms may also be in effect, and separating the tectonic and climate-based vertical motions is often difficult. Sediment and rock has been removed by the formation of the palaeic surfaces and uplift measurements cannot be directly related to present elevations. Estimates so far have indicated that rebound due to incisional erosion has a small effect of ~500 m on surface elevation. Results from Magnus-Rex indicate the crust beneath the high mountains is up to 40 km thick. This thickness implies that the high elevations of the southern Scandes Mountains are not entirely compensated by an Airy type of isostatic model, and other mechanisms for uplift and sustained topographic relief must be in effect. Moreover, there is an observed lateral offset between the highest mountains and the thickest crust beneath the southern Scandes indicating that the Moho topography is modulated by the flexural strength of the lithosphere. We relate new crustal thickness measurements to observed topography to quantify how much of the present elevation of the southern Scandes Mountains can be accounted for by crustal thickness alone. This new understanding of crustal structure can be used to help separate the climatic and tectonic effects on landscape evolution of the southern Scandes Mountains.
NASA Astrophysics Data System (ADS)
Roy, Sam; Upton, Phaedra; Craw, Dave
2018-01-01
Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isachsen, Y.W.
1978-09-27
Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less
NASA Astrophysics Data System (ADS)
Kleber, E.; Arrowsmith, R.; DeVecchio, D. E.; Johnstone, S. A.; Rittenour, T. M.
2015-12-01
Wheeler Ridge is an asymmetric east-propagating anticline (10km axis, 330m relief) above a north-vergent blind thrust deforming Quaternary alluvial fan and shallow marine rocks at the northern front of the Transverse Ranges, San Joaquin Valley, CA. This area was a research foci in the 1990's when the soils, u-series soil carbonate dating, and subsurface structure of deformed strata identified from oil wells were used to create a kinematic model of deformation, and estimates of fault slip, uplift, and lateral propagation rates. A recent collection of light detection and ranging (lidar) topographic data and optically stimulated luminescence (OSL) data allow us to complete meter scale topographic analyses of the fluvial networks and hillslopes and correlate geomorphic response to tectonics. We interpret these results using a detailed morphological map and observe drainage network and hillslope process transitions both along and across the fold axis. With lidar topography, we extract common morphometrics (e.g., channel steepness-- ksn, eroded volume, hillslope relief) to illustrate how the landscape is responding to variations in uplift rate along the fold axis and show asymmetry of surface response on the forelimb and backlimb. The forelimb is dominated by large drainages with landslides initiating in the marine units at the core of the fold. Our topographic analysis shows that the stream channel indices values on the forelimb increase along the fold axis, away from the propagation tip. The backlimb drainages are dominantly long and linear with broad ridgelines. Using lidar and fieldwork, we see that uplifted backlimb surfaces preserve the deformed fan surface. The preliminary OSL results from alluvial fan units improve age control of previously defined surfaces, refining our understanding of the deposition and uplift of alluvial fan units on preserved on backlimb.
NASA Astrophysics Data System (ADS)
Hoke, Gregory D.; Giambiagi, Laura B.; Garzione, Carmala N.; Mahoney, J. Brian; Strecker, Manfred R.
2014-11-01
The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world's second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.
Tracing Altiplano-Puna plateau surface uplift via radiogenic isotope composition of Andean arc lavas
NASA Astrophysics Data System (ADS)
Scott, E. M.; Allen, M. B.; Macpherson, C.; McCaffrey, K. J. W.; Davidson, J.; Saville, C.
2016-12-01
We have compiled published geochemical data for Jurassic to Holocene Andean arc lavas from 5oN to 47oS, covering the current extent of the northern, central and southern volcanic zones. Using this dataset we evaluate the spatial and temporal evolution of age corrected Sr- and Nd-radiogenic isotopes in arc lavas at a continental-scale, in order to understand the tectonic and surface uplift histories of the Andean margin. It has long been noted that baseline 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary lavas from the central volcanic zone, located within the Altiplano-Puna plateau, are distinct from volcanic rocks to the north and south. This is commonly attributed to greater crustal thickness, which increases to roughly twice that of the average continental crust within the Altiplano-Puna plateau. By comparing 87Sr/86Sr and 143Nd/144Nd ratios in Quaternary lavas to published crustal thickness models, present day topography and the compositions of basement terranes, we note that Sr- and Nd-isotope values of Quaternary lavas are an effective proxy for present day regional elevation. In contrast, variation in basement terranes has only a small, second order effect on isotopic composition at the scale of our study. Using this isotopic proxy, we infer the spatial extent of the plateau and its surface uplift history from the Jurassic to the present. Our results concur with a crustal thickening model of continued surface uplift, which initiated in the Altiplano, with deformation propagating southwards into the Puna throughout the Neogene and then continuing in central Chile and Argentina up to the present day.
NASA Astrophysics Data System (ADS)
Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.
2014-12-01
Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.
NASA Astrophysics Data System (ADS)
Bufe, A.; Pederson, J. L.; Tuzlak, D.
2016-12-01
One of Earth's largest active supervolcanos and one of the most dynamically deforming areas in North America is located above the Yellowstone mantle plume. A pulse of dynamically supported uplift and extension of the upper crust has been moving northeastward as the North American plate migrated across the hotspot. This pules of uplift is complicated by subsidence of the Snake River Plain in the wake of the plume, due to a combination of crustal loading by intrusive and extrusive magmas, and by densification of igneous and volcanic rocks. Understanding the geodynamics as well as the seismic hazard of this region relies on studying the distribution and timing of active uplift, subsidence, and faulting across timescales. Here, we present preliminary results from a study of river terraces along the Hoback and upper Snake rivers that flow from the flanks of the Yellowstone plateau into the subsiding Snake River Plain. Combining terrace surveys with optically stimulated luminescence ages, we calculate incision rates of 0.1 - 0.3 mm/y along the deeply incised canyons of the Hoback and Snake rivers upstream of Alpine, WY. Rather than steadily decreasing away from the Yellowstone plume-head, the pattern of incision rates seems to be mostly affected by the distribution of normal faults - including the Alpine section of the Grand Valley Fault that has been reported to be inactive throughout the Quaternary. Downstream of Alpine and approaching the Snake River Plain, late Quaternary fill-terraces show much slower incision rates which might be consistent with a broad flexure of the region toward the subsiding Snake River Plain. Future studies of the Snake and Hoback rivers and additional streams around the Yellowstone hotspot will further illuminate the pattern of late Quaternary uplift in the region.
NASA Astrophysics Data System (ADS)
Tuzlak, D.; Pederson, J. L.
2015-12-01
Understanding patterns of deformation and testing geophysical models in the dynamic region of the Yellowstone Hotspot requires Quaternary-scale records of incision and uplift, which are currently absent. This study examines fluvial terraces and longitudinal-profile metrics along Alpine Canyon of the Snake River, WY. Because the Snake is the only regional river crossing from the uplifting Yellowstone Plateau and flowing into the subsiding Eastern Snake River Plain, it provides an opportunity to investigate both ends of the phenomenon. Field observations through Alpine Canyon indicate that Pleistocene incision rates in this region are relatively high for the interior western U.S., that the river switches between bedrock and alluvial forms, and that incision/uplift is not uniform. Two endmembers of regional deformation may be tested: 1) the arch of high topography surrounding Yellowstone is uplifting and terraces converge downstream as incision rates decrease towards the Snake River Plain, or 2) baselevel fall originates at the subsiding Snake River Plain and terraces diverge as incision rates increase downstream. Datasets include surficial mapping, rock strength measurements, surveying of the longitudinal profile and terraces using RTK-GPS, optically stimulated luminescence dating of fluvial-terrace deposits, and investigation of drainages through ksn and χ analyses. Initial results indicate that there are four primary terrace deposits along the canyon, three of which are timed with glacial epochs. Considering the relative heights of terrace straths and preliminary ages, incision rates are indeed relatively high. There is a major knickzone covering the last 15 km of the canyon that is also reflected in tributary profiles and is consistent with a wave of incision propagating upstream, favoring the second endmember of active baselevel fall downstream.
NASA Astrophysics Data System (ADS)
Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng
2018-03-01
The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.
Sherrod, Brian L.; Nelson, Alan R.; Kelsey, Harvey M.; Brocher, Thomas M.; Blakely, Richard J.; Weaver, Craig S.; Rountree, Nancy K.; Rhea, B. Susan; Jackson, Bernard S.
2004-01-01
The Tacoma fault bounds gravity and aeromagnetic anomalies for 50 km across central Puget lowland from Tacoma to western Kitsap County. Tomography implies at least 6 km of post-Eocene uplift to the north of the fault relative to basinal sedimentary rocks to the south. Coastlines north of the Tacoma fault rose about 1100 years ago during a large earthquake. Abrupt uplift up to several meters caused tidal flats at Lynch Cove, North Bay, and Burley Lagoon to turn into forested wetlands and freshwater marshes. South of the fault at Wollochet Bay, Douglas-fir forests sank into the intertidal zone and changed into saltmarsh. Liquefaction features found beneath the marsh at Burley Lagoon point to strong ground shaking at the time of uplift. Recent lidar maps of the area southwest of Allyn, Washington revealed a 4 km long scarp, or two closely spaced en-echelon scarps, which correspond closely to the Tacoma fault gravity and aeromagnetic anomalies. The scarp, named the Catfish Lake scarp, is north-side-up, trends east-west, and clearly displace striae left by a Vashon-age glacier. A trench across the scarp exposed evidence for postglacial folding and reverse slip. No organic material for radiocarbon dating was recovered from the trench. However, relationships in the trench suggest that the folding and faulting is postglacial in age.
Insight into collision zone dynamics from topography: numerical modelling results and observations
NASA Astrophysics Data System (ADS)
Bottrill, A. D.; van Hunen, J.; Allen, M. B.
2012-11-01
Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB) is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.
Convective removal of the Tibetan Plateau mantle lithosphere by 26 Ma
NASA Astrophysics Data System (ADS)
Lu, Haijian; Tian, Xiaobo; Yun, Kun; Li, Haibing
2018-04-01
During the late Oligocene-early Miocene there were several major geological events in and around the Tibetan Plateau (TP). First, crustal shortening deformation ceased completely within the TP before 25 Ma and instead adakitic rocks and potassic-ultrapotassic volcanics were emplaced in the Lhasa terrane since 26-25 Ma. Several recent paleoelevation reconstructions suggest an Oligocene-early Miocene uplift of 1500-3000 m for the Qiangtang (QT) and Songpan-Ganzi (SG) terranes, although the exact timing is unclear. As a possible response to this uplift, significant desertification occurred in the vicinity of the TP at 26-22 Ma, and convergence between India and Eurasia slowed considerably at 26-20 Ma. Subsequently, E-W extension was initiated no later than 18 Ma in the Lhasa and QT terranes. In contrast, the tectonic deformation around the TP was dominated by radial expansion of shortening deformation since 25-22 Ma. The plateau-wide near-synchroneity of these events calls for an internally consistent model which can be best described as convective removal of the lower mantle lithosphere. Geophysical and petrochemical evidence further confirms that this extensive removal occurred beneath the QT and SG terranes. The present review concludes that, other than plate boundary stress, the internal stress within the TP lithosphere could have contributed to rapid wholesale uplift and a series of concomitant tectonic events, accompanied by major aridification, since 26 Ma.
The central uplift of Ritchey crater, Mars
NASA Astrophysics Data System (ADS)
Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.
2015-05-01
Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.
The central uplift of Ritchey crater, Mars
Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.
2015-01-01
Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.
Faults and structure in the Pierre Shale, central south Dakota
Nichols, Thomas C.; Collins, Donley S.; Jones-Cecil, Meridee; Swolfs, Henri S.
1994-01-01
Numerous faults observed at the surface and (or) determined by geometric and geophysical methods to be present as much as several hundred meters below the surface (near-surface faults) have been mapped in a 2,000-km2 area west of Pierre, S. Dakota. Many of these faults surround an east-west-trending structural high that has been mapped on the lower part of the Virgin Creek Member of the Pierre Shale. Generally, the geometry and displacement of many of the faults precludes slumping from surficial erosion as a mechanism to explain the faults. Seismic-reflection data indicate that several of the faults directly overlie faults in Precambrian basement that have cumulative vertical displacements of as much as 340 m. The structural high is interpreted to have been uplifted by displacements along faults that cut Upper Cretaceous sedimentary rocks. Recent low-level seismicity and fluvial-geomorphic studies of stream patterns, gradients, and orders suggest that rejuvenation of drainages may be taking place as a result of rebound or other tectonic activity. The studies indicate that repeated uplift and subsidence may have been the cause of extensive faulting mapped in the Pierre Shale since its deposition in Cretaceous time. Surficial fault displacements that cause damage to engineered structures are thought to be the result of construction-induced rebound in the Pierre Shale, although tectonic uplift cannot be ruled out as a cause.
Detecting thermally driven cyclic deformation of an exfoliation sheet with lidar and radar
Collins, Brian D.; Stock, Greg M.
2014-01-01
Rock falls from steep, exfoliating cliffs are common in many landscapes. Of the many mechanisms known to trigger rock falls, thermally driven deformation is among the least quantified, despite potentially being a prevalent trigger due to its occurrence at all times of year. Here we present the results of a field-based monitoring program using instrumentation, ground-based lidar, and ground-based radar to investigate the process of thermally driven deformation of an exfoliation sheet, and the ability of remote sensing tools to capture cyclic expansion and contraction patterns. Our results indicate that thermally driven exfoliation occurs on diurnal cycles and can be measured at the submillimeter to centimeter scale using high-resolution strain gauges, short-range (2 km) radar interfer-ometry.
NASA Astrophysics Data System (ADS)
Brocard, G. Y.; Teyssier, C.; Dunlap, W. J.; Willenbring, J.; Simon-Labric, T.; Authemayou, C.
2008-12-01
Along transpressive orogens, both range-transverse and range-parallel motions influence drainage network evolution. Range-parallel motions promote stretching of drainage networks, river lengthening or shortening, and sudden shortenings by river capture. Range-transverse motions induce river course shortening or lengthening, and generates stronger rock uplift. River incision patterns are influenced by rock uplift and waves of incision resulting from drainage rearrangement. Thus, under steady conditions of wrenching, drainages evolve by continued deformation and discrete rearrangements. Therefore, a significant part of erosion can be achieved in a state of significant departure from dynamic equilibrium. The frequency, intensity, and duration of these events set the timescale over which their integrated effects can be regarded as the expression of a long-term dynamic equilibrium. We document the growth of a 103-104 km2 catchment drained by the Chixoy River in Guatemala. The catchment covers a large part of a 50 km wide orogen located astride the North American - Caribbean plates boundary (Sierra de las Minas - Sierra de Chuacus range). The range is wrenched by sinistral tectonics with a varying amount of transpression and transtension. On the northern flank of this range, the Polochic Fault (PF) accumulated 130 km of total strike-slip displacement, but the Chixoy River only displays a 25 km tectonic bend. Geological evidence indicates that the river probably experienced a diversion that reset earlier tectonic bending. Upstream, the catchment stands out as a large (110x30 km) zone of enhanced erosion (2500 km3 removed since the Middle Miocene). The catchment retains many paleovalleys that we use as markers to track drainage rearrangement, bedrock deformation and changes in erosion rates. Study of the paleovalleys includes: satellite image detection, field mapping of river deposits, analyses of grain-size, clast provenance, heavy mineral provenance, deposit architecture, geochemical analyses, Ar40 -Ar39 dating of volcanic tuffs, 10 Be-26 Al burial dating, and apatite He cooling ages of the bedrock. Coupled analyses of erosion and drainage rearrangement show that, in the studied case, catchment growth occurred over 107 years. Most of the catchment erosion and growth is attributable to uplift along the PF rather than strike-slip motion, although both motion types contribute to the rearrangement. Growth of the catchment is strongly catalyzed by a wealth of other factors, such as river avulsion, volcanism, karstic flow, phreatic flow, and aridity resulting from catchment deepening.
Altitude of the Top of the Madison Limestone in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and groundwater in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study arca arc Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Madison Limestone within the area of the Black Hills Hydrology Study. The depth to the top of the Madison Limestone can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Altitude of the Top of the Deadwood Formation in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Deadwood Formation within the area of the Black Hills Hydrology Study. The depth to the top of the Deadwood Formation can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation, However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Altitude of the Top of the Minnelusa Formation in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Minnelusa Formation within the area of the Black Hills Hydrology Study. The depth to the top of the Minnelusa Formation can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Altitude of the Top of the Minnekahta Limestone in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and groundwater in the Black Hills area of South Dakota (Driscoli, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of environment and Natural Resources, and the West Dakota Water development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara. Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top(structure contours) of the Minnekahta limestone within the area of the Black Hills Hydrology Study. The depth to the top of the Minnekahta Limestone can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
NASA Astrophysics Data System (ADS)
Selverstone, Jane; Wernicke, Brian P.; Aliberti, Elaine A.
1992-02-01
The Salmon River suture zone in west central Idaho juxtaposes volcanic arc rocks of the Wallowa terrane directly against cratonic North America. Detailed metamorphic studies along a 10 km traverse perpendicular to the suture indicate that the arc and two crystalline fragments thrust upon it each record different pressure-temperature (P-T) histories. From lowest to highest structural level: the Wallowa terrane shows only subgreenschist metamorphism, the Rapid River plate (RRP) records unroofing and cooling from ˜8 kbar and 550°C to 6 kbar and 475°-500°C, and the Pollock Mountain plate (PMP) shows evidence for polymetamorphism and records burial and heating paths to final equilibration conditions of 9-11 kbar and 600°-625° C. Ar-Ar hornblende ages combined with the P-T data suggest that currently exposed levels of the RRP and PMP were juxtaposed against one another at 15-20 km depth at or prior to 118 Ma, indicating that 10-20 km of uplift, and hence also the onset of collision-related metamorphism, occurred before ˜118 Ma. Correlation of the metamorphic and age data with geometric constraints from the initial Sr 0.706 line and the dimensions of the RRP and PMP permit construction of large-scale retrodeformable sections of the west side of the suture from Late Jurassic through Late Cretaceous time. The abrupt nature of the Sr 0.706 line implies that the arc-continent boundary extends vertically through most of the crust, which requires sharp downwarping of the arc lithosphere in order to account for the PMP metamorphic data. Narrow zoned overgrowths on PMP garnets record this burial event and require initially rapid (≥3 km/m.y.) uplift rates in order to be preserved. We suggest that the onset of rapid uplift resulted from the separation of the negatively buoyant lithospheric root from the downwarped arc, allowing buoyant rise of fragments of thickened crust. Detachment of the root is suggested to change the environment of crustal shortening from one in which footwalls of thrusts or shear zones sink to one in which hanging walls rise. This mechanism represents an alternative to cessation of shortening or onset of tectonic denudation as an explanation for the transition from burial to uplift of high-pressure metamorphic terrains. Subsequent uplift appears to have been slow and to have occurred in a hinged fashion such that mineral and whole rock ages decrease systematically towards the suture zone. The consumption of lithosphere during ≥40 km of shortening between two crustal blocks implies that the Salmon River suture is the trace of an intracontinental subduction zone. Burial and collision apparently began before about 130 Ma, and thus any precollision strike-slip faulting or tectonic escape of intervening terranes was likely accomplished in Jurassic and earliest Cretaceous time.
Geologic map of the Grand Junction Quadrangle, Mesa County, Colorado
Scott, Robert B.; Carrara, Paul E.; Hood, William C.; Murray, Kyle E.
2002-01-01
This 1:24,000-scale geologic map of the Grand Junction 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the junction of the Colorado River and the Gunnison River. Bedrock strata include the Upper Cretaceous Mancos Shale through the Lower Jurassic Wingate Sandstone units. Below the Mancos Shale, which floors the Grand Valley, the Upper and Lower(?)Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation hold up much of the resistant northeast- dipping monocline along the northeast side of the Uncompahgre uplift. The impressive sequence of Jurassic strata below include the Brushy Basin, Salt Wash, and Tidwell Members of the Upper Jurassic Morrison Formation, the Middle Jurassic Wanakah Formation and informal 'board beds' unit and Slick Rock Member of the Entrada Formation, and the Lower Jurassic Kayenta Formation and Wingate Sandstone. The Upper Triassic Chinle Formation and Early Proterozoic meta-igneous gneiss and migmatitic meta- sedimentary rocks, which are exposed in the Colorado National Monument quadrangle to the west, do not crop out here. The monoclinal dip slope of the northeastern margin of the Uncompahgre uplift is apparently a Laramide structural feature. Unlike the southwest-dipping, high-angle reverse faults in the Proterozoic basement and s-shaped fault- propagation folds in the overlying strata found in the Colorado National Monument 7.5' quadrangle along the front of the uplift to the west, the monocline in the map area is unbroken except at two localities. One locality displays a small asymmetrical graben that drops strata to the southwest. This faulted character of the structure dies out to the northwest into an asymmetric fault-propagation fold that also drops strata to the southwest. Probably both parts of this structure are underlain by a northeast-dipping high-angle reverse fault. The other locality displays a second similar asymmetric fold. No evidence of post-Laramide tilting or uplift exists here, but the antecedent Unaweep Canyon, only 30 km to the south-southwest of the map area, provides clear evidence of Late Cenozoic, if not Pleistocene, uplift. The major geologic hazards in the area include large landslides associated with the dip-slope-underlain, smectite-rich Brushy Basin Member of the Morrison Formation and overlying Dakota and Burro Canyon Formations. Active landslides affect the southern bank of the Colorado River where undercutting by the river and smectitic clays in the Mancos trigger landslides. The Wanakah, Morrison, and Dakota Formations and the Mancos Shale create a significant hazard to houses and other structures by containing expansive smectitic clay. In addition to seasonal spring floods associated with the Colorado and Gunnison Rivers, a serious flash flood hazard associated with sudden summer thunderstorms threatens the intermittent washes that drain the dip slope of the monocline.
Flexure in the Corinth rift: reconciling marine terraces, rivers, offshore data and fault modeling
NASA Astrophysics Data System (ADS)
de Gelder, G.; Fernández-Blanco, D.; Jara-Muñoz, J.; Melnick, D.; Duclaux, G.; Bell, R. E.; Lacassin, R.; Armijo, R.
2016-12-01
The Corinth rift (Greece) is an exceptional area to study the large-scale mechanics of a young rift system, due to its extremely high extension rates and fault slip rates. Late Pleistocene activity of large normal faults has created a mostly asymmetric E-W trending graben, mainly driven by N-dipping faults that shape the southern margin of the Corinth Gulf. Flexural footwall uplift of these faults is evidenced by Late Pleistocene coastal fan deltas that are presently up to 1700m in elevation, a drainage reversal of some major river systems, and flights of marine terraces that have been uplifted along the southern margin of the Gulf. To improve constraints on this footwall uplift, we analysed the extensive terrace sequence between Xylokastro and Corinth - uplifted by the Xylokastro Fault - using 2m-resolution digital surface models developed from Pleiades satellite imagery (acquired through the Isis and Tosca programs of the French CNES). We refined and improved the spatial uplift pattern and age correlation of these terraces, through a detailed analysis of the shoreline angles using the graphical interface TerraceM, and 2D numerical modeling of terrace formation. We combine the detailed record of flexure provided by this analysis with a morphometric analysis of the major river systems along the southern shore, obtaining constraints of footwall uplift on a longer time scale and larger spatial scale. Flexural subsidence of the hanging wall is evidenced by offshore seismic sections, for which we depth-converted a multi-channel seismic section north of the Xylokastro Fault. We use the full profile of the fault geometry and its associated deformation pattern as constraints to reproduce the long-term flexural wavelength and uplift/subsidence ratio through fault modeling. Using PyLith, an open-source finite element code for quasi-static viscoelastic simulations, we find that a steep-dipping planar fault to the brittle-ductile transition provides the best fit to reproduce the observed deformation pattern on- and offshore. The combined results of this study allow us to compare flexural normal faulting on different scales, and recorded in different elements of the Corinth rift, allowing us to put forward a comprehensive discussion on the deformation mechanisms and the mechanical behavior of this crustal scale feature.
NASA Astrophysics Data System (ADS)
Motagh, M.; Lubitz, C.
2014-12-01
Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.
Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming
Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.
2006-01-01
Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.
Geology and tectonics of the Archean Superior Province, Canadian Shield
NASA Technical Reports Server (NTRS)
Card, K. D.
1986-01-01
Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.
Geologic youth of galapagos islands confirmed by marine stratigraphy and paleontology.
Hickman, C S; Lipps, J H
1985-03-29
Six distinctive types of fossiliferous marine deposits occur on the Galádpagos Islands that provide evidence for the age of emergence of the islands above sea level and hence a maximum age for the islands' terrestrial biota. These subtidal to supratidal deposits include (i) volcanic tuffs with fossils, (ii) limestones and sandstones interbedded with basalt, (iii) terrace deposits, (iv) beach rock, (v) supratidal talus deposits, and (vi) recently uplifted tidal and subtidal rocks and sand. With the exception of (vi), the deposits were previously assigned ages varying from Miocene to Pleistocene, but all are less than about 2 million years old. This age, together with independently determined geologic ages, indicate that the islands emerged from the sea relatively recently and that all evolution of the islands' unique terrestrial biota occurred within the past 3 to 4 million years.
Lee, S.R.; Horton, J. Wright; Walker, R.J.
2006-01-01
The osmium isotope ratios and platinum-group element (PGE) concentrations of impact-melt rocks in the Chesapeake Bay impact structure were determined. The impact-melt rocks come from the cored part of a lower-crater section of suevitic crystalline-clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact-melt rocks range from 0.151 to 0.518. The rhenium and platinum-group element (PGE) concentrations of these rocks are 30-270?? higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact-melt rocks. Because the PGE abundances in the impact-melt rocks are dominated by the target materials, interelemental ratios of the impact-melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact-melt rocks include a bulk meteoritic component of 0.01-0.1% by mass. Several impact-melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%-0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01-0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact-melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact-melt rocks, and 2) variable fractionations of PGE during syn- to post-impact events. ?? The Meteoritical Society, 2006.
Petroleum geology and resources of the middle Caspian Basin, Former Soviet Union
Ulmishek, Gregory F.
2001-01-01
The Middle Caspian basin occupies a large area between the Great Caucasus foldbelt and the southern edge of the Precambrian Russian craton. The basin also includes the central part of the Caspian Sea and the South Mangyshlak subbasin east of the sea. The basin was formed on the Hercynian accreted terrane during Late Permian?Triassic through Quaternary time. Structurally, the basin consists of the fold-and-thrust zone of the northern Caucasus foothills, the foredeep and foreland slope, the Stavropol-Prikumsk uplift and East Manych trough to the north of the slope, and the South Mangyshlak subbasin and slope of the Karabogaz arch east of the Caspian Sea. All these major structures extend offshore. Four total petroleum systems (TPS) have been identified in the basin. The South Mangyshlak TPS contains more than 40 discovered fields. The principal reserves are in Lower?Middle Jurassic sandstone reservoirs in structural traps. Source rocks are poorly known, but geologic data indicate that they are in the Triassic taphrogenic sequence. Migration of oil and gas significantly postdated maturation of source rocks and was related to faulting and fracturing during middle Miocene to present time. A single assessment unit covers the entire TPS. Largest undiscovered resources of this assessment unit are expected in the largely undrilled offshore portion of the TPS, especially on the western plunge of the Mangyshlak meganticline. The Terek-Caspian TPS occupies the fold-and-thrust belt, foredeep, and adjoining foreland slope. About 50 hydrocarbon fields, primarily oil, have been discovered in the TPS. Almost all hydrocarbon reserves are in faulted structural traps related to thrusting of the foldbelt, and most traps are in frontal edges of the thrust sheets. The traps are further complicated by plastic deformation of Upper Jurassic salt and Maykop series (Oligocene? lower Miocene) shale. Principal reservoirs are fractured Upper Cretaceous carbonates and middle Miocene sandstones. Principal source rocks are organic-rich shales in the lower part of the Maykop series. Source rocks may also be present in the Eocene, Upper Jurassic, and Middle Jurassic sections, but their contribution to discovered reserves is probably small. Three assessment units are delineated in the TPS. One of them encompasses the thrust-and-fold belt of northern Caucasus foothills. This assessment unit contains most of the undiscovered oil resources. The second assessment unit occupies the foredeep and largely undeformed foreland slope. Undiscovered resources of this unit are relatively small and primarily related to stratigraphic traps. The third unit is identified in almost untested subsalt Jurassic rocks occurring at great depths and is speculative. The unit may contain significant amounts of gas under the Upper Jurassic salt seal. The Stavropol-Prikumsk TPS lies north of the Terek-Caspian TPS and extends offshore into the central Caspian Sea where geologic data are scarce. More than one hundred oil and gas fields have been found onshore. Offshore, only one well was recently drilled, and this well discovered a large oil and gas field. Almost the entire sedimentary section of the TPS is productive; however, the principal oil reserves are in Lower Cretaceous clastic reservoirs in structural traps of the Prikumsk uplift. Most original gas reserves are in Paleogene reservoirs of the Stavropol arch and these reservoirs are largely depleted. At least three source rock formations, in the Lower Triassic, Middle Jurassic, and Oligocene?lower Miocene (Maykop series), are present in the TPS. Geochemical data are inadequate to correlate oils and gases in most reservoirs with particular source rocks, and widespread mixing of hydrocarbons apparently took place. Three assessment units encompassing the onshore area of the TPS, the offshore continuation of the Prikumsk uplift, and the central Caspian area, are identified. The
Petrogenesis of Mesoproterozoic granitic plutons, eastern Llano Uplift, central Texas, USA
NASA Astrophysics Data System (ADS)
Smith, R. K.; Gray, Walt; Gibbs, Tyson; Gallegos, M. A.
2010-08-01
The Llano Uplift of central Texas is a gentle structural dome exposing ˜ 1370 to 1230 Ma metaigneous and metasedimentary rocks of Grenville affinity along the southern margin of Laurentia. The metamorphic rocks were subsequently intruded by ˜ 1119 to 1070 Ma late syn- to post-tectonic granites collectively known as the Town Mountain Granite (TMG). The eastern most of the TMG, the Marble Falls (MF), Kingsland (KL), and Lone Grove (LG) plutons, are metaluminous to marginally peraluminous, high-K, calc-alkaline, ferroan, biotite-calcic amphibole granites [Fe/(Fe + Mg) = 0.71-0.92 and 0.78-0.91 for biotite and calcic amphibole, respectively] displaying distinct variation trends with increasing silica content. They are chemically and texturally zoned and have mineralogical and chemical characteristics similar to A-type granites; i.e., 1) Fe-rich biotites, calcic amphiboles, accessory fluorite, and sporadic rapakivi texture, 2) high K 2O (> 4 wt.%), 3) low Al 2O 3 (< 16 wt.%) and CaO (< 3 wt.%), 4) high Fe/(Fe + Mg), 5) enrichments in Zr, Nb, REE, Ga/Al, and 6) depleted Eu. However, in contrast to typical A-type granites (having low Sr and Ba) the MF, KL,and LG plutons are enriched in Sr and Ba; i.e., up to 229 ppm and 1090 ppm, respectively. On granite discrimination diagrams [(K 2O + Na 2O)/CaO vs. Zr + Nb + Ce + Y (ppm) and Zr (ppm) vs. Ga/Al*10,000] the KL and MF plutons plot within the A-type field, whereas the LG pluton compositions are divided between A-type and fractionated granite fields (I-, S- and M-types). On tectonic discrimination diagrams (Y vs. Nb ) the MF and KL granites plot in the "within-plate" granite field, but the LG pluton plots across several fields including "within-plate" and "volcanic arc plus syn-collisional" fields. Consequently the tectonic classification on a geochemical basis for the LG pluton is unclear. Based on thermal metamorphic mineral assemblages, normative Q-Ab-Or plots, and Q-Ab-Or-H 2O experimental data (Johannes and Holtz, 1996), crystallization temperatures and pressures are estimated to range from 750 to 850 °C and 200 to 500 MPa, respectively. The assemblage of titanite + magnetite + quartz suggests crystallization at low fO2 [confirmed by Fe/(Fe + Mg) vs. [4] Al microprobe analyses of calcic amphibole] and a water content of less than 1.5 wt.% (Wones, 1989). Like other Town Mountain-type plutons, the MF, KL, and LG granites display comparable iron contents at similar alkali and silica enrichments. Melting models (Ba vs. Sr) suggest the MF, KL, and LG plutons may have evolved from the partial melting (anatexis) of juvenile, tonalitic, lower crustal rocks, followed by plagioclase and pyroxene dominated fractionation. Nd isotopic data for the MF pluton ( ɛNd = + 3.4 at 1.06 Ga; Patchett and Ruiz, 1989) and whole-rock δ18O values for the MF, KL, and LG plutons (+ 7.0 < δ 18O >+10.1‰; Rangel et al., 2008) suggest that the magmas in the eastern Llano Uplift may contain a significant mantle component, whereas relatively high δ18O values (+ 9.3 to + 9.7‰; Bebout and Carlson, 1986) for other coeval TMG rocks suggest that a significant crustal component is involved. Whole-rock and trace-element chemistry indicate that the MF and KL plutons, along with the coarser grained textures of the LG pluton, are 'A-type' granites. However, with no coeval mafic dikes, syenitic compositions, or volcanic rocks it is clear that the TMG plutons do not represent anorogenic granites. The available evidence is most compatible with emplacement of the TMG plutons in a post-orogenic (Grenville), relaxation and extensional (i.e., slab breakoff) setting.
Controls on Deep Seated Gravitational Slope Deformations in the European Alps
NASA Astrophysics Data System (ADS)
Crosta, Giovanni B.; Frattini, Paolo; Agliardi, Federico
2013-04-01
DSGSDs are very large, slow mass movements affecting entire high-relief valley slopes. The first orogen-scale inventory of such phenomena at has been recently presented for the European Alps (Crosta et al 2008, Agliardi et al 2012), and then further implemented. The inventory includes 1034 Deep Seated Gravitational Slope Deformations, widespread over the entire orogen and clustered along major valleys and in some specific sectors of the Alps. In this contribution we systematically explore lithological, structural and topographic controls on DSGSD distribution with the help of multivariate statistical techniques (Principal Component Analysis, Discriminant Analysis). Analysis units for statistical analysis were obtained by creating three square vector grids with 2.5 km, 5 km and 10 km grid cell size, respectively, covering the entire area (about 110,000 km2). For each grid cell, we calculated the density of DSGSD, and we assigned a value for each of the controlling variable considered in the analysis. From the NASA SRTM (Shuttle Radar Topography Mission) DEM we derived land surface parameters, such as relief, slope gradients, slope aspect, mean vertical distance from base level and ruggedness. The SRTM DEM was also used to extract the drainage density, with a threshold of 1 km2 and 10 km2. We also computer the stream power of the 1km2 river network Lithology was obtained by assembling different geological maps (1:200.000 map of Salzburg, 1:250.000 map of France, 1:500.000 maps of Switzerland and Austria, 1:1.000.000 map of Italy) and by reclassifying the geological units into 8 lithological classes (carbonate rocks, metapelites, sandstones and marls, paragneiss, ortogneiss, flysch-type rocks, granitoid/metabasite, Quaternary units, and volcanic rocks). To study the role of seismicity, we calculated the number of earthquakes (CPTI11 and USGS-NEIC database) within a distance dmax from the square cell, calculated adopting Keefer's (1984) equation, and the sum of Arias Intensities of all earthquakes lying within dmax. Fission-track ages on apatite have been collected from published sources, and interpolated over the entire Alps by using a natural-neighbour interpolator. Finally, the ice thickness during the Last Glacial Maximum, the modern rock uplift, and the mean annual rainfall have been used. Results of the multivariate statistical analysis confirm the results of the previous orogen-scale investigations (Crosta et al., 2008; Agliardi et al., 2012) and shed new light on the relative importance of the (positive or negative) contributions of different controlling factors. The most important controls on DSGSD distribution are: lithology, landscape morphology, LGM ice thickness, modern uplift rate and mean annual rainfall. Lithology is the dominant factor, with units highly favourable (chiefly metapelites, followed by paragneiss and flysch-type rocks) and other unfavourable (especially carbonates rocks) to DSGSD. Landscape morphology plays a role that is difficult to correctly evaluate because of the interplay between morphology and geological and hydrological parameters. DSGSDs are more frequent along main alpine valleys, where long and regular slopes can accommodate these large phenomena, but also where the action of glaciers and the presence of main tectonic lineaments are more important. Favourable landscape morphologies seem also controlled by exhumation and uplift rate. Mean annual rainfall is inversely correlated with DSGSD density. This can be interpreted as the long-term effects of climate in shaping large-scale topography and favouring other types of landslides as players of long-term erosion. Crosta, G.B., Agliardi, F., Frattini, P., Zanchi, A. (2008) Alpine inventory of Deep-Seated Gravitational Slope Deformations. Vol. 10, EGU2008-A-02709, 2008, SRef-ID: 1607-7962/gra/EGU2008-A-0270. Agliardi, F., Crosta, G., Frattini, P. (2012). Slow rock-slope deformation. In: Clague JJ;Stead D;(eds). Landslides Types, Mechanisms and Modeling. p. 207-221, Cambridge University Press, ISBN: 978-1-107-00206-7.
Rutqvist, J.
2014-09-19
The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, J.
The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less
Wang, Weitao; Zhang, Peizhen; Zheng, Wenjun; Zheng, Dewen; Liu, Caicai; Xu, Hongyan; Zhang, Huiping; Yu, Jingxing; Pang, Jianzhang
2016-01-01
Significant climate shifts in the northeastern Tibetan Plateau have taken place during the Cenozoic, but the reasons behind them remain unclear. In order to unravel the mechanisms driving these climate changes, proxy data with accurate age constraint are needed. Here we present magnetostratigraphy, sediment color (redness a*, and lightness L*) and grain-size analysis from an early to middle Miocene (~20–15.3 Ma) sediment sequence preserved in the Yumen Basin on the northeastern Tibetan Plateau. In this basin, remarkable increase in lightness, decreases in redness and in ratio of hematite (Hm) to goethite (Gt) took place at ~16.5 Ma. We suggest that these changes result from shorter duration of weathering, climatic wetting, and cooling associated with rapid uplift of the Qilian Shan at the middle Miocene. PMID:27411593
NASA Astrophysics Data System (ADS)
Campbell-Stone, Erin; John, Barbara E.; Foster, David A.; Geissman, John W.; Livaccari, Richard F.
2000-06-01
The Colorado River extensional corridor (CREC) accommodated up to 100% crustal extension between ˜23 and 12 Ma. The southernmost Sacramento Mountains core complex lies within this region of extreme extension and exposes a footwall of Proterozoic, Mesozoic, and Miocene crystalline rocks as well as Miocene volcanic and sedimentary rocks in the hanging wall to the regionally developed Chemehuevi-Sacramento detachment fault (CSDF) system. New structural, U-Pb-zircon, Ar-Ar, and fission track geochronologic and paleomagnetic studies detail the episodic character of both magmatic and tectonic extension in this region. Extension in this part of the CREC was initiated with tectonic slip along a detachment fault system at a depth between 10 and 15 km. Magmatic extension at these crustal levels began at ˜20-19 Ma and directly account for 5-18 km of extension (10-20% of total extension) in the southern Sacramento Mountains. Three discrete magmatic episodes record rotation of the least principal stress direction, in the horizontal plane, from 55° to 15° over the following ˜3 Myr. The three intrusions bear brittle and semibrittle fabrics and show no crystal-plastic fabric development. The final 3-4 Myr of stretching were dominated by amagmatic or tectonic extension along a detachment fault system, with extension directions rotating back toward 75°. The data are consistent with extremely rapid cooling and uplift of Miocene footwall rocks; the ˜19 Ma Sacram suite was emplaced at a mean pressure of ˜3.0 kbars and uplifted rapidly to a level in the crust where brittle deformation was manifested by movement on the detachment fault at ˜16 Ma. By ˜14 Ma the footwall was exposed at the surface, with detritus shed off and deposited in adjacent hanging wall basins.
Parris, T.M.; Burruss, R.C.; O'Sullivan, P. B.
2003-01-01
Along the southeast border of the 1002 Assessment Area in the Arctic National Wildlife Refuge, Alaska, an explicit link between gas generation and deformation in the Brooks Range fold and thrust belt is provided through petrographic, fluid inclusion, and stable isotope analyses of fracture cements integrated with zircon fission-track data. Predominantly quartz-cemented fractures, collected from thrusted Triassic and Jurassic rocks, contain crack-seal textures, healed microcracks, and curved crystals and fluid inclusion populations, which suggest that cement growth occurred before, during, and after deformation. Fluid inclusion homogenization temperatures (175-250??C) and temperature trends in fracture samples suggest that cements grew at 7-10 km depth during the transition from burial to uplift and during early uplift. CH4-rich (dry gas) inclusions in the Shublik Formation and Kingak Shale are consistent with inclusion entrapment at high thermal maturity for these source rocks. Pressure modeling of these CH4-rich inclusions suggests that pore fluids were overpressured during fracture cementation. Zircon fission-track data in the area record postdeposition denudation associated with early Brooks Range deformation at 64 ?? 3 Ma. With a closure temperature of 225-240??C, the zircon fission-track data overlap homogenization temperatures of coeval aqueous inclusions and inclusions containing dry gas in Kingak and Shublik fracture cements. This critical time-temperature relationship suggests that fracture cementation occurred during early Brooks Range deformation. Dry gas inclusions suggest that Shublik and Kingak source rocks had exceeded peak oil and gas generation temperatures at the time structural traps formed during early Brooks Range deformation. The timing of hydrocarbon generation with respect to deformation therefore represents an important exploration risk for gas exploration in this part of the Brooks Range fold and thrust belt. The persistence of gas high at thermal maturity levels suggests, however, that significant volumes of gas may have been generated.
NASA Astrophysics Data System (ADS)
Enkelmann, E.; Dunn, C. A.; Ridgway, K.; Allen, W. K.
2016-12-01
The St. Elias Mountains in southeastern Alaska provide a natural laboratory to study the interacting processes of tectonics and climate. Because of the high-latitude, coastal geography the surface processes in the St. Elias Mountains are dominated by glacial erosion that varied during late Cenozoic climate shifts. Sediment eroded from the St. Elias Mountains are transported into the Gulf of Alaska by large tidewater glaciers and rivers, where they are deposited on the shelf and in large deep-sea submarine fans. Surface uplift and erosion jointly results in exhumation of deep crustal rocks that has been quantified by thermochronology, revealing spatial variations in exhumation rates across the St. Elias Mountains. We present new thermochronology data (apatite and zircon fission-track ages) from offshore strata derived from boreholes drilled by IODP Expedition 341 in the Gulf of Alaska. This offshore record provides an integrated signal of rock exhumation from the St. Elias and southeast Alaska since 10 Ma. Integrating the offshore data with the existing onshore thermochronology reveals that very rapid exhumation (>2 km/Myr) from 8-10 km depths has been occurring in southeastern Alaska since 11-10 Ma and thus prior to the onset of glaciation. The majority of our offshore data record the past 1 Myr of deposition related to the Bagley-Bering Glacier and allows assessing the long-standing question of the western limit of extreme exhumation observed at the St. Elias syntaxis in the Seward and Hubbard glacial drainages. The zircon fission-track ages from the Bering sediment reveal small age populations that peak between 15-9 Ma, suggesting much slower exhumation beneath the Bagley Ice Valley than farther east underneath the Seward and Hubbard glacier. Our results point out the first-order role of tectonics in providing sustained uplift and crustal weakening in the upper plate that than serve as areas for focused exhumation due to secondary erosional/climate processes.
Landscape disequilibrium on 1000-10,000 year scales Marsyandi River, Nepal, central Himalaya
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, Beth; Burbank, Douglas W.; Heimsath, Arjun; Ojha, Tank
2004-03-01
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 10 5-10 7 years. Over shorter times, <10 5 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 10 4-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50-35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9-6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2-8% of the sediments which flushed through the Marsyandi during the accumulation period. At ˜10 4-year timescales, maximum bedrock incision rates are ˜7 mm/year in the Greater Himalaya and ˜1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more "equilibrium" profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.
NASA Astrophysics Data System (ADS)
Dorsey, R. J.; Housen, B. A.; Janecke, S. U.; McDougall, K.; Fanning, M.; Fluette, A.; Axen, G. J.; Shirvell, C. R.
2006-12-01
The Fish Creek-Vallecito basin contains a 5.1-km thick section of sedimentary rocks in the SW Salton Trough that range in age from 8.1 to 0.9 Ma. The section preserves a record of basin subsidence related to slip on the West Salton detachment fault (WSDF), which formed the main western rift-flank structure of the Salton Trough. We obtained a well-constrained chronology from compilation of existing (Johnson et al., 1983) and new paleomagnetic data, ages of two tuffs high in the section, and thicknesses calculated from the geologic map of Winker (1987) and our work in the lower 1.3 km. The tuffs yielded SHRIMP U-Pb ages of 2.56 ± 0.09 and 2.54 ± 0.09 Ma from single zircons. Geohistory analysis, corrected for paleobathymetry and global sea- level change, yields a decompacted subsidence curve with 5 segments bounded by abrupt changes in subsidence rate: (1) 0.46 mm/yr from 8.1 to 5.5 Ma; (2) 1.8 mm/yr from 5.5 to 5.2 Ma; (3) zero subsidence or slight uplift from 5.2 to 4.6 Ma; (4) 1.9 mm/yr from 4.6 to 3.2 Ma; and (5) 0.4 mm/yr from 3.2 to 0.9 Ma. The base of the Elephant Trees Fm, dated here at 8.1 Ma, provides the earliest well dated record of extension in the SW Salton Trough. Earliest marine incursion is dated at 6.3 Ma, and the first appearance of Colorado River sand coincides closely with the Miocene-Pliocene boundary (5.33 Ma). Because the base of the marine Imperial Group does not coincide with a change in subsidence rate, we suggest that initial marine incursion resulted from a latest Miocene global sea-level highstand superposed on steady subsidence. Thus, the inflections at 8.1 and 5.5 Ma are the two most likely ages for onset of slip on the WSDF, but 4.6 Ma is also possible. Variations in subsidence rate are not predicted by models for extensional detachment faults, and may reflect episodic pulsed fault slip and/or long-wavelength folding related to dextral-wrench tectonics. Rapid subsidence in segment 4 began during progradation of the Colorado River delta into the Imperial seaway, and continued during deposition of the fluvial Diablo and Olla formations. It ended at 3.2 Ma, 0.4 m.y. prior to the end of Colorado River sand input and transition to locally-derived Hueso Fm. This abrupt change in sediment composition occurred during slip on the WSDF, and may have been driven by an increase in sediment supply related to climate change. The entire basin has been inverted and completely exhumed, suggesting a rock uplift rate of ca. 6 mm/yr during the past 0.9 m.y. Rapid uplift coincides with modern transpressional deformation and strike-slip faults that cross-cut and terminated slip on the WSDF starting at 1.1-1.3 Ma (Steely, 2006; Lutz et al., in press; Kirby et al., in press).
NASA Astrophysics Data System (ADS)
Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei
2010-05-01
The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of the Paleo-Asian Ocean the Jiamusi Block underwent a very rapid exhumation in the late Permian. In the early Mesozoic the area went into a basin developing stage and formed a large basin as a whole during the Early Cretaceous. In the Late Cretaceous the Jiamusi Block started uplifting and the basin was broken into isolate small basins. References: Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House, 1993.578-581. Cao Chengrun, Zheng Qingdao. Structural evolution feature and its significance of hydrocarbon exploration in relict basin formation, Eastern Heilongjiang province. Journal of Jilin university (Earth Science Edition), 2003, 33(2):167-172. Lang Xiansheng. Biologic Assemblage features of Coal-bearing Strata in Shuangyashan-Jixian coal-field. Coal geology of China, 2002, 14(2):7-12. Piao Taiyuan , Cai Huawei , Jiang Baoyu. On the Cretaceous coal-bearing Strata in Eastern Heilongjiang. Journal Of Stratigraphy, 2005, 29:489-496. Wang Jie , He Zhonghua , Liu Zhaojun , Du Jiangfeng , Wang Weitao. Geochemical characteristics of Cretaceous detrital rocks and their constraint on provenance in Jixi Basin. Global Geology,2006, 25(4):341-348. DickinsonW R and Christopher A. Suczek. Plate Tectonics and Sandstone Composition. AAPG B. 1979,63(12 ):2164-2182. DickinsonW R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull Geo-Soc Amer, 1983, 94: 222-235. Maruyama S, Seno T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 1986,127(3-4):305-329. Maruyama S, Isozaki Y, Kimura Gand Terabayashi M C.Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. Island Arc, 1997,6:121-142.
Zenke, Kosuke; Nam, Yoon Kwon; Kim, Ki Hong
2010-01-01
In the present study, we have developed short interfering RNA (siRNA) expression vector utilizing rock bream beta-actin promoter and examined the possible use for the inhibition of highly pathogenic fish virus, rock bream iridovirus (RBIV), replication in vitro. Initially, in order to express siRNA effectively, we added several modifications to wild-type rock bream beta-actin promoter. Next, we succeeded in knocking down the expression of enhanced green fluorescent protein reporter gene expression in fish cells using newly developed vector more effectively than the fugu U6 promoter-driven vector we described previously. Finally, we could observe that cells transfected with modified rock bream beta-actin promoter-driven siRNA expression vector targeting major capsid protein (MCP) gene of RBIV exhibited more resistance to RBIV challenge than other control cells. Our results indicate that this novel siRNA expression vector can be used as a new tool for therapeutics in virus infection in fish species.
Reconnaissance geology of the Jabal Hashahish Quadrangle, sheet 17/41 B, Kingdom of Saudi Arabia
Hadley, D.G.
1982-01-01
The Jabal Hashahish quadrangle (sheet 17/41 B) lies between lat 17?30' and 18?00' N. and long 41?30' and 42?00' E. and encompasses an area of 2,950 km2, of which only about 600 km2 is land; the remainder is covered by the Red Sea. The geologic formations exposed in the quadrangle include Precambrian layered and intrusive rocks, Tertiary gabbro dikes, Quaternary basaltic lavas and pyroclastic rocks, and Quaternary surficial deposits. The Precambrian rocks include layered sedimentary and volcanic rocks that have been assigned to the Baish, Bahah, and Ablah groups. These rocks have been folded, metamorphosed, and invaded by intrusions. They are cut by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. The Quaternary rocks also include basalt that was extruded during a continuation of that opening, after the uplift that formed the escarpment that parallels the eastern shore of the Red Sea, but before the Holocene erosional cycle. Coastal, pediment, and alluvial, and eolian deposits of various kinds are also of Quaternary age. The economic potential of the quadrangle lies essentially in the agricultural value of its flood-plain deposits, though these are not so widely used as those in Wadi Hali and Wadi Yiba, which are located in the Manjamah quadrangle. The coral reefs possibly could provide raw materials for use in a cement industry, if any such industry were ever required in this area.
NASA Astrophysics Data System (ADS)
Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.
2015-09-01
The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.
NASA Astrophysics Data System (ADS)
Dickson Cunningham, W.; Windley, Brian F.; Dorjnamjaa, D.; Badamgarov, G.; Saandar, M.
1996-02-01
We present results from the first detailed geological transect across the Mongolian Western Altai using modern methods of structural geology and fault kinematic analysis. Our purpose was to document the structures responsible for Cenozoic uplift of the range in order to better understand processes of intracontinental mountain building. Historical right-lateral strike-slip and oblique-slip earthquakes have previously been documented from the Western Altai, and many mountain fronts are marked by active fault scarps indicating current tectonic activity and uplift. The dominant structures in the range are long (>200 km) NNW trending right-lateral strike-slip faults. Our transect can be divided into three separate domains that contain active, right-lateral strike-slip master faults and thrust faults with opposing vergence. The current deformation regime is thus transpressional. Each domain has an asymmetric flower structure cross-sectional geometry, and the transect as a whole is interpreted as three separate large flower structures. The mechanism of uplift along the transect appears to be horizontal and vertical growth of flower structures rooted into the dominant right-lateral strike-slip faults. The major Bulgan Fault forms the southern structural boundary to the range and is a 3.5-km-wide brittle-ductile zone that has accommodated reverse and left-lateral strike-slip displacements. It appears to be linked to the North Gobi Fault Zone to the east and Irtysh Fault zone to the west and thus may be over 900 km in length. Two major ductile left-lateral extensional shear zones were identified in the interior of the range that appear to be preserved structures related to a regional Paleozoic or Mesozoic extensional event. Basement rocks along the transect are dominantly metavolcanic, metasedimentary, or intrusive units probably representing a Paleozoic accretionary prism and arc complex. The extent to which Cenozoic uplift has been accommodated by reactivation of older structures and inversion of older basins is unknown and will require further study. As previously suggested by others, Cenozoic uplift of the Altai is interpreted to be due to NE-SW directed compressional stress resulting from the Indo-Eurasian collision 2500 km to the south.
Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Yao, Y.; Li, A.
2014-12-01
Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere during the Ouachita orogeny. This observation need be further tested using long period surface wave dispersions from earthquakes, which help to improve model resolution in the upper mantle.
NASA Technical Reports Server (NTRS)
Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom
1994-01-01
The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes.
Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvidson, R.; Becker, R.; Shanabrook, A.
1994-06-10
The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cuttingmore » through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.« less
Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces
NASA Technical Reports Server (NTRS)
Merritts, Dorothy J.; Vincent, Kirk R.; Wohl, Ellen E.
1994-01-01
Along three rivers at the Mendocino triple junction, northern California, strath, cut, and fill terraces have formed in response to tectonic and eustatic processes. Detailed surveying and radiometric dating at multiple sites indicate that lower reaches of the rivers are dominated by the effects of oscillating sea level, primarily aggradation and formation of fill terraces during sea level high stands, alternating with deep incision during low stands. A eustasy-driven depositional wedge extends tens of kilometers upstream on all rivers (tapering to zero thickness). This distance is greater than expected from studies of the effects of check dams on much smaller streams elsewhere, due in part to the large size of these rivers. However, the change in gradient is nearly identical to other base level rise studies: the depositional gradient is about half that of the original channel. Middle to upper reaches of each river are dominated by the effects of long-term uplift, primarily lateral and vertical erosion and formation of steep, unpaired strath terraces exposed only upstream of the depositional wedge. Vertical incision at a rate similar to that of uplift has occurred even during the present sea level high stand along rivers with highest uplift rates. Strath terraces have steeper gradients than the modern channel bed and do not merge with marine terraces at the river mouth; consequently, they cannot be used to determine altitudes of sea level high stands. Strath formation is a continuous process of response to long-term uplift, and its occurrence varies spatially along a river depending on stream power, and hence position, upstream. Strath terraces are found only along certain parts of a coastal stream: upstream of the aggradational effects of oscillating sea level, and far enough downstream that stream power is in excess of that needed to transport the prevailing sediment load. For a given size river, the greater the uplift rate, the greater the rate of vertical incision and, consequently, the less the likelihood of strath terrace formation and preservation.
Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica
NASA Astrophysics Data System (ADS)
Paxman, G. J. G.; Watts, A. B.; Ferraccioli, F.; Jordan, T. A.; Bell, R. E.; Jamieson, S. S. R.; Finn, C. A.
2016-10-01
The relative roles of climate and tectonics in mountain building have been widely debated. Central to this debate is the process of flexural uplift in response to valley incision. Here we quantify this process in the Gamburtsev Subglacial Mountains, a paradoxical tectonic feature in cratonic East Antarctica. Previous studies indicate that rifting and strike-slip tectonics may have provided a key trigger for the initial uplift of the Gamburtsevs, but the contribution of more recent valley incision remains to be quantified. Inverse spectral (free-air admittance and Bouguer coherence) methods indicate that, unusually for continents, the coherence between free-air gravity anomalies and bedrock topography is high (>0.5) and that the elastic thickness of the lithosphere is anomalously low (<15 km), in contrast to previously reported values of up to ∼70 km. The isostatic effects of two different styles of erosion are quantified: dendritic fluvial incision overprinted by Alpine-style glacial erosion in the Gamburtsevs and outlet glacier-type selective linear erosion in the Lambert Rift, part of the East Antarctic Rift System. 3D flexural models indicate that valley incision has contributed ca. 500 m of peak uplift in the Gamburtsevs and up to 1.2 km in the Lambert Rift, which is consistent with the present-day elevation of Oligocene-Miocene glaciomarine sediments. Overall, we find that 17-25% of Gamburtsev peak uplift can be explained by erosional unloading. These relatively low values are typical of temperate mountain ranges, suggesting that most of the valley incision in the Gamburtsevs occurred prior to widespread glaciation at 34 Ma. The pre-incision topography of the Gamburtsevs lies at 2-2.5 km above sea-level, confirming that they were a key inception point for the development of the East Antarctic Ice Sheet. Tectonic and/or dynamic processes were therefore responsible for ca. 80% of the elevation of the modern Gamburtsev Subglacial Mountains.
Trigas, Panayiotis; Panitsa, Maria; Tsiftsis, Spyros
2013-01-01
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport's rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation. PMID:23555031
NASA Astrophysics Data System (ADS)
Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.
2016-10-01
Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-01-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573
Centrifuge modeling of rocking-isolated inelastic RC bridge piers.
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-12-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.
Himalayan uplift shaped biomes in Miocene temperate Asia: evidence from leguminous Caragana.
Zhang, Ming-Li; Xiang, Xiao-Guo; Xue, Juan-Juan; Sanderson, Stewart C; Fritsch, Peter W
2016-11-09
Caragana, with distinctive variation in leaf and rachis characters, exhibits three centers of geographic distribution, i.e., Central Asia, the Qinghai-Tibetan Plateau (QTP), and East Asia, corresponding to distinct biomes. Because Caragana species are often ecologically dominant components of the vegetation in these regions, it is regarded as a key taxon for the study of floristic evolution in the dry regions of temperate Asia. Based on an expanded data set of taxa and gene regions from those previously generated, we employed molecular clock and biogeographical analyses to infer the evolutionary history of Caragana and link it to floristic patterns, paleovegetation, and paleoclimate. Results indicate that Caragana is of arid origin from the Junggar steppe. Diversification of crown group Caragana, dated to the early Miocene ca. 18 Ma and onwards, can be linked to the Himalayan Motion stage of QTP uplift. Diversification of the major clades in the genus corresponding to taxonomic sections and morphological variation is inferred to have been driven by the uplift, as well as Asian interior aridification and East Asian monsoon formation, in the middle to late Miocene ca. 12~6 Ma. These findings demonstrate a synchronous evolution among floristics, vegetation and climate change in arid Central Asia, cold arid alpine QTP, and mesophytic East Asia.
Tracing erosion patterns in Taiwan by quantitative provenance and geomorphological analysis
NASA Astrophysics Data System (ADS)
Resentini, Alberto; Goren, Liran; Castelltort, Sebastien; Garzanti, Eduardo
2016-04-01
Taiwan is one of the world's foremost natural laboratories for studies of orogenesis. After only a few Ma of ongoing collision between the Chinese continental margin and the Luzon Arc, the associated orogen has reached nearly 4 km in height and 100-150 km in width. High rates of convergence leading to rapid rock uplift combine with the wet stormy climate of the sub-tropical typhoon belt to deliver annually an average detrital mass of 9500 t/km2. The doubly-vergent thrust belt is composed of more than 85% of sedimentary rocks dominant in the pro-wedge, but metamorphic rocks as young as < 10 Ma are exposed in the retro-wedge, where zircon fission-track, apatite fission-track and (U-Th)/He ages are all reset and as young as 1 Ma or younger, indicating very recent fast exhumation. There is hardly another region where rock-uplift, unroofing and sediment production are of equal intensity. Quantitative analyses of tectonic and erosional processes around Taiwan have been carried out following diverse independent ways, including estimates of fluvial discharge of suspended solids, thermochronological techniques, cosmogenic measurements, and morphometry of river profiles (Dadson et al., 2003; Willett et al., 2003; Fox et al., 2014). Also the appearance and relative abundance of diagnostic rock fragments and other detrital minerals in Plio-Pleistocene sedimentary successions has been used to constrain unroofing rates, but a systematic description of compositional signatures of sediments shed by distinct tectonic domains has not been carried out so far. In this study we combine high-resolution petrographic and heavy-mineral analyses of modern sands carried by rivers all around Taiwan with their estimated sediment loads to calculate the detrital volumes generated from different lithologic assemblages within the orogen. River sediments are potent integrators of information that efficiently mediate provenance signals from different parts of the entire watershed, thus offering a great advantage relative to techniques analysing bedrock. This strategy allows us to calculate the sediment mass shed by each tectonic unit within each sub-catchment, and thus to trace erosion rates with continuity in space both along and across the orogenic belt. The results obtained were compared with the spatial pattern of estimated fluvial erosion rates calculated across the island by applying the stream power analysis relating river incision to basal shear stress (Finlayson and Montgomery, 2003). Initial investigation of sources of discrepancies between provenance analysis and morphometric analysis points toward the importance of lithological control on fluvial incision within the stream power model framework. CITED REFERENCES Dadson S.J., Hovius N., Chen H., Dade W.B., Hsieh M.L., Willett S.D., Hu J.C., Horng M.J., Chen, M.C., Stark, C.P., Lague D., Lin J.C. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426:648-651. Finlayson D.P., Montgomery D.R. 2003. Modeling large-scale fluvial erosion in geographic information systems. Geomorphology 53:147-164. Fox M., Goren L., May D.A., Willett S.D. 2014. Inversion of fluvial channels for paleorock uplift rates in Taiwan. Journal of Geophysical Research: Earth Surface 119:1853-1875. Willett S.D., Fisher D., Fuller C., Yeh E.C., Lu C.Y. 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945-948.
The Mid-Cretaceous Frontier Formation near the Moxa Arch, southwestern Wyoming
Mereweather, E.A.; Blackmon, P.D.; Webb, J.C.
1984-01-01
The Frontier Formation in the Green River Basin of Wyoming, Utah, and Colorado, consists of sandstone, siltstone, and shale, and minor conglomerate, coal, and bentonite. These strata were deposited in several marine and nonmarine environments during early Late Cretaceous time. At north-trending outcrops along the eastern edge of the overthrust belt, the Frontier is of Cenomanian, Turonian, and early Coniacian age, and commonly is about 610 m (2,000 ft) thick. The formation in that area conformably overlies the Lower Cretaceous Aspen Shale and is divided into the following members, in ascending order: Chalk Creek, Coalville, Allen Hollow, Oyster Ridge Sandstone, and Dry Hollow. In west-trending outcrops on the northern flank of the Uinta Mountains in Utah, the Frontier is middle and late Turonian, and is about 60 m (200 ft) thick. These strata disconformably overlie the Lower Cretaceous Mowry Shale. In boreholes on the Moxa arch, the upper part of the Frontier is of middle Turonian to early Coniacian age and unconformably overlies the lower part of the formation, which is early Cenomanian at the south end and probably Cenomanian to early Turonian at the north end. The Frontier on the arch thickens northward from less than 100 m (328 ft) to more than 300 m (984 ft) and conformably overlies the Mowry. The marine and nonmarine Frontier near the Uinta Mountains, marine and mnmarine beds in the upper part of the formation on the Moxa arch and the largely nonmarine Dry Hollow Member at the top of the Frontier in the overthrust belt are similar in age. Older strata in the formation, which are represented by the disconformable basal contact of the Frontier near the Uinta Mountains, thicken northward along the Moxa arch and westward between the arch and the overthrust belt. The large changes in thickness of the Frontier in the Green River Basin were caused mainly by differential uplift and truncation of the lower part of the formation during the early to middle Turonian and by the shoreward addition of progressively younger sandstone units at the top of the formation during the late Turonian and early Coniacian. The sandstone in cores of the Frontier, from boreholes on the Moxa arch and the northern plunge of the Rock Springs uplift, consists of very fine grained and fine-grained litharenites and sublitharenites that were deposited in deltaic and shallow-water marine environments. These rocks consist mainly of quartz, chert, rock fragments, mixed-layer illite-smectite, mica-illite, and chlorite. Samples of the sandstone have porosities of 4.7 to 23.0 percent and permeabilities of 0.14 to 6.80 millidarcies, and seem to represent poor to fair reservoir beds for oil and gas. The shale in cores of the Frontier Formation and the overlying basal Hilliard Shale, from the Moxa arch, Rock Springs uplift, and overthrust belt, was deposited in deltaic and offshore-marine environments. Samples of the shale are composed largely of quartz, micaillite, mixed-layer illite-smectite, kaolin, and chlorite. They also contain from 0.27 to 4.42 percent organic carbon, in humic and sapropelic organic matter. Most of the sampled shale units are thermally mature, in terms of oil generation, and a few probably are source rocks for oil and gas.
NASA Astrophysics Data System (ADS)
Ghoshal, S.; McQuarrie, N.; Robinson, D. M.; Olree, E.; Valentino, C.; Olsen, J.
2017-12-01
Recent field mapping in the Central Himalaya revealed a marked change in the location and orientation of exposed Greater Himalayan rocks around the epicenter of the April 2015 Gorkha earthquake, arguing for a lateral structure in the Main Himalayan Thrust (MHT). The earthquake provided new insight into the geometry of the MHT, but left the position and depth of the mid-crustal ramp in dispute. Combining new field data with existing thermochronometric data from the region emphasizes that both the mapped geology and young cooling ages step abruptly southward from east to west, immediately adjacent to the earthquake epicenter. The distribution of cooling ages is strongly influenced by the location of ramps in the decollement surface, as the vertical component of uplift concentrates exhumation over the ramp, producing the youngest ages there. We propose that the existence and location of frontal and lateral ramps can be evaluated using the regional distribution of thermochronometric ages. Sequentially deformed cross-sections present a model of how structurally induced uplift varies in time and space, as well as a predicted geometry of the active, modern fault. We created new balanced cross-sections, constrained by surface geology and the proposed decollement geometries. For an accurate representation of the subsurface, the geometries must reproduce cooling ages measured at the surface. Each cross section was sequentially deformed, allowing for flexure and erosion. The resulting displacement field was used to predict cooling ages for muscovite 40Ar/39Ar, zircon (U-Th)/He, and apatite fission-track, using the thermokinematic model Pecube. The different closure temperatures for these systems allow them to represent different times and locations of exhumation driven by evolving fault geometries. The modeled cooling ages are the cumulative effect of the entire deformational sequence. However, the ages are particularly sensitive to the modern active decollement fault geometry, allowing us to evaluate the different proposed cross-section geometries, and identify the best match to the regional distribution of cooling ages. We argue that this final geometry is the most accurate representation of the subsurface, being constrained by surface geology, thermochronological ages, and data from the earthquake.
Patterns and processes of drainage network evolution on Mars
NASA Astrophysics Data System (ADS)
Stucky de Quay, G.; Roberts, G. G.
2017-12-01
Large, complex drainage networks exist on the surface of Mars. These drainage patterns suggest that base level change, fluvial erosion, and deposition of sedimentary rock have played important roles in determining the shape of Martian topography. On Earth, base-level change plays the most important role in determining shapes of river profiles at wavelengths greater than a few kilometers. Wavelet transforms of Martian drainage patterns indicate that the same is true for most Martian drainage. For example, rivers in the Warrego Valles system have large convex-upward elevation profiles, with broad knickzones spanning more than 100 kilometers in length and few kilometers in height. More than 90% of the spectra power of rivers in this system resides at wavelengths greater than 10 kilometers. We examine the source of this long wavelength spectra power by jointly inverting suites of Martian river profiles for damped spatio-temporal histories of base-level change. Drainage networks were extracted from the High Resolution Stereo Camera (HRSC) topographic dataset using flow-routing algorithms. Calculated uplift rate histories indicate that regional uplift at wavelengths greater than 100 kilometers play an important role in determining the history of landscape evolution in Warrego Valles. In other regions (e.g. Holden and Eberswalde craters) joint inversion of families of rivers draining craters helps to constrain values of erosional parameters in a simplified version of the stream power erosional model. Integration of calculated incision rates suggest that we can perform a simple mass balance between eroded and deposited rock in regions where both depositional and erosional landforms exist.
NASA Astrophysics Data System (ADS)
Lara, Gabriela; Klinger, Federico Lince; Perucca, Laura; Rojo, Guillermo; Vargas, Nicolás; Leiva, Flavia
2017-08-01
A high-resolution superficial geophysical study was carried out in an area of the retroarc region of the Andes mountains, located in the southwest of San Juan Province (31°45‧ S, 68°50‧ W), Central Precordillera of Argentina. The main objectives of this study were to confirm the presence of blind neotectonic structures and characterize them by observing variations in magnetic susceptibility, density and p-wave velocities. Geological evidence demonstrates the existence of a neotectonic fault scarps affecting Quaternary alluvial deposits in eastern piedmont of de Las Osamentas range, in addition to direct observation of the cinematic of this feature in several natural exposures. The Maradona valley is characterized by the imbricated eastern-vergence Maradona Fault System that uplifts Neogene sedimentary rocks (Albarracín Formation) over Quaternary (Late Pleistocene-Holocene) alluvial deposits. The combined application of different geophysical methods has allowed the characterization of a blind fault geometry also identified on a natural exposure. The magnetic data added to the gravimetric model, and its integration with a seismic profile clearly shows the existence of an anomalous zone, interpreted as uplifted blocks of Miocene sedimentary rocks of Formation Albarracín displaced over Quaternary deposits. The application and development of different geophysical methods, together with geological studies allow to significantly improving the knowledge of an area affected by Quaternary tectonic activity. Finally, this multidisciplinary study, applied in active blind structures is very relevant for future seismic hazard analysis on areas located very close to populated centers.
Continental underplating after slab break-off
NASA Astrophysics Data System (ADS)
Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.
2017-09-01
We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.
Petroleum geology of the Southern Bida Basin, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braide, S.P.
1990-05-01
The Southern Bida basin is located in central Nigeria and is a major sedimentary area with a 3.5-km-thick sedimentary fill. However, it is the least understood of Nigeria's sedimentary basins because serious oil and gas exploration has not been undertaken in the basin. The surrounding Precambrian basement rocks experienced severe deformation during the Late Panafrican phase (600 {plus minus} 150 m.y.), and developed megashears that were reactivated during the Late Campanian-Maestrichtian. The ensuing wrenchfault tectonics formed the basin. The sedimentary fill, which comprises the Lokoja Formation are chiefly, if not wholly, nonmarine clastics. These have been characterized into facies thatmore » rapidly change from basin margin to basin axis, and have undergone only relatively mild tectonic distortion. Subsurface relations of the Lokoja Formation are postulated from outcrop study. The potential source rocks are most likely within the basinal axis fill and have not been deeply buried based on vitrinite reflectance of <0.65%. These findings, with the largely nonmarine depositional environment, suggest gas and condensate are the most likely hydrocarbons. Alluvial fans and deltaic facies that interfinger with lacustrine facies provide excellent reservoir capabilities. Potential traps for hydrocarbon accumulation were formed by a northwest-southeast-trending Campanian-Maestrichtian wrench system with associated northeast-southwest-oriented normal faults. The traps include strata in alluvial fans, fractured uplifted basement blocks, and arched strata over uplifted blocks. However, the size of hydrocarbon accumulations could be limited to some extent by a lack of effective hydrocarbon seal, because the dominant seals in the formation are unconformities.« less
Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.
Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu
2013-01-01
Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.
Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite
Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu
2013-01-01
Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636
Clay mineral formation and transformation in rocks and soils
Eberl, D.D.
1983-01-01
Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.
Kirkby, M.J.; Kirkby, Anne V.
1969-01-01
During the 1964 Alaska earthquake, tectonic deformation uplifted the southern end of Montague Island as much as 33 feet or more. The uplifted shoreline is rapidly being modified by subaerial and marine processes. The new raised beach is formed in bedrock, sand, gravel, and deltaic bay-head deposits, and the effect of each erosional process was measured in each material. Fieldwork was concentrated in two areas—MacLeod Harbor on the northwest side and Patton Bay on the southeast side of Montague Island. In the unconsolidated deltaic deposits of MacLeod Harbor, 97 percent of the erosion up to June 1965, 15 months after the earthquake, was fluvial, 2.2 percent was by rainwash, and only 0.8 percent was marine; 52 percent of the total available raised beach material had already been removed. The volume removed by stream erosion was proportional to low-flow discharge raised to the power of 0.75 to 0.95, and this volume increased as the bed material became finer. Stream response to the relative fall in base level was very rapid, most of the downcutting in unconsolidated materials occurring within 48 hours of the uplift for streams with low flows greater than 10 cubic feet per second. Since then, erosion by these streams has been predominantly lateral. Streams with lower discharges, in unconsolidated materials, still had knickpoints after 15 months. No response to uplift could be detected in stream courses above the former preearthquake sea level. Where the raised beach is in bedrock, it is being destroyed principally by marine action but at such a low rate that no appreciable erosion of bedrock was found 15 months after the earthquake. A dated rock platform raised earlier has eroded at a mean rate of 0.49 foot per year. In this area the factor limiting the rate of erosion was rock resistance rather than the transporting capacity of the waves. The break in slope between the top of the raised beach and the former seacliff is being obliterated by debris which is accumulating at the base of the cliffs and which is no longer being removed by the sea. Current cliff retreat by rockfall, mudflows, and landslides was estimated at 0.7 to 2.0 feet per year, and in parts of Patton Bay the accumulation of debris has obliterated 78 percent of the original break in slope in 15 months. Evidence of two relative sea-level changes before 1964 was found in Patton Bay. At a high stand of sea level lasting until about 2000 B.P. (before present), an older raised beach was formed which, over a distance of 5 miles, shows 40 feet of deformation relative to the present sea level. Peat deposits exposed by the 1964 uplift also record a low sea level that lasted until at least 600 B.P. The 1964 raised beach was used to test the accuracy of identification of former sea-level elevations from raised beach features. The Pre-1964 sea level could be accurately determined from the height of the former barnacle line, so an independent check on high-water level was available. The most reliable topographic indicator was the elevation of the break in slope at the top of a beach between a bedrock platform and a cliff. Even here, the former sea level could only be identified within 5 feet. The breaks in slope at the top of gravel beaches were found to be poor indicators of former sea level. On Montague Island, evidence of former high sea levels appeared to be best preserved (1) as raised bedrock platforms on rocks of moderate resistance in slightly sheltered locations and (2) as raised storm beaches where the relief immediately inland was very low.
NASA Astrophysics Data System (ADS)
Pederson, J. L.
2012-12-01
The great, active orogenic plateaus of the world have been the inspiration for modern tectonic geomorphology, including our recognition of elegant linkages between erosion, topography, tectonics and climate feedbacks, such as in steady-state landscapes. None of that correctly describes the landscape evolution of the Colorado Plateau in the southwestern U.S. Here I present new calculations of river energy and steepness as well as new incision-rate data along the upper Colorado River drainage, and then relate these patterns to recently proposed sources of mantle-driven uplift. The results indicate a complex decoupling of erosion, topography and active tectonics, with instead strong relations to bedrock resistance and passive isostatic feedback in this mostly decaying landscape. Calculations of unit stream power and a newly improved (discharge-adjusted) steepness index (kqsn) in the upper Colorado-Green drainage highlight four canyon knickzones. Each is characterized by energy expenditure an order of magnitude greater than in intervening reaches, and the knickzones generally increase in magnitude downstream with Cataract Canyon being the greatest anomaly. The strong coincidence of knickzones with changes in bedrock and mass-movement inputs suggests they are mostly pinned, equilibrium adjustments to greater bed resistance, with possible transient behavior in farther upstream knickzones. Similarly, new late-Pleistocene incision rate data exist for four locations spanning the trunk drainage -at Lee's Ferry, AZ, near Green River and Moab, UT, and in Browns Park within the Uinta knickzone. Each chronostratigraphic record is based upon multiple OSL, CRN, and U-series ages, and incision rates are calculated over the same timescale and integrate through the strong, cyclic grade changes imparted on the river by Milankovich-scale climate changes. This avoids the erroneous comparison of incision rates based upon single ages or over varying timescales. Comparision of apples-to-apples across this landscape reveals a distinct central-Colorado Plateau bullseye of faster river incision that contrasts sharply with expectations based upon the patterns of energy expenditure and topography, but which matches modeled isostatic rebound from broad late Cenozoic exhumation of the Canyonlands district. Finally, recently proposed sources of late-Cenozoic mantle-driven support for topography at the south and west flanks of the plateau have low estimated rates of uplift, which are poorly constrained in terms of actual ongoing uplift versus just topographic support. Patterns of steepness and incision rate do not match the proposed mantle uplift, illustrating a poorly understood decoupling of erosion, topography, and mantle tectonics in the Colorado Plateau. Prime examples of this decoupling are the highly incised and steep Grand Canyon region where there are proposed sources of mantle uplift but contrastingly low rates of incision, versus the broadly exhumed central plateau that features much more rapid incision yet no mantle sources of uplift. Instead of active tectonics, bedrock resistance and possible drainage transients define geomorphic patterns in this landscape, while at broader wavelengths, the central plateau bullseye of rapid incision strongly matches the pattern of passive isostatic rebound.
NASA Astrophysics Data System (ADS)
Green, Paul; Duddy, Ian; Japsen, Peter
2015-04-01
Numerous low temperature thermochronology studies have defined regional cooling episodes which imply removal of several km of section over areas of several 104 km2. The origin of such events has long been the subject of debate, while their reality has sometimes been questioned because of the lack of a viable mechanism. Kilometre-scale denudation at rifted margins has traditionally been interpreted as related to rifting and breakup, magnified by the flexural response to denudation of the uplifted rift flanks. But it is now clear that at many margins the post-breakup history is more complex, with km-scale uplift and erosion commonly post-dating breakup by 10s of Myr and often affecting regions many 100s of kilometres inland of the margins (Green et al., 2013; Brown et al., 2014). Numerous examples around the world of km-scale exhumation affecting regions distant from continental margins, including cratonic regions traditionally regarded as stable over Phanerozoic time (e.g. Ault et al., 2009; Flowers & Kelley, 2011), cannot be explained by margin-related mechanisms. It has also become clear that periods of exhumation are separated by episodes of burial, defining a series of positive and negative vertical movements. Previous studies have defined a broad synchroneity of Early, Middle and Late Cenozoic exhumation events in regions from Alaska to Greenland, Norway and Svalbard (Green and Duddy, 2010). New results from SE Australia define a series of exhumation episodes ranging in time from Carboniferous to Cenozoic which are broadly synchronous with similar events previously defined in Brazil and South Africa (Green et al. 2013). While estimates of the timing of exhumation in different areas are subject to some uncertainty, data across three southern hemisphere continents show a broad synchronicity in similar fashion to the northern hemisphere examples cited above. Dynamic topography has been invoked as a possible mechanism for producing uplift, the effects of which might be magnified by the isostatic response to denudation, but until recently the vertical motions expected from this mechanism were thought to be restricted to 100s of metres while expected timescales of 100s of Myr are not consistent with observations. Braun et al. (2014) showed that movement of plates over areas of areas of mantle upwelling could produce much more rapid uplift and also much larger-scale vertical movements, but the predicted diachroneity of uplift across southern Africa differs from the apparent synchroneity across three continents described here. The processes described by Braun et al. are also specific to one location and one event. Japsen et al. (2012) suggested that broadly synchronous exhumation events on divergent continents resulted from lateral resistance to plate motion driven by forces transmitted in the asthenosphere, while Colli et al. (2014) proposed that dynamic topography caused by pressure-driven mantle flow could produce synchronous uplift (and erosion) in separate continents. Such processes appear to offer more viable mechanisms for producing broadly synchronous episodes of kilometre-scale exhumation and intervening burial in regions separated by large distances. Further geodynamic modelling is needed to develop and test likely mechanisms.
Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J. Wright; Goldman, M.R.; Hole, J.A.
2008-01-01
A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.
Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes
NASA Astrophysics Data System (ADS)
Kerrich, Robert; Wyman, Derek
1990-09-01
Mesothermal gold provinces of Phanerozoic age are characteristically associated with regional structures along which allochthonous terranes have been accreted onto continental margins or arcs. A recurring sequence of transpressive deformation, uplift, late kinematic mineralization, and shoshonitic magmatism is consistent with thermal reequilibration of tectonically thickened crust. Mesothermal gold camps in the Superior province are spatially associated with large-scale structures that have been interpreted as zones of transpressive accretion of individual subprovinces or allochthonous terranes: these boundary structures are characterized by the sequence of significant horizontal shortening, uplift, late-kinematic mineralization, and shoshonitic lamprophyres and therefore may have the same geodynamic significance as Phanerozoic counterparts. In this model, thermal re-equilibration of underplated and subducted oceanic lithosphere and sediments in a transpressive regime, over time scales of 10 to 40 m.y., is a necessary precursor to gold mineralization. Hydrothermal fluids are released along boundary faults and their splays during uplift: the uniform temperature, low salinity and mole% CO2 signify uniform source conditions, whereas the variable O, C, Sr, and Pb isotopic compositions of fluids reflect lithological complexity of the source regions and conduits. Ou the basis of this model it is suggested that mesothermal lode gold deposits are the product of subduction-related crustal underplating and deep, late metamorphism, rather than magmatic or metamorphic events in the supracrustal rocks. Secular variations in the generation of Archean, Proterozoic, and Phanerozoic mesothermal Au provinces reflect the timing of collisional orogenies within terranes of these eras.
Insight into collision zone dynamics from topography: numerical modelling results and observations
NASA Astrophysics Data System (ADS)
Bottrill, A. D.; van Hunen, J.; Allen, M. B.
2012-07-01
Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) deepening in the area of the back arc-basin after initial collision. This collisional mantle dynamic basin (CMDB) is caused by slab steepening drawing material away from the base of the overriding plate. Also during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate causes the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. This uplift and subsidence pattern correlates well with our modelled topography changes.
Modeling caprock fracture, CO2 migration and time dependent fault healing: A numerical study.
NASA Astrophysics Data System (ADS)
MacFarlane, J.; Mukerji, T.; Vanorio, T.
2017-12-01
The Campi Flegrei caldera, located near Naples, Italy, is one of the highest risk volcanoes on Earth due to its recent unrest and urban setting. A unique history of surface uplift within the caldera is characterized by long duration uplift and subsidence cycles which are periodically interrupted by rapid, short period uplift events. Several models have been proposed to explain this history; in this study we will present a hydro-mechanical model that takes into account the caprock that seismic studies show to exist at 1-2 km depth. Specifically, we develop a finite element model of the caldera and use a modified version of fault-valve theory to represent fracture within the caprock. The model accounts for fault healing using a simplified, time-dependent fault sealing model. Multiple fracture events are incorporated by using previous solutions to test prescribed conditions and determine changes in rock properties, such as porosity and permeability. Although fault-valve theory has been used to model single fractures and recharge, this model is unique in its ability to model multiple fracture events. By incorporating multiple fracture events we can assess changes in both long and short-term reservoir behavior at Campi Flegrei. By varying the model inputs, we model the poro-elastic response to CO2 injection at depth and the resulting surface deformation. The goal is to enable geophysicists to better interpret surface observations and predict outcomes from observed changes in reservoir conditions.
Pollastro, Richard M.
2003-01-01
Oil of the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS is sourced by organic-rich, marine carbonates of the Jurassic Tuwaiq Mountain and Hanifa Formations. These source rocks were deposited in two of three intraplatform basins during the Jurassic and, where thermally mature, have generated a superfamily of oils with distinctive geochemical characteristics. Oils were generated and expelled from these source rocks beginning in the Cretaceous at about 75 Ma. Hydrocarbon production is from 3 cyclic carbonate-rock reservoirs of the Arab Formation that are sealed by overlying anhydrite. Several giant and supergiant fields, including the world's largest oil field at Ghawar, Saudi Arabia, produce mostly from the Arab carbonate-rock reservoirs. Two assessment units are also recognized in the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS that are similarly related to structural trap style and presence of underlying Infracambrian salt: (1) an onshore Horst-Block Anticlinal Oil AU, and (2) a mostly offshore Salt-Involved Structural Oil AU. The mean total volume of undiscovered resource for the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS is estimated at about 49 billion barrels of oil equivalent (42 billion barrels of oil, 34 trillion feet of gas, and 1.4 billion barrels of natural gas liquids).
Biogeography of serpentinite-hosted microbial ecosystems
NASA Astrophysics Data System (ADS)
Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.
2012-12-01
Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.
NASA Technical Reports Server (NTRS)
Weber, W.
1983-01-01
The greenschist to amphibolite facies tonalite-greenstone terrain of the Gods Lake subprovince grades - in a northwesterly direction - into the granulite facies Pikwitonei domain at the western margins of the Superior Province. The transition is the result of prograde metamorphism and takes place over 50 - 100 km without any structural or lithological breaks. Locally the orthopyroxene isograd is oblique to the structural grain and transects greenstone belts, e.g., the Cross Lake belt. The greenstone belts in the granulite facies and adjacent lower grade domain consist mainly of mafic and (minor) ultramafic metavolcanics, and clastic and chemical metasedimentary rocks. Typical for the greenstone belts crossed by the orthopyroxene isograd are anorthositic gabbros and anorthosites, and plagiophyric mafic flows. The Pikwitonei granulite domain has been interpreted as to represent a lower crustal level which was uplifted to the present level of erosion. On the basis of gravimetric data this uplift has been modelled as an obduction onto the Churchill Province during the Hudsonian orogeny, similar to the Ivrea Zone. The fault between the Churchill and Superior Province is described.
Vertical Displacement of the Surface Area over the Leakage to the Transverse salt Mine in 1992-2012
NASA Astrophysics Data System (ADS)
Lipecki, Tomasz
2018-03-01
The leakage of water in the salt mine caused considerable deformation of the surface. This article shows the vertical displacement in the area of leakage to the mine excavation, measured by precision leveling, carried out from the first days of leakage in 1992 until 2012. The geological and hydrogeological conditions of the mine, as well as the associated water hazards were described, which in conjunction with the inconvenient location of the excavation site in the northern frontage of the Carpathians and also inadequately conducted mining operations, contributed to the risk of flooding mine. The analysis of the vertical movements of the surface - subsidence and uplift - were present as well as the process of formation of the depression trough in the form of maps and graphs. The analyzes were based on 49 measurement series, starting from the first days of the disaster within the next 20 years. The course of development of the depression trough and the condition of the surface after stopping the water from the rock mass has been shown, which caused the surface to uplift.
Southwest USA Exhumation History Recorded Below the Great Unconformity
NASA Astrophysics Data System (ADS)
Heizler, M. T.; Karlstrom, K. E.
2002-05-01
The Southwestern USA Precambrian terranes preserve a long and variable exhumation history that can be tracked using thermochronological methods. This exhumation history is controlled on two interrelated scales. At first order, it is recognized that 1.7 to 1.4 Ga mid-crustal (10 km, 2-4 kbar) rocks were ultimately exhumed and reside below unconformities of variable age. In Arizona, Mesoproterozoic Apache Group and Neoproterozoic Supergroup sedimentary rocks lie directly on basement and thus indicate exhumation of some regions relatively soon following the 1.4 Ga events. In the Rocky Mountains of Colorado and the Rio Grande rift uplifts of New Mexico, basement is generally overlain by Cambrian to Mississippian strata. The unconformities are useful markers of net exhumation; however do not reveal a time-integrated path. Using published, and hundreds of new 40Ar/39Ar analyses of hornblende, muscovite, biotite and K-feldspar, and a growing U/Pb accessory mineral thermochronology database, we are extracting exhumation information with great detail. The thermochronological data continue to support the claim that relatively low net exhumation occurred following 1.7 to 1.6 Ga accretion of volcanic arc terranes to the southern margin of Laurentia. Mid-crustal (2-4 kbar) rocks stabilized soon after accretion, whereas in some regions like the Upper Granite Gorge, Grand Canyon deeper (6 kbar) metamorphic terranes decompressed to 3 kbar before stabilization. The cooling history of these mid-crustal rocks post 1.65 Ga remains somewhat unknown. Overall slow-cooling models (550 \\deg C to 300 \\deg C from 1.7 to 1.4 Ga) require high geothermal gradients in order to maintain 10 km deep rocks at high temperatures for 100's of Ma. Alternatively, isobaric cooling models to more normal geothermal gradients (i.e. 25 \\deg C/km) at ca. 1.65 Ga require later (1.4 Ga) thermal pulses and/or Mesoproterozoic vertical displacements to explain highly discordant thermochronological data. Either model supports relatively normal crustal thickness during 1.8-1.6 Ga arc accretion. In the Grand Canyon, cooling and exhumation are recorded at 1.4 Ga and 1.25 Ga. 1.4 Ga tectonism is shown by a sharp contrast in mica ages (1.4 vs. 1.6 Ga) across the 96-mile shear zone. The 1.25 Ga denudation is required by 1.25-1.30 Ga K-feldspar argon ages from basement that is unconformably overlain by a 1253 Ma volcanic ash horizon in the Unkar Group sediments. Arizona transition zone rocks of similar metamorphic pressure yield highly variable argon ages and indicate that small differences in exposed paleodepth can yield significantly different data. This is supported by cooling ages that systematically decrease with increase in paleodepth in the Gold Butte block, NV. Combined, the thermochronological data from the SW USA record a complex exhumation history that is characterized by discrete block uplift superimposed on an overall billion year erosional history that brings mid-crustal rocks to the surface a variable times.
NASA Astrophysics Data System (ADS)
Camafort, Miquel; Booth-Rea, Guillermo; Pérez-Peña, Jose Vicente; Melki, Fetheddine; Gracia, Eulalia; Azañón, Jose Miguel; Ranero, César R.
2017-04-01
Active tectonics in North Africa is fundamentally driven by NW-SE directed slow convergence between the Nubia and Eurasia plates, leading to a region of thrust and strike-slip faulting. In this paper we analyze the morphometric characteristics of the little-studied northern Tunisia sector. The study aimed at identifying previously unknown active tectonic structures, and to further understand the mechanisms that drive the drainage evolution in this region of slow convergence. The interpretation of morphometric data was supported with a field campaign of a selection of structures. The analysis indicates that recent fluvial captures have been the main factor rejuvenating drainage catchments. The Medjerda River, which is the main catchment in northern Tunisia, has increased its drainage area during the Quaternary by capturing adjacent axial valleys to the north and south of its drainage divide. These captures are probably driven by gradual uplift of adjacent axial valleys by reverse/oblique faults or associated folds like El Alia-Teboursouk and Dkhila faults. Our fieldwork found that these faults cut Holocene colluvial fans containing seismites like clastic dikes and sand volcanoes, indicating recent seismogenic faulting. The growth and stabilization of the axial Medjerda River against the natural tendency of transverse drainages might be caused by a combination of dynamic topography and transpressive tectonics. The orientation of the large axial Medjerda drainage that runs from eastern Algeria towards northeastern Tunisia into the Gulf of Tunis, might be the associated to negative buoyancy caused by the underlying Nubia slab at its mouth, together with uplift of the Medjerda headwaters along the South Atlassic dextral transfer zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo
The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less
NASA Astrophysics Data System (ADS)
Russell, Christopher T.; Raymond, Carol A.; DeSanctis, Maria Christina; Nathues, Andreas; Prettyman, Thomas; Castillo-Rogez, Julie C.; McSween, Harry Y.; Pieters, Carle M.; Jaumann, Ralf; Buczkowski, Debra; Ammannito, Eleonora; Hiesinger, Harald; Toplis, Michael J.; Li, Jian-Yang; Park, Ryan S.
2017-04-01
Dawn has now been in orbit about Ceres for over two years. In that time, it has spiraled down to the lowest altitudes and back to the highest altitudes and on its way, performed global mapping of Ceres' surface morphology, topography, gravity, mineralogy, and elemental composition. It found a water-rich body with a temporary atmosphere that was sufficiently strong to deflect the solar wind. This atmosphere appears after the Sun produces high fluxes of very energetic protons. This time-varying association explains why 1-AU observations previously had both detected and failed to detect a water or OH atmosphere at Ceres. At global scale, the surface typically consists of a layer of phyllosilicates, including ammoniated clays, Ca-Mg carbonates and a dark but spectrally neutral component. At local scale, the Cerealia facula in Occator crater was found to be the largest known extraterrestrial accumulation of Na-carbonates. The Ernutet crater was peppered with organic molecules, possibly of internal origin, while small km square-sized regions of exposed ice were found in several places on the surface. In broad regions at high latitude, ice is just beneath the surface, and the depth to the ice table varies with latitude. Fractured crater floors suggesting stresses produced by uplift of sub-surface material were found, and the dome in the center of Occator craters' central pit was also postulated to be fractured by localized upwelling material. Ahuna mons, a 4-km high isolated mountain, further indicates the recent occurrence of cryovolcanic activity likely driven by brines. The gravity and topography data and the crater-size frequency distribution have been interpreted in terms of a rigid ice-rock shell covering a less rigid interior. Elemental data are consistent with ice-rock fractionation. The data clearly demonstrate that Ceres is a small exotic water-rich world, deserving of much attention in the next wave of planetary exploration.
NASA Astrophysics Data System (ADS)
Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio
2017-04-01
The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit with suprasubduction extrusive and intrusive events. Volcanogenic complexes are characterized by variable lateral and vertical regional stratigraphic relationships and are subdivided into several formations, dominated by volcanic rocks: basalts, andesites, dacites, and rhyolites of calc-alkaline-subalkaline series. Volcanic rocks are of shallow-marine to subaerial type. The peculiarities of magmatic activity and geodynamic development of the region stipulated synchronous formation of significant base and precious metals deposits of the Bolnisi ore district.
Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China
Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.
2002-01-01
The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events occurred locally where extension-related Precambrian basement uplifting took place along the craton margin. Fluids for the orogenic gold deposits in the Xiaoqinling, Xiaoshan, and Xiong'ershan areas may have been released from evolving magmas or resulted from prograde metamorphic reactions within the uplift zones. Alternatively, for the epithermal gold deposits at shallower levels in the Xiong'ershan area, gold-transporting fluids were mainly exsolved from coeval magmas, although meteoric water was also involved in these hydrothermal systems.
NASA Astrophysics Data System (ADS)
Schulze, D. J.; Chow, R.; Helmstaedt, H. H.
2016-12-01
Expansion and density decrease in ultramafic rocks in the mantle wedge above the subducted and dewatering Farallon Plate in the Cenozoic may have been the driving force behind uplift of the Colorado Plateau. Here we document the effects of such hydration on spinel websterites that resulted in rocks dominated by pargasitic amphibole, Mg-chlorite and Cr-magnetite/chromite. Xenoliths of spinel websterite from the Moses Rock diatreme in the Navajo Volcanic Field on the Colorado Plateau have granoblastic to mosaic porphyroclastic texture. Porphyroclasts (up to 2 cm across) of lamellar intergrowths of clinopyroxene and orthopyroxene are set in a granular matrix of sub-equal amounts of the two pyroxenes. Both pyroxenes are magnesian and aluminous, with Mg/(Mg+Fe) in the range 0.89 to 0.93 and Al2O3 contents of approximately 4.0 to 9.5 wt%. Many samples contain aluminous spinel with Al/(Al+Cr) = 0.82 to 0.94. The effects of hydration on these samples exist as partial to complete replacement of the pyroxenes by amphibole (tremolite/edenite/pargasite/magnesio-hornblende), pseudomorphing original pyroxene textures, and replacement of primary spinel by Cr-rich magnetite or chromite with Al/(Al+Cr) = 0.07 to 0.35 intergrown with, and surrounded by, clinochlore. Unusual minerals associated with replacement of primary spinel include one example with corundum + zoisite, one with secondary garnet (molar Ca:Mg:Fe = 20:40:40) and two samples with aluminous talc (5 to 7 wt% Al2O3). By analogy with Alpine peridotites and mantle xenolith suites from basalt occurrences, the spinel websterites probably existed as veins and lenses in spinel peridotite of the shallow upper mantle beneath the Colorado Plateau prior to hydration. De-watering of the subducted Farallon Plate in Cenozoic time was likely the source of water-rich fluids that caused the hydration at fairly shallow depths (within amphibole stability), as suggested for hydration of spinel peridotite xenoliths from the Buell Park and Green Knobs diatremes further south. The volume increase and density decrease accompanying hydration of the peridotites and pyroxenites were important factors in the uplift of the Colorado Plateau.
Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.
2004-01-01
The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB dikes) to represent the collision of an active spreading ridge. Subsequent reorganization of relative plate motions led to sinistral transpression, along with renewed subduction and accretion of the Franciscan Complex. The latter event resulted in uplift and exhumation of the ophiolite by the process of accretionary uplift. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.
Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.
NASA Astrophysics Data System (ADS)
Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas
2014-05-01
Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the Martian crater, the calculated structural uplift has a value of 215.83 m [9]. For Euler and Bessel crater calculated values for the structural uplift are 310.76 m and 262.8 m, respectively [10]. The structural uplift of the crater rim only by dike injection and plastic deformation in the underlying target material seems unlikely at distances ~1 km beyond the transient crater cavity. Other mechanisms, like reverse faulting, beginning in the excavation stage of crater formation, could be responsible for additional structural uplift of the crater rim. Nevertheless, our results show that structural uplift is a more dominant effect than ejecta emplacement for complex impact craters. References: [1] Melosh H.J. (1989) Oxford monographs on geology and geophysics, 11, Impact cratering: a geologic process. [2] Poelchau M.H. et al. (2009) JGR, 114, E01006. [3] Shoemaker E. M. (1963) The Solar System, 4, 301-336. [4] Settle M., and Head J.W. (1977) Icarus, v. 31, p. 123. [5] Sturm, S. et al. (2014) LPSC 45, #1801. [6] Krüger T. et al. (2014) LPSC 45, #1834. [7] Hiesinger H. et al. (2002) GRL, 29. [8] Enns A.C. (2013) LPSC XLIV, #2751. [9] Steward S. T. and Valiant G. J. (2006) Meteoritics & Planet. Sci., 41, 1509-1537. [10] Pike R. J. (1974) EPSL, 23, 265-274. [11]Turtle, E. et al. (2005) GSA-SP. 384, 1.
The evolution of the southern California uplift, 1955 through 1976
Castle, Robert O.; Elliot, Michael R.; Church, Jack P.; Wood, Spencer H.
1984-01-01
The southern California uplift culminated in 1974 as a 150- km-wide crustal swell that extended about 600 km eastward and east-southeastward from Point Arguello to the Colorado River and Salton Sea, respectively; it was characterized by remarkably uniform height changes between 1959 and 1974 of 0.30-0.35 m over at least half of its 60,000-70,000 km2 area. At its zenith, the uplift included virtually the entire Transverse Ranges geologic province and parts of the Coast Ranges, San Joaquin Valley, Sierra Nevada, Basin and Range, Mojave Desert, Peninsular Ranges, and Salton Trough provinces. The alinement of the western part of the uplift closely paralleled the east-trending Transverse Ranges, whereas the southern flank of the eastern lobe roughly coincided with the west-northwest-trending San Andreas fault. The position and configuration of the uplift associate it with a singularly complex section of the boundary between the North American and Pacific plates that has certainly sustained major modification during the past 5 million years and probably during the past 1 million years. Surface deformation can be categorized as tectonic or nontectonic. Nontectonic vertical displacements associated with the activities of man have overwhelmed natural compaction and areally significant soil expansion in the southern California area. Because tectonic displacements are implicitly defined as those that cannot be otherwise explained, those vertical movements that can be reasonably attributed to artificial processes have been subtracted from our reconstructed configurations of the uplift. Hence this reconstruction has necessarily included the assembly and evaluation of an enormous volume of data on oil-field operations, changes in ground-water levels, and measured subsidence (or rebound) associated with changes in the underground fluid regimen. Measured changes in height at various stages in the evolution of the uplift have been based chiefly on first-order levelings carried out between 1953 and 1976. Exceptions to this generalization consist largely of the results of pre-1953 surveys through the western Transverse Ranges and the eastern Mojave Desert. Errors in measured height differences derive from blunders, systematic survey errors, random survey errors, improperly formulated orthometric corrections, and intrasurvey movement; the last of these has created the most serious problems encountered in our reconstruction of the basic data. A variety of independent tests indicate that survey error associated with the utilized levelings was generally small and fell largely within the predicted random-error range. Moreover, the redundancy and coherence displayed by the entire data set provide convincing evidence of survey accuracy and the virtual absence of height- and slope-dependent error in particular. Our reconstructions of the changing configuration of the uplift derive chiefly from comparisons among sequentially developed observed elevations along the same route. Most of the observed elevations from which the vertical displacements were computed have been reconstructed with respect to bench mark Tidal 8, San Pedro, as invariant in height. Because the San Pedro tide station has been characterized by a history of modest relative uplift, vertical displacements referred to this station are biased slightly toward the appearance of subsidence. Where the observed elevations cannot be conveniently tied to Tidal 8, they have been referred to secondary control points whose history with respect to Tidal 8 can be independently established. Each of the lines of observed elevation changes provides, accordingly, a section athwart or along the axis of the uplift from which the changes in the configuration of the uplift can be roughly generalized. Because relatively few surveys were run in 1955, which we choose as a representative temporal datum, we have commonly incorporated the results of earlier or of somewhat later levelings as the equivalents of 1955 surveys. Although this procedure introduces a certain subjectivity, the probable equivalence between the results of these earlier or later surveys with those that would have been obtained had this leveling been carried out in 1955, usually can be independently tested. Wherever the calculated vertical displacements are based on comparisons between the results of levelings over different routes, the observed elevations have been orthometrically corrected to agree with those that would have been produced had each of these surveys been along the same route. The growth of the southern California uplift consisted of two well-defined spasms of positive movement, the second of which was closely followed by partial collapse. Our reconstruction, although it clearly errs in detail, indicates that the uplift, together with marginal and apparently ephemeral tectonic subsidence, nucleated in the west-central Transverse Ranges near Ozena, sometime between the spring of 1959 and the spring of 1960. The uplift expanded rapidly eastward (and probably westward as well), and by the fall of 1961 much of the Transverse Ranges and the Mojave Desert at least as far east as Twentynine Palms had risen by as much as 0.25 m. Between 1962 and 1972 the area included by the initially developed (1959-61) uplift sustained additional but clearly decelerating uplift accompanied locally by oscillatory displacements. Between 1972/ 73 and 1974 a second crustal spasm extended the uplift eastward to the Colorado River and elevated much of the eastern Mojave Desert by values that equaled or exceeded those developed within the western lobe. Between 1974 and 1976, at least the central part of the uplift sustained partial collapse that nowhere amounted to less than 50 percent of the cumulative uplift since 1959. Whether this collapse affected the entire uplift is conjectural, but we now recognize well-defined evidence of major down-to-the-north tilting that must have occurred within the eastern part of the uplift at some time between 1974 and 1976. Accumulating evidence indicates that nearly all the area included with the southern California uplift underwent similar uplift and partial collapse during the early part of the 20th century. Thus we infer that the recent uplift represents but a single event in an ongoing, more or less cyclic deformational process characterized by a period of about 50 years. Even though less than two full cycles are expressed in the geodetic record, the cumulative rate of uplift near the center of the recent uplift probably has averaged about 5 mm/yr, a value that is roughly consistent with the uplift rates that have been deduced for the late Quaternary emergent marine terraces along the south flank of the Transverse Ranges. Although the evolution of the recent uplift is relatively well defined, its correlation with the regional seismicity is poorly defined. A comparison between the occurrence of southern California earthquakes of magnitude ≥4 during the period 1932 to 1976 with the 1974 configuration of the uplift demonstrates the existence of (1) relatively aseismic areas within the western lobe of the uplift (in the western Transverse Ranges), in the central part of the uplift (in the western Mojave Desert), and along an east-trending zone that extends into the eastern Mojave athwart the south flank of the uplift (north of the Salton Sea) and (2) localized concentrations of seismic activity along the flanks of the uplift. Moreover, 9 of the 10 largest earthquakes recorded within or around the area of the southern California uplift during the period 1932 to 1976 (the 1933 Long Beach, the 1941 Santa Barbara, the 1946 Walker Pass, the 1947 Manix, the 1948 Desert Hot Springs, and the four major 1952 Kern County shocks) occurred before the inception of the uplift in 1959 or 1960. The area embraced by the southern California uplift has been identified with geodetically defined horizontal strain, part of which may have accumulated as a major north-south contractional event that roughly coincided with the first spasm of uplift. Nonetheless, continuing contractional strain associated with regionally developed partial collapse argues that the uplift cannot be fully explained simply as the vertical expression of continuing north-south compression. Consideration of the two well-defined historical episodes of uplift and partial collapse indicate that the southern California uplift may be the product of decoupling and viscous flow beneath the seismogenic zone, presumably driven by continuing motion between the irregularly margined plates south of the great bend of the San Andreas fault. Because the magnitude of the maximum uplift associated with each episode was approximately the same, there may be some threshold value above which collapse (viscous flow) may ensue; the absence of total collapse may be a function of precollapse strain hardening within the postulated subseismogenic viscoelastic layer.
NASA Astrophysics Data System (ADS)
Wang, Kang; Fialko, Yuri
2018-01-01
We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to ˜70 mm over ˜20 months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2 years).
NASA Astrophysics Data System (ADS)
Borsa, A. A.; Agnew, D. C.; Cayan, D. R.
2014-12-01
The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.
NASA Astrophysics Data System (ADS)
Khan, S. A.; Nielsen, K.; Wahr, J. M.; Bevis, M. G.; Liu, L.; Spada, G.; van Dam, T. M.
2012-12-01
We analyze Global Positioning System (GPS) time series of relative vertical and horizontal displacements from 2009-2011, at four GPS sites located between 5 and 150 km from the front of Jakobshavn Isbræ (JI). The horizontal displacements at KAGA, ILUL, and QEQE, relative to the site AASI, are directed towards east-north-east, suggesting that the main mass loss signal is south-east of these sites. The directions of the observed displacements are supported by modelled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006 to 2011. The agreement between the observed and modelled relative displacements is 0.8 mm or better, which suggests that the mass loss estimate of JI is well captured. In 2010, we observe a rapid increase in the uplift at all four sites. This uplift anomaly, defined as the deviation at 2010.75 from the 2006-2009.75 trend is estimated to 8.8 +/- 2.4 mm (KAGA), 9.3 +/- 2.2 mm (ILUL), 5.1 +/- 2.0 mm (QEQE), and 6.1 +/- 2.3 mm (AASI). The relative large anomalies at the sites QEQE and AASI, located ~150 km from the front of JI, suggests that the uplift anomalies are caused by a large wide-spread melt-induced ice loss. The relatively low uplift anomaly at KAGA, located only 5 km from the front, indicates that there has been a dramatic decrease in dynamic-induced ice loss near the front of JI. This is supported by elevation changes derived from ATM measurements between 2010 and 2011, where we observe an elevation increase in the flow direction of up to 10 m at the frontal part of JI.
Geologic Map of the Nulato Quadrangle, West-Central Alaska
Patton, W.W.; Moll-Stalcup, E. J.
2000-01-01
Introduction The Nulato quadrangle encompasses approximately 17,000 km2 (6,500 mi2) of west-central Alaska within the Yukon River drainage basin. The quadrangle straddles two major geologic features-the Yukon-Koyukuk sedimentary basin, a huge triangle-shaped Cretaceous depression that stretches across western Alaska from the Brooks Range to the Yukon delta; and the Ruby geanticline,a broad uplift of pre-Cretaceous rocks that borders the Yukon-Koyukuk basin on the southeast. The Kaltag Fault crosses the quadrangle diagonally from northeast to southwest and dextrally offsets all major geologic features as much as 130 km.
Postseismic rebound in fault step-overs caused by pore fluid flow
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1996-01-01
Near-field strain induced by large crustal earthquakes results in changes in pore fluid pressure that dissipate with time and produce surface deformation. Synthetic aperture radar (SAR) interferometry revealed several centimeters of postseismic uplift in pull-apart structures and subsidence in a compressive jog along the Landers, California, 1992 earthquake surface rupture, with a relaxation time of 270 ?? 45 days. Such a postseismic rebound may be explained by the transition of the Poisson's ratio of the deformed volumes of rock from undrained to drained conditions as pore fluid flow allows pore pressure to return to hydrostatic equilibrium.
NASA Technical Reports Server (NTRS)
Conel, J. E.
1983-01-01
NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.
2013-12-01
Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.
Lemke, Richard Walter; Yehle, Lynn A.
1972-01-01
The Alaska earthquake of March 27, 1964, brought into sharp focus the need for engineering geologic studies in urban areas. Study of the Haines area constitutes an integral part of an overall program to evaluate earthquake and other geologic hazards in most of the larger Alaska coastal communities. The evaluations of geologic hazards that follow, although based only upon reconnaissance studies and, therefore, subject to revision, will provide broad guidelines useful in city and land-use planning. It is hoped that the knowledge gained will result in new facilities being built in the best possible geologic environments and being designed so as to minimize future loss of life and property damage. Haines, which is in the northern part of southeastern Alaska approximately 75 miles northwest of Juneau, had a population, of about 700 people in 1970. It is built at the northern end of the Chilkat Peninsula and lies within the Coast Mountains of the Pacific Mountain system. The climate is predominantly marine and is characterized by mild winters and cool summers. The mapped area described in this report comprises about 17 square miles of land; deep fiords constitute most of the remaining mapped area that is evaluated in this study. The Haines area was covered by glacier ice at least once and probably several times during the Pleistocene Epoch. The presence of emergent marine deposits, several hundred feet above sea level, demonstrates that the land has been uplifted relative to sea level since the last major deglaciation of the region about 10,000 years ago. The rate of relative uplift of the land at Haines during the past 39 years is 2.26 cm per year. Most or all of this uplift appears to be due to rebound as a result of deglaciation. Both bedrock and surficial deposits are present in the area. Metamorphic and igneous rocks constitute the exposed bedrock. The metamorphic rocks consist of metabasalt of Mesozoic age and pyroxenite of probable early middle Cretaceous age. The igneous rocks consist of diorite and quartz diorite (tonalite) of Cretaceous age. Sedimentary rocks of Tertiary age may be present in the mapped area but are not exposed. The surficial deposits of Quaternary age,-have been divided into the following map units on the basis of time Of deposition, mode of origin, and grain size: (1) undifferentiated drift deposits, (2) outwash and Ice-contact deposits; (3) elevated fine-grained marine deposits, (4) elevated shore and delta deposits, (5) alluvial fan deposits, (6) colluvial deposits, (7) modern beach deposits, (8) Chilkat River flood-plain and delta deposits, and (9) manmade fill. Offshore deposits are described but are not mapped. Southeastern Alaska lies within the tectonically active belt that rims the northern Pacific Basin and has been active since at least early Paleozoic time. The outcrop pattern is the result of late Mesozoic and Tertiary deformational, metamorphic, and intrusive events. Large-scale faulting has been common. The two most prominent inferred fault systems in southeastern Alaska and surrounding regions are: (1) The Denali fault system and (2) the Fairweather-Queen Charlotte Islands fault system. In the general area of Haines, rocks of Mesozoic age northeast of Chilkat River have a simple monoclinal structure. Paleozoic-Mesozoic rocks southwest of Chilkat River are gently to rather complexly folded. Several major and numerous minor faults probably transect the general area of Haines but their exact location and character can only be inferred because their traces are coincident to the long axes of fiords and river valleys, where they are concealed by water or by valley-floor deposits. Inferred faults in or near the Haines mapped area are: (1) Chilkat River fault, (2) Chilkoot fault, (3) Takhin fault, and (4) faults in the saddle area at Haines. Southeastern Alaska lies in one of the two most seismically active zones in Alaska, a State where 6 percent of the world's shallow earthqua
Altitude of the top of the Inyan Kara Group in the Black Hills area, South Dakota
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Inyan Kara Group within the area of the Black Hills Hydrology Study. The depth to the top of the Inyan Kara Group can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
NASA Astrophysics Data System (ADS)
Hoke, G. D.; McPhillips, D. F.; Giambiagi, L.; Garzione, C. N.; Mahoney, J. B.; Strecker, M. R.
2015-12-01
The major changes in the subduction angle of the Nazca plate are often hypothesized to have important consequences for the tectonic evolution of the Andes. Temporal and spatial patterns of topographic growth and exhumation are indicators that should help elucidate any linkages to subduction angle. Here, we combine observations from stable isotope paleoaltimetry with detrital zircon double dating between 30 and 35°S to demonstrate a consistent increase in surface and rock uplift in the Andes south of 32°S. The stable isotope data are from Miocene pedogenic carbonates collected from seven different basin sequences spanning different tectonic and topographic positions in the range. Paleoelevations between 1 km and 1.9 km are calculated using modern local isotope-elevation gradients along with carbonate-formation temperatures determined from clumped isotope studies in modern soils. Present day, low elevation foreland localities were at their present elevations during the Miocene, while three of the intermontane basins experienced up to 2 km of surface uplift between the end of deposition during the late Miocene and present. Detrital zircon (U-Th-Sm)/He and U-Pb double dating in three modern drainage basins (Tunuyán, Arroyo Grande and Río de los Patos) reveals clear Miocene exhumation signals south of the flat slab with no recent exhumation apparent at 32°S. The exhumation pattern is consistent with paleoaltimetry results. Interestingly, the maximum inferred surface uplift is greatest where the crust is thinnest, and the timing of the observed changes in elevation and exhumation has not been linked to any documented episodes of large-magnitude crustal shortening in the eastern half of the range. The spatial pattern of surface uplift and exhumation seems to mimic the Pampean flat slab's geometry, however, it could be equally well explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.
NASA Astrophysics Data System (ADS)
DeLucia, M. S.; Marshak, S.; Guenthner, W.; Anders, A. M.; Thomson, S. N.
2016-12-01
The Ozark Plateau is an uplift in the cratonic platform of Midcontinent United States. In the northeast corner of the plateau (the St. Francois Mountains), Precambrian basement of 1.47 Ga granite and rhyolite crops out. These rocks are overlain, at the Great Unconformity, by Paleozoic strata, defining the map pattern of the Ozark Dome. Strata thicken substantially eastward into the Illinois Basin, so that there is over 7 km of structural relief across the boundary between the Illinois Basin and the Ozark Dome at the level of the Great Unconformity. Multiple unconformities in the Paleozoic section indicates that the crest of the Ozark Dome was at or above sea level several times during the Paleozoic. Key questions about the Plateau remain. For example: (1) Did the 1.47 Ga basement remain at upper-crustal depths since its formation, or was it buried deeply and later exhumed? (2) Has the plateau remained high since the Paleozoic or has it undergone post-Paleozoic uplift? Results from new zircon (U-Th)/He thermochronology indicate that the 1.47 Ga granites were exhumed significantly in the Neoproterozoic (about 750Ma), after the Rodinia supercontinent assembly. Fission-track dates (Brown, 2005) and (U-Th)/He apatite dates (Flowers and Kelley, 2011; Zhang et al., 2012; and new results) hint that some post-Paleozoic exhumation has occurred. Analysis of a high-resolution DEM of the Ozark Plateau supports this proposal; bedrock-incising streams occur throughout the plateau (locally producing incised meanders), and strath terraces can be identified. The rate of uplift, however, must be relatively slow, for drainages do not display knick points, and drainage networks display mature profiles. Given these constraints, we propose that the lithospheric architecture that distinguished the Ozark Dome from the Illinois Basin became established in the Neoproterozoic, and that the Ozark Plateau has been maintained isostatically by subsequent slow exhumation.
NASA Astrophysics Data System (ADS)
Andjic, Goran; Baumgartner-Mora, Claudia; Baumgartner, Peter O.
2016-04-01
The Upper Cretaceous-Neogene Sandino Forearc Basin is exposed in the southeastern Nicaraguan Isthmus and in the northwestern corner of Costa Rica. It consists of an elongated, slightly folded belt (160 km long/30 km wide). During Campanian to Oligocene, the predominantly deep-water pelagic, hemipelagic and turbiditic sequences were successively replaced by shelf siliciclastics and carbonates at different steps of the basin evolution. We have made an inventory of Tertiary shallow-water limestones in several areas of Nicaragua and northern Costa Rica. They always appear as isolated rock bodies, generally having an unconformable stratigraphic contact with the underlying detrital sequences. The presence of these short-lived carbonate shoals can be attributed to local or regional tectonic uplift in the forearc area. The best-preserved exposure of such a carbonate buildup is located on the small Isla Juanilla (0.15 km2, Junquillal Bay, NW Costa Rica). The whole island is made of reef carbonates, displaying corals in growth position, associated with coralline red algae (Juanilla Formation). Beds rich in Larger Benthic Foraminifera such as Lepidocyclina undosa -favosa group permit to date this reef as late Oligocene. A first uplift event affected the Nicaraguan Isthmus, that rose from deep-water to shelfal settings in the latest Eocene-earliest Oligocene. The upper Oligocene Juanilla Formation formed on an anticline that developed during the early Oligocene, contemporaneously with other folds observed in the offshore Sandino Forearc Basin. During the early Oligocene, a period of global sea-level fall, the folded tectonic high underwent deep erosion. During the late Oligocene, a time of overall stable eustatic sea level, tectonic uplift gave way to moderate subsidence, creating accommodation space for reef growth. A 4th or 5th order (Milankovic-type) glacio-eustatic sea level rise, could also have triggered reef growth, but its preservation implies at least moderate subsidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Nyblade, A; Rodgers, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less
Earth Observations taken by the Expedition 18 Crew
2008-12-29
ISS018-E-015908 (29 Dec. 2008) --- The Biokovo Range in Croatia is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The Biokovo Range in Croatia is part of the Dinaric Alps extending northwest-southeast along the coastline of the Adriatic Sea. The Range itself is the location of a national park; the nearby city of Makarska, located between the mountains and the sea, is a popular tourist destination. The highest peak in the Biokovo Range, Sveti Jure (1762 meters above sea level), is reachable by road or hiking. The Range is comprised mainly of Mesozoic age carbonate rocks ? primarily limestone, a sedimentary rock type rich in calcium carbonate ? deposited in relatively warm, shallow waters. Later tectonic processes uplifted and exposed the carbonate rocks to erosion ? leading to a distinctive geological surface known as karst topography. Karst topography originates due to the chemical erosion of carbonate rocks by acids formed in surface and subsurface water; as the rock is dissolved, underground networks of drainages and caves form. As more underground void space develops through time, the overlaying rock and soil collapses to form a variety of landforms including sinkholes, blind valleys, and towers. In the Biokovo Range, much of the karst surface has a pitted appearance, made easily visible by early morning light in this astronaut photograph. The pitted appearance is produced by numerous circular or semi-circular collapse valleys known locally as vrtace. While this image captures Sveti Jure covered with snow, there are no glaciers or ice fields in the Biokovo Range.
NASA Astrophysics Data System (ADS)
Zhang, Z. M.; Shen, K.; Liou, J. G.; Dong, X.; Wang, W.; Yu, F.; Liu, F.
2011-08-01
Comprehensive review on the characteristics of petrology, oxygen isotope, fluid inclusion and nominally anhydrous minerals (NAMs) for many Dabie-Sulu ultrahigh-pressure (UHP) metamorphic rocks including drill-hole core samples reveals that fluid has played important and multiple roles during complicated fluid-rock interactions attending the subduction and exhumation of supracrustal rocks. We have identified several distinct stages of fluid-rock interactions as follows: (1) The Neoproterozoic supercrustal protoliths of UHP rocks experienced variable degrees of hydration through interactions with cold meteoric water with extremely low oxygen isotope compositions during Neoproterozoic Snow-ball Earth time. (2) A series of dehydration reactions took place during Triassic subduction of the Yangtze plate beneath the Sino-Korean plate; the released fluid entered mainly into volatile-bearing high-pressure (HP) and UHP minerals, such as phengite, zoisite-epidote, talc, lawsonite and magnesite, as well as into UHP NAMs, such as garnet, omphacite and rutile. (3) Silicate-rich supercritical fluid (hydrous melt) existed during the UHP metamorphism at mantle depths >100 km which mobilized many normally fluid-immobile elements and caused unusual element fractionation. (4) The fluid exsolved from the NAMs during the early exhumation of the Dabie-Sulu terrane was the main source for HP hydrate retrogression and generation of HP veins. (5) Local amphibolite-facies retrogression at crustal depths took place by infiltration of aqueous fluid of various salinities possibly derived from an external source. (6) The greenschist-facies overprinting and low-pressure (LP) quartz veins were generated by fluid flow along ductile shear zones and brittle faults during late-stage uplift of the UHP terrane.
NASA Astrophysics Data System (ADS)
Attal, M.; Hobley, D.; Cowie, P. A.; Whittaker, A. C.; Tucker, G. E.; Roberts, G. P.
2008-12-01
Prominent convexities in channel long profiles, or knickzones, are an expected feature of bedrock rivers responding to a change in the rate of base level fall driven by tectonic processes. In response to a change in relative uplift rate, the simple stream power model which is characterized by a slope exponent equal to unity predicts that knickzone retreat velocity is independent of uplift rate and that channel slope and uplift rate are linearly related along the reaches which have re-equilibrated with respect to the new uplift condition (i.e., downstream of the profile convexity). However, a threshold for erosion has been shown to introduce non- linearity between slope and uplift rate when associated with stochastic rainfall variability. We present field data regarding the height and retreat rates of knickzones in rivers upstream of active normal faults in the central Apennines, Italy, where excellent constraints exist on the temporal and spatial history of fault movement. The knickzones developed in response to an independently-constrained increase in fault throw rate 0.75 Ma. Channel characteristics and Shield stress values suggest that these rivers lie close to the detachment-limited end-member but the knickzone retreat velocity (calculated from the time since fault acceleration) has been found to scale systematically with the known fault throw rates, even after accounting for differences in drainage area. In addition, the relationship between measured channel slope and relative uplift rate is non-linear, suggesting that a threshold for erosion might be effective in this setting. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to quantify the effect of such a threshold on river long profile development and knickzone retreat in response to tectonic perturbation. In particular, we investigate the evolutions of 3 Italian catchments of different size characterized by contrasted degree of tectonic perturbation, using physically realistic threshold values based on sediment grain-size measurements along the studied rivers. We show that the threshold alone cannot account for field observations of the size, position and retreat rate of profile convexities and that other factors neglected by the simple stream power law (e.g. role of sediments) have to be invoked to explain the discrepancy between field observations and modeled topographies.
Beyond Tree Throw: Wind, Water, Rock and the Mechanics of Tree-Driven Bedrock Physical Weathering
NASA Astrophysics Data System (ADS)
Marshall, J. A.; Anderson, R. S.; Dawson, T. E.; Dietrich, W. E.; Minear, J. T.
2017-12-01
Tree throw is often invoked as the dominant process in converting bedrock to soil and thus helping to build the Critical Zone (CZ). In addition, observations of tree roots lifting sidewalk slabs, occupying cracks, and prying slabs of rock from cliff faces have led to a general belief in the power of plant growth forces. These common observations have led to conceptual models with trees at the center of the soil genesis process. This is despite the observation that tree throw is rare in many forested settings, and a dearth of field measurements that quantify the magnitude of growth forces. While few trees blow down, every tree grows roots, inserting many tens of percent of its mass below ground. Yet we lack data quantifying the role of trees in both damaging bedrock and detaching it (and thus producing soil). By combing force measurements at the tree-bedrock interface with precipitation, solar radiation, wind speed, and wind-driven tree sway data we quantified the magnitude and frequency of tree-driven soil-production mechanisms from two contrasting climatic and lithologic regimes (Boulder and Eel Creek CZ Observatories). Preliminary data suggests that in settings with relatively thin soils, trees can damage and detach rock due to diurnal fluctuations, wind response and rainfall events. Surprisingly, our data suggests that forces from roots and trunks growing against bedrock are insufficient to pry rock apart or damage bedrock although much more work is needed in this area. The frequency, magnitude and style of wind-driven tree forces at the bedrock interface varies considerably from one to another species. This suggests that tree properties such as mass, elasticity, stiffness and branch structure determine whether trees respond to gusts big or small, move at the same frequency as large wind gusts, or are able to self-dampen near-ground sway response to extended wind forces. Our measurements of precipitation-driven and daily fluctuations in root pressures exerted on bedrock suggest that these fluctuations may impart a cyclic stress fatigue that over the lifetime of a tree could considerably weaken the enfolding rock (104 to 106 days depending on the species). Combined, our results suggest that wind-driven root torque and water uptake may be the primary mechanisms driving bedrock erosion and soil production in thin soil settings.
Geology and impact features of Vargeão Dome, southern Brazil
NASA Astrophysics Data System (ADS)
Crósta, Alvaro P.; Kazzuo-Vieira, César; Pitarello, Lidia; Koeberl, Christian; Kenkmann, Thomas
2012-01-01
Vargeão Dome (southern Brazil) is a circular feature formed in lava flows of the Lower Cretaceous Serra Geral Formation and in sandstones of the Paraná Basin. Even though its impact origin was already proposed in the 1980s, little information about its geological and impact features is available in the literature. The structure has a rim-rim diameter of approximately 12 km and comprises several ring-like concentric features with multiple concentric lineaments. The presence of a central uplift is suggested by the occurrence of deformed sandstone strata of the Botucatu and Pirambóia formations. We present the morphological/structural characteristics of Vargeão Dome, characterize the different rock types that occur in its interior, mainly brecciated volcanic rocks (BVR) of the Serra Geral Formation, and discuss the deformation and shock features in the volcanic rocks and in sandstones. These features comprise shatter cones in sandstone and basalt, as well as planar microstructures in quartz. A geochemical comparison of the target rock equivalents from outside the structure with the shocked rocks from its interior shows that both the BVRs and the brecciated sandstone have a composition largely similar to that of the corresponding unshocked lithologies. No traces of meteoritic material have been found so far. The results confirm the impact origin of Vargeão Dome, making it one of the largest among the rare impact craters in basaltic targets known on Earth.
Weston, K A; Robertson, B C
2015-09-01
Naturally subdivided populations such as those occupying high-altitude habitat patches of the 'alpine archipelago' can provide significant insight into past biogeographical change and serve as useful models for predicting future responses to anthropogenic climate change. Among New Zealand's alpine taxa, phylogenetic studies support two major radiations: the first correlating with geological forces (Pliocene uplift) and the second with climatic processes (Pleistocene glaciations). The rock wren (Xenicus gilviventris) is a threatened alpine passerine belonging to the endemic New Zealand wren family (Acanthisittidae). Rock wren constitute a widespread, naturally fragmented population, occurring in patches of suitable habitat over c. 900 m in altitude throughout the length of the South Island, New Zealand. We investigated the relative role of historical geological versus climatic processes in shaping the genetic structure of rock wren (N = 134) throughout their range. Using microsatellites combined with nuclear and mtDNA sequence data, we identify a deep north-south divergence in rock wren (3.7 ± 0.5% at cytochrome b) consistent with the glacial refugia hypothesis whereby populations were restricted in isolated refugia during the Pleistocene c. 2 Ma. This is the first study of an alpine vertebrate to test and provide strong evidence for the glacial refugia hypothesis as an explanation for the low endemicity central zone known as the biotic 'gap' in the South Island of New Zealand. © 2015 John Wiley & Sons Ltd.
Felger, Tracey J.; Beard, Sue
2010-01-01
Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.
Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia
Ulmishek, Gregory F.
2001-01-01
The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.
The Rockfall Buzzsaw: Quantifying the role of frost processes on mountain evolution
NASA Astrophysics Data System (ADS)
Hales, T.; Roering, J. J.
2006-12-01
The height and relief of high mountains reflects a balance between uplift, caused by tectonic and isostatic forces, and erosion, by fluvial, glacial, periglacial, and hillslope processes. Recently, models of mountain evolution have focused on the importance of glaciers in eroding deep valleys, a process referred to as the "glacial buzzsaw". Little attention has been paid to the role of periglacial processes, despite large scree slopes and rubble-covered glaciers being common in mountains. Frost cracking induced rockfall erosion has wide acceptance in the literature and a number of local studies have calculated high rockfall erosion rates in cold environments; but the question remains, how important is frost cracking in eroding bedrock in mountainous environments? We quantify how and where ice-driven mechanical erosion occurs in cold, bedrock-dominated landscapes using a simple one-dimensional numerical heat flow model. In our model, ice grows by water migration to colder regions in shallow rock by the reduction in chemical potential associated with intermolecular forces between ice and mineral surfaces, a process called segregation ice growth. Positive MAT sites are characterized by intense cracking in the top meter of the rock mass and a maximum frost penetration of ~4m. In contrast, negative MAT areas have an order of magnitude less intense cracking that primarily occurs at depths between 50 and 800 cm. This suggests that periglacial erosion may be concentrated in a narrow elevation range (corresponding to areas with a MAT between 0 and 2°C). At higher MATs ice growth is limited to very shallow depths. As MATs dip below zero, frost cracking intensity is reduced considerably resulting in a high and frozen condition. These results suggest that rocks with a fracture spacing of less than 400cm provide more sites for the nucleation and growth of segregation ice, and are therefore more susceptible to frost-induced bedrock weathering. To quantify the effect of ice weathering, we compared the elevation, rock fracture spacing, and the rockfall erosion rate for three areas, the eastern Southern Alps, New Zealand (fracture spacing of <10cm), rock outcrops in Utah (variable fracture spacing), and Mt. Whitney, Sierra Nevada (fracture spacing of ~400 cm). The eastern Southern Alps are characterized by large (km scale) scree slopes, rapid rockfall erosion rates (~0.1 mm/yr), and rounded peaks whose maximum elevation corresponds with the ~0°C isotherm. The eastern Sierra Nevada has small scree slopes and steep pinnacled ridges and peaks above the -5°C isotherm, consistent with the high and frozen scenario. In Utah the highest rockfall frequencies occur in coincidence with the 0.5°C isotherm. These results hint at an interplay between mountain height and rock fracture spacing, such that the height of mountains with highly fractured rocks may be limited by the intense frost processes coincident with the 1°C isotherm. In this case, mountain elevations may be limited by a rockfall buzzsaw, which efficiently erodes bedrock within a narrow elevation band, the location of which is controlled by glacial- interglacial climate cycles.
Geologic evolution of the Kastel trough and its implications on the Adiyaman oil fields, SE Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coskun, Bu.
1990-05-01
Oil field developments of the Adiyaman area one of the main oil producing zones in southeast Turkey, have been highly influenced by geologic evolution of the Kastel trough which is situated in front of the suture zone between the Arabian and Anatolian plates. The Upper Cretaceous movements created many paleostructural trends in the Kastel trough where important dolomitic and porous reservoirs exist. The most important tectonic event, which appeared during the Upper Cretaceous movements, is the accumulation of the Kocali-Karadut ophiolitic complex, advancing from the north to the south in the Kastel trough, where heavy materials caused formation of amore » structural model favoring generation and migration and entrapment of oil in the reservoir rocks. Due to the presence of the Kocali-Karadut complex in the Kastel trough the following zones have been distinguished. (1) North Uplift Area. Situated under the allochthonous units, many thrust and reverse faults characterize this zone. The presence of paleohighs, where primary dolomites develop, allows the appearance of some oil fields in the region. This is the main future exploration zone in southeast Turkey. (2) Accumulation Area. Advancing from the north to the south, the allochthonous Kocali-Karadut complex filled the Kastel trough creating a deep graben whose flanks present generally normal faults. (3) Structural Belt. Important paleohighs constitute an exploration trend in this zone where dolomitic and porous carbonates contain actual oil fields. (4) South Accumulation Area. Distant from the Arabian-Anatolian suture zone, regional tectonics and sedimentology show this zone remained deeply buried during geologic time; good source rocks were deposited during the Cretaceous. (5) South Uplift Area. This area corresponds to the northern flank of the huge regional Mardin high in southeast Turkey where new oil fields have been discovered.« less
Strike-slip structural styles and petroleum system evolution, northeast Sakhalin Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisling, K.E.; Wagner, J.B.
1996-12-31
The primary petroleum system of northeast Sakhalin Island and adjacent shelfal areas is comprised of a system of Late Miocene to Quaternary faulted transpressional anticlines that trap oil and gas in Early Miocene to Pliocene deltaic reservoirs sourced from Late Oligocene to Early Miocene diatomaceous shales. Existing production has been limited to onshore anticlines, and offshore structural trends remain undeveloped, despite several discoveries. The regional tectonic evolution of Sakhalin Island can be divided into five major phases: (1) Late Cretaceous to Early Eocene subduction, (2) Middle-Eocene collision and uplift, (3) Late Eocene to Early Oligocene oblique rifting, (4) Late Oligocenemore » to Middle Miocene thermal subsidence, and (5) Late Miocene to Quaternary transpression and inversion. Oil-prone source rocks were deposited during rapid post-rift thermal subsidence of transtensional rift basins and adjacent highs, which provided an ideal sediment-starved setting for source rock accumulation. Reservoir facies were supplied by prograding post-rift Miocene deltaics of the paleo-Amur river, which built a shelf across the thermally subsiding basin and intrabasin highs. Traps were formed when the basin was later inverted during Late Miocene to Pleistocene transpression, which reactivated both Paleogene normal faults and structural trends of the Mesozoic accretionary prism to create a broad zone of distributed shear. Strike-slip structural styles are evidenced by linear, en echelon alignments of doubly-plunging anticlines characterized by numerous small-displacement, transverse normal faults. Strike slip on individual structures is relatively small, however, based on a lack of thorough going faults. Strike-slip structures on Sakhalin Island are considered active, in light of the earthquake of May 27, 1995 (M=7.6) and uplift of Pleistocene marine terraces.« less
Strike-slip structural styles and petroleum system evolution, northeast Sakhalin Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisling, K.E.; Wagner, J.B.
1996-01-01
The primary petroleum system of northeast Sakhalin Island and adjacent shelfal areas is comprised of a system of Late Miocene to Quaternary faulted transpressional anticlines that trap oil and gas in Early Miocene to Pliocene deltaic reservoirs sourced from Late Oligocene to Early Miocene diatomaceous shales. Existing production has been limited to onshore anticlines, and offshore structural trends remain undeveloped, despite several discoveries. The regional tectonic evolution of Sakhalin Island can be divided into five major phases: (1) Late Cretaceous to Early Eocene subduction, (2) Middle-Eocene collision and uplift, (3) Late Eocene to Early Oligocene oblique rifting, (4) Late Oligocenemore » to Middle Miocene thermal subsidence, and (5) Late Miocene to Quaternary transpression and inversion. Oil-prone source rocks were deposited during rapid post-rift thermal subsidence of transtensional rift basins and adjacent highs, which provided an ideal sediment-starved setting for source rock accumulation. Reservoir facies were supplied by prograding post-rift Miocene deltaics of the paleo-Amur river, which built a shelf across the thermally subsiding basin and intrabasin highs. Traps were formed when the basin was later inverted during Late Miocene to Pleistocene transpression, which reactivated both Paleogene normal faults and structural trends of the Mesozoic accretionary prism to create a broad zone of distributed shear. Strike-slip structural styles are evidenced by linear, en echelon alignments of doubly-plunging anticlines characterized by numerous small-displacement, transverse normal faults. Strike slip on individual structures is relatively small, however, based on a lack of thorough going faults. Strike-slip structures on Sakhalin Island are considered active, in light of the earthquake of May 27, 1995 (M=7.6) and uplift of Pleistocene marine terraces.« less
A new age model for the early-middle Miocene in the North Alpine Foreland Basin
NASA Astrophysics Data System (ADS)
Reichenbacher, Bettina; Krijgsman, Wout; Pippèrr, Martina; Sant, Karin; Kirscher, Uwe
2016-04-01
The establishment of high-resolution age models for sedimentary successions is crucial for numerous research questions in the geosciences and related disciplines. Such models provide an absolute chronology that permits precise dating of depositional episodes and related processes such as mountain uplift or climate change. Recently, our work in the Miocene sediments of the North Alpine Foreland Basin (NAFB) has revealed a significantly younger age (16.6 Myr) for sediments that were thought to have been deposited 18 Myr ago. This implies that a fundamentally revised new age model is needed for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB (20 to 15-Myr). Our new data also indicate that previously published reconstructions of early-middle Miocene palaeogeography, sedimentation dynamics, mountain uplift and climate change in the NAFB all require a critical review and revision. Further, the time-span addressed is of special interest, since it encompasses the onset of a global warming phase. However, it appears that a fundamentally revised new age model for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB can only be achieved based on a 500 m deep drilling in the NAFB for which we currently seek collaboration partners to develop a grant application to the International Continental Deep Drilling Program (ICDP). Reference: Reichenbacher, B., W. Krijgsman, Y. Lataster, M. Pippèrr, C. G. C. Van Baak, L. Chang, D. Kälin, J. Jost, G. Doppler, D. Jung, J. Prieto, H. Abdul Aziz, M. Böhme, J. Garnish, U. Kirscher, and V. Bachtadse. 2013. A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences 106:309-334.
NASA Astrophysics Data System (ADS)
McDowell, Robin John
1997-01-01
The Tendoy Mountains contain the easternmost thin-skinned thrust sheets in the Cordilleran fold-thrust belt of southwestern Montana, and are in the zone of tectonic overlap between the Rocky Mountain foreland and the Cordilleran fold-thrust belt. The three frontal thrust sheets of the Tendoy Mountains are from north to south, the Armstead, McKenzie, and Tendoy sheets. Near the southeastern terminus of the Tendoy thrust sheet is a lateral ramp in which the Tendoy thrust climbs along strike from the Upper Mississippian Lombard Limestone to lower Cretaceous rocks. This ramp coincides with the southeastern side of the Paleozoic Snowcrest trough and projection of the range-flanking basement thrust of the Blacktail-Snowcrest uplift, suggesting either basement or stratigraphic control on location of the lateral ramp. Axes of major folds on the southern part of the Tendoy thrust sheet are parallel to the direction of thrust transport and to the trend of the Snowcrest Range. They are a result of: (1) Pre-thrust folding above basement faults; (2) Passive transportation of the folds from a down-plunge position; (3) Minor reactivation of basement faults; and (4) Emplacement of blind, sub-Tendoy, thin-skinned thrust faults. The Tendoy sheet also contains a major out-of-sequence thrust fault that formed in thick Upper Mississippian shales and created large, overturned, foreland-verging folds in Upper Mississippian to Triassic rocks. The out-of-sequence fault can be identified where stratigraphic section is omitted, and by a stratigraphic separation diagram that shows it cutting down section in the direction of transport. The prominent lateral ramp at the southern terminus of the Tendoy thrust sheet is a result of fault propagation through strata folded over the edge of the Blacktail-Snowcrest uplift.
An evaluation of the zircon method of isotopic dating in the Southern Arabian Craton
Cooper, J.A.; Stacey, J.S.; Stoeser, D.G.; Fleck, R.J.
1979-01-01
A zircon study has been made on eleven samples of igneous rocks from the Saudi Arabian Craton. Ages of sized and magnetic fractions of zircon concentrates show variable degrees of discordance which seem to result from a very young disturbance that produces linear arrays in the Concordia plot. Model age calculations based on a statistically and geologically reasonable lower intercept produce very consistent internal relationships. The Pan African Orogeny, considered to be responsible for loss of radiogenic argon and strontium from minerals of many rocks, does not appear to have affected the zircon data, even though uplift had exposed the rocks of the Arabian Shield at that time. Tonalite, granodiorite, and crosscutting leucoadamellite bodies in the southern part of the An Nimas Bathylith yield ages in the time range 820-760 Ma. A narrow time range of 660 to 665 million years was indicated for ages of widely separated and compositionally different intrusive bodies all to the east of the An Nimas Bathylith. This work suggests that the younger end of the age spectrum established from regional K-Ar and Rb-Sr measurements may be underestimated, and that magmatic activity could be more episodic than previously assumed.
Hein, J.R.; Koschinsky, A.; McIntyre, B.R.
2005-01-01
Mercury- and silver-enriched ferromanganese oxide crusts were recovered at water depths of 1,750 tol,300 m from La Victoria knoll, located about 72 km off the coast of northern Baja California. No other ferromanganese precipitate found so far in the modern ocean basins is similarly enriched in Hg and Ag. The precipitates consist of submetallic gray, brecciated, Mn oxide layers overlain by brown earthy, laminated Fe-Mn oxide crusts. Both oxide types are rich in Hg (to 10 ppm) and Ag (to 5.5 ppm). The Mn-rich layers are composed of ??MnO2, with lesser amounts of 10A?? and 7A?? manganates, whereas the Mn phase in the Fe-Mn crusts is solely ??MnO2. The Fe phase in both layers is X-ray amorphous. Established criteria for distinguishing hydrothermal versus hydrogenetic crusts indicate that the Mn-rich layers are predominantly of low-temperature hydrothermal origin, whereas the Fe-Mn crusts are hydrogenetic, although there is some overlap in the source of chemical components in both types. La Victoria knoll is uplifted continental basement rock with basalt, andesite, and schist cropping out at the surface; the knoll may have an intrusive core. The Hg and Ag were derived from leaching by hydrothermal fluids of organic matter-rich sediments in basins adjacent to La Victoria knoll and, to a lesser extent, from continental basement rocks underlying the knoll and adjacent basins. Both rock types are notably enriched in Ag and Hg. Faults were the main fluid transport pathway, and hydrothermal circulation was driven by high heat flow associated with thinned crust. Other elements derived from the hydrothermal fluids include Tl, Cd, Cr, and Li. The main host for Hg and Ag is FeOOH, although MnO2 likely hosts some of the Ag. Minor sulfide and barite also may contain small amounts of these metals. Possible analogs in the geologic record for this deposit type are found in the Basin and Range province of the western United States and Mexico. The discovery highlights the fact that fluids circulating along faults in the offshore California borderland are transporting potentially toxic metals (Hg, Ag, Tl, As, Cd, Cr, Pb, and Ni) and depositing them on and just below the ocean floor. ?? 2005 Society of Economic Geologists, Inc.
NASA Astrophysics Data System (ADS)
Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.
2013-12-01
It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Dolansky, Lila; Piper, David J. W.
2005-07-01
The Lower Cretaceous fluvial sandstone-mudstone succession of the Chaswood Formation is the proximal equivalent of offshore deltaic rocks of the Scotian Basin that are reservoirs for producing gas fields. This study interprets the mineralogical consequences of Cretaceous weathering and early diagenesis in a 130-m core from the Chaswood Formation in order to better understand detrital and diagenetic minerals in equivalent rocks offshore. Mineralogy was determined by X-ray diffraction, electron microprobe analysis and scanning electron microscopy. The rocks can be divided into five facies associations: light gray mudstone, dark gray mudstone, silty mudstone and muddy sandstone, sorted sandstone and conglomerate, and paleosols. Facies transitions in coarser facies are related to deposition in and near fluvial channels. In the mudstones, they indicate an evolutionary progression from the dark gray mudstone facies association (swamps and floodplain soils) to mottled paleosols (well-drained oxisols and ultisols following syntectonic uplift). Facies transitions and regional distribution indicate that the light gray mudstone facies association formed from early diagenetic oxidation and alteration of the dark gray mudstone facies association, probably by meteoric water. Principal minerals in mudstones are illite/muscovite, kaolinite, vermiculite and quartz. Illite/muscovite is of detrital origin, but variations in abundance show that it has altered to kaolinite in the light gray mudstone facies association and in oxisols. Vermiculite developed from the weathering of biotite and is present in ultisols. The earliest phase of sandstone cementation in reducing conditions in swamps and ponds produced siderite nodules and framboidal pyrite, which were corroded and oxidized during subsequent development of paleosols. Kaolinite is an early cement, coating quartz grains and as well-crystallized, pore-filling booklets that was probably synchronous with the formation of the light gray mudstone facies association. Later illite and barite cement indicate a source of abundant K and Ba from formation water. This late diagenesis of sandstone took place when the Chaswood Formation was in continuity with the main Scotian Basin, prior to Oligocene uplift of the eastern Scotian Shelf. Findings of this study are applicable to other mid-latitude Cretaceous weathering and early diagenetic environments.
Crustal structure of southwestern Saudi Arabia
Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healy, J.H.
1983-01-01
The southwestern Arabian Shield is composed of uplifted Proterozoic metamorphic and plutonic rocks. The Shield is bordered on the southwest by Cenozoic sedimentary and igneous rocks of the Red Sea paar and on the east by the Arabian Platform, an area of basin sedimentation throughout Phanerozoic time. The Shield appears to have been formed by successive episodes of island arc volcanism and sea-floor spreading, followed by several cycles of compressive tectonism and metamorphism. An interpretation and synthesis of a deep-refraction seismic profile from the Riyadh area to the Farasan Islands, and regional gravity, aeromagnetic, heat flow, and surface geologic data have yielded a self-consistent regional-scale model of the crust and upper mantle for this area. The model consists of two 20 km-thick layers of crust with an average compressional wave velocity in the upper crust of about 6.3 km/s and an average velocity in the lower. crust of about 7.0 km/s. This crust thins abruptly to less than 20 km near the southwestern end of the profile where Precambrian outcrops abut the Cenozoic rocks and to 8 km beneath the Farasan Islands. The data over the coastal plain and Red Sea shelf areas are fit satisfactorily by an oceanic crustal model. A major lateral velocity inhomogeneity in the crust is inferred about 25 km northeast of Sabhah and is supported by surface geologic evidence. The major velocity discontinuities occur at about the same depth across the entire Shield and are interpreted to indicate horizontal metamorphic stratification of the Precambrian crust. Several lateral inhomogenities in both the upper and lower .crust of the . Shield are interpreted, to indicate bulk compositional variations. The subcrustal portion of the model is composed of a hot, low-density lithosphere beneath the Red Sea which is systematically cooler and denser to the northeast. This model provides a mechanism which explains the observed topographic uplift, regional gravity pattern, heat flow, and mantle compressional wave velocities. Such a lithosphere could be produced by upwelling of hot asthenosphere beneath the Red Sea which then flows laterally beneath the lithosphere of the Arabian Plate.
Criteria and tools for determining drainage divide stability
NASA Astrophysics Data System (ADS)
Forte, Adam M.; Whipple, Kelin X.
2018-07-01
Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to base level, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, could potentially confound interpretations of river profiles. Ultimately, reliable metrics are needed to diagnose the mobility of divides as part of routine landscape analyses. One such recently proposed metric is cross-divide contrasts in χ, a proxy for steady-state channel elevation, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution simulations in which we induce divide mobility under different conditions to test the utility of a suite of topographic metrics of divide mobility and for comparison with natural examples in the eastern Greater Caucasus Mountains, the Kars Volcanic Plateau, and the western San Bernadino Mountains. Specifically, we test cross-divide contrasts in mean gradient, mean local relief, channel bed elevation, and χ all measured at, or averaged upstream of, a reference drainage area. Our results highlight that cross-divide contrasts in χ only faithfully reflect current divide mobility when uplift, rock erodibility, climate, and catchment outlet elevation are uniform across both river networks on either side of the divide, otherwise a χ-anomaly only indicates a possible future divide instability. The other metrics appear to be more reliable representations of current divide motion, but in natural landscapes, only cross-divide contrasts in mean gradient and local relief appear to consistently provide useful information. Multiple divide metrics should be considered simultaneously and across-divide values of all metrics examined quantitatively as visual assessment is not sufficiently reliable in many cases. We provide a series of Matlab tools built using TopoToolbox to facilitate routine analysis.
The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan)
NASA Astrophysics Data System (ADS)
Franz, Gerhard; Breitkreuz, Christoph; Coyle, David A.; El Hur, Bushra; Heinrich, Wilhelm; Paulick, Holger; Pudlo, Dieter; Smith, Robyn; Steiner, Gesine
1997-08-01
The Meidob volcanic field (MVF) forms part of the Darfur Volcanic Province and developed from 7 Ma to 5 ka as indicated by K/Ar, thermoluminescence and 14C ages. It is situated in an uplifted high of the Pan-African basement, which consists of greenstones, high-grade gneisses and granites, and which is covered by Cretaceous sandstone. The MVF basaltic lavas, which originated from more than 300 scoria cones, formed a lava plateau of 50×100 km and up to 400 m thickness in the time between 7 and < 0.3 Ma. Young phonolitic mesa flows, together with rare trachyticbenmoreitic lava flows, trachytic pumice fallout deposits, ignimbrites and maars, form the central part of the field. The total amount of volcanic rocks is between 1400 and 1800 km 3, with 98 vol.% being basaltic rocks, which results in an integrated magma output rate of ˜ 0.0002 km 3 a -1. A combination of age data of the lavas with erosional features yields uplift rates for the Darfur Dome of ˜30 m Ma- 1 in the MVF area. Magma was generated by 3-5% melting of predominantly asthenospheric mantle with a HIMU contribution. Fractionation of olivine, pyroxene, An-poor plagioclaseanorthoclase, magnetite and apatite leads to a differentiation from basanite to phonolite. Assimilation of crustal rocks near the top of the phonolitic upper crustal magma chambers - facilitated by volatile enrichment - produced magmas which gave way to benmoreitic and trachytic lavas, as well as to trachytic ignimbrites and pumice fallout deposits. Ultramafic cumulate xenoliths indicate the existence of major magma reservoirs at the crust-mantle boundary during MVF activity. Magma ascent occurred in a tensional regime, which changed its orientation at around 1 Ma. Early during MVF development, west-east and subordinately northeastsouthwest trending lineaments were active whereas volcanic activity younger than 1 Ma took place along northwest-southeast and northeast-southwest trending systems. The Central African Fault Zone, a transcontinental, lithospheric shear zone, played an important role for the rise of magmas in the Darfur Dome.
The relative importance of physical and biological energy in landscape evolution
NASA Astrophysics Data System (ADS)
Turowski, J. M.; Schwanghart, W.
2017-12-01
Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary parameters needed to calculate the ratio (NPP, runoff, elevation) are available globally. We find that biological processes are more important in arid and semiarid regions. The wide-spread lack of water strongly limits the energy available for fluvial erosion, while biota are geomorphic engineers less sensitive to water shortage.
Surface uplift and atmospheric flow deflection in the Late Cenozoic southern Sierra Nevada
NASA Astrophysics Data System (ADS)
Mix, H.; Caves, J. K.; Winnick, M.; Ritch, A. J.; Reilly, S.; Chamberlain, C. P.
2016-12-01
Given the intimate links between topography, tectonics, climate and biodiversity, considerable effort has been devoted to developing robust elevation histories of orogens. In particular, quantitative geochemical reconstructions using stable oxygen and hydrogen isotopes have been applied to many of the world's mountain belts. Yet after decades of study, determining the Cenozoic surface uplift history of the Sierra Nevada remains a challenge. While geological and geophysical evidence suggests the southern Sierra underwent 1-2 km of Late Cenozoic surface uplift, stable isotope paleoaltimetry studies to date have been restricted to the Basin and Range interior. Recent advances in atmospheric modeling have suggested that such stable isotope records from leeward sites can be affected by the complicating role that sufficiently elevated topography such as the southern (High) Sierra plays in diverting atmospheric circulation. In order to examine the potential role of these terrain blocking effects, we produced stable isotope records from three Late Cenozoic sedimentary basins in the Eastern Sierra and Basin and Range: 1) Authigenic clay minerals in the Mio-Pliocene Verdi Basin (VB), 2) Fluvial and lacustrine carbonates from the Plio-Pleistocene Coso Basin (CB), and 3) Miocene to Holocene pedogenic, fluvial and lacustrine carbonates of Fish Lake Valley (FLV). Whereas both the VB (near present-day Reno) and CB (southern Owens Valley) receive input of water directly from the Sierra crest, FLV is a region of proposed reconvergence of moisture in the Basin and Range. The oxygen isotope records in both CB and FLV increase during the Neogene by approximately 2 ‰, while the hydrogen isotope record of the VB decreases by <10 ‰. These results are consistent with a modestly-elevated Paleogene Sierra of 2 km over which air masses traversed and underwent orographic rainout and Rayleigh distillation. A Neogene pulse of uplift in the southern Sierra could have driven modern flow around the High Sierra, increasing δ18O values in CB and FLV while simultaneously decreasing those of the VB. Future paleoaltimetry studies should evaluate the potential interactions between surface uplift and complex atmospheric circulation, as well as other confounding factors such as changes in moisture source, seasonality and vapor recycling.
Dynamic deformation of Seguam Island, Alaska, 1992--2008, from multi-interferogram InSAR processing
Lee, Chang-Wook; Lu, Zhong; Won, Joong-Sun; Jung, Hyung-Sup; Dzurisin, Daniel
2013-01-01
We generated a time-series of ERS-1/2 and ENVISAT interferometric synthetic aperture radar (InSAR) images to study ground surface deformation at Seguam Island from 1992 to 2008. We used the small baseline subset (SBAS) technique to reduce artifacts associated with baseline uncertainties and atmospheric delay anomalies, and processed images from two adjacent tracks to validate our results. Seguam Island comprises the remnants of two late Quaternary calderas, one in the western caldera of the island and one in the eastern part of the island. The western caldera subsided at a constant rate of ~ 1.6 cm/yr throughout the study period, while the eastern caldera experienced alternating periods of subsidence and uplift: ~ 5 cm/year uplift during January 1993–October 1993 (stage 1), ~ 1.6 cm/year subsidence during October 1993–November 1998 (stage 2), ~ 2.0 cm/year uplift during November 1998–September 2000 (stage 3), ~ 1.4 cm/year subsidence during September 2000–November 2005 (stage 4), and ~ 0.8 cm/year uplift during November 2005– July 2007 (stage 5). Source modeling indicates a deflationary source less than 2 km below sea level (BSL) beneath the western caldera and two sources beneath the eastern caldera: an inflationary source 2.5–6.0 km BSL and a deflationary source less than 2 km BSL. We suggest that uplift of the eastern caldera is driven by episodic intrusions of basaltic magma into a poroelastic reservoir 2.5–6.0 km BSL beneath the caldera. Cooling and degassing of the reservoir between intrusions results in steady subsidence of the overlying surface. Although we found no evidence of magma intrusion beneath the western caldera during the study period, it is the site (Pyre Peak) of all historical eruptions on the island and therefore cooling and degassing of intrusions presumably contributes to subsidence there as well. Another likely subsidence mechanism in the western caldera is thermoelastic contraction of lava flows emplaced near Pyre Peak during several historical eruptions, most recently in 1977 and 1992–93.
Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo; ...
2016-01-15
The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less
Hermann Karsten, pioneer of geologic mapping in northwestern South America
NASA Astrophysics Data System (ADS)
Aalto, K. R.
2015-06-01
In the late 19th century, a regional map of Nueva Granada (present-day Colombia, Panama and parts of Venezuela and Ecuador) was published by German botanist and geologist Hermann Karsten (1817-1908). Karsten's work was incorporated by Agustín Codazzi (1793-1859), an Italian who emigrated to Venezuela and Colombia to serve as a government cartographer and geographer, in his popular Atlas geográfico e histórico de la Republica de Colombia (1889). Geologic mapping and most observations provided in this 1889 atlas were taken from Karsten's Géologie de l'ancienne Colombie bolivarienne: Vénézuela, Nouvelle-Grenade et Ecuador (1886), as cited by Manual Paz and/or Felipe Pérez, who edited this edition of the atlas. Karsten defined four epochs in Earth history: Primera - without life - primary crystalline rocks, Segunda - with only marine life - chiefly sedimentary rocks, Tercera - with terrestrial quadrupeds and fresh water life forms life - chiefly sedimentary rocks, and Cuarta - mankind appears, includes diluvial (glacigenic) and post-diluvial terranes. He noted that Colombia is composed of chiefly of Quaternary, Tertiary and Cretaceous plutonic, volcanic and sedimentary rocks, and that Earth's internal heat (calor central) accounted, by escape of inner gases, for volcanism, seismicity and uplift of mountains. Karsten's regional mapping and interpretation thus constitutes the primary source and ultimate pioneering geologic research.
NASA Astrophysics Data System (ADS)
Southall, David W.; Wilson, Peter; Dunlop, Paul; Schnabel, Christoph; Rodés, Ángel; Gulliver, Pauline; Xu, Sheng
2017-05-01
The temporal pattern of postglacial rock-slope failure in a glaciated upland area of Ireland (the western margin of the Antrim Lava Group) was evaluated using both 36Cl exposure dating of surface boulders on run-out debris and 14C dating of basal organic soils from depressions on the debris. The majority of the 36Cl ages ( 21-15 ka) indicate that major failures occurred during or immediately following local deglaciation ( 18-17 ka). Other ages ( 14-9 ka) suggest some later, smaller-scale failures during the Lateglacial and/or early Holocene. The 14C ages (2.36-0.15 cal ka BP) indicate the very late onset of organic accumulation and do not provide close limiting age constraints. Rock-slope failure during or immediately following local deglaciation was probably in response to some combination of glacial debuttressing, slope steepening and paraglacial stress release. Later failures may have been triggered by seismic activity associated with glacio-isostatic crustal uplift and/or permafrost degradation consequent upon climate change. The 36Cl ages support the findings of previous studies that show the deglacial - Lateglacial period in northwest Ireland and Scotland to have been one of enhanced rock-slope failure. Table S2 Concentrations of main elements (as oxides) etc.
NASA Astrophysics Data System (ADS)
Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.
2009-12-01
Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.
NASA Astrophysics Data System (ADS)
Dilek, Y.; Oner, Z.; Davis, E. A.
2007-12-01
The Menderes metamorphic massif (MM) in western Anatolia is a classic core complex with exhumed high-grade crustal rocks intruded by granodioritic plutons and overlain by syn-extensional sedimentary rocks. Timing and the mechanism(s) of the initial exhumation of the MM are controversial, and different hypotheses exist in the literature. Major structural grabens (i.e. Alasehir, Buyuk Menderes) within the MM that are bounded by high-angle and seismically active faults are late-stage brittle structures, which characterize the block-faulting phase in the extensional history of the core complex and are filled with Quaternary sediments. On the southern shoulder of the Alasehir graben high-grade metamorphic rocks of the MM are overlain by the Miocene and younger sedimentary rocks above a N-dipping detachment surface. The nearly 100-m-thick cataclastic shear zone beneath this surface contain S-C fabrics, microfaults, Riedel shears, mica-fish structures and shear bands, all consistently indicating top-to-the North shearing. Granodioritic plutons crosscutting the MM and the detachment surface are exposed within this cataclastic zone, displaying extensional ductile and brittle structures. The oldest sedimentary rocks onlapping the cataclastic shear zone of the MM here are the Middle Miocene lacustrine shale and limestone units, unconformably overlain by the Upper Miocene fluvial and alluvial fan deposits. Extensive development of these alluvial fan deposits by the Late Miocene indicates the onset of range-front faulting in the MM by this time, causing a surge of coarse clastic deposition along the northern edge of the core complex. The continued exhumation and uplift of the MM provided the necessary relief and detrital material for the Plio-Pleistocene fluvial systems in the Alasehir supradetachment basin (ASDB). A combination of rotational normal faulting and scissor faulting in the extending ASDB affected the depositional patterns and drainage systems, and produced local unconformities within the basinal stratigraphy. High-angle, oblique-slip scissor faults crosscutting the MM rocks, the detachment surface and the basinal strata offset them for more than few 100 meters and the fault blocks locally show different structural architecture and metamorphic grades, suggesting differential uplift along these scissor faults. This fault kinematics and the distribution of range-parallel and range-perpendicular faults strongly controlled the shape and depth of the accommodation space within the ASDB. At a more regional scale scissor faulting across the MM seems to have controlled the foci of Plio-Pleistocene point-source volcanism in the Aegean extensional province (e.g. Kula area). There are no major interruptions in the syn-extensional depositional history of the ASDB, ruling out the pulsed-extension models suggesting a period of contractional deformation in the late Cenozoic evolution of the MM. The onset of exhumation and extensional tectonics in the MM and western Anatolia was a result of thermal weakening of the orogenic crust, following a widespread episode of post-collisional magmatism in the broader Aegean region during the Eocene through Miocene.
NASA Astrophysics Data System (ADS)
Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli
2018-06-01
A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.
NASA Astrophysics Data System (ADS)
Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli
2017-11-01
A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.