Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.
1988-01-01
Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.
A model for the wind of the M supergiant VX Sagittarii
NASA Astrophysics Data System (ADS)
Pijpers, F. P.
1990-11-01
The velocity distribution of the stellar wind from the M supergiant VX Sgr deduced from interferometric measurements of maser lines by Chapman and Cohen (1986) has been modeled using the linearized theory of stellar winds driven by short period sound waves proposed by Pijpers and Hearn (1989) and the theory of stellar winds driven by short period shocks proposed by Pijpers and Habing (1989). The effect of the radiative forces on the dust formed in the wind is included in a simple way. Good agreement with the observations is obtained by a range of parameters in the theory. A series of observations of the maser lines at invervals of one or a few days may provide additional constraints on the interpretation.
Conti, P S; McCray, R
1980-04-04
The hottest and most luminous stars lose a substantial fraction of their mass in strong stellar winds. These winds not only affect the evolution of the star, they also carve huge expanding cavities in the surrounding interstellar medium, possibly affecting star formation. The winds are probably driven by radiation pressure, but uncertainties persist in their theoretical description. Strong x-ray sources associated with a few of these hot stars may be used to probe the stellar winds. The nature of the weak x-ray sources recently observed to be associated with many of these stars is uncertain. It is suggested that roughly 10 percent of the luminous hot stars may have as companions neutron stars or black holes orbiting within the stellar winds.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2017-07-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, Ignacio; Curé, Michel
2017-11-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles
NASA Astrophysics Data System (ADS)
Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda
2018-01-01
Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.
NASA Technical Reports Server (NTRS)
Poe, C. H.; Owocki, S. P.; Castor, J. I.
1990-01-01
The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable.
The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI
NASA Astrophysics Data System (ADS)
Sacuto, S.; Ramstedt, S.; Höfner, S.; Olofsson, H.; Bladh, S.; Eriksson, K.; Aringer, B.; Klotz, D.; Maercker, M.
2013-03-01
Aims: We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical prediction that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. Methods: We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. Results: MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (<5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 μm. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 μm visibility measurements for all baselines. Conclusions: This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere with interferometric measurements in the 8-10 μm spectral region gives additional observational evidence that the winds of M-type stars can be driven by photon scattering on iron-free silicate grains. Finally, a larger statistical study and progress in advanced self-consistent 3D modeling are still required to solve the remaining problems. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 083.D-0234 and 086.D-0737 (Open Time Observations).
YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto
2013-08-01
Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters,more » leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.« less
Wave-driven winds from cool stars. I - Some effects of magnetic field geometry
NASA Technical Reports Server (NTRS)
Hartmann, L.; Macgregor, K. B.
1982-01-01
The wave-driven wind theory of Hartmann and MacGregor (1980) is extended to include effects due to non-radial divergence of the flow. Specifically, isothermal expansion within a flow tube whose cross-sectional area increases outward faster than the square of the radius near the stellar surface is considered. It is found that the qualitative conclusions of Hartmann and MacGregor concerning the physical properties of Alfven wave-driven winds are largely unaffected. In particular, mass fluxes of similar magnitude are obtained, and wave dissipation is still necessary to produce acceptably small terminal velocities. Increasingly divergent flow geometries generally lead to higher initial wind speeds and slightly lower terminal velocities. For some cases of extremely rapid flow tube divergence, steady supersonic wind solutions which extend to infinity with vanishing gas pressure cannot be obtained. In addition, departures from spherical symmetry can cause the relative Alfven wave amplitude delta-B/B to become approximately greater than 1 within several stellar radii of the base of the wind, suggesting that nonlinear processes may contribute to the wave dissipation required by the theory.
PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, I.; Zijlstra, A. A., E-mail: iain.mcdonald-2@jb.man.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk
2016-06-01
Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to themore » first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.« less
New insight into the physics of atmospheres of early type stars
NASA Technical Reports Server (NTRS)
Lamers, H. J. G. L. M.
1981-01-01
The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.
Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis
NASA Astrophysics Data System (ADS)
Knigge, Ch.; King, A. R.; Patterson, J.
2000-12-01
We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.
TIME-DOMAIN SPECTROSCOPY OF A T TAURI STAR
NASA Astrophysics Data System (ADS)
Dupree, Andrea K.; Brickhouse, Nancy S.; Cranmer, Steven R.; Berlind, Perry L.; Strader, Jay; Smith, Graeme H.
2014-06-01
High resolution optical and near-infrared spectra of TW Hya, the nearest accreting T Tauri star, cover a decade and reveal the substantial changes in accretion and wind properties. Our spectra suggest that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as absorption from infalling material. Stable absorption features appear in H-alpha, apparently caused by an accreting column silhouetted in the stellar wind. The free-fall velocity of material correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. Terminal outflow velocities appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind.
NASA Technical Reports Server (NTRS)
Kudritzki, R. P.; Pauldrach, A.; Puls, J.; Abbott, D. C.
1989-01-01
Analytical solutions for radiation-driven winds of hot stars including the important finite cone angle effect (see Pauldrach et al., 1986; Friend and Abbott, 1986) are derived which approximate the detailed numerical solutions of the exact wind equation of motion very well. They allow a detailed discussion of the finite cone angle effect and provide for given line force parameters k, alpha, delta definite formulas for mass-loss rate M and terminal velocity v-alpha as function of stellar parameters.
Stellar wind erosion of protoplanetary discs
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; Lovelace, R. V. E.; Romanova, M. M.; Airapetian, V. S.
2015-04-01
An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be ˜2 × 106 yr. The analytic model assumes a steady stellar wind with mass- loss rate dot {M}}_w ˜ 10^{-10} M_{⊙} yr-1 and velocity vw ˜ 103 km s-1. A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs, dot{M}_CME, and velocities, vCME, have values comparable to those for the steady wind.
Non-LTE analysis of the Ofpe/WN9 star HDE 269227 (R84)
NASA Technical Reports Server (NTRS)
Schmutz, Werner; Leitherer, Claus; Hubeny, Ivan; Vogel, Manfred; Hamann, Wolf-Rainer
1991-01-01
The paper presents the results of a spectral analysis of the Ofpe/WN9 star HD 269227 (R84), which assumes a spherically expanding atmosphere to find solutions for equations of radiative transfer. The spectra of hydrogen and helium were predicted with a non-LTE model. Six stellar parameters were determined for R84. The shape of the velocity law is empirically found, since it can be probed from the terminal velocity of the wind. The six stellar parameters are further employed in a hydrodynamic model where stellar wind is assumed to be directed by radiation pressure, duplicating the mass-loss rate and the terminal wind velocity. The velocity laws found by computation and analysis are found to agree, supporting the theory of radiation-driven stellar wind. R84 is surmised to be a post-red supergiant which lost half of its initial mass, possibly during the red-supergiant phase. This mass loss is also suggested by its spectroscopic similarity to S Doradus.
An X-ray excited wind in Centaurus X-3
NASA Technical Reports Server (NTRS)
Day, C. S. R.; Stevens, Ian R.
1993-01-01
We propose a new interpretation of the behavior of the notable X-ray binary source Centaurus X-3. Based on both theoretical and observational arguments (using EXOSAT data), we suggest that an X-ray excited wind emanating from the O star is present in this system. Further, we suggest that this wind is responsible for the mass transfer in the system rather than Roche-lobe overflow or a normal radiatively driven stellar wind. We show that the ionization conditions in Cen X-3 are too extreme to permit a normal radiatively driven wind to emanate from portions of the stellar surface facing toward the neutron star. In addition, the flux of X-rays from the neutron star is strong enough to drive a thermal wind from the O star with sufficient mass-flux to power the X-ray source. We find that this model can reasonably account for the long duration of the eclipse transitions and other observed features of Cen X-3. If confirmed, this will be the first example of an X-ray excited wind in a massive binary. We also discuss the relationship between the excited wind in Cen X-3 to the situation in eclipsing millisecond pulsars, where an excited wind is also believed to be present.
Stellar winds in binary X-ray systems
NASA Technical Reports Server (NTRS)
Macgregor, K. B.; Vitello, P. A. J.
1982-01-01
It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.
NASA Technical Reports Server (NTRS)
Meier, D. L.
1982-01-01
A general analytic theory is presented of winds driven by super-Eddington luminosities. The relevant parameters are the mass of the central object, the radius at which the luminosity and matter are injected, the ratio of the free-fall time to the heating time at this radius, and the total luminosity injected at the radius. Several different regimes of dynamical wind structure are identified, and the analytic expressions are shown to agree with the numerical results in Meier (1979) in the appropriate case. It is noted that, in its general form, the theory is the optically thick (to electron scattering) counterpart to optically thin radiation pressure-driven stellar winds.
Super-Eddington stellar winds driven by near-surface energy deposition
NASA Astrophysics Data System (ADS)
Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill
2016-05-01
We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.
Numerical simulations of continuum-driven winds of super-Eddington stars
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Owocki, S. P.; Shaviv, N. J.
2008-09-01
We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass-loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass-loss and flow speeds of giant outbursts, as observed in η Carinae and other luminous blue variable stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metallicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.
Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale
NASA Astrophysics Data System (ADS)
Dugan, Zachary; Gaibler, Volker; Silk, Joseph
2017-07-01
To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2-3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.
HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx
2013-03-01
The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or amore » very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.« less
A model for the spectroscopic variations of the peculiar symbiotic star MWC 560
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Aufdenberg, Jason P.; Michalitsianos, A. G.
1994-01-01
In this note, we show that the ultraviolet and optical spectroscopic variability of this unique symbiotic star can be understood in terms of a time variable collimated stellar wind with a rapid acceleration near the source. Using the radial velocities observed during the ultraviolet bright phase, we find that a variation in the mass loss rate of a factor of ten can explain the ultraviolet spectral changes. The acceleration is far faster than normally observed in radiatively driven stellar winds and may be due to mechanical driving of the outflow from the disk.
What shapes stellar metallicity gradients of massive galaxies at large radii?
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela
2017-03-01
We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).
NASA Technical Reports Server (NTRS)
Clark, George W.
1994-01-01
The x-ray phenomena of the binary system SMC X-1/Sk 160, observed with the Ginga and ROSAT x-ray observatories, are compared with computed phenomena derived from a three dimensional hydrodynamical model of the stellar wind perturbed by x-ray heating and ionization which is described in the accompanying paper. In the model the BOI primary star has a line-driven stellar wind in the region of the x-ray shadow and a thermal wind in the region heated by x-rays. We find general agreement between the observed and predicted x-ray spectra throughout the binary orbit cycle, including the extended, variable, and asymmetric eclipse transitions and the period of deep eclipse.
On the optically thick winds of Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Gräfener, G.; Owocki, S. P.; Grassitelli, L.; Langer, N.
2017-12-01
Context. The classical Wolf-Rayet (WR) phase is believed to mark the end stage of the evolution of massive stars with initial masses higher than 25M⊙. Stars in this phase expose their stripped cores with the products of H- or He-burning at their surface. They develop strong, optically thick stellar winds that are important for the mechanical and chemical feedback of massive stars, and that determine whether the most massive stars end their lives as neutron stars or black holes. The winds of WR stars are currently not well understood, and their inclusion in stellar evolution models relies on uncertain empirical mass-loss relations. Aims: We investigate theoretically the mass-loss properties of H-free WR stars of the nitrogen sequence (WN stars). Methods: We connected stellar structure models for He stars with wind models for optically thick winds and assessed the degree to which these two types of models can simultaneously fulfil their respective sonic-point conditions. Results: Fixing the outer wind law and terminal wind velocity ν∞, we obtain unique solutions for the mass-loss rates of optically thick, radiation-driven winds of WR stars in the phase of core He-burning. The resulting mass-loss relations as a function of stellar parameters agree well with previous empirical relations. Furthermore, we encounter stellar mass limits below which no continuous solutions exist. While these mass limits agree with observations of WR stars in the Galaxy, they contradict observations in the LMC. Conclusions: While our results in particular confirm the slope of often-used empirical mass-loss relations, they imply that only part of the observed WN population can be understood in the framework of the standard assumptions of a smooth transonic flow and compact stellar core. This means that alternative approaches such as a clumped and inflated wind structure or deviations from the diffusion limit at the sonic point may have to be invoked. Qualitatively, the existence of mass limits for the formation of WR-type winds may be relevant for the non-detection of low-mass WR stars in binary systems, which are believed to be progenitors of Type Ib/c supernovae. The sonic-point conditions derived in this work may provide a possibility to include optically thick winds in stellar evolution models in a more physically motivated form than in current models.
NASA Technical Reports Server (NTRS)
Haser, Stefan M.; Pauldrach, Adalbert W. A.; Lennon, Danny J.; Kudritzki, Rolf-Peter; Lennon, Maguerite; Puls, Joachim; Voels, Stephen A.
1997-01-01
Ultraviolet spectra of four O stars in the Magellanic Clouds obtained with the faint object spectrograph of the Hubble Space Telescope are analyzed with respect to their metallicity. The metal abundances are derived from the stellar parameters and the mass loss rate with a two step procedure: hydrodynamic radiation-driven wind models with metallicity as a free parameter are constructed to fit the observed wind momentum rate and thus yield a dynamical metallicity, and synthetic spectra are computed for different metal abundances and compared to the observed spectra in order to obtain a spectroscopic metallicity.
Momentum and energy balance in late-type stellar winds
NASA Technical Reports Server (NTRS)
Macgregor, K. B.
1981-01-01
Observations at ultraviolet and X-ray wavelengths indicate that the classical picture of a static stellar atmosphere containing a radiative equilibrium temperature distribution is inapplicable to the majority of late type stars. Mass loss and the presence of atmospheric regions characterized by gas temperatures in excess of the stellar effective temperature appear to be almost ubiquitous throughout the HR diagram. Evidence pertaining to the thermal and dynamical structure of the outer envelopes of cool stars is summarized. These results are compared with the predictions of several theoretical models which were proposed to account for mass loss from latetype stars. Models in which the outflow is thermally radiatively, or wave driven are considered for identification of the physical processes responsible for the observed wind properties. The observed variation of both the wind, thermal and dynamical structure as one proceeds from the supergiant branch toward the main sequence in the cool portion of the HR diagram give consideration to potential mechanisms for heating and cooling the flow from low gravity stars.
Dust formation at low metallicity
NASA Astrophysics Data System (ADS)
Ferrarotti, A. S.; Gail, H.-P.
Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.
A grid of MHD models for stellar mass loss and spin-down rates of solar analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.
2014-03-01
Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less
Winds of Massive Magnetic Stars: Interacting Fields and Flow
NASA Astrophysics Data System (ADS)
Daley-Yates, S.; Stevens, I. R.
2018-01-01
We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Réville, Victor; Brun, Allan Sacha; Strugarek, Antoine
Stellar wind is thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider, in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. Sixty simulations made with a 2.5D cylindrical and axisymmetric set-up, and computed with the PLUTO code, were used to find torquemore » formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phases as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging.« less
NASA Astrophysics Data System (ADS)
Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.
2017-07-01
Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.
To shed more light on the nature of the observed Ly α absorption during transits of HD 209458b and to quantify the major mechanisms responsible for the production of fast hydrogen atoms (the so-called energetic neutral atoms, ENAs) around the planet, 2D hydrodynamic multifluid modeling of the expanding planetary upper atmosphere, which is driven by stellar XUV, and its interaction with the stellar wind has been performed. The model self-consistently describes the escaping planetary wind, taking into account the generation of ENAs due to particle acceleration by the radiation pressure and by the charge exchange between the stellar wind protonsmore » and planetary atoms. The calculations in a wide range of stellar wind parameters and XUV flux values showed that under typical Sun-like star conditions, the amount of generated ENAs is too small, and the observed absorption at the level of 6%–8% can be attributed only to the non-resonant natural line broadening. For lower XUV fluxes, e.g., during the activity minima, the number of planetary atoms that survive photoionization and give rise to ENAs increases, resulting in up to 10%–15% absorption at the blue wing of the Ly α line, caused by resonant thermal line broadening. A similar asymmetric absorption can be seen under the conditions realized during coronal mass ejections, when sufficiently high stellar wind pressure confines the escaping planetary material within a kind of bowshock around the planet. It was found that the radiation pressure in all considered cases has a negligible contribution to the production of ENAs and the corresponding absorption.« less
Probing the clumpy winds of giant stars with high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern
2016-04-01
Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.
Atomic Physics of Shocked Plasma in Winds of Massive Stars
NASA Technical Reports Server (NTRS)
Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.
2012-01-01
High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure
Near-Infrared Mass Loss Diagnostics for Massive Stars
NASA Technical Reports Server (NTRS)
Sonneborn, George; Bouret, J. C.
2010-01-01
Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem.
Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA
NASA Astrophysics Data System (ADS)
Wong, Ka Tat
2018-04-01
Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.
Interactions in Massive Colliding Wind Binaries
NASA Technical Reports Server (NTRS)
Corcoran, M.
2012-01-01
The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.
Wind bubbles within H ii regions around slowly moving stars
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert
2015-01-01
Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less
The Very Slow Wind from the Pulsating Semiregular Red Giant, L2 Puppis
NASA Technical Reports Server (NTRS)
Jura, M.; Chen, C.; Plavchan, P.
2002-01-01
We have obtained 1 1.7 and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from L(sub 2) Pup, which is one of the nearest ( D = 61 pc) mass-losing, pulsating red giants that has a substantial infra-red excess. We propose that the star is losing mass at a rate of approx.3 x 10(exp -7) Solar Mass/yr. Given its relatively low luminosity (approx. 1500 Solar Luminosity), relatively high effective temperature (near 3400 K), relatively short period (approx. 140 days), and inferred gas outflow speed of 3.5 km/s, standard models for dust-driven mass loss do not apply. Instead, the wind may be driven by the stellar pulsations, with radiation pressure on dust being relatively unimportant. as described in some recent calculations. L(sub 2) Pup may serve as the prototype of this phase of stellar evolution, in which a star could lose approx. 15% of its initial main-sequence mass. Subject headings: circumstellar matter - stars: individual (L2 Puppis) - stars: mass loss
Radiatively driven winds from magnetic, fast-rotating stars
NASA Technical Reports Server (NTRS)
Nerney, S.
1986-01-01
An analytical procedure is developed to solve the magnetohydrodynamic equations for the stellar wind problem in the strong-magnetic field, optically thick limit for hot stars. The slow-mode, Alfven, and fast-mode critical points are modified by the radiation terms in the force equation but in a manner that can be treated relatively easily. Once the velocities at the critical points and the distances to the points are known, the streamline constants are determined in a straight-forward manner. This allows the structure of the wind to be elucidated without recourse to complicated computational schemes.
Evidence of a primordial solar wind. [T Tauri-type evolution model
NASA Technical Reports Server (NTRS)
Sonett, C. P.
1974-01-01
A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.
Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugan, Zachary; Silk, Joseph; Gaibler, Volker
To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-drivenmore » and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.« less
Super-Eddington stellar winds: unifying radiative-enthalpy versus flux-driven models
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Townsend, Richard H. D.; Quataert, Eliot
2017-12-01
We derive semi-analytic solutions for optically thick, super-Eddington stellar winds, induced by an assumed steady energy addition Δ {\\dot{E}} concentrated around a near-surface heating radius R in a massive star of central luminosity L*. We show that obtaining steady wind solutions requires both that the resulting total luminosity L_o = L_\\ast + Δ {\\dot{E}} exceed the Eddington luminosity, Γo ≡ Lo/LEdd > 1, and that the induced mass-loss rate be such that the 'photon-tiring' parameter, m ≡ {\\dot{M}} GM/R L_o ≤ 1-1/Γ _o, ensuring the luminosity is sufficient to overcome the gravitational potential GM/R. Our analysis unifies previous super-Eddington wind models that either: (1) assumed a direct radiative flux-driving without accounting for the advection of radiative enthalpy that can become important in such an optically thick flow; or (2) assumed that such super-Eddington outflows are adiabatic, neglecting the effects of the diffusive radiative flux. We show that these distinct models become applicable in the asymptotic limits of small versus large values of mΓo, respectively. By solving the coupled differential equations for radiative diffusion and wind momentum, we obtain general solutions that effectively bridge the behaviours of these limiting models. Two key scaling results are for the terminal wind speed to escape speed, which is found to vary as v_∞^2/v_esc^2 = Γ _o/(1+m Γ _o) -1, and for the final observed luminosity Lobs, which for all allowed steady-solutions with m < 1 - 1/Γo exceeds the Eddington luminosity, Lobs > LEdd. Our super-Eddington wind solutions have potential applicability for modelling phases of eruptive mass-loss from massive stars, classical novae, and the remnants of stellar mergers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, Timothy; Borthakur, Sanchayeeta; Wild, Vivienne
We report on observations made with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope ( HST ) using background quasi-stellar objects to probe the circum-galactic medium (CGM) around 17 low-redshift galaxies that are undergoing or have recently undergone a strong starburst (the COS-Burst program). The sightlines extend out to roughly the virial radius of the galaxy halo. We construct control samples of normal star-forming low-redshift galaxies from the COS/ HST archive that match the starbursts in terms of galaxy stellar mass and impact parameter. We find clear evidence that the CGM around the starbursts differs systematically compared tomore » the control galaxies. The Ly α , Si iii, C iv, and possibly O vi absorption lines are stronger as a function of impact parameter, and the ratios of the equivalent widths of C iv/Ly α and Si iii/Ly α are both higher than in normal star-forming galaxies. We also find that the widths and the velocity offsets (relative to v {sub sys}) of the Ly α absorption lines are significantly larger in the CGM of the starbursts, implying velocities of the absorbing material that are roughly twice the halo virial velocity. We show that these properties can be understood as a consequence of the interaction between a starburst-driven wind and the preexisting CGM. These results underscore the importance of winds driven from intensely star-forming galaxies in helping drive the evolution of galaxies and the intergalactic medium. They also offer a new probe of the properties of starburst-driven winds and of the CGM itself.« less
Efficient common-envelope ejection through dust-driven winds
NASA Astrophysics Data System (ADS)
Glanz, Hila; Perets, Hagai B.
2018-04-01
Common-envelope evolution (CEE) is the short-lived phase in the life of an interacting binary-system during which two stars orbit inside a single shared envelope. Such evolution is thought to lead to the inspiral of the binary, the ejection of the extended envelope and the formation of a remnant short-period binary. However, detailed hydrodynamical models of CEE encounter major difficulties. They show that following the inspiral most of the envelope is not ejected; though it expands to larger separations, it remains bound to the binary. Here we propose that dust-driven winds can be produced following the CEE. These can evaporate the envelope following similar processes operating in the ejection of the envelopes of AGB stars. Pulsations in an AGB-star drives the expansion of its envelope, allowing the material to cool down to low temperatures thus enabling dust condensation. Radiation pressure on the dust accelerates it, and through its coupling to the gas it drives winds which eventually completely erode the envelope. We show that the inspiral phase in CE-binaries can effectively replace the role of stellar pulsation and drive the CE expansion to scales comparable with those of AGB stars, and give rise to efficient mass-loss through dust-driven winds.
RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com
Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electronmore » temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.« less
Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects
NASA Technical Reports Server (NTRS)
DeKool, Martin; Begelman, Mitchell C.
1995-01-01
We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.
Model structure of a cosmic-ray mediated stellar or solar wind
NASA Technical Reports Server (NTRS)
Lee, M. A.; Axford, W. I.
1988-01-01
An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.
Stellar winds and coronae of low-mass Population II/III stars
NASA Astrophysics Data System (ADS)
Suzuki, Takeru K.
2018-06-01
We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.
Stellar winds and coronae of low-mass Population II/III stars
NASA Astrophysics Data System (ADS)
Suzuki, Takeru K.
2018-04-01
We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.
NASA Astrophysics Data System (ADS)
Kakouris, A.
The present PhD Thesis deals with the two-dimensional description of the plasma outflow from central astrophysical objects. The concept of stellar winds was originated by Eugene Parker 1958, and has become a very hot area of research the last decade. Mass outflow from all types of stars, as well as AGNs, quasars or planetary nebulae are observed in all astrophysical scales indicating at least two-dimensional (2-D) features (e.g. Hughes (editor), 1991, Beams and jets in astrophysics, Cambridge University Press). In a first stage, the flows are modeled empirically but their origin has to be in accordance with the fluid mechanics and the conservation laws. So, self-consistent 2-D models are needed (i.e. full solutions of the total set of equations which conserve mass, momentum and energy). The main mechanisms of ejecting plasma from an astrophysical object are the thermal (similar to solar wind), the radiative and the magnetic. Self consistent analytical 2-D steady hydrodynamic (HD) solutions for stellar winds have been presented by Tsinganos & Vlastou 1988, Tsinganos & Trussoni 1990, Tsinganos & Sauty 1992 and Lima & Priest 1993. Following their description we derive a new set of solutions in the present work. Our main assumptions are steady state (\\partial/\\partial t = 0), axisymmetry to the rotational axis (\\partial/\\partial \\phi = 0) and helicoidal geometry for the streamlines (meridional velocity {\\vec u}_{\\theta} = {\\vec 0} ). Besides, the fluid is assumed to be a nonmagnetized fully ionized hydrogen. The model could be named as non polytropic since we do not follow the polytropic assumption with a constant polytropic exponent but we evaluate the total external energy needed by the 1st law of Thermodynamics. Also, the solutions are \\theta-self similar since the dependence to the colatitude is given from the beginning. The generalized differential rotation of the fluid is taken into account considering a dependence of the rotational velocity of (V\\phi \\propto \\sin\\mu \\theta / R ) where \\mu is a parameter and R the radial distance. Using these assumptions we derive fully analytical (only a Simpson integration is needed) 2-D solutions of four types (with velocity maximum either along the equator or the polar axis of the central astrophysical object). One of them (named as solution in Range I) exhibits suitable features for stellar wind interpretation with velocity maximum along the equator because the outflow starts subsonic at the stellar surface and terminates supersonic at infinity. The other solutions are subsonic (breeze) or they could be examined only as inflows. The Range I solution is applied to real astrophysical objects. Moreover, the thermally driven 2 - D solutions are extended including the radiative force due to the absorption of the stellar light in the fluid. So, the 2-D solutions represent thermally and radiatively driven flows. The assumptions for the radiative force inclusion are that the radiative acceleration is radial and it is a function of radial distance solely (i.e. it is independent of the velocity). The first radiatively driven wind model was presented in 1975 by Castor, Abbott & Klein and was applied to O5f main sequence stars. In order to describe the radiative origin of the massive winds from early and late spectral type stars, the radiative force is separated into its continuum, thick lines and thin lines parts. The mechanism of the continuous absorption is the Thomson scattering of the photons by the free plasma electrons and it is always present. If the line contribution corresponds to the thick absorption spectral lines the model is named as 'thick line driven' otherwise the atmosphere is thought 'optically thin'. In this Thesis we consider an optically thin atmosphere and in this case the radiative force is written as a power law of distance (Chen & Marlborough 1994, Lamers 1986). Moreover, we examine the exponential dependence of the radiative acceleration upon the radial distance and exponential deviations from power laws. We apply to supergiant B stars and we obtain results in agreement with observations (Underhill & i oazan 1982). In the first chapter of the Thesis, the reader is introduced in the concept of the astrophysical flows. I show some observational data for outflows and the basic mechanisms of the outflows are reported. In chapter 2, the basic hydrodynamic equations are presented. In chapter 3, some 1-D or 2-D models (relevant to this Thesis) are reported. The new results appear in chapters 4, 5, 6 which posses the 3/4 of the Thesis. In chapter 4, the basic assumptions are presented and the full mathematical derivation and deduction of the solutions are given. The inclusion of the radiative force is also given. In chapter 5, the thermally driven solution is applied to astrophysical objects. We first apply to Sun and to young T Tauri stars and to late type supergiant stars. The 2-D nature of the solutions is presented. We note that the model fails to describe the outflow at the stellar surface because it needs relatively high initial velocities. In that area the magnetic field plays probably an important role. I deduce the role of the centrifugal force in the solutions comparing it with the thermal pressure force, the radiative force and gravity. The result is that the influence of the centrifugal force is negligible. Moreover, I apply the thermally and radiatively driven solution in Range I to B type supergiants. The problem of the high initial velocity at the stellar surface is waved when the radiative force is important. The results coincide with observations. In chapter 6, the haracteristics of the model are summarized and compared with previous models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less
ON THE LAUNCHING AND STRUCTURE OF RADIATIVELY DRIVEN WINDS IN WOLF–RAYET STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca
Hydrostatic models of Wolf–Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-lossmore » rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered,more » with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).« less
Clumpy wind accretion in Supergiant X-ray Binaries
NASA Astrophysics Data System (ADS)
El Mellah, I.; Sundqvist, J. O.; Keppens, R.
2017-12-01
Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.
Applicability of steady models for hot-star winds
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Poe, Clint H.; Castor, John I.
1990-01-01
Non-Sobolev models of radiatively driven stellar winds based on a pure-absorption approximation do not have a well-defined steady state. Here the implications of this for flow time-dependence are examined, showing that, under such circumstances, instabilities in the flow attain an absolute character that leads to intrinsic variability. In this case, steady solutions are inherently inapplicable because they do not represent physically realizable states. However, for actual hot-star winds, driving is principally by scattering, not pure absorption. In practice, the relatively weak force associated with slight asymmetries in the diffuse, scattered radiation field may play a crucial role in breaking the solution degeneracy and reducing the instability from an absolute to an advective character.
Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies
NASA Astrophysics Data System (ADS)
Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.
2018-06-01
We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.
Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds
NASA Astrophysics Data System (ADS)
Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team
2018-01-01
A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.
The X-ray Lightcurve of Eta Carinae, 1996-2014
NASA Astrophysics Data System (ADS)
Corcoran, Michael F.; Hamaguchi, Kenji; Liburd, Jamar; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony F. J.; Richardson, Noel; Russell, Christopher Michael Post; Pollock, A.; Owocki, Stanley P.
2015-01-01
Eta Carinae is the nearest example of a supermassive, superluminous, unstable star. Mass loss from the system is important in shaping its circumstellar medium and in determining the ultimate fate of the star. Eta Car loses mass via a dense, slow stellar wind and possesses one of the largest mass loss rates known. It is prone to episodes of extreme mass ejection via eruptions from some as-yet unspecified cause; the best examples of this are the large-scale eruptions which occurred in the mid-19th century, and then again about 50 years later. Eta Car is a colliding wind binary in which strong variations in X-ray emission and in other wavebands are driven by the violent collision of the wind of Eta Car and the fast, less dense wind of an otherwise hidden companion star. X-ray variations are the simplest diagnostic we have to study the wind-wind collision and allow us to measure the state of the stellar mass loss from both stars. We present the X-ray lightcurve over the last 20 years from monitoring observations with the Rossi X-ray Timing Explorer and the X-ray Telescope on the Swift satellite, and compare and contrast the behavior of the X-ray emission from the system over that timespan, including surprising variations during the 2014 X-ray minimum.
The Contribution of Stellar Winds to Cosmic Ray Production
NASA Astrophysics Data System (ADS)
Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu
2018-04-01
Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
Role of Turbulent Damping in Cosmic Ray Galactic Winds
NASA Astrophysics Data System (ADS)
Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen
2018-06-01
Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).
Winds of very low metallicity OB stars: crossing the frontier of the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Garcia, Miriam
2011-10-01
Very low metallicity massive stars are a key ingredient for our understanding of the early Universe because of their connection with the dominant conditions at that time, the reionization epoch and long-GRBs. In the studies of massive stars radiation driven winds play a crucial manifold role, being a chief agent of stellar evolution, altering the optical diagnostics for parameter determination and injecting radiative and mechanical energy into their surroundings. However, the theory of radiation driven winds has only be tested down to SMC metallicities and some important open questions remain: the existence of solar-metallicity stars with weak winds and very recent evidence of relatively strong winds in metal-poor stars.We have secured VLT optical spectra of a sample of early-type massive stars in IC 1613, a very metal poor { <0.1Zo} irregular galaxy of the Local Group that represents the next step towards low metallicities after the SMC. We request low resolution COS spectra {COS/FUV-G140L} of a sub-set of OB stars probing different wind regimes. The wind lines in the 1150-1800A range, together with the optical spectra, will allow us to derive consistently the photospheric and wind parameters of the sample. Results will be interpreted in the context of both evolutionary and radiatively driven winds theories, testing the current paradigm at unexplored low metallicities and increasing our knowledge of massive stars under conditions closer to those of the deep Universe.COS enhanced sensitivity will allow us to perform for the first time detailed studies of **resolved** OB stars in an environment with poorer metal content than the SMC.
NASA Astrophysics Data System (ADS)
Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.
2018-01-01
This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.
Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.
2018-02-01
The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O
2016-05-21
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.
2016-01-01
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978
On the origin of jets from disc-accreting magnetized stars
NASA Astrophysics Data System (ADS)
Lovelace, Richard V. E.; Romanova, Marina M.; Lii, Patrick; Dyda, Sergei
2014-09-01
A brief review of the origin of jets from disc-accreting rotating magnetized stars is given. In most models, the interior of the disc is characterized by a turbulent viscosity and magnetic diffusivity ("alpha" discs) whereas the coronal region outside the disc is treated using ideal magnetohydrodynamics (MHD). Extensive MHD simulations have established the occurrence of long-lasting outflows in the case of both slowly and rapidly rotating stars. (1) Slowly rotating stars exhibit a new type of outflow, conical winds. Conical winds are generated when stellar magnetic flux is bunched up by the inward motion of the accretion disc. Near their region of origin, the winds have a thin conical shell shape with half opening angle of ˜30°. At large distances, their toroidal magnetic field collimates the outflow forming current carrying, matter dominated jets. These winds are predominantly magnetically and not centrifugally driven. About 10-30% of the disc matter from the inner disc is launched in the conical wind. Conical winds may be responsible for episodic as well as long lasting outflows in different types of stars. (2) Rapidly rotating stars in the "propeller regime" exhibit two-component outflows. One component is similar to the matter dominated conical wind, where a large fraction of the disc matter may be ejected in this regime. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the open polar field lines of the star. The axial jet has a mass flux of about 10% that of the conical wind, but its energy flux, due to the Poynting flux, can be as large as for the conical wind. The jet's magnetically dominated angular momentum flux causes the star to spin down rapidly. Propeller-driven outflows may be responsible for protostellar jets and their rapid spin-down. When the artificial requirement of symmetry about the equatorial plane is dropped, the conical winds are found to come alternately from one side of the disc and then the other, even for the case where the stellar magnetic field is a centered axisymmetric dipole. Recent MHD simulations of disc accretion to rotating stars in the propeller regime have been done with no turbulent viscosity and no diffusivity. The strong turbulence observed is due to the magneto-rotational instability. This turbulence drives accretion in the disc and leads to episodic conical winds and jets.
Astronomy In Denver: Polarization of Stellar Wind Bow Shocks
NASA Astrophysics Data System (ADS)
Lin, Austin A.; Shrestha, Manisha; Wolfe, Tristan; Stencel, Robert E.; Hoffman, Jennifer L.
2018-06-01
When a star with stellar wind moves through the interstellar medium (ISM) at a relative supersonic velocity, an arch like structure known as a stellar wind bow shock is formed. Studying the characteristics of these structures can further our understanding of evolved stellar winds and the composition of the ISM. Observations of these structures have been performed for some time, but the recent discovery of many bow shock structures have opened more ways to study them. These stellar wind bow shocks display aspherical shapes, which cause light scattering through the dense shock material to become polarized. We selected a target star for observation using a catalog compiled from previous studies and observed it in polarized light with the University of Denver’s DUSTPol instrument. Our group has also simulated the polarization of stellar wind bow shocks using a Monte Carlo radiative transfer code. We present the data from our observations and compare them with the simulations. We also discuss the contribution of interstellar polarization to the data.
NASA Technical Reports Server (NTRS)
Walborn, Nolan R.; Lennon, Daniel J.; Haser, Stephan M.; Kudritzki, Rolf-Peter; Voels, Stephen A.
1995-01-01
Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) and European Space Observatory (ESO) 3.6-m/CASPEC observations have been made of 18 stars ranging in spectral type from O3 through B0.5 Ia, half of them in each of the Large and Small Magellanic Clouds, in order to investigate massive stellar winds and evolution as a function of metallicity. The spectroscopic data are initially presented and described here in an atlas format. The relative weakness of the stellar-wind features in the SMC early O V spectra, due to their metal deficiency, is remarkable. Because of their unsaturated profiles, discrete absorption components can be detected in many of them, which is generally not possible in LMC and Galactic counterparts at such early types, or even in SMC giants and supergiants. On the other hand, an O3 III spectrum in the SMC has a weak C IV but strong N V wind profile, possibly indicating the presence of processed material. Wind terminal velocities are also given and intercompared between similar spectral types in the two galaxies. In general, the terminal velocities of the SMC stars are smaller, in qualitative agreement with the predictions of radiation-driven wind theory. Further analyses in progress will provide atmospheric and wind parameters for these stars, which will be relevant to evolutionary models and the interpretation of composite starburst spectra.
Solar Wind Ablation of Terrestrial Planet Atmospheres
NASA Technical Reports Server (NTRS)
Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.
2009-01-01
Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.
Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars
NASA Astrophysics Data System (ADS)
Fuller, Jim; Ro, Stephen
2018-05-01
Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.
X-RAY EMISSION FROM MAGNETIC MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie
2014-11-01
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less
X-ray diagnostics of massive star winds
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.
2017-11-01
Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.
Recent advances in non-LTE stellar atmosphere models
NASA Astrophysics Data System (ADS)
Sander, Andreas A. C.
2017-11-01
In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.
AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun
2016-03-20
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out undermore » axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.« less
Lyman alpha initiated winds in late-type stars
NASA Technical Reports Server (NTRS)
Haisch, B. M.; Linsky, J. L.; Vanderhucht, K. A.
1979-01-01
The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Sundqvist, Jon O.
2018-03-01
We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.
NASA Astrophysics Data System (ADS)
Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.
2018-02-01
Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.
Colliding Stellar Wind Models with Orbital Motion
NASA Astrophysics Data System (ADS)
Wilkin, Francis P.; O'Connor, Brendan
2018-01-01
We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.
Effects of Nongray Opacity on Radiatively Driven Wolf-Rayet Winds
NASA Astrophysics Data System (ADS)
Onifer, A. J.; Gayley, K. G.
2002-05-01
Wolf-Rayet winds are characterized by their large momentum fluxes, and simulations of radiation driving have been increasingly successful in modeling these winds. Simple analytic approaches that help understand the most critical processes for copious momentum deposition already exist in the effectively gray approximation, but these have not been extended to more realistic nongray opacities. With this in mind, we have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive not only to the strength but also the wavelength distribution of lines, incorporating as a free parameter the rate of photon frequency redistribution. We label the resulting flux-weighted opacity the statistical Sobolev- Rosseland (SSR) mean, and explore how changing these various statistical parameters affects the flux/opacity interaction. We wish to acknowledge NSF grant AST-0098155
ON HIGHLY CLUMPED MAGNETIC WIND MODELS FOR COOL EVOLVED STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, G. M.
2010-09-10
Recently, it has been proposed that the winds of non-pulsating and non-dusty K and M giants and supergiants may be driven by some form of magnetic pressure acting on highly clumped wind material. While many researchers believe that magnetic processes are responsible for cool evolved stellar winds, existing MHD and Alfven wave-driven wind models have magnetic fields that are essentially radial and tied to the photosphere. The clumped magnetic wind scenario is quite different in that the magnetic flux is also being carried away from the star with the wind. We test this clumped wind hypothesis by computing continuum radiomore » fluxes from the {zeta} Aur semiempirical model of Baade et al., which is based on wind-scattered line profiles. The radio continuum opacity is proportional to the electron density squared, while the line scattering opacity is proportional to the gas density. This difference in proportionality provides a test for the presence of large clumping factors. We derive the radial distribution of clump factors (CFs) for {zeta} Aur by comparing the nonthermal pressures required to produce the semiempirical velocity distribution with the expected thermal pressures. The CFs are {approx}5 throughout the sub-sonic inner wind region and then decline outward. These implied clumping factors lead to excess radio emission at 2.0 cm, while at 6.2 cm it improves agreement with the smooth unclumped model. Smaller clumping factors of {approx}2 lead to better overall agreement but also increase the discrepancy at 2 cm. These results do not support the magnetic clumped wind hypothesis and instead suggest that inherent uncertainties in the underlying semiempirical model probably dominate uncertainties in predicted radio fluxes. However, new ultraviolet line and radio continuum observations are needed to test the new generations of inhomogeneous magnetohydrodynamic wind models.« less
NASA Astrophysics Data System (ADS)
Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel
2013-11-01
The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.
Miskovicova, Ivica; Hell, Natalie; Hanke, Manfred; ...
2016-05-25
Accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line-driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1, as determined using data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This workmore » concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al, and highly ionized Fe (Fe xvii–Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase-dependence of these parameters. We show that the absorber is located close to the black hole. Doppler shifted lines point at a complex wind structure in this region, while emission lines seen in some observations are from a denser medium than the absorber. Here, the observed line profiles are phase-dependent. Their shapes vary from pure, symmetric absorption at the superior conjunction to P Cygni profiles at the inferior conjunction of the black hole.« less
NASA Astrophysics Data System (ADS)
Wilson, David
2017-08-01
M dwarf stars are promising targets in the search for extrasolar habitable planets, as their small size and close-in habitable zones make the detection of Earth-analog planets easier than at Solar-type stars. However, the effects of the high stellar activity of M dwarf hosts has uncertain effects on such planets, and may render them uninhabitable. Studying stellar activity at M dwarfs is hindered by a lack of measurements of high-energy radiation, flare activity and, in particular, stellar wind rates. We propose to rectify this by observing a sample of Post Common Envelope Binaries (PCEBs) with HST and XMM-Newton. PCEBs consist of an M dwarf with a white dwarf companion, which experiences the same stellar wind and radiation environment as a close-in planet. The stellar wind of the M dwarf accretes onto the otherwise pure hydrogen atmosphere white dwarf, producing metal lines detectable with ultraviolet spectroscopy. The metal lines can be used to measure accretion rates onto the white dwarf, from with we can accurately infer the stellar wind mass loss rate of the M dwarf, along with abundances of key elements. Simultaneous observations with XMM-Newton will probe X-ray flare occurrence rate and strength, in addition to coronal temperatures. Performing these measurements over twelve PCEBs will provide a sample of M dwarf stellar wind strengths, flare occurrence and X-ray/UV activity that will finally shed light on the true habitability of planets around small stars.
The effects of the stellar wind and orbital motion on the jets of high-mass microquasars
NASA Astrophysics Data System (ADS)
Bosch-Ramon, V.; Barkov, M. V.
2016-05-01
Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.
Dense CO in Mrk 71-A: Superwind Suppressed in a Young Super Star Cluster
NASA Astrophysics Data System (ADS)
Oey, M. S.; Herrera, C. N.; Silich, Sergiy; Reiter, Megan; James, Bethan L.; Jaskot, A. E.; Micheva, Genoveva
2017-11-01
We report the detection of CO(J=2-1) coincident with the super star cluster (SSC) Mrk 71-A in the nearby Green Pea analog galaxy, NGC 2366. Our observations with the Northern Extended Millimeter Array reveal a compact, ˜7 pc, molecular cloud whose mass ({10}5 {M}⊙ ) is similar to that of the SSC, consistent with a high star formation efficiency, on the order of 0.5. There are two spatially distinct components separated by 11 {km} {{{s}}}-1. If expanding, these could be due to momentum-driven stellar wind feedback. Alternatively, we may be seeing remnants of the infalling, colliding clouds responsible for triggering the SSC formation. The kinematics are also consistent with a virialized system. These extreme, high-density, star-forming conditions inhibit energy-driven feedback; the co-spatial existence of a massive, molecular cloud with the SSC supports this scenario, and we quantitatively confirm that any wind-driven feedback in Mrk 71-A is momentum-driven, rather than energy-driven. Since Mrk 71-A is a candidate Lyman continuum emitter, this implies that energy-driven superwinds may not be a necessary condition for the escape of ionizing radiation. In addition, the detection of nebular continuum emission yields an accurate astrometric position for the Mrk 71-A. We also detect four other massive molecular clouds in this giant star-forming complex.
Metallic Winds in Dwarf Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.
2017-02-01
We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, andmore » radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.« less
Radiative amplification of sound waves in the winds of O and B stars
NASA Technical Reports Server (NTRS)
Macgregor, K. B.; Hartmann, L.; Raymond, J. C.
1979-01-01
The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.
Temporal variability of the wind from the star τ Boötis
NASA Astrophysics Data System (ADS)
Nicholson, B. A.; Vidotto, A. A.; Mengel, M.; Brookshaw, L.; Carter, B.; Petit, P.; Marsden, S. C.; Jeffers, S. V.; Fares, R.; BCool Collaboration
2016-06-01
We present new wind models for τ Boötis (τ Boo), a hot-Jupiter-host-star whose observable magnetic cycles makes it a uniquely useful target for our goal of monitoring the temporal variability of stellar winds and their exoplanetary impacts. Using spectropolarimetric observations from May 2009 to January 2015, the most extensive information of this type yet available, to reconstruct the stellar magnetic field, we produce multiple 3D magnetohydrodynamic stellar wind models. Our results show that characteristic changes in the large-scale magnetic field as the star undergoes magnetic cycles produce changes in the wind properties, both globally and locally at the position of the orbiting planet. Whilst the mass loss rate of the star varies by only a minimal amount (˜4 per cent), the rates of angular momentum loss and associated spin-down time-scales are seen to vary widely (up to ˜140 per cent), findings consistent with and extending previous research. In addition, we find that temporal variation in the global wind is governed mainly by changes in total magnetic flux rather than changes in wind plasma properties. The magnetic pressure varies with time and location and dominates the stellar wind pressure at the planetary orbit. By assuming a Jovian planetary magnetic field for τ Boo b, we nevertheless conclude that the planetary magnetosphere can remain stable in size for all observed stellar cycle epochs, despite significant changes in the stellar field and the resulting local space weather environment.
Hydrodynamic simulations of stellar wind disruption by a compact X-ray source
NASA Technical Reports Server (NTRS)
Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.
1990-01-01
This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.
Stellar Wind Retention and Expulsion in Massive Star Clusters
NASA Astrophysics Data System (ADS)
Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.
2018-05-01
Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).
Uv-Optical Spectra and Imagery of the Bubble Nebula NGC 7635
NASA Astrophysics Data System (ADS)
Walter, Donald
1997-07-01
We propose to acquire UV-optical STIS spectra and WFPC2 imagery of the wind-blown Bubble Nebula NGC 7635. This object is significant to our understanding of galactic chemical evolution, star formation {possibly triggered by radiative implosion}, the mass-loss history of precursors to supernovae, the effect of wind-driven shocks on the ISM and the process of ionization and photoevaporation of high density knots {possibly HH objects} in the presence of an intense stellar wind and radiation field. The ener getic environment of NGC 7635 is more extreme and its features have evolved on a different time scale than in more quiescent objects studied with HST {e.g. Orion and M16}. HST is essential to our study in order to achieve high spatial resolution and ac cess to the UV region of the spectrum. The nebula's nearly spherical shell is the result of a recent { < 10^6 years} stellar mass-loss event and is the best young, clearly observed bubble available for study. We will exam in e the ionization front at the r im of the bubble, the extent to which it is shock-driven and the scale of the photoevaporative flow off the face of the molecular cloud. We will resolve high density knots down to a size of 2.1 x 10^15 cm {140 au}, searching for protostellar objects. STIS U V spectra will allow us to calculate the first accurate C/H abundance in the Perseus arm and test for the presence of a galactic abundance gradient. Finally, with our HST data we will compare our observational results with our radiative shock-model predi ctions.
Discovery of radio emission from the symbiotic X-ray binary system GX 1+4
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.
2018-02-01
We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.
On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion
NASA Astrophysics Data System (ADS)
Detweiler, L. G.; Yates, K.; Siem, E.
2017-12-01
The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that at this distance, it does not accrete enough mass to surpass the mass limit for hydrogen fusion. Finally, we apply this method to brown dwarfs orbiting a 15 solar mass star at Jupiter's distance. It is found that a significantly smaller amount of mass is accreted when compared to the same brown dwarfs orbiting our Sun at the same distance.
Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
McCormick, P. J.; Frank, J.
1998-12-01
In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Cranmer, Steven R.
2018-03-01
In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.
Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z Approx. 2
NASA Technical Reports Server (NTRS)
Maseda, Michael V.; van Der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter; Pacifici, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; van Dokkum, Pieter; Bell, Eric F.;
2013-01-01
Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (< or approx. 3 × 10(exp 9) M). Their large [O III] (lambda)5007 equivalent widths (500-1100 Angstroms) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9)M, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.
The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae
NASA Astrophysics Data System (ADS)
Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim
2017-04-01
We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.
NASA Astrophysics Data System (ADS)
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole
NASA Astrophysics Data System (ADS)
Ma, Shuai-Bing; Lei, Wei-Hua; Gao, He; Xie, Wei; Chen, Wei; Zhang, Bing; Wang, Ding-Xiong
2018-01-01
Mergers of neutron star–neutron star (NS–NS) or neutron star–black hole (NS–BH) binaries are candidate sources of gravitational waves (GWs). At least a fraction of the merger remnants should be a stellar mass BH with sub-relativistic ejecta. A collimated jet is launched via the Blandford–Znajek mechanism from the central BH to trigger a short gamma-ray burst (sGRB). At the same time, a near-isotropic wind may be driven by the Blandford–Payne mechanism (BP). In previous work, additional energy injection to the ejecta from the BP mechanism was ignored, and radioactive decay has long been thought to be the main source of the kilonova energy. In this Letter, we propose that the wind driven by the BP mechanism from the newborn BH’s disk can heat up and push the ejecta during the prompt emission phase or even at late times when there is fall-back accretion. Such a BP-powered merger-nova could be bright in the optical band even for a low-luminosity sGRB. The detection of a GW merger event with a BH clearly identified as a remnant, accompanied by a bright merger-nova, would provide robust confirmation of our model.
Stellar wind measurements for Colliding Wind Binaries using X-ray observations
NASA Astrophysics Data System (ADS)
Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko
2017-11-01
We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.
The stellar wind velocity function for red supergiants determined in eclipsing binaries
NASA Technical Reports Server (NTRS)
Ahmad, Imad A.; Stencel, Robert E.
1988-01-01
The potential for direct measurement of the acceleration of stellar winds from the supergiant component of Zeta Aurigae-type binary stars is discussed. The aberration angle of the interaction shock cone centered on the hot star provides a measure of the velocity of the cool star wind at the orbit of the secondary. This is confirmed by direct observations of stellar wind (P Cygni) line profile variations. This velocity is generally smaller than the final (terminal) velocity of the wind, deduced from the P Cygni line profiles. The contrast between these results and previously published supergiant wind models is discussed. The implication on the physics of energy source dissipation predicted in the theoretical models is considered.
Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model
NASA Technical Reports Server (NTRS)
Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana
1994-01-01
We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.
Spectroscopy of the Stellar Wind in the Cygnus X-1 System
NASA Technical Reports Server (NTRS)
Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert
2010-01-01
The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.
Sudden Radiative Braking in Colliding Hot-Star Winds
NASA Technical Reports Server (NTRS)
Gayley, K. G.; Owocki, S. P.; Cranmer, S. R.
1996-01-01
When two hot-star winds collide, their interaction centers at the point where the momentum fluxes balance. However, in WR+O systems, the imbalance in the corporeal momentum fluxes may be extreme enough to preclude a standard head-on wind/wind collision. On the other hand, an important component of the total momentum flux in radiatively driven winds is carried by photons. Thus, if the wind interaction region has sufficient scattering opacity, it can reflect stellar photons and cause important radiative terms to enter the momentum balance. This radiative input would result in additional braking of the wind. We use a radiative-hydrodynamics calculation to show that such radiative braking can be an important effect in many types of colliding hot-star winds. Characterized by sudden deceleration of the stronger wind in the vicinity of the weak-wind star, it can allow a wind ram balance that would otherwise be impossible in many WR+O systems with separations less than a few hundred solar radii. It also greatly weakens the shock strength and the encumbent X ray production. We demonstrate the significant features of this effect using V444 Cygni as a characteristic example. We also derive a general analytic theory that applies to a wide class of binaries, yielding simple predictions for when radiative braking should play an important role.
Stationary hydrodynamic models of Wolf-Rayet stars with optically thick winds.
NASA Astrophysics Data System (ADS)
Heger, A.; Langer, N.
1996-11-01
We investigate the influence of a grey, optically thick wind on the surface and internal structure of Wolf-Rayet (WR) stars. We calculate hydrodynamic models of chemically homogeneous helium stars with stationary outflows, solving the full set of stellar structure equations from the stellar center up to well beyond the sonic point of the wind, including the line force originating from absorption lines in a parameterized way. For specific assumptions about mass loss rate and wind opacity above our outer boundary, we find that the iron opacity peak may lead to local super-Eddington luminosities at the sonic point. By varying the stellar wind parameters over the whole physically plausible range, we show that the radius of the sonic point of the wind flow is always very close to the hydrostatic stellar radius obtained in WR star models which ignore the wind. However, our models confirm the possibility of large values for observable WR radii and correspondingly small effective temperatures found in earlier models. We show further that the energy which is contained in a typical WR wind can not be neglected. The stellar luminosity may be reduced by several 10%, which has a pronounced effect on the mass-luminosity relation, i. e., the WR masses derived for a given luminosity may be considerably larger. Thereby, also the momentum problem of WR winds is considerably reduced, as well as the scatter in the ˙(M) vs. M diagram for observed hydrogen-free WN stars.
An XMM Investigation of Non-Thermal Phenomena in the Winds of Early-Type Stars
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Mushotzky, Richard (Technical Monitor)
2002-01-01
The X-ray emission from early-type stars is believed to arise from a stellar wind distribution of shocks. Hence, X-ray analyses of these stars must include the effects of stellar wind X-ray absorption, which, in general dominates the ISM absorption. Although the absorption cross sections for the wind and ISM are essentially identical above 1 keV, there is substantial differences below 1 keV. Typically, if one only uses ISM cross sections to obtain fits to X-ray spectra, the fits usually indicate a model deficiency at energies below 1 keV which is attributed to the large increase in ISM cross sections at these energies. This deficiency can be eliminated by using stellar wind absorption models with a fixed ISM component. Since all early-type stars have substantial X-ray emission below 1 keV, than inclusion of wind absorption has proven to be a critical component in fitting X-ray spectra at low energies, verifying that these X-rays are indeed arising from within the stellar wind.
The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR
NASA Technical Reports Server (NTRS)
King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.;
2014-01-01
We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.
The Local ISM and its Interaction with the Winds of Nearby Late-type Stars
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Linsky, Jeffrey L.
1998-01-01
We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that the collision is supersonic and that there should therefore be a bow shock outside the heliopause in the upwind direction. Finally, we estimate stellar wind pressures (P sub wind) from the measured hydrogen-wall column densities. These estimates represent the first empirical measurements of wind properties for late-type main-sequence stars. The wind pressures appear to be correlated with stellar X-ray surface fluxes, F(x), in a manner consistent with the relation P(wind) varies as F(x)(exp -1/2), a relation that is also consistent with the variations of P(sub wind) and F(sub x) observed during the solar activity cycle. If this relation can in fact be generalized to solar-like stars, as is suggested by our data, then it is possible to estimate stellar wind properties simply by measuring stellar X-rays. One implication of this is that stellar wind pressures and mass-loss rates are then predicted to increase with time, since F(sub x) is known to decrease with stellar age.
A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Carmichael, S.; Clark, J.; Elkins, E.; Gudmundsen, P.; Mott, Z.; Szwajkowski, M.; Hennig, L. A.
2010-01-01
This paper reports a blind search for planetary magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (< 30 pc) with relatively young age estimates (< 3 Gyr), finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey, obtaining 3\\sigma limits on planetary emission of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 1023erg/s. Using models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic (magnetic) energy carried by the stellar winds in our samples is 15--50 (5--10) times larger than that of the solar wind. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 300 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100. Basic research in radio astronomy at NRL is supported by 6.1 Base funding. The LUNAR consortium, is funded by the NASA Lunar Science Institute (Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.
Binary stellar winds. [flow and magnetic field geometry
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.
Binary stellar winds. [flow and magnetic field interactions
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.
Photospheres of hot stars. IV - Spectral type O4
NASA Technical Reports Server (NTRS)
Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.
1990-01-01
The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.
Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets
NASA Astrophysics Data System (ADS)
Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.
2018-03-01
We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.
The relative impact of photoionizing radiation and stellar winds on different environments
NASA Astrophysics Data System (ADS)
Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.
2018-05-01
Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.
Weaving the history of the solar wind with magnetic field lines
NASA Astrophysics Data System (ADS)
Alvarado Gomez, Julian
2017-08-01
Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.
Cosmic Rays near Proxima Centauri b
NASA Astrophysics Data System (ADS)
Sadovski, A. M.; Struminsky, A. B.; Belov, A.
2018-05-01
The discovery of a terrestrial planet orbiting Proxima Centauri has led to a lot of papers discussing the possible conditions on this planet. Since the main factors determining space weather in the Solar System are the solar wind and cosmic rays (CRs), it seems important to understand what the parameters of the stellar wind, Galactic and stellar CRs near exoplanets are. Based on the available data, we present our estimates of the stellar wind velocity and density, the possible CR fluxes and fluences near Proxima b. We have found that there are virtually no Galactic CRs near the orbit of Proxima b up to particle energies 1 TeV due to their modulation by the stellar wind. Nevertheless, more powerful and frequent flares on Proxima Centauri than those on the Sun can accelerate particles to maximum energies 3150 αβ GeV ( α, β < 1). Therefore, the intensity of stellar CRs in the astrosphere may turn out to be comparable to the intensity of low-energy CRs in the heliosphere.
How Massive Single Stars End Their Life
NASA Technical Reports Server (NTRS)
Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.
2003-01-01
How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.
Is the Critical Rotation of Be Stars Really Critical for the Be Phenomenon?
NASA Astrophysics Data System (ADS)
Stee, Ph.; Meilland, A.
We aim to study the effect of the fast rotation, stellar wind and circumstellar disks around active hot stars and their effects on the formation and evolution of these massive stars. For that purpose, we obtained, for the first time, interferometric measurements of three active hot stars, namely α Arae, κ CMa and Achernar, using the VLTI /AMBER and VLTI/MIDI instruments which allow us to study the kinematics of the central star and its surrounding circumstellar matter. These data coupled with our numerical code SIMECA (SIMulation pour Etoiles Chaudes Actives) seem to indicate that the presence of equatorial disks and polar stellar wind around Be stars are not correlated. A polar stellar wind was detected for α Arae and Achernar whereas κ CMa seems to exhibit no stellar wind. On the other hand, these two first Be stars are certainly nearly critical rotators whereas the last one seems to be far from the critical rotation. Thus a polar stellar wind may be due to the nearly critical rotation which induces a local effective temperature change following the von Zeipel theorem, producing a hotter polar region triggering a polar stellar wind. This critical rotation may also explain the formation of a circumstellar disk which is formed by the centrifugal force balancing the equatorial effective gravity of the central star. Following these results we try to investigate if critical rotation may be the clue for the Be phenomenon.
Theory of Bipolar Outflows from Accreting Hot Stars
NASA Astrophysics Data System (ADS)
Konigl, A.
1996-05-01
There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).
Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae
NASA Astrophysics Data System (ADS)
Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei
2017-11-01
Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but 40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide-rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae.
Dust formation and wind acceleration around the aluminum oxide–rich AGB star W Hydrae
Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei
2017-01-01
Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but ~40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide–rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae. PMID:29109978
Simulated star formation rate functions at z ˜ 4-7, and the role of feedback in high-z galaxies
NASA Astrophysics Data System (ADS)
Tescari, E.; Katsianis, A.; Wyithe, J. S. B.; Dolag, K.; Tornatore, L.; Barai, P.; Viel, M.; Borgani, S.
2014-03-01
We study the role of feedback from supernovae (SN) and black holes in the evolution of the star formation rate function (SFRF) of z ˜ 4-7 galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulations), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both SN-driven galactic winds and active galactic nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at z > 5, meaning that it cannot be used to discriminate between feedback models during reionization. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN-driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination of `strong' SN winds and early AGN feedback in low-mass galaxies. Conversely, we show that the choice of initial mass function and inclusion of metal cooling have less impact on the evolution of the SFRF. When variable winds are considered, we find that a non-aggressive wind scaling is needed to reproduce the SFRFs at z ≳ 4. Otherwise, the amount of objects with low SFRs is greatly suppressed and at the same time winds are not effective enough in the most massive systems.
NASA Technical Reports Server (NTRS)
Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam
2009-01-01
X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
Investigating the 3D Structure of the Winds of Hot Supergiants
NASA Astrophysics Data System (ADS)
Klement, Robert
2018-04-01
An observational effort targeting supergiant stars of spectral classes B and A has been started using the VEGA high spectral resolution visible beam combiner at the CHARA array. The H-alpha emission from the structured stellar winds was resolved with respect to the surrounding continuum, showing signs of inhomogenities in the circumstellar environments as well as temporal variability on different time scales. We have begun a radiative transfer modelling effort to investigate the clumpy structure of the stellar winds and the origin of the inhomogenities, probably linked to the stellar photosphere features.
Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample
NASA Astrophysics Data System (ADS)
Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.
1995-03-01
Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.
NASA Astrophysics Data System (ADS)
Fahr, Hans-Jörg
2000-05-01
In many papers in the literature it is shown that wind-driving stars with a peculiar motion relative to the ambient interstellar medium within dynamical time periods form a dynamically adapted astropause as separatrix between the stellar wind plasma and the surrounding interstellar plasma. As we shall show in this chapter stars with an adapted astropause are subject to thrust forces finally acting on the wing-generating central body and thus influencing the stellar motion. Thereby the actual magnitude of the resulting thrust force depends on the actual counterflow configuration of stellar and interstellar winds determined by the particular kinematic situation, i.e. the instantaneous Mach number of the motion relative to the ambient medium. We shall study the sensitivity of this configuration to whether the interstellar flow is sub- or supersonic. The resulting net force is shown to vary in a non-monotonic way with the actual peculiar velocity. For subsonic motions this force generally has an accelerating nature, i.e. operating like a rocket thrust motor, whereas for supersonic motions at supercritical Mach numbers μS≥μS,c, to the contrary, it is of a decelerating nature. For an adequate description of a time-dependent circumstellar flow configuration, we shall use an analytic, hydrodynamic modeling of the counterflow configuration representing the case of a stellar wind system in subsonic or supersonic motion with respect to the local interstellar medium. For the purpose of analytical treatability we assume irrotational and incompressible flows downstream of the inner and outer shocks and give quantitative numbers for forces acting on the central star. We also describe long-period evolutions of star motions and give typical acceleration time periods for different types of wind-driving stars. As we shall emphasize here the dynamical influence of these thrust forces onto the central stellar body requires an understanding of how the presence of the counterflowing interstellar plasma is communicated upstream in the supersonic stellar wind up to the origin of this wind, the stellar corona. The answer we shall give is based on the multifluid character of the relevant counterflow situation invalidating the conventional mono-Mach-number concept of hydrodynamical flows. In fact stellar winds can only be described by a poly-Mach-number concept, with stellar-wind protons being supersonic, with pick-up ions being marginally sonic, and with electrons and anomalous cosmic ray particles being strongly subsonic. We shall present solutions for multifluid counterflow configurations based on computational simulations in which a consistent picture of the interaction of all these different species is given. Our final conclusion is that already the solar wind when passing over the Earth's orbit tells us about the interstellar medium beyond the heliopause.
NASA Astrophysics Data System (ADS)
Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Tramper, F.; Grin, N. J.; Schneider, F. R. N.; Langer, N.; Puls, J.; Markova, N.; Bestenlehner, J. M.; Castro, N.; Crowther, P. A.; Evans, C. J.; García, M.; Gräfener, G.; Herrero, A.; van Kempen, B.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Taylor, W. D.; Vink, J. S.
2017-04-01
Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims: Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods: We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. Results: We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at Minit ≳ 25 M⊙. At masses below 60 M⊙, the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at Minit ≲ 18 M⊙. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7 V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behavior may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of Si iv to He I absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (I.e., νesini < 200kms-1) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are 0.3 dex higher than earlier results. For stars brighter than 105 L⊙, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were fV 1/8 to 1/6. Based on observations collected at the European Southern Observatory under program ID 182.D-0222.Tables C.1-C.5 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A81
Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres
NASA Astrophysics Data System (ADS)
Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.
2016-10-01
We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner edges of their habitable zones.
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler
2018-07-01
Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their time-scales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16 per cent efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr time-scale, somewhat higher than simulations predict. The outflows have likely been sustained for time-scales comparable to the duration of the starbursts (i.e. 100s Myr), after taking into account the time for the development and cessation of the wind. The wind time-scales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short time-scales. In the detected outflows, the expelled hot gas shows various morphologies that are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the life cycle and impact of starburst activity in low-mass systems.
Structure and Dynamics of the Accretion Process and Wind in TW Hya
NASA Astrophysics Data System (ADS)
Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Berlind, P.; Strader, Jay; Smith, Graeme H.
2014-07-01
Time-domain spectroscopy of the classical accreting T Tauri star, TW Hya, covering a decade and spanning the far UV to the near-infrared spectral regions can identify the radiation sources, the atmospheric structure produced by accretion, and properties of the stellar wind. On timescales from days to years, substantial changes occur in emission line profiles and line strengths. Our extensive time-domain spectroscopy suggests that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as some absorption from infalling material. Stable absorption features appear in Hα, apparently caused by an accreting column silhouetted in the stellar wind. Inflow of material onto the star is revealed by the near-IR He I 10830 Å line, and its free-fall velocity correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. However, the predictions of hydrogen line profiles based on accretion stream models are not well-matched by these observations. Evidence of an accelerating warm to hot stellar wind is shown by the near-IR He I line, and emission profiles of C II, C III, C IV, N V, and O VI. The outflow of material changes substantially in both speed and opacity in the yearly sampling of the near-IR He I line over a decade. Terminal outflow velocities that range from 200 km s-1 to almost 400 km s-1 in He I appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind. Calculations of the emission from realistic post-shock regions are needed. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Infrared spectra were taken at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), formerly the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). This paper also includes spectra gathered with the 6.5 m Magellan Telescope/CLAY located at Las Campanas Observatory, Chile. Additional spectra were obtained at the 1.5 m Tillinghast Telescope at the Fred Lawrence Whipple Observatory of the Smithsonian Astrophysical Observatory.
NASA Technical Reports Server (NTRS)
Fullerton, A. W.; Massa, D. L.; Prinja, R. K.; Owocki, S. P.; Cranmer, S. R.
1998-01-01
This report summarizes the progress of the work conducted under the program "The Winds of B Supergiants," conducted by Raytheon STX Corporation. The report consists of a journal article "Wind variability in B supergiants III. Corotating spiral structures in the stellar wind of HD 64760." The first step in the project was the analysis of the 1996 time series of 2 B supergiants and an O star. These data were analyzed and reported on at the ESO workshop, "Cyclical Variability in Stellar Winds."
NASA Astrophysics Data System (ADS)
Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter
2017-12-01
We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.
X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213
NASA Astrophysics Data System (ADS)
Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.
2018-02-01
PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.
NASA Astrophysics Data System (ADS)
Harbach, Laura Marshall; Drake, Jeremy J.; Garraffo, Cecilia; Alvarado-Gomez, Julian D.; Moschou, Sofia P.; Cohen, Ofer
2018-01-01
Recently, three rocky planets were discovered in the habitable zone of the nearby planetary system TRAPPIST-1. The increasing number of exoplanet detections has led to further research into the planetary requirements for sustaining life. Habitable zone occupants have, in principle, the capacity to retain liquid water, whereas actual habitability might depend on atmospheric retention. However, stellar winds and photon radiation interactions with the planet can lead to severe atmospheric depletion and have a catastrophic impact on a planet’s habitability. While the implications of photoevaporation on atmospheric erosion have been researched to some degree, the influence of stellar winds and Coronal Mass Ejections (CMEs) has yet to be analyzed in detail. Here, we model the effect of the stellar wind and CMEs on the atmospheric envelope of a planet situated in the orbit of TRAPPIST-1e using 3D magnetohydrodynamic (MHD) simulations. In particular, we discuss the atmospheric loss due to the effect of a CME, and the relevance of the stellar and planetary magnetic fields on the sustainability of M-dwarf exoplanetary atmospheres.
NASA Technical Reports Server (NTRS)
Maseda, Michael V.; VanDerWeL, Arjen; DaChuna, Elisabete; Rix, Hans-Walter; Pacafichi, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; VanDokkum, Pieter; Bell, Eric F.;
2013-01-01
Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 Extreme Emission Line Galaxies (EELGs) at redshifts 1.4 < zeta < 2.3. These measurements imply that the total dynamical masses of these systems are low ( 3 × 10(exp 9) M). Their large [O III]5007 equivalent widths (500 - 1100 A) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9) M, confirming the presence of a violent starburst. The stellar mass formed in this vigorous starburst phase thus represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.
Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars
NASA Astrophysics Data System (ADS)
Yadav, Abhay Pratap; Glatzel, Wolfgang
2017-11-01
Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.
NASA Astrophysics Data System (ADS)
Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li
2017-08-01
We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.
Propeller-driven outflows from an MRI disc
NASA Astrophysics Data System (ADS)
Lii, Patrick S.; Romanova, Marina M.; Ustyugova, Galina V.; Koldoba, Alexander V.; Lovelace, Richard V. E.
2014-06-01
Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and plays a dominant role in the inner disc dynamics by inhibiting matter accretion on to the star. In this work, we investigate the dynamics of the propeller regime using axisymmetric MHD simulations of MRI-driven accretion on to a rapidly rotating magnetized star. The disc matter is inhibited from accreting on to the star and instead accumulates at the disc-magnetosphere boundary, slowly building up a reservoir of matter. Some of this matter diffuses into the outer magnetosphere where it picks up angular momentum and is ejected as an outflow which gradually collimates at larger distances from the star. If the ejection rate is smaller than the disc's accretion rate, then the matter accumulates at the disc-magnetosphere boundary faster than it can be ejected. In this situation, accretion on to the propelling star proceeds through the episodic accretion cycle in which episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion on to the star. In addition to the matter-dominated wind component, the propeller also drives a well-collimated, magnetically dominated Poynting jet which transports energy and angular momentum away from the star. The propelling stars undergo strong spin-down due to the outflow of angular momentum in the wind and jet. We measure spin-down time-scales of ˜1.2 Myr for a cTTs in the strong propeller regime of accretion. The propeller mechanism may explain some of the jets and winds observed around some T Tauri stars as well as the nature of their ejections. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.
Stellar Magnetism, Winds and their Effects on Planetary Environments
NASA Astrophysics Data System (ADS)
Vidotto, A. A.
2016-08-01
Here, I review some recent works on magnetism of cool, main-sequence stars, their winds and potential impact on surrounding exoplanets. The winds of these stars are very tenuous and persist during their lifetime. Although carrying just a small fraction of the stellar mass, these magnetic winds carry away angular momentum, thus regulating the rotation of the star. Since cool stars are likely to be surrounded by planets, understanding the host star winds and magnetism is a key step towards characterisation of exoplanetary environments. As rotation and activity are intimately related, the spin down of stars leads to a decrease in stellar activity with age. As a consequence, as stars age, a decrease in high-energy (X-ray, extreme ultraviolet) irradiation is observed, which can a ect the evaporation of exoplanetary atmospheres and, thus, also altering exoplanetary evolution.
The Data-Driven Approach to Spectroscopic Analyses
NASA Astrophysics Data System (ADS)
Ness, M.
2018-01-01
I review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.
Cosmic ray-modified stellar winds. I - Solution topologies and singularities
NASA Technical Reports Server (NTRS)
Ko, C. M.; Webb, G. M.
1987-01-01
In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P sub c)-space, or a two-dimensional hypersurface of singularities in (r, u, P sub c, dP sub c/dr)-space, where r, u, and P sub c are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points.
Asymmetric MHD outflows/jets from accreting T Tauri stars
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.
2015-06-01
Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wünsch, R.; Palouš, J.; Ehlerová, S.
We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less
Colliding stellar winds in O-type close binary systems
NASA Technical Reports Server (NTRS)
Gies, Douglas R.
1991-01-01
A study of the stellar wind properties of O-type close binary systems is presented. The main objective of this program was to search for colliding winds in four systems, AO Cas, iota Ori, Plaskett's star, and 29 UW CMa, through an examination of high dispersion UV spectra from IUE and optical spectra of the H alpha and He I lambda 6678 emission lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki
We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less
Wind properties of variable B supergiants. Evidence of pulsations connected with mass-loss episodes
NASA Astrophysics Data System (ADS)
Haucke, M.; Cidale, L. S.; Venero, R. O. J.; Curé, M.; Kraus, M.; Kanaan, S.; Arcos, C.
2018-06-01
Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims: To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods: The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results: The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum-luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞/Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the hot side. Particularly, for those variable stars a decrease in V∞/Vesc is accompanied by a decrease in Ṁ. Conclusions: Our results also suggest that radial pulsation modes with periods longer than 6 days might be responsible for the wind variability in the mid/late-type. These radial modes might be identified with strange modes, which are known to facilitate (enhanced) mass loss. On the other hand, we propose that the wind behaviour of stars on the cool side of the bi-stability jump could fit with predictions of the δ-slow hydrodynamics solution for radiation-driven winds with highly variable ionization. Based on observations taken with the J. Sahade Telescope at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación, and the National Universities of La Plata, Córdoba, and San Juan.
Stellar physics. Observing the onset of outflow collimation in a massive protostar.
Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F
2015-04-03
The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. Copyright © 2015, American Association for the Advancement of Science.
No breakdown of the radiatively driven wind theory in low-metallicity environments
NASA Astrophysics Data System (ADS)
Bouret, J.-C.; Lanz, T.; Hillier, D. J.; Martins, F.; Marcolino, W. L. F.; Depagne, E.
2015-05-01
We present a spectroscopic analysis of Hubble Space Telescope/Cosmic Origins Spectrograph observations of three massive stars in the low metallicity dwarf galaxies IC 1613 and WLM. These stars, were previously observed with Very Large Telescope (VLT)/X-shooter by Tramper et al., who claimed that their mass-loss rates are higher than expected from theoretical predictions for the underlying metallicity. A comparison of the far ultraviolet (FUV) spectra with those of stars of similar spectral types/luminosity classes in the Galaxy, and the Magellanic Clouds provides a direct, model-independent check of the mass-loss-metallicity relation. Then, a quantitative spectroscopic analysis is carried out using the non-LTE (NLTE) stellar atmosphere code CMFGEN. We derive the photospheric and wind characteristics, benefiting from a much better sensitivity of the FUV lines to wind properties than Hα. Iron and CNO abundances are measured, providing an independent check of the stellar metallicity. The spectroscopic analysis indicates that Z/Z⊙ = 1/5, similar to a Small Magellanic Cloud-type environment, and higher than usually quoted for IC 1613 and WLM. The mass-loss rates are smaller than the empirical ones by Tramper et al., and those predicted by the widely used theoretical recipe by Vink et al. On the other hand, we show that the empirical, FUV-based, mass-loss rates are in good agreement with those derived from mass fluxes computed by Lucy. We do not concur with Tramper et al. that there is a breakdown in the mass-loss-metallicity relation.
Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae
NASA Technical Reports Server (NTRS)
Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.
1996-01-01
The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent absence of a substantial shift in the wind ionization mixture of gamma Ara, and the normal nature of its photospheric spectrum, suggests wind-compression as the likely dominant cause for the observed equatorial density enhancements.
Non-radial pulsations and large-scale structure in stellar winds
NASA Astrophysics Data System (ADS)
Blomme, R.
2009-07-01
Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.
The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets
NASA Astrophysics Data System (ADS)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gómez, Julian D.; Moschou, Sofia P.
2017-07-01
Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 103 and 105 times the solar wind pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.
New method to design stellarator coils without the winding surface
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2017-11-06
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
New method to design stellarator coils without the winding surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Shu, Frank H.
1995-07-01
We formulate the time-steady, axisymmetric problem of stellar magnetospheric inflow of gas from a surrounding accretion disk. The computational domain is bounded on the outside by a surface of given shape containing the open field lines associated with an induced disk wind. The mechanism for this wind has been investigated in previous publications in this journal. Our zeroth-order solution incorporates an acceptable accounting of the pressure balance between the magnetic field lines loaded with accreting gas (funnel flow) and those empty of matter (dead zone). In comparison with previous models, our funnel-flow/dead-zone solution has the following novel features: (1) Because of a natural tendency for the trapped stellar magnetic flux to pinch toward the corotation radius Rx (X-point of the effective potential), most of the interesting magnetohydrodynamics is initiated within a small neighborhood of Rx (X-region), where the Keplerian angular speed of rotation in the disk equals the spin rate of the star. (2) Unimpeded funnel flow from the inner portion of the X-region to the star can occur when the amount of trapped magnetic flux equals or exceeds 1.5 times the unperturbed dipole flux that would lie outside Rx in the absence of an accretion disk. (3). Near the equatorial plane, radial infall from the X-point is terminated at a "kink" point Rk = 0.74Rx that deflects the flow away from the midplane, mediating thereby between the field topology imposed by a magnetic fan of trapped flux at Rx and the geometry of a strong stellar dipole. (4) The excess angular momentum of accretion that would otherwise spin up the star rapidly is deposited by the magnetic torques of the funnel flow into the inner portion of the X-region of the disk. (5) An induced disk wind arises in the outer portion of the .X-region, where the stellar field lines have been blown open, and removes whatever excess angular momentum that viscous torques do not transport to the outer disk. (6) The interface between open field lines loaded with outflowing matter (connected to the disk) and those not loaded (connected to the star) forms a "helmet streamer," along which major mass-ejection and reconnection events may arise in response to changing boundary conditions (e.g., stellar magnetic cycles), much the way that such events occur in the active Sun. (7) Pressure balance across the dead-zone/wind interface will probably yield an asymptotically vertical (i.e., "jetlike") trajectory for the matter ejected along the helmet streamer, but mathematical demonstration of this fact is left for future studies. (8) In steady state the overall balance of angular momentum in the star/disk/ magnetosphere system fixes the fractions, f and 1 - f, of the disk mass accretion rate into the X-region carried away, respectively, by the wind and funnel flows.
Modelling accretion disc and stellar wind interactions: the case of Sgr A.
Christie, I M; Petropoulou, M; Mimica, P; Giannios, D
2016-07-01
Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8 cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33 erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d = 10 5 cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.
Thermal winds in stellar mass black hole and neutron star binary systems
NASA Astrophysics Data System (ADS)
Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki
2018-01-01
Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.
Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold
2013-01-01
Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926
Local protoplanetary disk ionisation by T Tauri star energetic particles
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.
2017-10-01
The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.
Main-Sequence O Stars in NGC 6231: Enhanced Winds
NASA Astrophysics Data System (ADS)
Morrison, Nancy D.
Three late O-type main-sequence stars in the open cluster NGC 6231 will be observed with IUE at high dispersion, and their C IV and N V resonance-line profiles will be studied. From low-dispersion IUE observations, 10 members of the cluster have been found to have anomalously strong C IV resonance lines for their spectral types. Massa, Savage, and Cassinelli (1984) observed two of these "UV peculiar" stars (spectral types B0.5 V and B1 V) at high dispersion. They found that the C IV lines have a strong, broad, shortward-shifted absorption component, which suggests a greatly enhanced wind relative to the average for the spectral type. They proposed that the enhancement is due to an overabundance of C. Recently, however, Grigsby, Gordon, Morrison, and Zimba (1992) showed from optical spectra that these stars have normal C abundances. Thus, there is not yet a convincing explanation for these strikingly anomalous stellar winds. By extending the temperature range over which the phenomenon has been studied at high dispersion, however, we expect to gain new physical information. From wind modeling of the line profiles, we will derive mass-loss rates and terminal velocities, and we will test whether these winds are described by radiation-driven wind theory.
Protoplanetary Disks as (Possibly) Viscous Disks
NASA Astrophysics Data System (ADS)
Rafikov, Roman R.
2017-03-01
Protoplanetary disks are believed to evolve on megayear timescales in a diffusive (viscous) manner as a result of angular momentum transport driven by internal stresses. Here we use a sample of 26 protoplanetary disks resolved by ALMA with measured (dust-based) masses and stellar accretion rates to derive the dimensionless α-viscosity values for individual objects, with the goal of constraining the angular momentum transport mechanism. We find that the inferred values of α do not cluster around a single value, but instead have a broad distribution extending from 10-4 to 0.04. Moreover, they correlate with neither the global disk parameters (mass, size, surface density) nor the stellar characteristics (mass, luminosity, radius). However, we do find a strong linear correlation between α and the central mass accretion rate \\dot{M}. This correlation is unlikely to result from the direct physical effect of \\dot{M} on internal stress on global scales. Instead, we suggest that it is caused by the decoupling of stellar \\dot{M} from the global disk characteristics in one of the following ways: (1) The behavior (and range) of α is controlled by a yet-unidentified parameter (e.g., ionization fraction, magnetic field strength, or geometry), ultimately driving the variation of \\dot{M}. (2) The central \\dot{M} is decoupled from the global accretion rate as a result of an instability, or mass accumulation (or loss in a wind or planetary accretion) in the inner disk. (3) Perhaps the most intriguing possibility is that angular momentum in protoplanetary disks is transported nonviscously, e.g., via magnetohydrodynamic winds or spiral density waves.
Feedback Driven Chemical Evolution in Simulations of Low Mass Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Emerick, Andrew; Bryan, Greg; Mac Low, Mordecai-Mark
2018-06-01
Galaxy chemical properties place some of the best constraints on models of galaxy evolution. Both gas and stellar metal abundances in galaxies depend upon the integrated star formation history of the galaxy, gas accretion, outflows, and the effectiveness of metal mixing within the interstellar medium (ISM). Capturing the physics that governs these processes in detail, however, is challenging, in part due to the difficulty in self-consistently modelling stellar feedback physics that impacts each of these processes. Using high resolution hydrodynamics simulations of isolated dwarf galaxies where we follow stars as individual star particles, we examine the role of feedback in driving dwarf galaxy chemical evolution. This star-by-star method allows us to directly follow feedback from stellar winds from massive and AGB stars, stellar ionizing radiation and photoelectric heating, and supernovae. Additionally, we track 15 individual metal species yields from these stars as they pollute the ISM and enrich new stellar populations. I will present initial results from these simulations in the context of observational constraints on the retention/ejection of metals from Local Group dwarf galaxies. In addition, I will discuss the variations with which individual elements evolve in the various phases of the ISM, as they progress from hot, ionized gas down to cold, star forming regions. I will conclude by outlining the implications of these results on interpretations of observed chemical abundances in dwarf galaxies and on standard assumptions made in semi-analytic chemical evolution models of these galaxies.
Low-frequency photospheric and wind variability in the early-B supergiant HD 2905
NASA Astrophysics Data System (ADS)
Simón-Díaz, S.; Aerts, C.; Urbaneja, M. A.; Camacho, I.; Antoci, V.; Fredslund Andersen, M.; Grundahl, F.; Pallé, P. L.
2018-04-01
Context. Despite important advances in space asteroseismology during the last decade, the early phases of evolution of stars with masses above 15 M⊙ (including the O stars and their evolved descendants, the B supergiants) have been only vaguely explored up to now. This is due to the lack of adequate observations for a proper characterization of the complex spectroscopic and photometric variability occurring in these stars. Aim. Our goal is to detect, analyze, and interpret variability in the early-B-type supergiant HD 2905 (κ Cas, B1 Ia) using long-term, ground-based, high-resolution spectroscopy. Methods: We gather a total of 1141 high-resolution spectra covering some 2900 days with three different high-performance spectrographs attached to 1-2.6m telescopes at the Canary Islands observatories. We complement these observations with the hipparcos light curve, which includes 160 data points obtained during a time span of 1200 days. We investigate spectroscopic variability of up to 12 diagnostic lines by using the zero and first moments of the line profiles. We perform a frequency analysis of both the spectroscopic and photometric dataset using Scargle periodograms. We obtain single snapshot and time-dependent information about the stellar parameters and abundances by means of the FASTWIND stellar atmosphere code. Results: HD 2905 is a spectroscopic variable with peak-to-peak amplitudes in the zero and first moments of the photospheric lines of up to 15% and 30 km s-1, respectively. The amplitude of the line-profile variability is correlated with the line formation depth in the photosphere and wind. All investigated lines present complex temporal behavior indicative of multi-periodic variability with timescales of a few days to several weeks. No short-period (hourly) variations are detected. The Scargle periodograms of the hipparcos light curve and the first moment of purely photospheric lines reveal a low-frequency amplitude excess and a clear dominant frequency at 0.37 d-1. In the spectroscopy, several additional frequencies are present in the range 0.1-0.4 d-1. These may be associated with heat-driven gravity modes, convectively driven gravity waves, or sub-surface convective motions. Additional frequencies are detected below 0.1 d-1. In the particular case of Hα, these are produced by rotational modulation of a non-spherically symmetric stellar wind. Conclusions: Combined long-term uninterrupted space photometry with high-precision spectroscopy is the best strategy to unravel the complex low-frequency photospheric and wind variability of B supergiants. Three-dimensional (3D) simulations of waves and of convective motions in the sub-surface layers can shed light on a unique interpretation of the variability.
Colliding Stellar Winds Structure and X-ray Emission
NASA Astrophysics Data System (ADS)
Pittard, J. M.; Dawson, B.
2018-04-01
We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Klein, Larry; Altner, Bruce
1994-01-01
We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.
A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Owocki, S. P.
2005-02-01
We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.
Watching AGN feedback at its birth: HST observations of nascent outflow host IC860
NASA Astrophysics Data System (ADS)
Alatalo, Katherine
2016-10-01
IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.
SHORT-LIVED STAR-FORMING GIANT CLUMPS IN COSMOLOGICAL SIMULATIONS OF z Almost-Equal-To 2 DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genel, Shy; Genzel, Reinhard; Foerster Schreiber, Natascha M.
Many observed massive star-forming z Almost-Equal-To 2 galaxies are large disks that exhibit irregular morphologies, with Almost-Equal-To 1 kpc, Almost-Equal-To 10{sup 8}-10{sup 10}M{sub o-dot} clumps. We present the largest sample to date of high-resolution cosmological smoothed particle hydrodynamics simulations that zoom-in on the formation of individual M{sub *} Almost-Equal-To 10{sup 10.5}M{sub o-dot} galaxies in Almost-Equal-To 10{sup 12}M{sub o-dot} halos at z Almost-Equal-To 2. Our code includes strong stellar feedback parameterized as momentum-driven galactic winds. This model reproduces many characteristic features of this observed class of galaxies, such as their clumpy morphologies, smooth and monotonic velocity gradients, high gas fractions (f{submore » g} Almost-Equal-To 50%), and high specific star formation rates ({approx}>1 Gyr{sup -1}). In accord with recent models, giant clumps (M{sub clump} Almost-Equal-To (5 Multiplication-Sign 10{sup 8}-10{sup 9})M{sub o-dot}) form in situ via gravitational instabilities. However, the galactic winds are critical for their subsequent evolution. The giant clumps we obtain are short-lived and are disrupted by wind-driven mass loss. They do not virialize or migrate to the galaxy centers as suggested in recent work neglecting strong winds. By phenomenologically implementing the winds that are observed from high-redshift galaxies and in particular from individual clumps, our simulations reproduce well new observational constraints on clump kinematics and clump ages. In particular, the observation that older clumps appear closer to their galaxy centers is reproduced in our simulations, as a result of inside-out formation of the disks rather than inward clump migration.« less
Family ties of WR to LBV nebulae yielding clues for stellar evolution
NASA Astrophysics Data System (ADS)
Weis, K.
Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.
Semi-empirical models of the wind in cool supergiant stars
NASA Technical Reports Server (NTRS)
Kuin, N. P. M.; Ahmad, Imad A.
1988-01-01
A self-consistent semi-empirical model for the wind of the supergiant in zeta Aurigae type systems is proposed. The damping of the Alfven waves which are assumed to drive the wind is derived from the observed velocity profile. Solution of the ionization balance and energy equation gives the temperature structure for given stellar magnetic field and wave flux. Physically acceptable solutions of the temperature structure place limits on the stellar magnetic field. A crude formula for a critical mass loss rate is derived. For a mass loss rate below the critical value the wind cannot be cool. Comparison between the observed and the critical mass loss rate suggests that the proposed theory may provide an explanation for the coronal dividing line in the Hertzsprung-Russell diagram. The physical explanation may be that the atmosphere has a cool wind, unless it is physically impossible to have one. Stars which cannot have a cool wind release their nonthermal energy in an outer atmosphere at coronal temperatures. It is possible that in the absence of a substantial stellar wind the magnetic field has less incentive to extend radially outward, and coronal loop structures may become more dominant.
Disruption of circumstellar discs by large-scale stellar magnetic fields
NASA Astrophysics Data System (ADS)
ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan
2018-05-01
Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.
Evolved stars as complex chemical laboratories - the quest for gaseous chemistry
NASA Astrophysics Data System (ADS)
Katrien Els Decin, Leen
2015-08-01
At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at T<200K and less than 0.5% at T<100 K. For stellar wind models, an important bottleneck occurs among the reactions involving silicon- and sulfur-bearing species, for which only a few have documented reaction rates. Often, researchers are implementing ‘educated guesses’ for these unknown rates, sometimes forcing the network to yield predictions concurring with (astronomical) observations. Large uncertainties are inherent in this type of ‘optimized’ chemical schemes.Thanks to an ERC-CoG grant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30
The IUE Mega Campaign. Modulated Structure in the Wind of HD 64760 (B0.5 Ib)
NASA Technical Reports Server (NTRS)
Prinja, Raman K.; Massa, Derck; Fullerton, Alexander W.
1995-01-01
We highlight systematic variability in the stellar wind of the early B type supergiant, HD 64760, whose UV line profiles were monitored for almost 16 days in 1995 January as part of the IUE 'MEGA Campaign.' The extensive coverage reveals a pattern of rapidly evolving discrete optical depth changes which typically migrate from approx. - 200 km/s to approx. -1500 km/s in less than 12 hr. These features coexist with more slowly evolving structures lasting several days. Time-series analysis of the Si(IV), Si(III), and N(V) profile variations presents a clear 1.2 day periodicity, which is a quarter of the estimated maximum rotation period of HD 64760. The line profile changes are consistent with an interpretation in terms of a set of corotating wind features which occult the stellar disk at least 3 times during the observing run. These data are combined with UV observations collected in 1993 March to argue in favor of rotationally modulated wind variations in HD 64760. The basic result of very regular, large-scale optical depth variations points to a 'clock' whose origin is on the stellar surface, rather than a mechanism that is entirely intrinsic to the stellar wind.
Long-term changes in ultraviolet P Cygni profiles observed with Copernicus
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.
1977-01-01
The incidence and nature of variability occurring on time scales of years in the ultraviolet P Cygni profiles of 15 O and B stars are investigated using spectrophotometric data obtained with the Copernicus satellite. It is found that some change in at least a few details of the P Cygni profiles is evident in almost every case, that the changes in a few stars appear to represent substantial variations in the column densities of the particular ions observed, and that the changes in other stars are minor in nature and do not result from significant alterations in the quantity of material in the stellar winds. Most of the narrow absorption features are shown to be invariant in velocity, although their strengths have apparently changed in certain cases. The nature of the changes observed in each of the program stars is briefly described, the time scale for variability in the stellar winds is considered, and two stars (Zeta Pup and Delta Ori A) are identified for which some alteration in the total amount of material in the stellar wind has taken place. It is suggested that the narrow absorption features probably represent temperature gradients or plateaus in the stellar-wind velocity fields or may be caused by flat regions in the height dependence of the wind velocity.
Subsonic structure and optically thick winds from Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Grassitelli, L.; Langer, N.; Grin, N. J.; Mackey, J.; Bestenlehner, J. M.; Gräfener, G.
2018-06-01
Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf-Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf-Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that these stars have their winds launched to supersonic velocities by the radiation pressure arising from the iron opacity bump. Conversely, stellar models which do not show transonic flows from the iron opacity bump form low-density extended envelopes. We derive an analytic criterion for the appearance of envelope inflation and of a density inversion in the outer sub-photospheric layers.
Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold
2013-11-01
We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.
Cosmic ray acceleration in magnetic circumstellar bubbles
NASA Astrophysics Data System (ADS)
Zirakashvili, V. N.; Ptuskin, V. S.
2018-03-01
We consider the diffusive shock acceleration in interstellar bubbles created by powerful stellar winds of supernova progenitors. Under the moderate stellar wind magnetization the bubbles are filled by the strongly magnetized low density gas. It is shown that the maximum energy of particles accelerated in this environment can exceed the "knee" energy in the observable cosmic ray spectrum.
The impact of star formation feedback on the circumgalactic medium
NASA Astrophysics Data System (ADS)
Fielding, Drummond; Quataert, Eliot; McCourt, Michael; Thompson, Todd A.
2017-04-01
We use idealized 3D hydrodynamic simulations to study the dynamics and thermal structure of the circumgalactic medium (CGM). Our simulations quantify the role of cooling, stellar feedback driven galactic winds and cosmological gas accretion in setting the properties of the CGM in dark matter haloes ranging from 1011 to 1012 M⊙. Our simulations support a conceptual picture in which the properties of the CGM, and the key physics governing it, change markedly near a critical halo mass of Mcrit ≈ 1011.5 M⊙. As in calculations without stellar feedback, above Mcrit halo gas is supported by thermal pressure created in the virial shock. The thermal properties at small radii are regulated by feedback triggered when tcool/tff ≲ 10 in the hot gas. Below Mcrit, however, there is no thermally supported halo and self-regulation at tcool/tff ˜ 10 does not apply. Instead, the gas is out of hydrostatic equilibrium and largely supported against gravity by bulk flows (turbulence and coherent inflow/outflow) arising from the interaction between cosmological gas inflow and outflowing galactic winds. In these lower mass haloes, the phase structure depends sensitively on the outflows' energy per unit mass and mass-loading, which may allow measurements of the CGM thermal state to constrain the nature of galactic winds. Our simulations account for some of the properties of the multiphase halo gas inferred from quasar absorption line observations, including the presence of significant mass at a wide range of temperatures, and the characteristic O VI and C IV column densities and kinematics. However, we underpredict the neutral hydrogen content of the z ˜ 0 CGM.
A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.
2011-09-01
LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are betweenmore » 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.« less
The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies
NASA Astrophysics Data System (ADS)
Grisdale, Kearn Michael
2017-08-01
Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.
Super-Eddington Accretion in the Ultraluminous X-Ray Source NGC 1313 X-2: An Ephemeral Feast
NASA Astrophysics Data System (ADS)
Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui
2014-01-01
We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (~50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ~104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ~100 km s-1 might indicate that it has existed over ~106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ~ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.
Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample
NASA Astrophysics Data System (ADS)
Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.
1994-12-01
Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.
Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures
NASA Astrophysics Data System (ADS)
Carroll-Nellenback, Jonathan; Frank, Adam; Liu, Baowei; Quillen, Alice C.; Blackman, Eric G.; Dobbs-Dixon, Ian
2017-04-01
Signatures of 'evaporative' winds from exoplanets on short (hot) orbits around their host star have been observed in a number of systems. In this paper, we present global adaptive mesh refinement simulations that track the launching of the winds, their expansion through the circumstellar environment, and their interaction with a stellar wind. We focus on purely hydrodynamic flows including the anisotropy of the wind launching and explore the orbital/fluid dynamics of the resulting flows in detail. In particular, we find that a combination of the tidal and Coriolis forces strongly distorts the planetary 'Parker' wind creating 'up-orbit' and 'down-orbit' streams. We characterize the flows in terms of their orbital elements that change depending on their launch position on the planet. We find that the anisotropy in the atmospheric temperature leads to significant backflow on to the planet. The planetary wind interacts strongly with the stellar wind creating instabilities that may cause eventual deposition of planetary gas on to the star. We present synthetic observations of both transit and absorption line-structure for our simulations. For our initial conditions, we find that the orbiting wind material produces absorption signatures at significant distances from the planet and substantial orbit-to-orbit variability. Lyα absorption shows red- and blueshifted features out to 70 km s-1. Finally, using semi-analytic models we constrain the effect of radiation pressure, given the approximation of uniform stellar absorption.
Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Maccarone, T. J.
2017-12-01
The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.
Multiline Transfer and the Dynamics of Stellar Winds
NASA Technical Reports Server (NTRS)
Abbott, D. C.; Lucy, L. B.
1985-01-01
A Monte Carlo technique for treating multiline transfer in stellar winds is described. With a line list containing many thousands of transitions and with fairly realistic treatments of ionization, excitation and line formation, the resulting code allows the dynamic effects of overlapping lines the investigation of and provides the means to directly synthesize the complete spectrum of a star and its wind. It is found that the computed mass loss rate for data Puppis agrees with the observed rate. The synthesized spectrum of zeta Puppis also agrees with observational data. This confirms that line driving is the dominant acceleration mechanism in this star's wind.
Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation
NASA Astrophysics Data System (ADS)
Silich, Sergiy; Tenorio-Tagle, Guillermo
2018-05-01
Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.
O-star parameters from line profiles of wind-blanketed model atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voels, S.A.
1989-01-01
The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less
NASA Technical Reports Server (NTRS)
Neugebauer, M. (Editor)
1983-01-01
Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.
The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
2017-07-10
Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 10{sup 3} and 10{sup 5} times the solar windmore » pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.« less
Physical implications of the eclipsing binary pulsar
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Cordes, James M.
1988-01-01
The observed characteristics of the msec pulsar P1957+20, discovered in an eclipsing binary by Fruchter et al. (1988), are considered theoretically. Model equations for the stellar wind and optical emission are derived and used to estimate the effective temperature and optical luminosity associated with wind excitation; then the energy levels required to generate such winds are investigated. The color temperature of the pulsar-heated stellar surface calculated under the assumption of adiabatic expansion is 1000-10,000 K, in good agreement with the observational estimate of 5500 K.
Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005
NASA Astrophysics Data System (ADS)
Pástor, P.
2017-08-01
Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.
Evidence for a connection between photospheric and wind structure in HD 64760
NASA Astrophysics Data System (ADS)
Kaufer, A.; Prinja, R. K.; Stahl, O.
2002-02-01
We report on the results of an extended optical spectroscopic monitoring campaign on the early-type B supergiant HD 64760 (B0.5 Ib). The study is based on high-resolution echelle spectra obtained with the Landessternwarte Heidelberg's HEROS instrument at ESO La Silla. Ninety-nine spectra were collected over 103 nights between January 19 and May 1, 1996. The Hα line shows a characteristic profile with a central photospheric absorption superimposed by symmetrically blue- and red-shifted wind-emission humps. The time-averaged line profile is well described by a differentially rotating and expanding radiation-driven wind: the redistribution of the wind emission flux into a double peak profile is interpreted in terms of the resonance zone effect in rotating winds as first described by Petrenz & Puls (\\cite{Pet96}). Detailed time-series analyses of the line profile variations across the Hα profile reveal for the first time in an optical data set of HD 64760 a periodic 2.4-day modulation of the inner and outer flanks of the Hα emission humps. The stronger modulations of the inner flanks of the emission humps at photospheric velocities are due to complex width variations of the underlying photospheric Hα profile. The weaker variations of the outer flanks are in phase and reflect variations at the base of the stellar wind. The detected 2.4-day modulation period together with a second period of 1.2 days (in the red emission hump only) is in excellent agreement with the outer-wind modulation periods as reported by Fullerton et al. (\\cite{Ful97}) from intensive IUE UV time-series observations in 1993 and 1995. The 2.4-day period is further detected in the photospheric He I lambda4026 line as prograde traveling (pseudo-)absorption and emission features. The observed variability pattern is indicative for low-order non-radial pulsations in the photosphere of HD 64760. The non-radial pulsations are identified as the source of persistent, regularly spaced stellar surface structure which is maintained throughout the photosphere - wind transition zone (this work) out into the UV regime of the terminal velocity outflow. Based on observations collected at the European Southern Observatory at La Silla, Chile (Proposal ID 56.D-0235).
Stellar feedback in galaxies and the origin of galaxy-scale winds
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Quataert, Eliot; Murray, Norman
2012-04-01
Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.
HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.
We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
NASA Astrophysics Data System (ADS)
Katrien Els Decin, Leen
2015-08-01
Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.
Gas Flows in Dual Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky
2018-06-01
Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z < 0.05, using Keck/OSIRIS, VLT/SINFONI, SOFIA/FORCAST, and HST data. I will focus on the interplay between the several complex processes observed in dual AGN, using as an example the prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.
Demonstration of a Novel Method for Measuring Mass-loss Rates for Massive Stars
NASA Astrophysics Data System (ADS)
Kobulnicky, Henry A.; Chick, William T.; Povich, Matthew S.
2018-03-01
The rate at which massive stars eject mass in stellar winds significantly influences their evolutionary path. Cosmic rates of nucleosynthesis, explosive stellar phenomena, and compact object genesis depend on this poorly known facet of stellar evolution. We employ an unexploited observational technique for measuring the mass-loss rates of O and early-B stars. Our approach, which has no adjustable parameters, uses the principle of pressure equilibrium between the stellar wind and the ambient interstellar medium for a high-velocity star generating an infrared bow shock nebula. Results for 20 bow-shock-generating stars show good agreement with two sets of theoretical predictions for O5–O9.5 main-sequence stars, yielding \\dot{M} = 1.3 × 10‑6 to 2 × 10‑9 {M}ȯ {yr}}-1. Although \\dot{M} values derived for this sample are smaller than theoretical expectations by a factor of about two, this discrepancy is greatly reduced compared to canonical mass-loss methods. Bow-shock-derived mass-loss rates are factors of 10 smaller than Hα-based measurements (uncorrected for clumping) for similar stellar types and are nearly an order of magnitude larger than P4+ and some other diagnostics based on UV absorption lines. Ambient interstellar densities of at least several cm‑3 appear to be required for formation of a prominent infrared bow shock nebula. Measurements of \\dot{M} for early-B stars are not yet compelling owing to the small number in our sample and the lack of clear theoretical predictions in the regime of lower stellar luminosities. These results may constitute a partial resolution of the extant “weak-wind problem” for late-O stars. The technique shows promise for determining mass-loss rates in the weak-wind regime.
Giant stellar-wind shell associated with the H II region M16
NASA Astrophysics Data System (ADS)
Sofue, Y.; Handa, T.; Fuerst, E.; Reich, W.; Reich, P.
The detection of a giant radio continuum shell associated with the bright H II region M16, one of the most active star-forming sites in the Sagittarius arm, is reported. The shell structure agrees with that predicted by the stellar wind bubble model. The innermost regions of the shell is a cavity dominated by a stellar wind from early-type stars and is bounded by shocked H II gas. The shell is observed as a thermal radio emission loop. The rate of kinetic energy injection from the central O stars is estimated to be 3.3 x 10 to the 36th ergs/s, and the corresponding mass loss rate is 2.6 x 10 to the -6th solar mass/yr, with an age of the shell being about 7 million yr.
Centrifugally driven winds from protostellar accretion discs - I. Formulation and initial results
NASA Astrophysics Data System (ADS)
Nolan, C. A.; Salmeron, R.; Federrath, C.; Bicknell, G. V.; Sutherland, R. S.
2017-10-01
Protostellar discs play an important role in star formation, acting as the primary mass reservoir for accretion on to young stars and regulating the extent to which angular momentum and gas is released back into stellar nurseries through the launching of powerful disc winds. In this study, we explore how disc structure relates to the properties of the wind-launching region, mapping out the regions of protostellar discs where wind launching could be viable. We combine a series of 1.5D semi-analytic, steady-state, vertical disc-wind solutions into a radially extended 1+1.5D model, incorporating all three diffusion mechanisms (Ohm, Hall and ambipolar). We observe that the majority of mass outflow via disc winds occurs over a radial width of a fraction of an astronomical unit, with outflow rates attenuating rapidly on either side. We also find that the mass accretion rate, magnetic field strength and surface density profile each have significant effects on both the location of the wind-launching region and the ejection/accretion ratio \\dot{M}_out/\\dot{M}_in. Increasing either the accretion rate or the magnetic field strength corresponds to a shift of the wind-launching region to smaller radii and a decrease in \\dot{M}_out/\\dot{M}_in, while increasing the surface density corresponds to launching regions at larger radii with increased \\dot{M}_out/\\dot{M}_in. Finally, we discover a class of disc winds containing an ineffective launching configuration at intermediate radii, leading to two radially separated regions of wind launching and diminished \\dot{M}_out/\\dot{M}_in. We find that the wind locations and ejection/accretion ratio are consistent with current observational and theoretical estimates.
Solar r-process-constrained actinide production in neutrino-driven winds of supernovae
NASA Astrophysics Data System (ADS)
Goriely, S.; Janka, H.-Th.
2016-07-01
Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular, nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions - but still lack, for example, the effects of strong magnetic fields - we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time-scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the Solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.
NASA Astrophysics Data System (ADS)
Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.
2018-04-01
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
New method to design stellarator coils without the winding surface
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-01-01
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.
Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations.
Kislyakova, Kristina G; Holmström, Mats; Lammer, Helmut; Odert, Petra; Khodachenko, Maxim L
2014-11-21
Transit observations of HD 209458b in the stellar Lyman-α(Lyα) line revealed strong absorption in both blue and red wings of the line interpreted as hydrogen atoms escaping from the planet's exosphere at high velocities. The following sources for the absorption were suggested: acceleration by the stellar radiation pressure, natural spectral line broadening, or charge exchange with the stellar wind. We reproduced the observation by means of modeling that includes all aforementioned processes. Our results support a stellar wind with a velocity of ≈400 kilometers per second at the time of the observation and a planetary magnetic moment of ≈1.6 × 10(26) amperes per square meter. Copyright © 2014, American Association for the Advancement of Science.
X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1
NASA Astrophysics Data System (ADS)
Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.
2007-05-01
We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Optical hydrogen absorption consistent with a bow shock around the hot Jupiter HD 189733 b
NASA Astrophysics Data System (ADS)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.
Hot Jupiters, i.e., Jupiter-mass planets with orbital semi major axes of <10 stellar radii, can interact strongly with their host stars. If the planet is moving supersonically through the stellar wind, a bow shock will form ahead of the planet where the planetary magnetosphere slams into the the stellar wind or where the planetary outflow and stellar wind meet. Here we present high resolution spectra of the hydrogen Balmer lines for a single transit of the hot Jupiter HD 189733 b. Transmission spectra of the Balmer lines show strong absorption ~70 minutes before the predicted optical transit, implying a significant column density of excited hydrogen orbiting ahead of the planet. We show that a simple geometric bow shock model is able to reproduce the important features of the absorption time series while simultaneously matching the line profile morphology. Our model suggests a large planetary magnetic field strength of ~28 G. Follow-up observations are needed to confirm the pre-transit signal and investigate any variability in the measurement.
THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoville, N.; Burkert, A.
2013-05-10
We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar tomore » that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.« less
Stellar Ablation of Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Moore, Thomas E.; Horwitz, J. L.
2007-01-01
We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.
The spiral field inhibition of thermal conduction in two-fluid solar wind models
NASA Technical Reports Server (NTRS)
Nerney, S.; Barnes, A.
1978-01-01
The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.
Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Icke, V.; Preston, H.L.; Balick, B.
1989-02-01
Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essentialmore » kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references.« less
Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240
NASA Astrophysics Data System (ADS)
Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George
2018-01-01
Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.
Latitude-Dependent Effects in the Stellar Wind of Eta Carinae
NASA Technical Reports Server (NTRS)
Smith, Nathan; Davidson, Kris; Gull, Theodore R.; Ishibashi, Kazunori; Hillier, D. John
2002-01-01
The Homunculus reflection nebula around eta Carinae provides the rare opportunity to observe the spectrum of a star from more than one direction. In the case of eta Car, the nebula's geometry is known well enough to infer how wind profiles vary with latitude. We present STIS spectra of several positions in the Homunculus, showing directly that eta Car has an aspherical and axisymmetric stellar wind. P Cygni absorption in Balmer lines depends on latitude, with relatively high velocities and strong absorption near the polar axis. Stronger absorption at high latitudes is surprising, and it suggests higher mass flux toward the poles, perhaps resulting from equatorial gravity darkening on a rotating star. Reflected profiles of He I lines are more puzzling, and offer clues to eta Car's wind geometry and ionization structure. During eta Car's high-excitation state in March 2000, the wind had a fast, dense polar wind, with higher ionization at low latitudes. Older STIS data obtained since 1998 reveal that this global stellar-wind geometry changes during eta Car's 5.5 year cycle, and may suggest that this star s spectroscopic events are shell ejections. Whether or not a companion star triggers these outbursts remains ambiguous. The most dramatic changes in the wind occur at low latitudes, while the dense polar wind remains relatively undisturbed during an event. The apparent stability of the polar wind also supports the inferred bipolar geometry. The wind geometry and its variability have critical implications for understanding the 5.5 year cycle and long-term variability, but do not provide a clear alternative to the binary hypothesis for generating eta Car s X-rays.
Probing the Mass Distribution and Stellar Populations of M82
NASA Astrophysics Data System (ADS)
Greco, Johnny; Martini, P.; Thompson, T. A.
2012-01-01
M82 is often considered the archetypical starburst galaxy because of its spectacular starbust-driven superwind. Its close proximity of 3.6 Mpc and nearly edge-on geometry make it a unique laboratory for studying the physics of rapid star formation and violent galactic winds. In addition, there is evidence that it has been tidally-truncated by its interaction with M81 and therefore has essentially no dark matter halo. The mass distribution of this galaxy is needed to estimate the power of its superwind, as well as determine if a dark matter halo is still present. Numerous studies have used stellar and gas dynamics to estimate the mass distribution, yet the substantial dust attenuation has been a significant challenge. We have measured the stellar kinematics in the near-infrared K-band with the LUCI-1 spectrograph at the Large Binocular Telescope. We used the '2CO stellar absorption bandhead at 2.29µm to measure the stellar rotation curve out to ˜4kpc, and our results confirm that the dark matter halo is still present. This is in stark contrast with the nearly Keplerian gas dynamics measured with HI and CO emission from the interstellar medium. We estimate M82's dynamical mass to be ˜1010 M⊙. We have also measured the equivalent width of the 12CO bandhead to provide new constraints on the spatial extent of the red supergiant population. The variation in the CO equivalent width with radius clearly shows that supergiants dominate the light within 0.5kpc radius. The superwind is likely launched from this region, where we estimate the enclosed mass is 2×109 M⊙.
NASA Technical Reports Server (NTRS)
Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Sharon, Keren
2014-01-01
We present a detailed analysis of multi-wavelength Hubble Space Telescope/Wide Field Camera 3 (WFC3) imaging and Keck/OSIRIS near-infrared adaptive optics-assisted integral field spectroscopy for a highly magnified lensed galaxy at z = 1.70. This young starburst is representative of ultraviolet-selected star-forming galaxies (SFGs) at z approx. 2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100 pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction and there is a clear signature of a tidal tail. We constrain the age, reddening, star formation rate, and stellar mass of the star-forming clumps from spectral energy distribution (SED) modeling of the WFC3 photometry and measure their H(alpha) luminosity, metallicity, and outflow properties from the OSIRIS data.With strong star-formation-driven outflows in four clumps, RCSGA0327 is the first high-redshift SFG at stellar mass <10(exp 10) Stellar Mass with spatially resolved stellar winds. We compare the H(alpha) luminosities, sizes, and dispersions of the star-forming regions with other high-z clumps as well as local giant H(II) regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local universe. Spatially resolved SED modeling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system that is not detected in H(alpha) emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.
The stellar wind as a key to the understanding of the spectral activity of IN Com
NASA Astrophysics Data System (ADS)
Kozlova, O. V.; Alekseev, I. Yu.
2014-06-01
We present long-term spectral observations ( R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.
Wind influence on a coastal buoyant outflow
NASA Astrophysics Data System (ADS)
Whitney, Michael M.; Garvine, Richard W.
2005-03-01
This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.
The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products
NASA Astrophysics Data System (ADS)
Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team
2017-01-01
The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.
Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes
NASA Technical Reports Server (NTRS)
Konigl, Arieh; Kartje, John F.
1994-01-01
Centrifugally driven winds from the surfaces of magnetized accretion disks have been recognized as an attractive mechanism of removing the angular momentum of the accreted matter and of producing the bipolar outflows and jets that are often associated with compact astronomical objects. As previously suggested in the context of young stellar objects, such winds have unique observational manifestations stemming from their highly stratified density and velocity structure and from their exposure to the strong continuum radiation field of the compact object. We have applied this scenario to active galactic nuclei (AGNs) and investigated the properties of hydromagnetic outflows that originate within approximately 10(M(sub 8)) pc of the central 10(exp 8)(M(sub 8)) solar mass black hole. On the basis of our results, we propose that hydromagnetic disk-driven winds may underlie the classification of broad-line and narrow-line AGNs (e.g., the Seyfert 1/Seyfert 2 dichotomy) as well as the apparent dearth of luminous Seyfert 2 galaxies. More generally, we demonstrate that such winds could strongly influence the spectral characteristics of Seyfert galaxies, QSOs, and BL Lac objects (BLOs). In our picture, the torus is identified with the outer regions of the wind where dust uplifted from the disk surfaces by gas-grain collisions is embedded in the outflow. Using an efficient radiative transfer code, we show that the infrared emission of Seyfert galaxies and QSOs can be attributed to the reprocessing of the UV/soft X-ray AGN continuum by the dust in the wind and the disk. We demonstrate that the radiation pressure force flattens the dust distribution in objects with comparatively high (but possibly sub-Eddington) bolometric luminosities, and we propose this as one likely reason for the apparent paucity of narrow-line objects among certain high-luminosity AGNs. Using the XSTAR photoionization code, we show that the inner regions of the wind could naturally account for the warm (greater than or approximately equal to 10(exp 5) K) and hot (greater than or approximately equal to 10(exp 6) K) gas components that have been inferred to exist on scales less than or approximately equal to 10(exp 2) pc in several Seyfert galaxies. We suggest that the partially ionized gas in the inner regions of the wind, rather than the dusty, neutral outflow that originates further out in the disk, could account for the bulk of the X-ray absorption in Seyferts observed at relatively small angles to their symmetry axes. Finally, we discuss the application of this model to the interpretation of the approximately 0.6 keV X-ray absorption feature reported in several BLOs.
SpS5 - II. Stellar and wind parameters
NASA Astrophysics Data System (ADS)
Martins, F.; Bergemann, M.; Bestenlehner, J. M.; Crowther, P. A.; Hamann, W. R.; Najarro, F.; Nieva, M. F.; Przybilla, N.; Freimanis, J.; Hou, W.; Kaper, L.
2015-03-01
The development of infrared observational facilities has revealed a number of massive stars in obscured environments throughout the Milky Way and beyond. The determination of their stellar and wind properties from infrared diagnostics is thus required to take full advantage of the wealth of observations available in the near and mid infrared. However, the task is challenging. This session addressed some of the problems encountered and showed the limitations and successes of infrared studies of massive stars.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.
2012-01-20
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less
Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds
NASA Astrophysics Data System (ADS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
Momentum and energy deposition in late-type stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Hartmann, L.; Macgregor, K. B.
1980-01-01
The present study calculates the response of the outer atmospheres of cool low-gravity stars to the passage of the mechanical energy fluxes of solar magnitude in the form of acoustic waves and Alfven waves. It is shown that Alfven waves are efficient in generating outflow, and can account for the order of magnitude of observed mass loss in late-type luminous stars. However, unless these magnetic waves undergo some dissipation within several stellar radii of the surface, the predicted terminal velocities of the resulting stellar winds are far too high. Alfven wave dissipation should give rise to extended warm chromospheres in low-gravity late-type stars, a prediction which can be observationally tested.
Wind diagnostics and correlations with the near-infrared excess in Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Corcoran, M.; Ray, T. P.
1998-03-01
Intermediate dispersion spectroscopic observations of 37 Herbig Ae/Be stars reveal that the equivalent widths of their [OI]lambda 6300 and Hα emission lines, are related to their near-infrared colours in the same fashion as the T-Tauri stars. Such a correlation strongly supports the idea that the winds from Herbig Ae/Be stars arise in the same manner as those from T-Tauri stars, i.e. through accretion driven mass-loss. We also find that the [OI]lambda 6300 line luminosity correlates better with excess infrared luminosity than with stellar luminosities, again supporting the idea that Herbig Ae/Be winds are accretion driven. If one includes the lower mass analogues of the Herbig Ae/Be stars with forbidden line emission, i.e. the classical T-Tauri stars, the correlation between mass-loss rate and infrared excess spans 5 orders of magnitude in luminosity and a range of masses from 0.5Msun to approximately 10Msun. Our observations therefore extend the findings of Cohen et al. (1989) and Cabrit et al. (1990) for low mass young stars and, taken in conjunction with other evidence (Corcoran & Ray 1997), strongly support the presence of circumstellar disks around intermediate mass stars with forbidden line emission. An implication of our findings is that the same outflow model must be applicable to these Herbig Ae/Be stars and the classical T Tauri stars. Based on observations made at the La Palma Observatory, the Caltech Submillimeter Observatory, and the European Southern Observatory/Max Planck Institute 2.2m Telescope.
NASA Astrophysics Data System (ADS)
Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.
2014-10-01
The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and shaping their environments. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn
2017-10-01
Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations. This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.
The XMM-Newton View of Wolf-Rayet Bubbles
NASA Astrophysics Data System (ADS)
Guerrero, M.; Toala, J.
2017-10-01
The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.
Measurements of the Stellar Wind Strengths of Planet-Hosting G- and K-Type Stars
NASA Astrophysics Data System (ADS)
Edelman, Eric; Redfield, S.; Wood, B.; Linsky, J.; Mueller, H. R.
2014-01-01
Voyager 1 has recently crossed the heliosphere, where the solar wind meets the material of the interstellar medium. With line of sight spectral information provided by the STIS on Hubble, the analogous boundary around other stars, which is known as an astrosphere, can be detected. We are conducting a thorough analysis of MgII, FeII, DI, and HI Lyman-alpha absorption along the lines of sight to a sample of nearby K and G stars in order to obtain and use astrospheric detections to estimate stellar wind strengths, and to study their effects upon exoplanetary atmospheres. Each astrospheric measurement is obtained by careful examination and reconstruction of the Lyman-alpha emission feature, which ultimately provides an estimate of the neutral hydrogen column density associated with a star’s astrosphere. The amount of neutral hydrogen in that region is highly dependent on the stellar wind strength of the host star, and is one of the scant few methods available today for measuring that quantity. If stellar winds are strong enough, they can be responsible for stripping a nearby planet of its atmosphere, as was potentially the case with Mars and our Sun approximately 4 billion years ago. Increasing the sample size of measurements of stellar wind strengths for K and G type stars will allow for us to more accurately determine the influence of solar-type host stars on their respective exoplanetary systems. Included in our sample are the stars HD9826 and HD192310, which both have confirmed exoplanets in orbit. This project includes the reconstructions of the Lyman-alpha emission feature along the lines of sight to a sample of nearby stars, with a determination of whether or not astrospheric or heliospheric absorption is detected in each instance, with hydrogen column densities for positive detections. We would like to acknowledge NASA HST Grant GO-12475 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and a student fellowship from the Connecticut Space Grant Consortium for their support of this research, as well as the Astronomy faculty and students at Wesleyan University.
A turbulent wake as a tracer of 30,000 years of Mira's mass loss history.
Martin, D Christopher; Seibert, Mark; Neill, James D; Schiminovich, David; Forster, Karl; Rich, R Michael; Welsh, Barry Y; Madore, Barry F; Wheatley, Jonathan M; Morrissey, Patrick; Barlow, Tom A
2007-08-16
Mira is one of the first variable stars ever discovered and it is the prototype (and also the nearest example) of a class of low-to-intermediate-mass stars in the late stages of stellar evolution. These stars are relatively common and they return a large fraction of their original mass to the interstellar medium (ISM) (ref. 2) through a processed, dusty, molecular wind. Thus stars in Mira's stage of evolution have a direct impact on subsequent star and planet formation in their host galaxy. Previously, the only direct observation of the interaction between Mira-type stellar winds and the ISM was in the infrared. Here we report the discovery of an ultraviolet-emitting bow shock and turbulent wake extending over 2 degrees on the sky, arising from Mira's large space velocity and the interaction between its wind and the ISM. The wake is visible only in the far ultraviolet and is consistent with an unusual emission mechanism whereby molecular hydrogen is excited by turbulent mixing of cool molecular gas and shock-heated gas. This wind wake is a tracer of the past 30,000 years of Mira's mass-loss history and provides an excellent laboratory for studying turbulent stellar wind-ISM interactions.
Star formation across cosmic time and its influence on galactic dynamics
NASA Astrophysics Data System (ADS)
Freundlich, Jonathan
2015-12-01
Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.
NASA Technical Reports Server (NTRS)
Dupree, A. K.
1995-01-01
Spectral observations of cool stars enable study of the presence and character of winds and the mass loss process in objects with effective temperatures, gravities, and atmospheric compositions which differ from that of the Sun. A wealth of recent spectroscopic measurements from the Hubble Space Telescope, and the Extreme Ultraviolet Explorer complement high resolution ground-based measures in the optical and infrared spectral regions. Such observations when combined with realistic semi-empirical atmospheric modeling allow us to estimate the physical conditions in the atmospheres and winds of many classes of cool stars. Line profiles support turbulent heating and mass motions. In low gravity stars, evidence is found for relatively fast (approximately 200 km s(exp -1)), warm winds with rapid acceleration occurring in the chromosphere. In some cases outflows commensurate with stellar escape velocities are present. Our current understanding of cool star winds will be reviewed including the implications of stellar observations for identification of atmospheric heating and acceleration processes.
Absorption line profiles in a companion spectrum of a mass losing cool supergiant
NASA Technical Reports Server (NTRS)
Rodrigues, Liliya L.; Boehm-Vitense, Erika
1990-01-01
Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.
Stability of metal-rich very massive stars
NASA Astrophysics Data System (ADS)
Goodman, J.; White, Christopher J.
2016-02-01
We revisit the stability of very massive non-rotating main-sequence stars at solar metallicity, with the goal of understanding whether radial pulsations set a physical upper limit to stellar mass. Models of up to 938 solar masses are constructed with the MESA code, and their linear stability in the fundamental mode, assumed to be the most dangerous, is analysed with a fully non-adiabatic method. Models above 100 M⊙ have extended tenuous atmospheres (`shelves') that affect the stability of the fundamental. Even when positive, this growth rate is small, in agreement with previous results. We argue that small growth rates lead to saturation at small amplitudes that are not dangerous to the star. A mechanism for saturation is demonstrated involving non-linear parametric coupling to short-wavelength g-modes and the damping of the latter by radiative diffusion. The shelves are subject to much more rapidly growing strange modes. This also agrees with previous results but is extended here to higher masses. The strange modes probably saturate via shocks rather than mode coupling but have very small amplitudes in the core, where almost all of the stellar mass resides. Although our stellar models are hydrostatic, the structure of their outer parts suggests that optically thick winds, driven by some combination of radiation pressure, transonic convection, and strange modes, are more likely than pulsation in the fundamental mode to limit the main-sequence lifetime.
Copernicus ultraviolet spectra of OB supergiants with strong stellar winds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, J.B.
1976-03-01
Spectral scans at approximately 0.2 A resolution have been obtained in the far-ultraviolet of eight stars which have high mass-loss rates from stellar winds. The P Cygni characteristics of the line profiles appear to vary inversely as the mass flow rate, and in P Cygni itself the C III lambda 1175 line shows no velocity shift, or emission. It is suggested that higher mass flow rates occur through a denser, slower moving envelope in which collisional interactions are important. (auth)
NASA Astrophysics Data System (ADS)
Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J. F.; Opher, M.; Gombosi, T. I.
2014-02-01
We perform three-dimensional numerical simulations of stellar winds of early-M-dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass-loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptot (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptot, variations of up to a factor of 3 in ptot (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 per cent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M-dwarf stars like DT Vir, DS Leo and GJ 182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.
Resolving the Wind Structure of Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, T.; Hillier, J.; Ishibashi, K.; Davidson, K.
2000-01-01
Space Telescope Imaging Spectrograph (STIS) spectral observations of Eta Carinae have resolved the wind structure of the star(s) from the central point source. These observations were done with a 52 x 0.1" aperture, resolving power of about 5000 and complete spectral coverage from 1640A to 10400A. Various broad stellar Lines are seen to change within the central 0.511 of the nebular region. The Balmer lines, relative to the continuum, drop in strength while some Fe II lines scale with the continuum. Other Fe II lines increase in intensity while still others decrease. The structure to the southeast of the central source shows considerable variation in the stellar line strengths. To the Northwest, the emission is dominated by the very bright nebular knots, Weigelt blobs B and D. Three sets of observations have been done: March 1998, February 1999 and March 2000 to monitor the spectral variations. The stellar, wind and nebular emission changes considerably during this two year period. This work was done under the STIS GTO and HST GO funding.
Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays
NASA Astrophysics Data System (ADS)
Shen, Ken J.; Schwab, Josiah
2017-01-01
In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.
Low energy gamma ray emission from the Cygnus OB2 association
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.
NASA Astrophysics Data System (ADS)
Cochrane, R. K.; Best, P. N.; Sobral, D.; Smail, I.; Geach, J. E.; Stott, J. P.; Wake, D. A.
2018-04-01
The deep, near-infrared narrow-band survey HiZELS has yielded robust samples of H α-emitting star-forming galaxies within narrow redshift slices at z = 0.8, 1.47 and 2.23. In this paper, we distinguish the stellar mass and star-formation rate (SFR) dependence of the clustering of these galaxies. At high stellar masses (M*/M⊙ ≳ 2 × 1010), where HiZELS selects galaxies close to the so-called star-forming main sequence, the clustering strength is observed to increase strongly with stellar mass (in line with the results of previous studies of mass-selected galaxy samples) and also with SFR. These two dependencies are shown to hold independently. At lower stellar masses, however, where HiZELS probes high specific SFR galaxies, there is little or no dependence of the clustering strength on stellar mass, but the dependence on SFR remains: high-SFR low-mass galaxies are found in more massive dark matter haloes than their lower SFR counterparts. We argue that this is due to environmentally driven star formation in these systems. We apply the same selection criteria to the EAGLE cosmological hydrodynamical simulations. We find that, in EAGLE, the high-SFR low-mass galaxies are central galaxies in more massive dark matter haloes, in which the high SFRs are driven by a (halo-driven) increased gas content.
The influence of the magnetic topology on the wind braking of sun-like stars.
NASA Astrophysics Data System (ADS)
Réville, V.; Brun, A. S.; Matt, S. P.; Strugarek, A.; Pinto, R.
2014-12-01
Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging (ZDI).
The Detectability of Radio Auroral Emission from Proxima b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Loeb, Abraham
Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According tomore » recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.« less
Much NICER Monitoring of the X-ray Spectrum of Eta Carinae
NASA Astrophysics Data System (ADS)
Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven
2018-01-01
Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.
The low-metallicity starburst NGC346: massive-star population and feedback
NASA Astrophysics Data System (ADS)
Oskinova, Lida
2017-08-01
The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.
DOUBLE BOW SHOCKS AROUND YOUNG, RUNAWAY RED SUPERGIANTS: APPLICATION TO BETELGEUSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Jonathan; Mohamed, Shazrene; Neilson, Hilding R.
2012-05-20
A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent three-dimensional simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bowmore » shock is very young (<30, 000 years old), hence Betelgeuse may have only recently become an RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into two-dimensional hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as it undergoes the transition to an RSG near the end of its life. We find that the collapsing BSG wind bubble induces a bow shock-shaped inner shell around the RSG wind that resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG wind's interaction with the ISM. We suggest that this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuse's bow shock.« less
THE SPACE WEATHER OF PROXIMA CENTAURI b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, C.; Drake, J. J.; Cohen, O., E-mail: cgaraffo@cfa.harvard.edu
A planet orbiting in the “habitable zone” of our closest neighboring star, Proxima Centauri, has recently been discovered, and the next natural question is whether or not Proxima b is “habitable.” Stellar winds are likely a source of atmospheric erosion that could be particularly severe in the case of M dwarf habitable zone planets that reside close to their parent star. Here, we study the stellar wind conditions that Proxima b experiences over its orbit. We construct 3D MHD models of the wind and magnetic field around Proxima Centauri using a surface magnetic field map for a star of themore » same spectral type and scaled to match the observed ∼600 G surface magnetic field strength of Proxima. We examine the wind conditions and dynamic pressure over different plausible orbits that sample the constrained parameters of the orbit of Proxima b. For all the parameter space explored, the planet is subject to stellar wind pressures of more than 2000 times those experienced by Earth from the solar wind. During an orbit, Proxima b is also subject to pressure changes of 1–3 orders of magnitude on timescales of a day. Its magnetopause standoff distance consequently undergoes sudden and periodic changes by a factor of 2–5. Proxima b will traverse the interplanetary current sheet twice each orbit, and likely crosses into regions of subsonic wind quite frequently. These effects should be taken into account in any physically realistic assessment or prediction of its atmospheric reservoir, characteristics, and loss.« less
Chromospheric Activity in Cool Luminous Stars
NASA Astrophysics Data System (ADS)
Dupree, Andrea
2018-04-01
Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.
The Character and Variability of the Eta Carinae Wind Lines
NASA Technical Reports Server (NTRS)
Nielsen, K. E.; Corcoran, M. F.; Gull, T. R.; Ivarsson, S.; Hillier, J. D.
2006-01-01
The binarity of Eta Carinae has been debated for a long time. We have searched for more evidence for a companion star in a spectroscopic investigation of the Eta Carinae stellar wind lines, using moderate spectral and high angular resolution HST/STIS data. Over Eta Carinae's 5.54 year spectroscopic period many of the observable wind lines in the NUV/Optical spectral region exhibit peculiar line profiles with unusual velocity shifts relative to the system velocity. Some of the lines are exclusively blue-shifted over the entire cycle. Their ionization/excitation imply formation not in the stellar wind but rather in the interface between the two massive stars. We have analyzed velocity and intensity variations over the spectroscopic period and interpreted what the variations tell us about the geometry of the nebular structure close to Eta Carinae.
Grain formation around carbon stars. 1: Stationary outflow models
NASA Technical Reports Server (NTRS)
Egan, Michael P.; Leung, Chun Ming
1995-01-01
Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in grain properties. For small outflow velocities, grains form at lower supersaturation ratios and close to the stellar photosphere, resulting in larger but fewer grains. The reverse is true when grains form under high outflow velocities, i.e., they form at higher supersaturation ratios, farther from the star, and are much smaller but at larger quantities.
Impact of red giant/AGB winds on active galactic nucleus jet propagation
NASA Astrophysics Data System (ADS)
Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.
2017-10-01
Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.
Polarized bow shocks reveal features of the winds and environments of massive stars
NASA Astrophysics Data System (ADS)
Shrestha, Manisha
2018-01-01
Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the implications of these model for the stellar winds and interstellar environments of these influential objects.
Outlook for ultraviolet astronomy
NASA Technical Reports Server (NTRS)
Boehm-Vitense, E.
1981-01-01
A brief overview of galactic and extragalactic research is given with emphasis on the problems of temperature determination, chemical abundance determination, and the question about the energy sources for the high temperature regions. Stellar astronomy, stellar winds, and the interstellar medium are among the topics covered.
NASA Astrophysics Data System (ADS)
Grinberg, V.; Leutenegger, M. A.; Hell, N.; Pottschmidt, K.; Böck, M.; García, J. A.; Hanke, M.; Nowak, M. A.; Sundqvist, J. O.; Townsend, R. H. D.; Wilms, J.
2015-04-01
Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. Appendix A is available in electronic form at http://www.aanda.org
Grinberg, V.; Leutenegger, M. A.; Hell, N.; ...
2015-04-16
Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object’s X-rays to probe the wind structure. In this paper, we analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability ismore » most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. Finally, a qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure.« less
NASA Astrophysics Data System (ADS)
El Mellah, I.; Casse, F.
2017-05-01
Classical supergiant X-ray binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035-1037 erg s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds that participate to the accretion process. Thanks to the parametrization we retained the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier that drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent supergiant X-ray binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).
On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1997-01-01
The final report discusses work completed on proposals to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. We suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical, chromosphere-wind models, and investigate the origin of "dividing lines" in the H-R diagram. In the report, we list the following six specific goals for the first and second year of the proposed research and then describe the completed work: (1) To calculate the acoustic and magnetic wave energy fluxes for stars located in different regions of the H-R diagram; (2) To investigate the transfer of this non-radiative energy through stellar photospheres and to estimate the amount of energy that reaches the chromosphere; (3) To identify major sources of radiative losses in stellar chromospheres and calculate the amount of emitted energy; (4) To use (1) through (3) to construct purely theoretical, two-component, chromospheric models based on the local energy balance. The models will be constructed for stars of different spectral types and different evolutionary status; (5) To explain theoretically the "basal flux", the location of stellar temperature minima and the observed range of chromospheric activity for stars of the same spectral type; and (6) To construct self-consistent, time-dependent stellar wind models based on the momentum deposition by finite amplitude Alfven waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borgogno, D.; Califano, F.; Pegoraro, F.
2015-03-15
In an almost collisionless magnetohydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted, e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae (see, e.g., A. F. Rappazzo and E. N. Parker, Astrophys. J. 773, L2 (2013) and references therein) is a paradigmatic case. Here, we investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated doublemore » magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere.« less
Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind
NASA Astrophysics Data System (ADS)
Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.
2015-04-01
Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.
From Luminous Hot Stars to Starburst Galaxies
NASA Astrophysics Data System (ADS)
Conti, Peter S.; Crowther, Paul A.; Leitherer, Claus
2012-10-01
1. Introduction; 2. Observed properties; 3. Stellar atmospheres; 4. Stellar winds; 5. Evolution of single stars; 6. Binaries; 7. Birth of massive stars and star clusters; 8. The interstellar environment; 9. From giant HII regions to HII galaxies; 10. Starburst phenomena; 11. Cosmological implications; References; Index.
Spin Evolution of Stellar Progenitors in Compact Binaries
NASA Astrophysics Data System (ADS)
Steinle, Nathan; Kesden, Michael
2018-01-01
Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.
Ultraviolet spectral morphology of the O stars. IV - The OB supergiant sequence
NASA Technical Reports Server (NTRS)
Walborn, Nolan R.; Nichols-Bohlin, Joy
1987-01-01
An atlas of 25 O3-B8 supergiant spectra in the wavelength ranges 1320-1580 A and 1620-1880 A is presented, based on high-resolution data from the IUE archives. The remarkably detailed relationship between the stellar-wind profiles and the optical spectral classifications throughout this sequence is emphasized. For instance, the (Si IV)/(C IV) ratio reverses between O4 and O6.5; and the B0, B0.5, and B0.7 Ia wind characteristics are each qualitatively unique and distinct from one another. The systematic behavior of nine stellar-wind features with ionization potentials ranging from 114 to 19 eV is summarized as a function of advancing spectral type.
Photospheres of hot stars. III - Luminosity effects at spectral type 09.5
NASA Technical Reports Server (NTRS)
Voels, Stephen A.; Bohannan, Bruce; Abbott, David C.; Hummer, D. G.
1989-01-01
Hydrogen and helium line profiles with high signal-to-noise ratios were obtained for four stars of spectral type 09.5 (Alpha Cam, Xi Ori A, Delta Ori A,AE Aur) that form a sequence in luminosity: Ia, Ib, II, V. The basic stellar parameters of these stars are determined by fitting the observed line profiles of weak photospheric absorption lines with profiles from models which include the effect of radiation scattered back onto the photosphere from their stellar winds, an effect referred to as wind blanketing. For these stars, the inclusion of wind blanketing is significant only for the most luminous star, Alpha Cam, for which the effective temperature was shifted about -2000 K relative to an unblanketed model.
A MODEL OF WHITE DWARF PULSAR AR SCORPII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Jin-Jun; Huang, Yong-Feng; Zhang, Bing, E-mail: gengjinjun@gmail.com, E-mail: hyf@nju.edu.cn, E-mail: zhang@physics.unlv.edu
2016-11-01
A 3.56 hr white dwarf (WD)–M dwarf (MD) close binary system, AR Scorpii, was recently reported to show pulsating emission in radio, IR, optical, and UV, with a 1.97 minute period, which suggests the existence of a WD with a rotation period of 1.95 minutes. We propose a model to explain the temporal and spectral characteristics of the system. The WD is a nearly perpendicular rotator, with both open field line beams sweeping the MD stellar wind periodically. A bow shock propagating into the stellar wind accelerates electrons in the wind. Synchrotron radiation of these shocked electrons can naturally accountmore » for the broadband (from radio to X-rays) spectral energy distribution of the system.« less
Hollow H II regions. II - Mechanism for wind energy dissipation and diffuse X-ray emission
NASA Astrophysics Data System (ADS)
Dorland, H.; Montmerle, T.
1987-05-01
The mechanism by which stellar-wind energy is dissipated near the shock in a hollow H II region (HHR) around a massive star is investigated theoretically, in the context of the HHR model developed by Dorland et al. (1986). The principles of nonlinear thermal conduction (especially the delocalizaton of conductive heat flux postulated for laboratory fusion plasmas) are reviewed; expressions for estimating heat fluxes are derived; a two-temperature approximation is employed to describe coupling between thermal conduction and wind-energy dissipation; and the determination of the flux-limit factor from X-ray observations is explained. The model is then applied to observational data for the Rosette nebula and Eta Car, and the results are presented graphically. The diffuse X-ray temperatures of HHRs are found to be in the range 2-16 keV and to depend uniquely on stellar-wind velocity, the value for an O star with wind velocity 2500 km/s being about 5 keV.
The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift
NASA Technical Reports Server (NTRS)
Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan
2013-01-01
We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.
How stellar feedback simultaneously regulates star formation and drives outflows
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Hopkins, Philip F.
2017-02-01
We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. When the gas fraction is ≳ 0.3, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of the order of half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor (η ≡ dot{M}_{out}/M_{star }) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, declines rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at z ≲ 1 in M⋆ ≳ 1010 M⊙ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disc. We provide simple fitting functions for η that should be useful for sub-resolution and semi-analytic models.
NASA Technical Reports Server (NTRS)
Browning, G. L.; Holzer, T. E.
1992-01-01
The paper derives the 'reduced' system of equations commonly used to describe the time evolution of the polar wind and multiconstituent stellar winds from the equations for a multispecies plasma with known temperature profiles by assuming that the electron thermal speed approaches infinity. The reduced system is proved to have unbounded growth near the sonic point of the protons for many of the standard parameter cases. For the same parameter cases, the unmodified system exhibits growth in some of the Fourier modes, but this growth is bounded. An alternate system (the 'approximate' system) in which the electron thermal speed is slowed down is introduced. The approximate system retains the mathematical behavior of the unmodified system and can be shown to accurately describe the smooth solutions of the unmodified system. Other advantages of the approximate system over the reduced system are discussed.
The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems
NASA Astrophysics Data System (ADS)
Belkus, H.; van Bever, J.; Vanbeveren, D.
In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.
The Third Solar Wind Conference: A summary
NASA Technical Reports Server (NTRS)
Russell, C. T.
1974-01-01
The Third Solar Wind Conference consisted of nine sessions. The following subjects were discussed: (1) solar abundances; (2) the history and evolution of the solar wind; (3) the structure and dynamics of the solar corona; (4) macroscopic and microscopic properties of the solar wind; (5) cosmic rays as a probe of the solar wind; (6) the structure and dynamics of the solar wind; (7) spatial gradients; (8) stellar winds; and (9) interactions with objects in the solar wind. The invited and contributed talks presented at the conference are summarized.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
The young stellar population of IC 1613. III. New O-type stars unveiled by GTC-OSIRIS
NASA Astrophysics Data System (ADS)
Garcia, M.; Herrero, A.
2013-03-01
Context. Very low-metallicity massive stars are key to understanding the reionization epoch. Radiation-driven winds, chief agents in the evolution of massive stars, are consequently an important ingredient in our models of the early-Universe. Recent findings hint that the winds of massive stars with poorer metallicity than the SMC may be stronger than predicted by theory. Besides calling the paradigm of radiation-driven winds into question, this result would affect the calculated ionizing radiation and mechanical feedback of massive stars, as well as the role these objects play at different stages of the Universe. Aims: The field needs a systematic study of the winds of a large sample of very metal-poor massive stars. The sampling of spectral types is particularly poor in the very early types. This paper's goal is to increase the list of known O-type stars in the dwarf irregular galaxy IC 1613, whose metallicity is lower than the SMC's roughly by a factor 2. Methods: Using the reddening-free Q pseudo-colour, evolutionary masses, and GALEX photometry, we built a list of very likely O-type stars. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and performed spectral classification, the only way to unequivocally confirm candidate OB-stars. Results: We have discovered 8 new O-type stars in IC 1613, increasing the list of 7 known O-type stars in this galaxy by a factor of 2. The best quality spectra were analysed with the model atmosphere code FASTWIND to derive stellar parameters. We present the first spectral type - effective temperature scale for O-stars beyond the SMC. Conclusions: The target selection method is successful. From the pre-selected list of 13 OB star candidates, we have found 8 new O-stars and 4 early-B stars and provided a similar type for a formerly known early-O star. Further tests are needed, but the presented procedure can eventually make preliminary low-resolution spectroscopy to confirm candidates unnecessary. The derived effective temperature calibration for IC 1613 is about 1000 K hotter than the scale at the SMC. The analysis of an increased list of O-type stars will be crucial for studies of the winds and feedback of massive stars at all ages of the Universe. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-11B.Figures 4, 6 and Appendix A are available in electronic form at http://www.aanda.orgSpectra as FITS files are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A74
NASA Astrophysics Data System (ADS)
Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; De Beck, E.; Homan, W.; Smith, N.; Van de Sande, M.; Walsh, C.
2016-07-01
Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims: We aim to study the inner-wind structure (R< 250 R⋆) of the well-known red supergiant VY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods: We analyse high spatial resolution (~0.̋24×0.̋13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results: For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50° measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process that prevents all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form while, for lower values of this ratio, thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons does not seem to be a viable explanation for the detection of gaseous NaCl at 220 R⋆ from the central star, so instead, we propose shock-induced sputtering driven by localized mass ejection events as an alternative. Conclusions: The analysis of the NaCl lines demonstrates the capabilities of ALMA to decode the geometric morphologies and chemical pathways prevailing in the winds of evolved stars. These early ALMA results prove that the envelopes surrounding evolved stars are far from homogeneous, and that a variety of dynamical and chemical processes dictate the wind structure. The datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A76
On the Origin of Wind Line Variability in O Stars
NASA Astrophysics Data System (ADS)
Massa, D.; Prinja, R. K.
2015-08-01
We analyze 10 UV time series for five stars that fulfill specific sampling and spectral criteria to constrain the origin of large-scale wind structure in O stars. We argue that excited state lines must arise close to the stellar surface and are an excellent diagnostic complement to resonance lines which, due to radiative transfer effects, rarely show variability at low velocity. Consequently, we splice dynamic spectra of the excited state line N iv λ1718 at low velocity with those of Si iv λ λ 1400 at high velocity in order to examine the temporal evolution of wind line features. These spliced time series reveal that nearly all of the features observed in the time series originate at or very near the stellar surface. Furthermore, we positively identify the observational signature of equatorial corotating interaction regions in two of the five stars and possibly two others. In addition, we see no evidence of features originating further out in the wind. We use our results to confirm the fact that the features seen in dynamic spectra must be huge in order to remain in the line of sight for days, persisting to very large velocity, and that the photospheric footprint of the features must also be quite large, ˜15%-20% of the stellar diameter.
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Wiggs, Michael S.
1991-01-01
AO Cas, a short-period, double-lined spectroscopic binary, is studied as part of a search for spectroscopic evidence of colliding stellar winds in binary systems of O-type stars. High S/N ratio spectra of the H-alpha and He I 6678-A line profiles are presented, and their orbital-phase-related variations are examined in order to derive the location and motions of high-density circumstellar gas in the system. These profile variations are compared with those observed in the UV stellar wind lines in IUE archival spectra. IUE spectra are also used to derive a system mass ratio by constructing cross-correlation functions of a single-lined phase spectrum with each of the other spectra. The resulting mass ratio is consistent with the rotational line broadening of the primary star, if the primary is rotating synchronously with the binary system. The best-fit models were found to have an inclination of 61.1 deg + or - 3.0 deg and have a primary which is close to filling its critical Roche lobe.
NASA Astrophysics Data System (ADS)
Brown, A.; Ayres, T. R.; Harper, G. M.; Osten, R. A.; Linsky, J. L.; Dupree, A. K.; Jordan, C.
2000-05-01
Yellow supergiants with spectral types F-G show a complex pattern of outer atmospheric structure with stellar wind and activity indicators varying significantly for stars with similar positions in the H-R diagram. The efficiency of the processes driving their stellar winds and heating their atmospheres is critically dependent on the evolutionary position and surface gravity of each star. We present high-resolution ultraviolet HST/STIS and HST/GHRS spectra for a range of intermediate mass F and G supergiants, including Alpha Car (F0 Ib), Beta Cam (G0 Ib), Beta Dra (G2 Ib), and Epsilon Gem (G8 Ib), and compare the atmospheric properties of these stars with lower luminosity giants and bright giants. We provide a systematic overview of the supergiant atmospheric properties dealing particularly with activity levels, the presence of hot ``transition region'' plasma, signatures of wind outflow, and the role of overlying cool absorbing plasma that becomes increasingly prominent for the cooler stars like Epsilon Gem. This work is supported by HST grants for program GO-08280 and by NASA grant NAG5-3226.
Outburst Cycle of the Dwarf Nova SS Cygni
NASA Astrophysics Data System (ADS)
Voikhanskaya, N. F.
2018-01-01
Extensive observational data obtained to date is analyzed with special attention given to space observations. The spectral type of the white dwarf is estimated and it is concluded that accretion of matter on it is the only source of the x-ray flux in the system. The rotation of the secondary is shown to be synchronous and therefore its illumination by hard x-rays results in the formation of stellar wind. This is the main mechanism of mass transfer onto the white dwarf. The geometry of the system prevents the formation of the disk by stellar wind. Instead, stellar wind forms a quasispherical envelope whose variability influences the outburst process. Based on these conclusions, the properties of the system are interpreted, which so far have remained unexplained: short-term appearance of peculiar spectrum during the rising phase of the outburst, rather constant width of absorption lines during the outburst, decrease of the width of emission lines during the outburst, variation of the x-ray and ultraviolet fluxes during ordinary and low-amplitude anomalous outbursts, and, finally, the quasiperiodicity of the outbursts.
Radio Emission from Red-Giant Hot Jupiters
NASA Technical Reports Server (NTRS)
Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku
2016-01-01
When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.
Global hot-star wind models for stars from Magellanic Clouds
NASA Astrophysics Data System (ADS)
Krtička, J.; Kubát, J.
2018-04-01
We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic Clouds. The models solve radiative transfer equation in comoving frame, kinetic equilibrium equations (also known as NLTE equations), and hydrodynamical equations from (quasi-)hydrostatic atmosphere to expanding stellar wind. The models allow us to predict wind density, velocity, and temperature (consequently also the terminal wind velocity and the mass-loss rate) just from basic global stellar parameters. As a result of their lower metallicity, the line radiative driving is weaker leading to lower wind mass-loss rates with respect to the Galactic stars. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as Ṁ Z0.59. The predicted mass-loss rates are lower than mass-loss rates derived from Hα diagnostics and can be reconciled with observational results assuming clumping factor Cc = 9. On the other hand, the predicted mass-loss rates either agree or are slightly higher than the mass-loss rates derived from ultraviolet wind line profiles. The calculated P V ionization fractions also agree with values derived from observations for LMC stars with Teff ≤ 40 000 K. Taken together, our theoretical predictions provide reasonable models with consistent mass-loss rate determination, which can be used for quantitative study of stars from Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Fischer, Travis; Rigby, Jane; Gladders, Michael; Sharon, Keren q.; Barrientos, L. Felipe; Bayliss, Matt; Dahle, Håkon; Florian, Michael; Johnson, Traci Lin; Wuyts, Eva
2018-01-01
We present rest-frame optical SINFONI integral field spectroscopy and rest-frame UV HST imaging of a lensed galaxy hosting an active galactic nucleus (AGN) at z = 2.39. Galactic wind feedback is widely acknowledged to play a critical role in the evolution of galaxies, however, the physical mechanisms involved and the relative importance of AGN and star formation as the main feedback drivers remain poorly understood. AGN-driven feedback has been evident in very luminous but rare quasars and radio galaxies, but observational evidence remains lacking for less extreme, “normal” star-forming galaxies. We report, for the first time at high redshift, spatially resolved velocity profiles and geometries of an AGN-driven outflow in a normal star-forming galaxy and spatial extents and morphologies of Lyα emission and stellar UV continuum. Analyzing these measurements in tandem, we determine the physical conditions, geometry, and excitation sources of the interstellar medium in a star-forming, AGN-hosting galaxy at cosmic noon.
A new mechanical stellar wind feedback model for the Rosette Nebula
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.
2018-04-01
The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.
Revealing the Location of the Mixing Layer in a Hot Bubble
NASA Astrophysics Data System (ADS)
Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.
2017-10-01
The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.
Ω-slow Solutions and Be Star Disks
NASA Astrophysics Data System (ADS)
Araya, I.; Jones, C. E.; Curé, M.; Silaj, J.; Cidale, L.; Granada, A.; Jiménez, A.
2017-09-01
As the disk formation mechanism(s) in Be stars is(are) as yet unknown, we investigate the role of rapidly rotating radiation-driven winds in this process. We implemented the effects of high stellar rotation on m-CAK models accounting for the shape of the star, the oblate finite disk correction factor, and gravity darkening. For a fast rotating star, we obtain a two-component wind model, I.e., a fast, thin wind in the polar latitudes and an Ω-slow, dense wind in the equatorial regions. We use the equatorial mass densities to explore Hα emission profiles for the following scenarios: (1) a spherically symmetric star, (2) an oblate star with constant temperature, and (3) an oblate star with gravity darkening. One result of this work is that we have developed a novel method for solving the gravity-darkened, oblate m-CAK equation of motion. Furthermore, from our modeling we find that (a) the oblate finite disk correction factor, for the scenario considering the gravity darkening, can vary by at least a factor of two between the equatorial and polar directions, influencing the velocity profile and mass-loss rate accordingly, (b) the Hα profiles predicted by our model are in agreement with those predicted by a standard power-law model for following values of the line-force parameters: 1.5≲ k≲ 3,α ˜ 0.6, and δ ≳ 0.1, and (c) the contribution of the fast wind component to the Hα emission line profile is negligible; therefore, the line profiles arise mainly from the equatorial disks of Be stars.
NASA Technical Reports Server (NTRS)
Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)
1988-01-01
Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.
Clumpy wind accretion in supergiant neutron star high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.
2016-05-01
The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.
The stellar wind of an O8.5 I(f) star in M 31
NASA Technical Reports Server (NTRS)
Haser, S. M.; Lennon, D. J.; Kudritzki, R.-P.; Puls, J.; Pauldrach, A. W. A.; Bianchi, L.; Hutchings, J. B.
1995-01-01
We rediscuss the UV spectrum of OB 78#231, an O8.5 I(f) star in the Andromeda galaxy M 31, which has been obtained with the Faint Object Spectrograph on the Hubble Space Telescope by Hutchings et al. (1992). The spectrum has been re-extracted with better knowledge of background, calibration, and scattered light. The empirical analysis of the stellar wind lines results in a terminal velocity and mass loss rate similar to those typically found in comparable galactic objects. Furthermore, a comparison with an FOS spectrum of an O7 supergiant in the Small Magellanic Cloud and IUE spectra of galactic objects implies a metallicity close to galactic counterparts. These results are confirmed quantitatively by spectrum synthesis calculations using a theoretical description of O-star winds.
Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Adams, Fred C.
2018-04-01
External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.
UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzati, Davide; Blackwell, Christopher H.; Morsony, Brian J.
We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting enginesmore » result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.« less
The Evolution of Massive Stars: a Selection of Facts and Questions
NASA Astrophysics Data System (ADS)
Vanbeveren, D.
In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.
AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.
2016-12-20
All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less
Assisted stellar suicide in V617 Sagittarii
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Oliveira, A. S.; Cieslinski, D.; Ricci, T. V.
2006-02-01
Context: .V617 Sgr is a V Sagittae star - a group of binaries thought to be the galactic counterparts of the Compact Binary Supersoft X-ray Sources - CBSS. Aims: .To check this hypothesis, we measured the time derivative of its orbital period. Methods: .Observed timings of eclipse minima spanning over 30 000 orbital cycles are presented. Results: .We found that the orbital period evolves quite rapidly: P/dot{P} = 1.1×106 years. This is consistent with the idea that V617 Sgr is a wind driven accretion supersoft source. As the binary system evolves with a time-scale of about one million years, which is extremely short for a low mass evolved binary, it is likely that the system will soon end either by having its secondary completely evaporated or by the primary exploding as a supernova of type Ia. Conclusions: .
NASA Astrophysics Data System (ADS)
Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco
2015-11-01
In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.
The appearance of highly relativistic, spherically symmetric stellar winds
NASA Technical Reports Server (NTRS)
Abramowicz, Marek A.; Novikov, Igor D.; Paczynski, Bohdan
1991-01-01
A nonluminous, steady state, spherically symmetric, relativistic wind, with the opacity dominated by electron scattering appears against a bright background as a dark circle with the radius rd. A luminous wind would appear as a bright spot with a radius rl = rd/2 pi gamma exp 3, where gamma is the Lorentz factor of the wind. The bright wind photosphere is convex for v equal to or less than 2c/3, and appears concave for higher outflow velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, G. H.; Heitzenroeder, P.; Lyon, J.
Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less
Wind-Driven Global Evolution of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
It has been realized in the recent years that magnetized disk winds
An adjoint method for gradient-based optimization of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Paul, E. J.; Landreman, M.; Bader, A.; Dorland, W.
2018-07-01
We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.
Imaging Red Supergiants with VLT/SPHERE/ZIMPOL
NASA Astrophysics Data System (ADS)
Cannon, Emily
2018-04-01
In the red supergiant (RSG) phase of evolution massive stars show powerful stellar winds, which strongly influence the supernova (progenitor) properties and control the nature of the compact object that is left behind. Material that is lost in the stellar wind, together with that ejected in the final core collapse, contributes to the chemical enrichment of the local interstellar medium. The mass-loss properties of RSGs are however poorly constrained. Moreover, little is known about the wind driving mechanism. To provide better constraints on both mass-loss rates and physics, high angular resolution observations are needed to unveil the inner regions of the circumstellar environment, where the mass loss is triggered. Using the VLT-SPHERE/ZIMPOL adaptive optics imaging polarimeter, spatially resolved images of four nearby RSGs were obtained in four filters. From these data, we obtain information on geometrical structures in the inner wind, the onset radius and spatial distribution of dust grains, and dust properties such as grain size. As dust grains may play a role in initiating and/or driving the outflow, this could provide us with clues as to the wind driving mechanism.
Detection of the Compressed Primary Stellar Wind in eta Carinae
NASA Technical Reports Server (NTRS)
Teodoro, Mairan Macedo; Madura, Thomas I.; Gull, Theodore R.; Corcoran, Michael F.; Hamaguchi, K.
2014-01-01
A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
Opening the CHOCBOX: clumpy stellar winds in Cyg X-1
NASA Astrophysics Data System (ADS)
Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration
2017-10-01
Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.
Stellar Astrophysics with Arcus
NASA Astrophysics Data System (ADS)
Brickhouse, Nancy S.; Huenemoerder, David P.; Wolk, Scott; Schulz, Norbert; Foster, Adam; Brenneman, Laura; Poppenhaeger, Katja; Arcus Team
2018-01-01
The Arcus mission is now in Phase A of the NASA Medium-Class Explorer competition. We present here the Arcus science case for stellar astrophysics. With spectral resolving power of at least 2500 and effective area greater than 400 cm^2, Arcus will measure new diagnostic lines, e.g. for H- and He-like ions of oxygen and other elements. Weak dielectronic recombination lines will provide sensitive measurements of temperature to test stellar coronal heating models. Arcus will also resolve the coronal and accretion line components in young accreting stars, allowing detailed studies of accretion shocks and their post-shock behavior. Arcus can resolve line shapes and variability in hot star winds to study inhomogeneities and dynamics of wind structure. Such profiles will provide an independent measure of mass loss rates, for which theoretical and observational discrepancies can reach an order of magnitude. Arcus will also study exoplanet atmospheres through X-ray absorption, determing their extent and composition.
NASA Technical Reports Server (NTRS)
Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.
2003-01-01
We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.
NASA Technical Reports Server (NTRS)
White, N. E.; Kallman, T. R.; Swank, J. H.
1982-01-01
The first high resolution non-dispersive 2-60 KeV X-ray spectra of 4U1700-37 is presented. The continuum is typical of that found from X-ray pulsars; that is a flat power law between 2 and 10 keV and, beyond 10 keV, an exponential decay of characteristic energy varying between 10 and 20 keV. No X-ray pulsations were detected between 160 ms and 6 min with an amplitude greater than approximately 2%. The absorption measured at binary phases approximately 0.72 is comparable to that expected from the stellar wind of the primary. The gravitational capture of material in the wind is found to be more than enough to power the X-ray source. The increase in the average absorption after phi o approximately 0.5 is confirmed. The minimum level of adsorption is a factor of 2 or 3 lower than that reported by previous observers, which may be related to a factor of approximately 10 decline in the average X-ray luminosity over the same interval. Short term approximately 50% variations in adsorption are seen for the first time which appear to be loosely correlated with approximately 10 min flickering activity in the X-ray flux. These most likely originate from inhomogeneities in the stellar wind of the primary.
VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)
NASA Astrophysics Data System (ADS)
Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.
2014-11-01
A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).
Imaging Stellar Surface with The CHARA Array
NASA Astrophysics Data System (ADS)
Schaefer, Gail
2018-04-01
I will provide an overview of results on imaging stellar surfaces with the CHARA Array. These include imaging gravity darkening on rapid rotators, starspots on magnetically active stars, convective cells on red supergiants, and stellar winds from massive stars. In binary systems, the CHARA Array has been used to observe tidal distortions from Roche lobe filling in interactive binaries, transiting companions as they move through eclipse, and the angular expansion of novae explosions. I will discuss the impact of these results in an astrophysical context.
NASA Astrophysics Data System (ADS)
Otsuki, Kaori; Tagoshi, Hideyuki; Kajino, Toshitaka; Wanajo, Shin-ya
2000-04-01
Neutrino-driven winds from young hot neutron stars, which are formed by supernova explosions, are the most promising candidate site for r-process nucleosynthesis. We study general relativistic effects on this wind in Schwarzschild geometry in order to look for suitable conditions for successful r-process nucleosynthesis. It is quantitatively demonstrated that general relativistic effects play a significant role in increasing the entropy and decreasing the dynamic timescale of the neutrino-driven wind. Exploring the wide parameter region that determines the expansion dynamics of the wind, we find interesting physical conditions that lead to successful r-process nucleosynthesis. The conditions that we found are realized in a neutrino-driven wind with a very short dynamic timescale, τdyn~6 ms, and a relatively low entropy, S~140. We carry out α-process and r-process nucleosynthesis calculations on these conditions with our single network code, which includes over 3000 isotopes, and confirm quantitatively that the second and third r-process abundance peaks are produced in neutrino-driven winds.
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Owocki, Stanley P.
1995-01-01
We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.
A spectroscopic search for colliding stellar winds in O-type close binary systems. IV - Iota Orionis
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Wiggs, Michael S.; Bagnuolo, William G., Jr.
1993-01-01
We present H-alpha and He I 6678 A line profiles for the eccentric orbit binary Iota Ori. We have applied a tomography algorithm which uses the established orbital velocity curves and intensity ratio to reconstruct the spectral line profiles for each star. The He I profiles appear as pure photospheric lines, and H-alpha shows variable emission in the line core throughout the orbit (which is typical of O giants) and in the blue wing near periastron passage. We show that the blue wing emission is consistent with an origin between the stars which probably results from a dramatic focusing of the primary's stellar wind at periastron. We also present IUE archival spectra of the UV wind lines N V 1240 A and C IV 1550 A.
ALMA sub-mm maser and dust distribution of VY Canis Majoris
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.
2014-12-01
Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org
Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Feigelson, Eric D.
1989-01-01
Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants.
RADIO EMISSION FROM RED-GIANT HOT JUPITERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony
2016-04-01
When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroralmore » radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.« less
The wind of EG Andromedae is not dust driven
NASA Technical Reports Server (NTRS)
Van Buren, Dave; Dgani, Ruth; Noriega-Crespo, Alberto
1994-01-01
The symbiotic star EG Andromedae has recently been the subject of several studies investigating its wind properties. Late-type giants are usually considered to have winds driven by radiation pressure on dust. Indeed, the derived wind velocity for EG Andromedae is consistent with this model. We point out here that there is no appreciable dust opacity in the wind of EG Andromedae using constraints on extinction limits from International Ultraviolet Explorer (IUE) and far infrared fluxes from Infrared Astronomy Satellite (IRAS). An alternate mechanism must operate in this star. We suggest that the wind can be driven by radiation pressure on molecular lines.
Magnetic fields driven by tidal mixing in radiative stars
NASA Astrophysics Data System (ADS)
Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer
2018-04-01
Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.
Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds
NASA Astrophysics Data System (ADS)
Ressler, S. M.; Quataert, E.; Stone, J. M.
2018-05-01
We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.
Detection of the Compressed Primary Stellar Wind in eta Carinae*
NASA Technical Reports Server (NTRS)
Teodoro, M.; Madura, T. I.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.
2013-01-01
A series of three Hubble Space Telescope Space Telescope Imaging Spectrograph (HST/STIS) spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from ? Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
Evaluation of Interrill Erosion Under Wind-Driven Rain Events in Northern Burkina Faso
USDA-ARS?s Scientific Manuscript database
Wind changes the velocity, frequency and angle of raindrop impact and hence affects rain splash detachment rates. Many soil erosion models underpredict interrill erosion because the contribution of the wind to raindrop detachment and wind-driven transport processes are not taken into account. In thi...
Raindrop and flow interactions for interrill erosion with wind-driven rain
USDA-ARS?s Scientific Manuscript database
Wind-driven rain (WDR) experiments were conducted to evaluate interrill component of the Water Erosion Prediction Project (WEPP) model with two-dimensional experimental set-up in wind tunnel. Synchronized wind and rain simulations were applied to soil surfaces on windward and leeward slopes of 7, 15...
NASA Astrophysics Data System (ADS)
Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.
2017-03-01
We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.
Detecting stellar-wind bubbles through infrared arcs in H II regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.
2016-02-01
Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.
In-N-Out: The Gas Cycle from Dwarfs to Spiral Galaxies
NASA Astrophysics Data System (ADS)
Christensen, Charlotte R.; Davé, Romeel; Governato, Fabio; Pontzen, Andrew; Brooks, Alyson; Munshi, Ferah; Quinn, Thomas; Wadsley, James
2016-06-01
We examine the scalings of galactic outflows with halo mass across a suite of 20 high-resolution cosmological zoom galaxy simulations covering halo masses in the range {10}9.5{--}{10}12 {M}⊙ . These simulations self-consistently generate outflows from the available supernova energy in a manner that successfully reproduces key galaxy observables, including the stellar mass-halo mass, Tully-Fisher, and mass-metallicity relations. We quantify the importance of ejective feedback to setting the stellar mass relative to the efficiency of gas accretion and star formation. Ejective feedback is increasingly important as galaxy mass decreases; we find an effective mass loading factor that scales as {v}{{circ}}-2.2, with an amplitude and shape that are invariant with redshift. These scalings are consistent with analytic models for energy-driven wind, based solely on the halo potential. Recycling is common: about half of the outflow mass across all galaxy masses is later reaccreted. The recycling timescale is typically ˜1 Gyr, virtually independent of halo mass. Recycled material is reaccreted farther out in the disk and with typically ˜2-3 times more angular momentum. These results elucidate and quantify how the baryon cycle plausibly regulates star formation and alters the angular momentum distribution of disk material across the halo mass range where most cosmic star formation occurs.
Design, economic and system considerations of large wind-driven generators
NASA Technical Reports Server (NTRS)
Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.
1976-01-01
The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.
NASA Astrophysics Data System (ADS)
Owocki, S.
2008-06-01
Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.
TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valsecchi, Francesca; Rasio, Frederic A.; Rappaport, Saul
2015-11-10
Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effectsmore » of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.« less
NASA Astrophysics Data System (ADS)
Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Harmon, Robert; Ignace, Richard; St-Louis, Nicole; Vanbeveren, Dany; Shenar, Tomer; Pablo, Herbert; Richardson, Noel D.; Howarth, Ian D.; Stevens, Ian R.; Piaulet, Caroline; St-Jean, Lucas; Eversberg, Thomas; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Zocłońska, Elżbieta; Buysschaert, Bram; Handler, Gerald; Weiss, Werner W.; Wade, Gregg A.; Rucinski, Slavek M.; Zwintz, Konstanze; Luckas, Paul; Heathcote, Bernard; Cacella, Paulo; Powles, Jonathan; Locke, Malcolm; Bohlsen, Terry; Chené, André-Nicolas; Miszalski, Brent; Waldron, Wayne L.; Kotze, Marissa M.; Kotze, Enrico J.; Böhm, Torsten
2018-02-01
From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He II λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He II λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.
Accretion from a clumpy massive-star wind in supergiant X-ray binaries
NASA Astrophysics Data System (ADS)
El Mellah, I.; Sundqvist, J. O.; Keppens, R.
2018-04-01
Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.
Simulating Sources of Superstorm Plasmas
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2008-01-01
We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.
The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds
NASA Astrophysics Data System (ADS)
Gayley, K. G.; Onifer, A. J.
2003-01-01
Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.
Using Rare Earth Elements (REE) to determine wind-driven soil dispersal from a point source
USDA-ARS?s Scientific Manuscript database
Although erosion of soil by water is a predictably directional process, the erosion of soil by wind is determined by wind direction on an event-wise basis. The wind-driven dispersal patterns of chemical constituents including natural soil components and anthropogenic contaminants are not well under...
Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Cauley, Paul W.; Johns-Krull, Christopher M.
2015-01-01
The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are observed are likely driven, at least in part, by boundary layer accretion. The smaller (or absent) disk truncation radii in HAEBES may have consequences for the frequency of planets in close orbits around main sequence B and A stars.
NASA Astrophysics Data System (ADS)
Kwok, S.; Murdin, P.
2000-11-01
Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...
The Cannon: A data-driven approach to Stellar Label Determination
NASA Astrophysics Data System (ADS)
Ness, M.; Hogg, David W.; Rix, H.-W.; Ho, Anna. Y. Q.; Zasowski, G.
2015-07-01
New spectroscopic surveys offer the promise of stellar parameters and abundances (“stellar labels”) for hundreds of thousands of stars; this poses a formidable spectral modeling challenge. In many cases, there is a subset of reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the “known” labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with {T}{eff}, {log} g, and [{Fe}/{{H}}] as the labels, and then applying it to the spectra of 55,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one-ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.
Modelling the colliding-wind spectra of the WC8d+O8-9IV binary CV Ser (WR 113)
NASA Astrophysics Data System (ADS)
Hill, G. M.; Moffat, A. F. J.; St-Louis, N.
2018-03-01
Striking profile variations of the C III λ5696 emission line are visible amongst the high signal-to-noise ratio, moderate resolution spectra of the 29.7 d WC8d+O8-9IV binary CV Ser (WR 113) presented here. Using a significantly revised code, we have modelled these variations assuming the emission originates from the undisturbed WR star wind and a colliding wind shock region that partially wraps around the O star. Changes to the modelling code are chiefly in the form of additional parameters, intended to refine the modelling and facilitate comparison with recent predictions arising from theoretical and hydrodynamical work. This modelling provides measurements of crucial parameters such as the orbital inclination (63.5° ± 2.5°) and thus, together with the RV orbits, the stellar masses (11.7 ± 0.9 M⊙ for the WR star and 33.3 ± 2.0 M⊙ for the O star). We find good agreement with expectations based on theoretical studies and hydrodynamical modelling of colliding wind systems. Moreover, it raises the exciting prospect of providing a reliable method to learn more about WR stellar masses and winds, and for studying the physics of colliding winds in massive stars.
Is High Primordial Deuterium Consistent with Galactic Evolution?
NASA Astrophysics Data System (ADS)
Tosi, Monica; Steigman, Gary; Matteucci, Francesca; Chiappini, Cristina
1998-05-01
Galactic destruction of primordial deuterium is inevitably linked through star formation to the chemical evolution of the Galaxy. The relatively high present gas content and low metallicity suggest only modest D destruction. In concert with deuterium abundances derived from solar system and/or interstellar observations, this suggests a primordial deuterium abundance in possible conflict with data from some high-redshift, low-metallicity QSO absorbers. We have explored a variety of chemical evolution models including infall of processed material and early, supernovae-driven winds with the aim of identifying models with large D destruction that are consistent with the observations of stellar-produced heavy elements. When such models are confronted with data, we reconfirm that only modest destruction of deuterium (less than a factor of 3) is permitted. When combined with solar system and interstellar data, these results favor the low deuterium abundances derived for the QSO absorbers by Tytler et al.
Nucleosynthesis in the early Galaxy: Progress and challenges.
NASA Astrophysics Data System (ADS)
Montes, Fernando
2015-10-01
Chemical imprints left by the first stars in the oldest stars of the Milky Way gives clues of the stellar nucleosynthesis responsible for the creation of elements heavier than iron. Recent progress in astronomical observations and in the modeling of the chemical evolution of the Galaxy have shown that multiple nucleosynthesis processes may operate at those early times. In this talk I will review some of that evidence along with the important role that nuclear reactions play in those processes. I will focus in progress in our understanding of the rapid neutron capture process (r-process) and in new results on nucleosynthesis in core-collapse supernovae and neutrino-driven winds that produce elements up to silver. I will show some examples of recent nuclear physics measurements addressing the need for better nuclear data and give an outlook of the remaining challenges and future plans to continue those measurements.
Radii and Orbits of Hot Jupiters
NASA Astrophysics Data System (ADS)
Wu, Yanqin
2011-09-01
Hot jupiters suffer extreme external (stellar) and internal (tidal, Ohmic and wind-power) heating. These lead to peculiar thermal evolution, which is potentially self-destrutive. For instance, the amount of energy deposited during tidal dissipation far exceeds the planets' binding energy. If this energy is mostly deposited in shallow layers, it does little damage to the planet. However, the presence of stellar insolation changes the picture, and Ohmic/wind-power heating further modifies the subsequent evolution of these jupiters. A diversity of planetary sizes results. We tie these thermodynamical processes together with the migration history of hot jupiters to explain the orbital distribution and physical radii of hot jupiters. Moreover, we constrain the location of tidal heating inside the planet.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, D.; Malumuth, E.
2011-01-01
I Zw 18 is one of the most primitive blue, compact dwarf galaxies. The ionized gas in I Zw 18 has a low oxygen abundance (O approx.1/30 Osun) and nitrogen abundance (N-1/100 Nsun) (Pequignot 2008). We have obtained a far-UV spectrum of the northwest massive star cluster of I Zw 18 using Hubble's Cosmic Origins Spectrograph (COS). The spectrum is compatible with continuous star-formation over the past approx.10 Myr, and a very low metallicity, log Z/Zsun 1.7, although the stellar surface may be enhanced in carbon. Stellar wind lines are very weak, and the edge velocity of wind lines is very low (approx.250 km/s).
EXPANSION OF HYDROGEN-POOR KNOTS IN THE BORN-AGAIN PLANETARY NEBULAE A30 AND A78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, X.; Guerrero, M. A.; Marquez-Lugo, R. A.
2014-12-20
We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with distance to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots;more » the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.
The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is amore » polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.« less
NASA Technical Reports Server (NTRS)
Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.
2011-01-01
The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.
POET: Planetary Orbital Evolution due to Tides
NASA Astrophysics Data System (ADS)
Penev, Kaloyan
2014-08-01
POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.
NASA Astrophysics Data System (ADS)
Reiman, Allan H.
2016-07-01
In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B ṡ∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.
NASA Astrophysics Data System (ADS)
Keszthelyi, Z.; Puls, J.; Wade, G. A.
2017-02-01
Context. Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Aims: Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we aim in particular to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. Methods: We performed 1D hydrodynamical model calculations of single 20-60 M⊙ Galactic (Z = 0.014) stars where the effects of stellar winds are already significant in the main sequence phase. We have developed an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss description but a useful tool based on the wind-momentum luminosity relation and other scaling relations, and provides a meaningful base for various tests and comparisons. Results: The main result of this study indicates a dichotomy between solutions of currently debated problems regarding mass-loss rates of hot massive stars. In a fully diffusive approach, and for commonly adopted initial rotational velocities, lower mass-loss rates than theoretically predicted require to invoke an additional source of angular momentum loss (either due to bi-stability braking, or yet unidentified) to brake down surface rotational velocities. On the other hand, a large jump in the mass-loss rates due to the bi-stability mechanism (a factor of 5-7 predicted by Vink et al. (2000, A&A, 362, 295), but a factor of 10-20 in modern models of massive stars) is challenged by observational results, and might be avoided if the early mass-loss rates agreed with the theoretically predicted values. Conclusions: We conclude that simultaneously adopting lower mass-loss rates and a significantly smaller jump in the mass-loss rates over the bi-stability region (both compared to presently used prescriptions) would require an additional mechanism for angular momentum loss to be present in massive stars. Otherwise, the observed rotational velocities of a large population of B supergiants, that are thought to be the evolutionary descendants of O stars, would remain unexplained.
Stellar population of the superbubble N 206 in the LMC. I. Analysis of the Of-type stars
NASA Astrophysics Data System (ADS)
Ramachandran, Varsha; Hainich, R.; Hamann, W.-R.; Oskinova, L. M.; Shenar, T.; Sander, A. A. C.; Todt, H.; Gallagher, J. S.
2018-01-01
Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N 206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims: We aim to estimate stellar and wind parameters of all OB stars in N 206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods: We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results: The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum - luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N 206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions: The mechanical energy input from the Of stars alone is comparable to the energy stored in the N 206 superbubble as measured from the observed X-ray and Hα emission.
Powerful, Rotating Disk Winds from Stellar-mass Black Holes
NASA Astrophysics Data System (ADS)
Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.
2015-12-01
We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiegel, David S.; Madhusudhan, Nikku, E-mail: dave@ias.edu, E-mail: Nikku.Madhusudhan@yale.edu
When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence starsmore » could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.« less
A Case Study in Astronomical 3D Printing: The Mysterious η Carinae
NASA Astrophysics Data System (ADS)
Madura, Thomas I.
2017-05-01
Three-dimensional (3D) printing moves beyond interactive 3D graphics and provides an excellent tool for both visual and tactile learners, since 3D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3D graphics are also alleviated by 3D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3D printing (1) to visualize and understand the η Car Homunculus nebula and central binary system and (2) for astronomy outreach and education, specifically, with visually impaired students. One new result we present is the ability to 3D print full-color models of η Car’s colliding stellar winds. We also demonstrate how 3D printing has helped us communicate our improved understanding of the detailed structure of η Car’s Homunculus nebula and central binary colliding stellar winds, and their links to each other. Attached to this article are full-color 3D printable files of both a red-blue Homunculus model and the η Car colliding stellar winds at orbital phase 1.045. 3D printing could prove to be vital to how astronomer’s reach out and share their work with each other, the public, and new audiences.
Modelling interstellar structures around Vela X-1
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Alexashov, D. B.; Katushkina, O. A.; Kniazev, A. Y.
2018-03-01
We report the discovery of filamentary structures stretched behind the bow-shock-producing high-mass X-ray binary Vela X-1 using the SuperCOSMOS H-alpha Survey and present the results of optical spectroscopy of the bow shock carried out with the Southern African Large Telescope. The geometry of the detected structures suggests that Vela X-1 has encountered a wedge-like layer of enhanced density on its way and that the shocked material of the layer partially outlines a wake downstream of Vela X-1. To substantiate this suggestion, we carried out 3D magnetohydrodynamic simulations of interaction between Vela X-1 and the layer for three limiting cases. Namely, we run simulations in which (i) the stellar wind and the interstellar medium (ISM) were treated as pure hydrodynamic flows, (ii) a homogeneous magnetic field was added to the ISM, while the stellar wind was assumed to be unmagnetized, and (iii) the stellar wind was assumed to possess a helical magnetic field, while there was no magnetic field in the ISM. We found that although the first two simulations can provide a rough agreement with the observations, only the third one allowed us to reproduce not only the wake behind Vela X-1, but also the general geometry of the bow shock ahead of it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiersen, W.; Heitzenroeder, P.; Neilson, G. H.
The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3-D plasma that combines stellarator and tokamak physics advantages. The engineering challenges of NCSX stem from its complex geometry. From the project's start in April, 2003 to September, 2004, the fabrication specifications for the project's two long-lead components, the modular coil winding forms and the vacuum vessel, were developed. An industrial manufacturing R&D program refined the processes for their fabrication as well as production cost andmore » schedule estimates. The project passed a series of reviews and established its performance baseline with the Department of Energy. In September 2004, fabrication was approved and contracts for these components were awarded. The suppliers have completed the engineering and tooling preparations and are in production. Meanwhile, the project completed preparations for winding the coils at PPPL by installing a coil manufacturing facility and developing all necessary processes through R&D. The main activities for the next two years will be component manufacture, coil winding, and sub-assembly of the vacuum vessel and coil subsets. Machine sector sub-assembly, machine assembly, and testing will follow, leading to First Plasma in July 2009.« less
Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster
NASA Astrophysics Data System (ADS)
Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.
2017-01-01
We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.
Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation
NASA Technical Reports Server (NTRS)
Henry, Alaina; Scarlata, Claudia; Dominguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc;
2013-01-01
We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10(exp 8) < M/Stellar Mass < or approx. 10(exp 10), obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < or approx. z < or approx. 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([O II] (lambda)(lambda)3726, 3729 + [OIII] (lambda)(lambda)4959, 5007)/H(beta). Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10(exp 9.8) Stellar Mass to 12+log(O/H)= 8.2 at M = 10(exp 8.2) Stellar Mass. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M > or approx. 10(exp 9.5) Stellar Mass and z approx. 2.3. Within the statistical uncertainties, our MZ relation agrees with the z approx. 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.
Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.
NASA Astrophysics Data System (ADS)
Johnstone, Douglas Ian
1995-01-01
Newly formed stars produce sufficient Lyman continuum luminosity phi to significantly alter the structure and evolution of the accretion disk surrounding them. In the absence of a stellar wind, a nearly static, photoionized, 10^4 K, disk atmosphere, with a scale height that increases with disk radius varpi as varpi^{3/2 }, forms inside the gravitational radius varpig ~ 1014(M_*/ M_odot) cm where M _* is the mass of the central star. This ionized atmosphere is maintained by both the direct radiation from the central star and the diffuse field produced in the disk atmosphere by the significant fraction of hydrogen recombinations directly to the ground state. Beyond varpig the material evaporated from the disk is capable of escaping from the system and produces an ionized disk wind. The mass-loss due to this disk wind peaks at varpig . The inclusion of a stellar wind into the basic picture reduces the height of the inner disk atmosphere and introduces a new scale radius varpi_ {w} where the thermal pressure of the material evaporated from the disk balances the ram pressure in the wind. In this case the mass-loss due to the disk wind peaks at varpiw and is enhanced over the no-wind case. The photoevaporation of disks around newly formed stars has significance to both ultracompact HII regions and the dispersal of solar-type nebulae. High mass stars are intrinsically hot and thus yield sufficient Lyman luminosity to create, even without a stellar wind, disk mass-loss rates of order 2 times 10 ^{-5}phi_sp{49} {1/2} M_odotyr ^{-1}, where phi 49 = phi/(10 49 Lyman continuum photons s^{-1}). This wind, which will last until the disk is dispersed, ~ 10^5 yrs if the disk mass is M_ {d}~0.3M_*, yields sizes, emission measures and ages consistent with observations of ultracompact HII regions. The well-observed high mass star MWC 349 may be the best example to date of an evaporating disk around a high mass star. On the other end of the stellar scale, many newly formed low-mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.
The connection between dark and baryonic matter in the process of galaxy formation
NASA Astrophysics Data System (ADS)
Trujillo, Sebastian
2014-01-01
Current galaxy formation theory still struggles to explain many essential galaxy properties. This thesis addresses these problems in the context of the interplay between baryons and dark matter in the concordance cosmological model. In the first part, we investigate galaxy abundance and scaling relations using a compilation of observational data along with large-scale cosmological simulations of dark matter (DM). We find that the standard cosmological model, in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits all basic statistics of galaxies more massive than the Large Magellanic Cloud (LMC). This zero-parameter model predicts the observed luminosity-velocity relation of early-and late-type galaxies, as well as the clustering of bright galaxies and the observed abundance of galaxies as a function of circular velocity. However, we find that all DM halos more massive than the LMC are much more abundant than the galaxies they host. Motivated by the model's shortcomings, in the second part we study the effect of baryons on galaxy formation using numerical simulations that include gas physics. We implement a model of star formation (SF) and stellar feedback based directly on observations of star-forming regions, where stellar feedback from massive stars includes radiation pressure, photoheating, supernovae, and stellar winds. We find that stellar radiation has a strong effect at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component, and yielding rising SF histories that reproduce many observations. Stellar feedback produces bulgeless discs with rotation curves and baryon fractions in excellent agreement with data. Feedback-driven blowouts reduce the central DM density of a dwarf, relieving tension between ACDM and observations. Based on these results, we begin to characterize the baryon cycle of galaxies and its imprint on studies of the circumgalactic medium (CGM). We find that feedback has a large impact on the exchange of gas and metals between the galaxy and the halo. This is evidenced in the spatial distribution of various gas phases and in the kinematics of accretion and outflows. We conclude that synergy between simulations and absorption-line studies is essential for disentangling the physics of galaxy formation in the context of ACDM.
NASA Astrophysics Data System (ADS)
Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.
2017-08-01
Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-14
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, k L , and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, k L for the wind-driven wavy gas-liquid interface is generally proportional to Sc -0.5 , and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-01-01
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc−0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking. PMID:27841325
On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
2000-01-01
This grant was awarded by NASA to The University of Alabama in Huntsville (UAH) to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. In our proposal, we suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical wind models, and used these models to investigate the origin of "dividing lines" in the H-R diagram. In the following, we describe our completed work. We have accomplished the first main goal of our proposal by constructing first purely theoretical, time-dependent and two-component models of stellar chromospheres.1 The models require specifying only three basic stellar parameters, namely, the effective temperature, gravity and rotation rate, and they take into account non-magnetic and magnetic regions in stellar chromospheres. The non-magnetic regions are heated by acoustic waves generated by the turbulent convection in the stellar subphotospheric layers. The magnetic regions are identified with magnetic flux tubes uniformly distributed over the entire stellar surface and they are heated by longitudinal tube waves generated by turbulent motions in the subphotospheric and photospheric layers. The coverage of stellar surface by magnetic regions (the so-called filling factor) is estimated for a given rotation rate from an observational relationship. The constructed models are time-dependent and are based on the energy balance between the amount of mechanical energy supplied by waves and radiative losses in strong Ca II and Mg II emission lines. To calculate the amount of wave energy in the non-magnetic regions, we have used the Lighthill-Stein theory for sound generation.
NASA Astrophysics Data System (ADS)
Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu
2010-10-01
Spectroscopic analyses of hydrogen-rich WN5-6 stars within the young star clusters NGC3603 and R136 are presented, using archival Hubble Space Telescope and Very Large Telescope spectroscopy, and high spatial resolution near-IR photometry, including Multi-Conjugate Adaptive Optics Demonstrator (MAD) imaging of R136. We derive high stellar temperatures for the WN stars in NGC3603 (T* ~ 42 +/- 2kK) and R136 (T* ~ 53 +/- 3kK) plus clumping-corrected mass-loss rates of 2-5 × 10-5Msolaryr-1 which closely agree with theoretical predictions from Vink et al. These stars make a disproportionate contribution to the global ionizing and mechanical wind power budget of their host clusters. Indeed, R136a1 alone supplies ~7 per cent of the ionizing flux of the entire 30Doradus region. Comparisons with stellar models calculated for the main-sequence evolution of 85-500Msolar accounting for rotation suggest ages of ~1.5Myr and initial masses in the range 105-170Msolar for three systems in NGC3603, plus 165-320Msolar for four stars in R136. Our high stellar masses are supported by consistent spectroscopic and dynamical mass determinations for the components of NGC3603A1. We consider the predicted X-ray luminosity of the R136 stars if they were close, colliding wind binaries. R136c is consistent with a colliding wind binary system. However, short period, colliding wind systems are excluded for R136a WN stars if mass ratios are of order unity. Widely separated systems would have been expected to harden owing to early dynamical encounters with other massive stars within such a high-density environment. From simulated star clusters, whose constituents are randomly sampled from the Kroupa initial mass function, both NGC3603 and R136 are consistent with an tentative upper mass limit of ~300Msolar. The Arches cluster is either too old to be used to diagnose the upper mass limit, exhibits a deficiency of very massive stars, or more likely stellar masses have been underestimated - initial masses for the most luminous stars in the Arches cluster approach 200Msolar according to contemporary stellar and photometric results. The potential for stars greatly exceeding 150Msolar within metal-poor galaxies suggests that such pair-instability supernovae could occur within the local universe, as has been claimed for SN2007bi.
Mechanics of Interrill Erosion with Wind-Driven Rain (WDR)
USDA-ARS?s Scientific Manuscript database
This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...
Using 3D dynamic models to reproduce X-ray properties of colliding wind binaries
NASA Astrophysics Data System (ADS)
Russell, Christopher Michael Post
Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The two massive stars contained in these systems have powerful radiatively driven stellar winds, and the conversion of their kinetic energy to heat (up to 108 K) at the wind-wind collision region generates hard thermal X-rays (up to 10 keV). Rich data sets exist of several multi-year-period systems, as well as key observations of shorter period systems, and detailed models are required to disentangle the phase-locked emission and absorption processes in these systems. To interpret these X-ray light curves and spectra, this dissertation models the wind-wind interaction of CWBs using 3D smoothed particle hydrodynamics (SPH), and solves the 3D formal solution of radiative transfer to synthesize the model X-ray properties, allowing direct comparison with the colliding-wind X-ray spectra observed by, e.g., RXTE and XMM. The multi-year-period, highly eccentric CWBs we examine are eta Carinae and WR140. For the commonly inferred primary mass loss rate of ˜10 -3 Msun/yr, eta Carinae's 3D model reproduces quite well the 2-10 keV RXTE light curve, hardness ratio, and dynamic spectra in absolute units. This agreement includes the ˜3 month X-ray minimum associated with the 1998.0 and 2003.5 periastron passages, which we find to occur as the primary wind encroaches into the secondary wind's acceleration region. This modeling provides further evidence that the observer is mainly viewing the system through the secondary's shock cone, and suggests that periastron occurs ~1 month after the onset of the X-ray minimum. The model RXTE observables of WR140 match the data well in absolute units, although the decrease in model X-rays around periastron is less than observed. There is very good agreement between the observed XMM spectrum taken on the rise before periastron and the model. We also model two short-period CWBs, HD150136, which has a wind-star collision, and delta Orionis A, the closest eclipsing CWB. The asymmetry predicted in the unobserved portion of HD150136's orbit, and the line profile variations due to the cavity carved into the primary wind by the secondary in delta Orionis A, helped provide a basis for newly approved Chandra observations of both systems.
Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b
NASA Astrophysics Data System (ADS)
Bourrier, V.; Lecavelier des Etangs, A.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K.
2012-12-01
Transit observations of the hydrogen Lyman-α line allowed the detection of atmospheric escape from the exoplanet HD209458b (Vidal-Madjar et al. 2003). Using spectrally resolved Lyman-α transit observations of the exoplanet HD 189733b at two different epochs, Lecavelier des Etangs et al. (2012) detected for the first time temporal variations in the physical conditions of an evaporating planetary atmosphere. Here we summarized the results obtained with the HST/STIS observations as presented in June 2012 at the SF2A 2012 meeting. While atmospheric hydrogen cannot be detected in the STIS observations of April 2010, it is clearly detected in the September 2011 observations. The atomic hydrogen cloud surrounding the transiting planet produces a transit absorption depth of 14.4±3.6% between velocities of -230 to -140 km s^{-1}. These high velocities cannot arise from radiation pressure alone and, contrary to HD 209458b, this requires an additional acceleration mechanism, such as interactions with stellar wind protons. The spectral and temporal signature of the absorption is fitted by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g s^{-1}, a stellar wind with a velocity of 190 km s^{-1} and a temperature of ˜10^5 K. We also illustrate the power of multi-wavelengths approach with simultaneous observations in the X-rays obtained with Swift/XRT. We detected an X-ray flare about 8 hours before the transit of September 2011. This suggests that the observed changes within the upper part of the escaping atmosphere can be caused by variations in the stellar wind properties, or/and by variations in the stellar energy input to the planet's escaping gas. This multi-wavelengths approach allowed the simultaneous detection of temporal variations both in the stellar X-ray and in the planetary upper atmosphere, providing first observational constraints on the interaction between the exoplanet's atmosphere and the star.
NASA Astrophysics Data System (ADS)
Lombaert, Robin
2013-12-01
Low-to-intermediate mass stars end their life on the asymptotic giant branch (AGB), an evolutionary phase in which the star sheds most of its mantle into the circumstellar environment through a stellar wind. This stellar wind expands at relatively low velocities and enriches the interstellar medium with elements newly made in the stellar interior. The physical processes controlling the gas and dust chemistry in the outflow, as well as the driving mechanism of the wind itself, are poorly understood and constitute the broader context of this thesis work. In a first chapter, we consider the thermodynamics of the high-density wind of the oxygen-rich star oh, using observations obtained with the PACS instrument onboard the Herschel Space Telescope. Being one of the most abundant molecules, water vapor can be dominant in the energy balance of the inner wind of these types of stars, but to date, its cooling contribution is poorly understood. We aim to improve the constraints on water properties by careful combination of both dust and gas radiative-transfer models. This unified treatment is needed due to the high sensitivity of water excitation to dust properties. A combination of three types of diagnostics reveals a positive radial gradient of the dust-to-gas ratio in oh. The second chapter deals with the dust chemistry of carbon-rich winds. The 30-mic dust emission feature is commonly identified as due to magnesium sulfide (MgS). However, the lack of short-wavelength measurements of the optical properties of this dust species prohibits the determination of the temperature profile of MgS, and hence its feature strength and shape, questioning whether this species is responsible for the 30-mic feature. By considering the very optically thick wind of the extreme carbon star LL Peg, this problem can be circumvented because in this case the short-wavelength optical properties are not important for the radial temperature distribution. We attribute the 30-mic feature to MgS, but require that the dust species is embedded in a heterogeneous composite grain structure together with carbonaceous compounds. The final chapter considers the circumstellar gas chemistry of carbon-rich AGB stars. The recent discovery of warm water vapor in carbon-rich winds challenges our understanding of chemical processes ongoing in the wind. Two mechanisms for producing warm water were proposed: water formation induced by interstellar ultraviolet photons penetrating into the inner region of a clumpy wind, and water formation induced by shocks passing through the atmospheric and inner-wind molecular gas. A sample of eighteen carbon-rich AGB stars has been observed with the Herschel Space Telescope and offers insights into the dependence of water properties on the stellar and circumstellar conditions. We suggest that both proposed water formation mechanisms must be at work to account for the following findings: 1) warm water is present in all observed carbon stars; 2) water formation efficiency decreases with higher circumstellar column density; 3) water properties strongly depend on the variability characteristics of the AGB stars; and 4) a positive water abundance gradient is present up to at most ˜ 50 rstar in individual stars.
Star Formation Driven Galactic Winds at z~1.4
NASA Astrophysics Data System (ADS)
Weiner, Benjamin J.
2009-12-01
Galactic winds are a prime suspect for driving metals out of galaxies, creating the mass-metallicity relation, probably enriching the IGM, and explaining the low baryon fraction in galaxies. They may also be related to the quenching of star formation in red galaxies. However, it is unclear how efficiently winds couple to the ISM, and which types and masses of galaxies drove winds in the past. Spectroscopy of blueshifted Mg II absorption in galaxies at z~1.4 in the DEEP2 survey shows that winds are ubiquitous at that redshift (where the SFR in the bulk of galaxies is higher than today), and that they are driven by star formation. Many of these galaxies will become spirals rather than ellipticals, showing that SF-driven winds are part of the past history of many galaxies, but that such winds do not directly lead to quenching or deterrence of subsequent star formation.
Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake
NASA Astrophysics Data System (ADS)
Lin, Y. T.
2014-12-01
In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.
Mechanics of interrill erosion with wind-driven rain
USDA-ARS?s Scientific Manuscript database
The vector physics of wind-driven rain (WDR) differs from that of wind-free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blobaum, K M
This month's issue has the following articles: (1) Fifty Years of Stellar Laser Research - Commentary by Edward I. Moses; (2) A Stellar Performance - By combining computational models with test shot data, scientists at the National Ignition Facility have demonstrated that the laser is spot-on for ignition; (3) Extracting More Power from the Wind - Researchers are investigating how atmospheric turbulence affects power production from wind turbines; (4) Date for a Heart Cell - Carbon-14 dating reveals that a significant number of heart muscle cells are regenerated over the course of our lives; and (5) Unique Marriage of Biologymore » and Semiconductors - A new device featuring a layer of fat surrounding a thin silicon wire takes advantage of the communication properties of both biomolecules and semiconductors.« less
Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
NASA Astrophysics Data System (ADS)
Newton, S. L.; Helander, P.; Mollén, A.; Smith, H. M.
2017-10-01
The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.
Observational Evidence Linking Interstellar UV Absorption to PAH Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasberger, Avi; Behar, Ehud; Perets, Hagai B.
The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorptionmore » and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.« less
NASA Astrophysics Data System (ADS)
Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann
2017-10-01
Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.
NASA Astrophysics Data System (ADS)
Wang, Xin; Jones, Tucker A.; Treu, Tommaso; Morishita, Takahiro; Abramson, Louis E.; Brammer, Gabriel B.; Huang, Kuang-Han; Malkan, Matthew A.; Schmidt, Kasper B.; Fontana, Adriano; Grillo, Claudio; Henry, Alaina L.; Karman, Wouter; Kelly, Patrick L.; Mason, Charlotte A.; Mercurio, Amata; Rosati, Piero; Sharon, Keren; Trenti, Michele; Vulcani, Benedetta
2017-03-01
We combine deep Hubble Space Telescope grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity for 10 star-forming galaxies at high redshift (1.2≲ z≲ 2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kiloparsec spatial resolution and push the limit of stellar mass associated with such high-z spatially resolved measurements below {10}8 {M}⊙ for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, and other physical processes that can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kiloparesec resolution metallicity gradient measurements at high z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk-formation phase can explain the majority of observed metallicity gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradients, consistent with the “downsizing” galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition to the spatially resolved analysis, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z ˜ 1.8. We use this sample to study the mass-metallicity relation (MZR) and find that the slope of the observed MZR can rule out the momentum-driven wind model at a 3σ confidence level.
Observational Evidence Linking Interstellar UV Absorption to PAH Molecules
NASA Astrophysics Data System (ADS)
Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.
2017-02-01
The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ˜15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ˜15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.
Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies
NASA Astrophysics Data System (ADS)
McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad
2018-06-01
We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.
On the X-ray temperature of hot gas in diffuse nebulae
NASA Astrophysics Data System (ADS)
Toalá, J. A.; Arthur, S. J.
2018-05-01
X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.
On the Origin of the Wind Variability of 55 Cyg
NASA Astrophysics Data System (ADS)
Haucke, M.; Kraus, M.; Venero, R. O. J.; Tomić, S.; Cidale, L. S.; Nickeler, D. H.; Curé, M.
2014-10-01
The early B-type supergiant 55 Cygni exhibits pronounced night-to-night variations in its Hα P-Cygni line profile, probably related to a strong variable stellar wind. In this work we studied a sample of spectroscopic observations, taken at the Observatory of Ondřejov (Czech Republic), in order to analyze the variations in the stellar and wind parameters. The observations were modeled using FASTWIND code (Santolaya-Rey, Puls & Herrero 1997, A&A 323, 488-512). Although we were not able to find an exact period from the Hα line profile variations, the same pattern (shape and intensity) seems to have a cyclic behaviour of about 17 days. The values for the wind and stellar parameters suggest changes of the mass loss rate by a factor of three during a cycle of variability. On the other hand, Kraus et al. (Precision Asteroseismology Proceedings, IAU Symposium 301, 2014) found that the HeI λ 6678 photospheric absorption line presents a 1.09 day period, which could be superimposed over a longer period. From the analysis of our theoretical parameters we found that a gravitational mode of pulsation could not be the only agent responsible for the observed variations. As the stars evolving from the main sequence to the red supergiant stage (RSG) have different pulsation properties than those evolving back to the blue supergiant region (Saio, Georgy & Meynet, 2013, MNRAS, 433, 1246), we conclude that 55 Cygni could be in a post-RSG phase with multiperiodic pulsation modes. The variable mass loss could be attributed to the coupling of the oscillation modes.
On the X-ray temperature of hot gas in diffuse nebulae
NASA Astrophysics Data System (ADS)
Toalá, J. A.; Arthur, S. J.
2018-07-01
X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.
M*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates
NASA Astrophysics Data System (ADS)
Bernardi, M.; Sheth, R. K.; Dominguez-Sanchez, H.; Fischer, J.-L.; Chae, K.-H.; Huertas-Company, M.; Shankar, F.
2018-06-01
Within a galaxy the stellar mass-to-light ratio ϒ* is not constant. Recent studies of spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger ϒ* gradients than if the IMF is held fixed. We show that ignoring such IMF-driven ϒ* gradients can have dramatic effect on dynamical (M_*^dyn), though stellar population (M_*^SP) based estimates of early-type galaxy stellar masses are also affected. This is because M_*^dyn is usually calibrated using the velocity dispersion measured in the central regions (e.g. Re/8) where stars are expected to dominate the mass (i.e. the dark matter fraction is small). On the other hand, M_*^SP is often computed from larger apertures (e.g. using a mean ϒ* estimated from colours). If ϒ* is greater in the central regions, then ignoring the gradient can overestimate M_*^dyn by as much as a factor of two for the most massive galaxies. Large ϒ*-gradients have four main consequences: First, M_*^dyn cannot be estimated independently of stellar population synthesis models. Secondly, if there is a lower limit to ϒ* and gradients are unknown, then requiring M_*^dyn=M_*^SP constrains them. Thirdly, if gradients are stronger in more massive galaxies, then accounting for this reduces the slope of the correlation between M_*^dyn/M_*^SP of a galaxy with its velocity dispersion. In particular, IMF-driven gradients bring M_*^dyn and M_*^SP into agreement, not by shifting M_*^SP upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising M_*^dyn estimates in the literature downwards. Fourthly, accounting for ϒ* gradients changes the high-mass slope of the stellar mass function φ (M_*^dyn), and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring ϒ* gradients in larger samples.
Color-size Relations of Disc Galaxies with Similar Stellar Masses
NASA Astrophysics Data System (ADS)
Fu, W.; Chang, R. X.; Shen, S. Y.; Zhang, B.
2011-01-01
To investigate the correlations between colors and sizes of disc galaxies with similar stellar masses, a sample of 7959 local face-on disc galaxies is collected from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). Our results show that, under the condition that the stellar masses of disc galaxies are similar, the relation between u-r and size is weak, while g-r, r-i and r-z colors decrease with disk size. This means that the color-size relations of disc galaxies with similar stellar masses do exist, i.e., the more extended disc galaxies with similar stellar masses tend to have bluer colors. An artificial sample is constructed to confirm that this correlation is not driven by the color-stellar mass relations and size-stellar mass relation of disc galaxies. Our results suggest that the mass distribution of disk galaxies may have an important influence on their stellar formation history, i.e., the galaxies with more extended mass distribution evolve more slowly.
NASA Astrophysics Data System (ADS)
Aller, Lawrence H.
1991-09-01
1. Introducing stars and nebulae; 2. Stellar rainbows; 3. Atoms and molecules; 4. The climate in a stellar atmosphere; 5. Analysing the stars; 6. Dwarfs, giants, and supergiants; 7. What makes a star shine?; 8. The youth and middle age of a common star; 9. Wind, dust and pulsations; 10. A star's last hurray?; 11. The interstellar medium and gaseous nebulae; 12. Uncommon stars and their sometimes violent behaviour; 13. High energy astronomy.
Testing the Wind-shock Paradigm for B-Type Star X-Ray Production with θ Car
NASA Astrophysics Data System (ADS)
Doyle, T. F.; Petit, V.; Cohen, D.; Leutenegger, M.
2017-11-01
We present Chandra X-ray grating spectroscopy of the B0.2V star, θ Carina. θ Car is in a critical transition region between the latest O-type and earliest B-type stars, where some stars are observed to have UV-determined wind densities much lower than theoretically expected (e.g., Marcolino et al. 2009). In general, X-ray emission in this low-density wind regime should be less prominent than for O-stars (e.g., Martins et al. 2005), but observations suggest a higher than expected X-ray emission filling factor (Lucy 2012; Huenemoerder et al. 2012); if a larger fraction of the wind is shock-heated, it could explain the weak UV wind signature seen in weak wind stars, but this might severely challenge predictions of radiatively-driven wind theory. We measured the line widths of several He-, H-like and Fe ions and the f/i ratio of He-like ions in the X-ray spectrum, which improves upon the results from Nazé et al. (2008) (XMM-Newton RGS) with additional measurements (Chandra HETG) of Mgxi and Sixiii by further constraining the X-ray emission location. The f/i ratio is modified by the proximity to the UV-emitting stellar photosphere, and is therefore a diagnostic of the radial location of the X-ray emitting plasma. The measured widths of X-ray lines are narrow, <300 km s-1 and the f/i ratios place the X-rays relatively close to the surface, both implying θ Car is a weak wind star. The measured widths are also consistent with other later-type stars in the weak wind regime, β Cru (Cohen et al. 2008), for example, and are smaller on average than earlier weak wind stars such as μ Col (Huenemoerder et al. 2012). This could point to a spectral type divide, where one hypothesis, low density, works for early-B type stars and the other hypothesis, a larger fraction of shock-heated gas, explains weak winds in late-O type stars. Archival IUE data still needs to be analyzed to determine the mass loss rate and hydrodynamical simulations will be compared with observations to determine which hypothesis works for θ Car.
SECULAR CHANGES IN ETA CARINAE'S WIND 1998-2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.
2012-05-20
Stellar wind-emission features in the spectrum of eta Carinae have decreased by factors of 1.5-3 relative to the continuum within the last 10 years. We investigate a large data set from several instruments (STIS, GMOS, UVES) obtained between 1998 and 2011 and analyze the progression of spectral changes in direct view of the star, in the reflected polar-on spectra at FOS4, and at the Weigelt knots. We find that the spectral changes occurred gradually on a timescale of about 10 years and that they are dependent on the viewing angle. The line strengths declined most in our direct view ofmore » the star. About a decade ago, broad stellar wind-emission features were much stronger in our line-of-sight view of the star than at FOS4. After the 2009 event, the wind-emission line strengths are now very similar at both locations. High-excitation He I and N II absorption lines in direct view of the star strengthened gradually. The terminal velocity of Balmer P Cyg absorption lines now appears to be less latitude dependent, and the absorption strength may have weakened at FOS4. Latitude-dependent alterations in the mass-loss rate and the ionization structure of eta Carinae's wind are likely explanations for the observed spectral changes.« less
1982-12-01
1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation
NASA Astrophysics Data System (ADS)
Myasnikov, A. V.; Zhekov, S. A.
1998-11-01
The influence of electron thermal conduction on the 2D gas dynamics of colliding stellar winds is investigated. It is shown that, as a result of the non-linear dependence of the electron thermal flux on the temperature, the pre-heating zones (in which the hot gas in the interaction region heats the cool winds in front of the shocks) have finite sizes. The dependence of the problem of the structure of the flow in the interaction region on the dimensionless parameters is studied, and a simple expression is derived for the size of the pre-heating zones at the axis of symmetry. It is shown that small values of the thermal conductivity do not suppress the Kelvin-Helmholtz instability if the adiabatic flow is subject to it. Further studies, both numerical and analytical, in this direction will be of great interest. The influence of thermal conduction on the X-ray emission from the interaction region is also estimated.
Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.; Garraffo, C.
2014-07-20
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms inmore » the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.« less
NASA Technical Reports Server (NTRS)
Drew, J. E.
1989-01-01
Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.
Lack of thermal energy in superbubbles: hint of cosmic rays?
NASA Astrophysics Data System (ADS)
Gupta, Siddhartha; Nath, Biman B.; Sharma, Prateek; Eichler, David
2018-01-01
Using analytic methods and 1D two-fluid simulations, we study the effect of cosmic rays (CRs) on the dynamics of interstellar superbubbles (ISBs) driven by multiple supernovae (SNe)/stellar winds in OB associations. In addition to CR advection and diffusion, our models include thermal conduction and radiative cooling. We find that CR injection at the reverse shock or within a central wind-driving region can affect the thermal profiles of ISBs and hence their X-ray properties. Even if a small fraction (10-20 per cent) of the total mechanical power is injected into CRs, a significant fraction of the ram pressure at the reverse shock can be transferred to CRs. The energy transfer becomes efficient if (1) the reverse shock gas Mach number exceeds a critical value (Mth ≳ 12) and (2) the CR acceleration time-scale τacc ∼ κcr/v2 is shorter than the dynamical time, where κcr is a CR diffusion coefficient and v is the upstream velocity. We show that CR affected bubbles can exhibit a volume-averaged hot gas temperature 1-5 × 106 K, lower by a factor of 2 - 10 than without CRs. Thus, CRs can potentially solve the long-standing problem of the observed low ISB temperatures.
Life and Times of the X-Ray Gas in Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Renzini, Alvio
2000-09-01
The global gas flows in elliptical galaxies are initiated by stellar mass loss and their diagnostics rely on X-ray observations. The flows are controlled by a number of factors, including supernova heating, the depth and shape of the potential well as determined by the amount and distribution of bright and dark matter, AGN fueling and its feedback effects, interaction with the intracluster medium, and star formation. As a result no steady-state solution can satisfactorily describe the complex, evolutionary behavior of the gas flows, which can experience supersonic wind, subsonic outflow, and inflow phases, and transitions between one such flow regime to another. Having identified heating by Type Ia SN's as one of the key factors controlling the flows, constraints on its evolution with cosmological time are derived by considering the total amount of iron contained in whole clusters of galaxies, while the iron abundance in individual galaxy flows can set constraints on the present rate of SNIa's in ellipticals. The central issue of the problem remains the fate of the gas. It is argued that in one way or another, via SN-driven winds, ram pressure stripping, or AGN violent ejection, most of the gas is ultimately expelled from galaxies thus joining the intracluster medium.
MAGNETIC GAMES BETWEEN A PLANET AND ITS HOST STAR: THE KEY ROLE OF TOPOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strugarek, A.; Brun, A. S.; Réville, V.
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star–planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. Themore » Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star–planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 10{sup 19} W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.« less
NASA Astrophysics Data System (ADS)
Chu, You-Hua
2017-02-01
Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.
Polarization simulations of stellar wind bow-shock nebulae - I. The case of electron scattering
NASA Astrophysics Data System (ADS)
Shrestha, Manisha; Neilson, Hilding R.; Hoffman, Jennifer L.; Ignace, Richard
2018-06-01
Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics of the local medium. Since bow-shock nebulae are aspherical structures, light scattering within them produces a net polarization signal even if the region is spatially unresolved. Scattering opacity arising from free electrons and dust leads to a distribution of polarized intensity across the bow-shock structure. That polarization encodes information about the shape, composition, opacity, density, and ionization state of the material within the structure. In this paper, we use the Monte Carlo radiative transfer code SLIP to investigate the polarization created when photons scatter in a bow-shock-shaped region of enhanced density surrounding a stellar source. We present results for electron scattering, and investigate the polarization behaviour as a function of optical depth, temperature, and source of photons for two different cases: pure scattering and scattering with absorption. In both regimes, we consider resolved and unresolved cases. We discuss the implications of these results as well as their possible use along with observational data to constrain the properties of observed bow-shock systems. In different situations and under certain assumptions, our simulations can constrain viewing angle, optical depth and temperature of the scattering region, and the relative luminosities of the star and shock.
Magnetic Games between a Planet and Its Host Star: The Key Role of Topology
NASA Astrophysics Data System (ADS)
Strugarek, A.; Brun, A. S.; Matt, S. P.; Réville, V.
2015-12-01
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 1019 W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.
Chandra Reveals the X-ray Glint in the Cat's Eye
NASA Astrophysics Data System (ADS)
Chu, Y.-H.; Guerrero, M. A.; Gruendl, R. A.; Kaler, J. B.; Williams, R. M.
2000-12-01
The Cat's Eye Nebula, also known as NGC 6543, has perhaps the most intriguing and complex morphology among planetary nebulae (PNe). It is a known X-ray source, but previous observations were unable to resolve the distribution of the X-rays. Recent Chandra ACIS-S observations of the Cat's Eye clearly resolved the X-ray emission into a point source at the central star and diffuse emission confined within the central elliptical shell and two lobes along the major axis. Analyses of the spectra of the central shell and the two lobes show that the hot gas in the Cat's Eye has temperatures of ~1.6x106 K and that its abundances are similar to those of the fast stellar wind and not those of the nebula. The spectral variations among these regions can be explained by different amounts of absorption through the nebula along the line of sight. It is puzzling that the X-ray-emitting gas appears to be comprised of mostly stellar wind material yet its temperature is much lower than expected for an adiabatically shocked stellar wind. Extremely efficient cooling mechanisms are needed. The study of X-ray emission from the Cat's Eye will help us understand why most PNe do not have detectable diffuse X-ray emission, and thus provide insights on the formation and evolution of PNe. This work is supported by the CXC grant number GO0-1004X.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Taylor dispersion in wind-driven current
NASA Astrophysics Data System (ADS)
Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.
2017-12-01
Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.
The long-term intensity behavior of Centaurus X-3
NASA Technical Reports Server (NTRS)
Schreier, E. J.; Swartz, K.; Giacconi, R.; Fabbiano, G.; Morin, J.
1976-01-01
In three years of observation, the X-ray source Cen X-3 appears to alternate between 'high states', with an intensity of 150 counts/s (2-6 keV) or greater, and 'low states', where the source is barely detectable. The time scale of this behavior is of the order of months, and no apparent periodicity has been observed. Analysis of two transitions between these states is reported. During two weeks in July 1972, the source increased from about 20 counts/s to 150 counts/s. The detailed nature of this turn-on is interpreted in terms of a model in which the supergiant's stellar wind decreases in density. A second transition, a turnoff in February 1973, is similarly analyzed and found to be consistent with a simple decrease in accretion rate. The presence of absorption dips during transitions at orbital phases 0.4-0.5 as well as at phase 0.75 is discussed. The data are consistent with a stellar-wind accretion model and with different kinds of extended lows caused by increased wind density masking the X-ray emission or by decreased wind density lowering the accretion rate.
Holistic Framework for Understanding the Evolution of Stellar Coronal Plasmas
NASA Astrophysics Data System (ADS)
Blackman, Eric; Owen, James
2017-10-01
Understanding how how the coronal X-ray activity of stars depends on magnetic field strength, dynamos, rotation, mass loss and age is of interest not only for the basic plasma physics of stars, but also for stellar age determination and implications for habitability. Approximate relations between field strength, activity, spin down, mass loss and age have been measured, but remain to be understood theoretically. The saturation of plasma activity of the fastest rotators and the decoupling of spin-down from magnetic field strengths for slow rotators are particular puzzles. To explain the observed trends, I discuss our minimalist holistic theoretical framework that combines a Parker wind with (i) magnetic dynamo sourcing of thermal energy, wind energy and x-ray luminosity (ii) dynamo saturation based on magnetic helicity conservation and shear-induced eddy shredding and (iii) coronal equilibrium to determine how the magnetic energy divides into wind, x-ray, and thermal conduction sinks. We find conduction to be important for older stars where it can reduce the efficacy of wind angular momentum loss, offering an alternative explanation of this trend to those which require dynamo transitions. Overall, the framework shows promise and provides opportunity for further Grant NSF-AST1515648 is acknowledged.
From Nuclei to Dust Grains: How the AGB Machinery Works
NASA Astrophysics Data System (ADS)
Gobrecht, D.; Cristallo, S.; Piersanti, L.
2015-12-01
With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.
Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters
NASA Astrophysics Data System (ADS)
Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon
2018-01-01
We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.
NASA Astrophysics Data System (ADS)
Rubini, F.; Maurri, L.; Inghirami, G.; Bacciotti, F.; Del Zanna, L.
2014-07-01
High angular resolution spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) provide rich morphological and kinematical information about the stellar jet phenomenon, which allows us to test theoretical models efficiently. In this work, numerical simulations of stellar jets in the propagation region are executed with the PLUTO code, by adopting inflow conditions that arise from former numerical simulations of magnetized outflows, accelerated by the disk-wind mechanism in the launching region. By matching the two regions, information about the magneto-centrifugal accelerating mechanism underlying a given astrophysical object can be extrapolated by comparing synthetic and observed position-velocity diagrams. We show that quite different jets, like those from the young T Tauri stars DG-Tau and RW-Aur, may originate from the same disk-wind model for different configurations of the magnetic field at the disk surface. This result supports the idea that all the observed jets may be generated by the same mechanism. Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Aerts, C.; Símon-Díaz, S.; Bloemen, S.; Debosscher, J.; Pápics, P. I.; Bryson, S.; Still, M.; Moravveji, E.; Williamson, M. H.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Christensen-Dalsgaard, J.; Rogers, T. M.
2017-06-01
Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret the photospheric and wind variability of the O9.5 Iab star HD 188209 from Kepler space photometry and long-term high-resolution spectroscopy. We used Kepler scattered-light photometry obtained by the nominal mission during 1460 d to deduce the photometric variability of this O-type supergiant. In addition, we assembled and analysed high-resolution high signal-to-noise spectroscopy taken with four spectrographs during some 1800 d to interpret the temporal spectroscopic variability of the star. The variability of this blue supergiant derived from the scattered-light space photometry is in full in agreement with the one found in the ground-based spectroscopy. We find significant low-frequency variability that is consistently detected in all spectral lines of HD 188209. The photospheric variability propagates into the wind, where it has similar frequencies but slightly higher amplitudes. The morphology of the frequency spectra derived from the long-term photometry and spectroscopy points towards a spectrum of travelling waves with frequency values in the range expected for an evolved O-type star. Convectively-driven internal gravity waves excited in the stellar interior offer the most plausible explanation of the detected variability. Based on photometric observations made with the NASA Kepler satellite and on spectroscopic observations made with four telescopes: the Nordic Optical Telescope operated by NOTSA and the Mercator Telescope operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias, the T13 2.0 m Automatic Spectroscopic Telescope (AST) operated by Tennessee State University at the Fairborn Observatory, and the Hertzsprung SONG telescope operated on the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias, Spain.
Probing the Environment of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hanke, Manfred
2011-04-01
X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.
The Chandra/MOST Campaign on Delta Ori A
NASA Astrophysics Data System (ADS)
Corcoran, Michael
2014-11-01
X-ray emission from massive stars is produced by shocked gas distributed throughout their unstable stellar winds. These shocks play a significant role in determining accurate stellar mass loss rates. Our current understanding of these shocks is derived from indirect indicators like line profile shapes and the f/i ratio of the He-like triplets. Here we discuss a campaign of phase-resolved Chandra grating observations and simultaneous high-precision photometry using the MOST satellite of the massive binary Delta Ori A, in an attempt to directly constrain the radial extent of the hot gas in the wind of the primary star (Delta Ori Aa) via occultation by the X-ray faint secondary (Delta Ori Ab). We present an overview of this campaign and a summary of our results.
An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars
NASA Technical Reports Server (NTRS)
Buren, David Van
1995-01-01
We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.
Gao, Pengfei; Jaques, Peter A; Hsiao, Ta-Chih; Shepherd, Angie; Eimer, Benjamin C; Yang, Mengshi; Miller, Adam; Gupta, Bhupender; Shaffer, Ronald
2011-01-01
Existing face mask and respirator test methods draw particles through materials under vacuum to measure particle penetration. However, these filtration-based methods may not simulate conditions under which protective clothing operates in the workplace, where airborne particles are primarily driven by wind and other factors instead of being limited to a downstream vacuum. This study was focused on the design and characterization of a method simulating typical wind-driven conditions for evaluating the performance of materials used in the construction of protective clothing. Ten nonwoven fabrics were selected, and physical properties including fiber diameter, fabric thickness, air permeability, porosity, pore volume, and pore size were determined. Each fabric was sealed flat across the wide opening of a cone-shaped penetration cell that was then housed in a recirculation aerosol wind tunnel. The flow rate naturally driven by wind through the fabric was measured, and the sampling flow rate of the Scanning Mobility Particle Sizer used to measure the downstream particle size distribution and concentrations was then adjusted to minimize filtration effects. Particle penetration levels were measured under different face velocities by the wind-driven method and compared with a filtration-based method using the TSI 3160 automated filter tester. The experimental results show that particle penetration increased with increasing face velocity, and penetration also increased with increasing particle size up to about 300 to 500 nm. Penetrations measured by the wind-driven method were lower than those obtained with the filtration method for most of the fabrics selected, and the relative penetration performances of the fabrics were very different due to the vastly different pore structures.
X-ray emission from the winds of hot stars
NASA Technical Reports Server (NTRS)
Lucy, L. B.; White, R. L.
1980-01-01
A phenomenological theory is proposed for the structure of the unstable line-driven winds of early-type stars. These winds are conjectured to break up into a population of blobs that are being radiatively driven through, and confined by ram pressure of an ambient gas that is not itself being radiatively driven. Radiation from the bow shocks preceding the blobs can account for the X-ray luminosity of zeta Puppis. The theory breaks down when used to model the much lower density wind of tau Scorpii, for then the blobs are destroyed by heat conduction from shocked gas. This effect explains why the profiles of this star's UV resonance lines depart from classical P Cygni form.
The assembly of stellar haloes in massive Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Buitrago, F.
2017-03-01
Massive (Mstellar >= 5×1010 M⊙) Early-Type Galaxies (ETGs) must build an outer stellar envelope over cosmic time in order to account for their remarkable size evolution. This is similar to what occurs to nearby Late-Type Galaxies (LTGs), which create their stellar haloes out of the debris of lower mass systems. We analysed the outer parts of massive ETGs at z < 1 by exploiting the Hubble Ultra Deep Field imaging. These galaxies store 10-30% of their stellar mass at distances 10 < R/kpc < 50, in contrast to the low percentages (< 5%) found for LTGs. We find evidence for a progressive outskirt development with redshift driven solely via merging.
Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela
We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functionsmore » (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.« less
Expansion of Hydrogen-poor Knots in the Born-again Planetary Nebulae A30 and A78
NASA Astrophysics Data System (ADS)
Fang, X.; Guerrero, M. A.; Marquez-Lugo, R. A.; Toalá, J. A.; Arthur, S. J.; Chu, Y.-H.; Blair, W. P.; Gruendl, R. A.; Hamann, W.-R.; Oskinova, L. M.; Todt, H.
2014-12-01
We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with distance to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots; the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12935.
An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2
NASA Astrophysics Data System (ADS)
Kwan, Stephanie; Lau, Ryan M.; Jencson, Jacob; Kasliwal, Mansi M.; Boyer, Martha L.; Ofek, Eran; Masci, Frank; Laher, Russ
2018-03-01
We present an optical and infrared (IR) study of IC 10 X-2, a high-mass X-ray binary in the galaxy IC 10. Previous optical and X-ray studies suggest that X-2 is a Supergiant Fast X-ray Transient: a large-amplitude (factor of ∼100), short-duration (hours to weeks) X-ray outburst on 2010 May 21. We analyze R- and g-band light curves of X-2 from the intermediate Palomar Transient Factory taken between 2013 July 15 and 2017 February 14 that show high-amplitude (≳1 mag), short-duration (≲8 days) flares and dips (≳0.5 mag). Near-IR spectroscopy of X-2 from Palomar/TripleSpec show He I, Paschen-γ, and Paschen-β emission lines with similar shapes and amplitudes as those of luminous blue variables (LBVs) and LBV candidates (LBVc). Mid-IR colors and magnitudes from Spitzer/Infrared Array Camera photometry of X-2 resemble those of known LBV/LBVcs. We suggest that the stellar companion in X-2 is an LBV/LBVc and discuss possible origins of the optical flares. Dips in the optical light curve are indicative of eclipses from optically thick clumps formed in the winds of the stellar counterpart. Given the constraints on the flare duration (0.02–0.8 days) and the time between flares (15.1 ± 7.8 days), we estimate the clump volume filling factor in the stellar winds, f V , to be 0.01< {f}V< 0.71, which overlaps with values measured from massive star winds. In X-2, we interpret the origin of the optical flares as the accretion of clumps formed in the winds of an LBV/LBVc onto the compact object.
Flutter-driven triboelectrification for harvesting wind energy
NASA Astrophysics Data System (ADS)
Bae, Jihyun; Lee, Jeongsu; Kim, Seongmin; Ha, Jaewook; Lee, Byoung-Sun; Park, Youngjun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U.-In
2014-09-01
Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5 cm at wind speed of 15 ms-1 exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 μA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner.
Rotational evolution of slow-rotator sequence stars
NASA Astrophysics Data System (ADS)
Lanzafame, A. C.; Spada, F.
2015-12-01
Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence stars from their mass and rotation period that is largely independent of the wind braking model adopted. These effectively represent gyro-chronology relationships that take the physics of the two-zone model for the stellar angular momentum evolution into account.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-23
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-01
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793
Models of Interacting Stellar Winds
NASA Astrophysics Data System (ADS)
Wilkin, Francis Patrick
Stars drive supersonic winds which interact violently with their surroundings. Analytic and numerical models of hypersonic, interacting circumstellar flows are presented for several important astrophysical problems. A new solution method for steady-state, axisymmetric, wind collision problems is applied to radiative bow shocks from moving stars and to the collision of two spherical winds in a binary star system. The solutions obtained describe the shape of the geometrically thin, shocked shell of matter, as well as its mass surface density and the tangential velocity within it. Analytic solutions are also obtained for non-axisymmetric bow shocks, where the asymmetry arises due to either a transverse gradient in the ambient medium, or a misaligned, axisymmetric stellar wind. While the solutions are all easily scaled in terms of their relevant dimensional parameters, the important assumption of radiative shocks implies that the models are most applicable towards systems with dense environments and low preshock velocities. The bow shock model has previously been applied to cometary, ultracompact HII regions by Van Buren et al. (1990), who discussed extensively the applicability of the thin shell approximation. I next model the collision between a protostellar wind and supersonic infall from a rotating cloud, employing a quasi-steady, thin-shell formulation. The spherical wind is initially crushed to the protostellar surface by nearly spherical infall. The centrifugal distortion of infalling matter eventually permits a wind-supported, trapped bubble to slowly expand on an evolutionary (~ 105 yr) time. The shell becomes progressively more extended along the rotational axis, due to the asymmetry of the infall. When the quasi-steady assumption breaks down, the shell has become a needle-like, bipolar configuration that may represent a precursor to protostellar jets. I stress, however, the likelihood of instability for the shell, and the possibility of oscillatory behavior in a fully time-dependent model.
Kulsrud, R.M.; Spitzer, L. Jr.
1961-12-12
An apparatus of the stellarator type for heating a plasma to high temperatures is designed. Circularizers at the end of then helical windings produce a circular magnetic surface and provide improved confining and heating of the plasma. Reverse curvature sections formed in the end loops of the reaction tube provide increased plasma pressure for a given magnetic field pressure and thereby minimize the current flow in the helical windings. (AEC)
Substorm Occurrence and Intensity Associated With Three Types of Solar Wind Structure
NASA Astrophysics Data System (ADS)
Liou, Kan; Sotirelis, Thomas; Richardson, Ian
2018-01-01
This paper presents the results of a study of the characteristics of substorms that occurred during three distinct types of solar wind: coronal mass ejection (CME) associated, high-speed streams (HSS), and slow solar wind (SSW). A total number of 53,468 geomagnetic substorm onsets from 1983 to 2009 is used and sorted by the three solar wind types. It is found that the probability density function (PDF) of the intersubstorm time can be fitted by the combination of a dominant power law with an exponential cutoff component and a minor lognormal component, implying that substorms are associated with two distinctly different dynamical processes corresponding, perhaps, to the "externally driven" and "internally driven" processes, respectively. We compare substorm frequency and intensity associated with the three types of solar wind. It is found that the intersubstorm time is the longest during SSW and shortest during CME intervals. The averaged intersubstorm time for the internally driven substorms is 3.13, 3.15, and 7.96 h for CME, HSS, and SSW, respectively. The substorm intensity PDFs, as represented by the peak value of |
The GALAH Survey: Second Data Release
NASA Astrophysics Data System (ADS)
Buder, Sven; Asplund, Martin; Duong, Ly; Kos, Janez; Lind, Karin; Ness, Melissa K.; Sharma, Sanjib; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D'Orazi, Valentina; Freeman, Ken C.; Lewis, Geraint F.; Lin, Jane; Martell, Sarah L.; Schlesinger, Katharine J.; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaž; Amarsi, Anish M.; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Čotar, Klemen; Cottrell, Peter L.; Da Costa, Gary; Gao, Xudong D.; Hayden, Michael R.; Horner, Jonathan; Ireland, Michael J.; Kafle, Prajwal R.; Munari, Ulisse; Nataf, David M.; Nordlander, Thomas; Stello, Dennis; Ting, Yuan-Sen; Traven, Gregor; Watson, Fred; Wittenmyer, Robert A.; Wyse, Rosemary F. G.; Yong, David; Zinn, Joel C.; Žerjal, Maruša
2018-05-01
The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (Teff, log g, [Fe/H], [X/Fe], vmic, vsin i, A_{K_S}) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
The magnetically controlled stellar wind of HD 21699
NASA Technical Reports Server (NTRS)
Brown, D. N.; Shore, S. N.; Sonneborn, G.
1985-01-01
The discovery of a magnetically controlled stellar mass outflow in the helium-weak sn star HD 21699 = HR 1063 is reported. IUE observations show that the C IV resonance doublet is variable on the rotational time scale of about 2.5 days, and that there are no other observable spectrum variations in the UV. The magnetic field reverses sign on the rotational time scale. An interpretation of the observations in terms of magnetically structured jets is presented.
NASA Astrophysics Data System (ADS)
Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe
2014-07-01
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
A survey of the three-dimensional high Reynolds number transonic wind tunnel
NASA Technical Reports Server (NTRS)
Takashima, K.; Sawada, H.; Aoki, T.
1982-01-01
The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.
EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS
NASA Astrophysics Data System (ADS)
Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky
2018-01-01
The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.
HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de
Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less
Evolution and Nucleosynthesis of Massive Stars
NASA Astrophysics Data System (ADS)
Meynet, Georges; Maeder, André; Choplin, Arthur; Takahashi, Koh; Ekström, Sylvia; Hirschi, Raphael; Chiappini, Cristina; Eggenberger, Patrick
Massive stars are rapid nuclear reactors that play a key role in injecting new synthesized elements in the interstellar medium. Depending on the strengths of the stellar winds on the efficiency of mixing processes, the masses and the chemical compositions of their ejecta can be dramatically different. In a first part, we describe two types of rotating models differing by the physics involved and discussing various consequences. In a second part, we focus on the impacts of rotation in massive stars at very low metallicity. Various nucleosynthetic signatures pointing towards the need for some extra-mixing in the first generation of stars are presented. This extra-mixing has great chance to be driven by rotation for the following reasons: 1) when the metallicity decreases, the formation of fast rotators seem to be favored; 2) rotational mixing is more efficient at low metallicities; 3) primary nitrogen is produced only at low metallicities a fact that can be well explained by more efficient rotational mixing at low metallicities.
Ultraviolet gas absorption and dust extinction toward M8
NASA Technical Reports Server (NTRS)
Boggs, Don; Bohm-Vitense, Erika
1990-01-01
Interstellar absorption lines are analyzed using high-resolution IUE spectra of 11 stars in the young cluster NGC 6530 located in the M8 region. High-velocity clouds at -35 km/s and -60 km/s are seen toward all cluster stars. The components arise in gases that are part of large interstellar bubbles centered on the cluster and driven by stellar winds of the most luminous members. Absorption lines of species of different ionization states are separated in velocity. The velocity stratification is best explained as a 'champagne' flow of ionized gas away from the cluster. The C IV/Si IV ratios toward the hotter cluster members are consistent with simple photoionization models if the gas-phase C/Si ratio is increased by preferential accretion onto dust grains. High ion column densities in the central cluster decline with distance from W93, suggesting that radiation from a hot source near W93 has photoionized gas in the central cluster.
Nova-driven winds in globular clusters
NASA Technical Reports Server (NTRS)
Scott, E. H.; Durisen, R. H.
1978-01-01
Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.
Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements
NASA Astrophysics Data System (ADS)
Höfner, Susanne; Olofsson, Hans
2018-01-01
As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made in recent years, which is described in this review. We complement this by discussing how observations of emission from circumstellar molecules and dust can be used to estimate the characteristics of the mass loss along the AGB, and in different environments. We also briefly touch upon the issue of binarity.
Stellar Inertial Navigation Workstation
NASA Technical Reports Server (NTRS)
Johnson, W.; Johnson, B.; Swaminathan, N.
1989-01-01
Software and hardware assembled to support specific engineering activities. Stellar Inertial Navigation Workstation (SINW) is integrated computer workstation providing systems and engineering support functions for Space Shuttle guidance and navigation-system logistics, repair, and procurement activities. Consists of personal-computer hardware, packaged software, and custom software integrated together into user-friendly, menu-driven system. Designed to operate on IBM PC XT. Applied in business and industry to develop similar workstations.
Dumas, F; Le Gendre, R; Thomas, Y; Andréfouët, S
2012-01-01
Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...
Suppressing star formation in quiescent galaxies with supermassive black hole winds.
Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P
2016-05-26
Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.
NASA Astrophysics Data System (ADS)
Chakraborty, A.; Narayan, A.
2018-03-01
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting-Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L 1, L 2 and L 3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov's first method of stability.
Galactic Starburst NGC 3603 from X-Rays to Radio
NASA Technical Reports Server (NTRS)
Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.;
2002-01-01
NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.
NGC 4622:. A clear example of spiral density wave star formation unused in textbooks.
NASA Astrophysics Data System (ADS)
Byrd, Gene G.
2018-06-01
Refer to the poster HST images or to http://heritage.stsci.edu/2002/03/index.html. The top northeastern (NE) arm of NGC 4622 winds outward clockwise (CW) showing beautiful “ beads on a string” blue stellar associations on the CONCAVE SIDE of the arm. These are nicely offset CW in position from the density concentration of old yellow stars in the arms. The displacement would result from aggregation of gas clouds as they orbit CW into a more slowly turning stellar disk arm pattern. There is a time delay until the associations form and light up on the concave side. Farther inward along the top NE arm, the lit-up associations occur in the MIDDLE of the stellar arm. This is characteristic of the co-rotation (CR) radius where the CW orbital angular rate of the gas clouds and the arm CW pattern speeds match. Just within CR, the association displacement from the stellar arm is opposite (CCW) onto the CONVEX SIDE of the arm. A similar displacement sequence from concave (outside CR), middle (at CR) to convex (inside CR) is seen along the lower southwestern arm. Why isn’t NGC 4622 featured in textbooks? A rather puzzling single stellar arm winds outward CCW from the center, opposite to the outer pair. The eastern edge of the disk (marked by dust cloud silhouettes) is the nearer edge. The NE portion radial velocity is away relative to the nucleus so the disk orbital motion is CW. The outer pair of arms thus winds outward to LEAD in the same direction as the CW orbital motion, contrary to typical arm winding. Actually, the leading pair of arms and single inner arm would make NGC 4622 even better for use in introductory astronomy texts. Students can debate the origin of this galaxy's strange arm pattern which, ironically, matches density wave predictions so well. This is better than simply reading a textbook and thinking that all is explained. See G. G. Byrd; T. Freeman; S. Howard; R. J. Buta (2008). Astron. J., 135, p. 408–413 and references there for observations and hypotheses about NGC 4622’s arms. This work was supported by NSAS/STScI grant 8707 to the Univ. of Alabama and NSF grant AST 02-0177 to Bevill State College, Fayette, AL. Also see https://www.researchgate.net/profile/Gene_Byrd2
Planetary nebulae: 20 years of Hubble inquiry
NASA Astrophysics Data System (ADS)
Balick, Bruce
2012-08-01
The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.
WNL Stars - the Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.
2001-08-01
We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
WNLh Stars - The Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric
2002-08-01
We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
Ultraviolet spectroscopy of symbiotic nova V1016 Cyg with IUE and HST
NASA Astrophysics Data System (ADS)
Sanad, M. R.
2017-04-01
We present International Ultraviolet Explorer (IUE) & Hubble Space Telescope Space Telescope Imaging Spectrograph (HST STIS) observations of the symbiotic nova V1016 Cyg through the period 1978 - 2000. Four spectra at different times revealing the changes in line fluxes are presented. The outflow velocity of the emitting region was calculated to be 900-2000 km s-1 (FWHM). The reddening of V1016 Cyg was determined from 2200 Å absorption feature to be E (B-V) = 0.36 ± 0.02. We calculated the fluxes of CIV 1550 Å & CIII] 1909 Å emission lines produced in a stellar wind from the hot white dwarf. We determined the average wind mass loss rate to be ˜2.3 × 10-6 M⊙, the average temperature of the emitting region to be ˜1.3 × 105 K, and an average ultraviolet luminosity to be ˜2 × 1035 erg s-1. The results show that there are modulations of line fluxes with time. We attributed these spectral modulations to the changes of density and temperature in the emitting region as a result of the variable stellar wind.
Mass loss in O-type stars - Parameters which affect it
NASA Technical Reports Server (NTRS)
Garmany, C. D.; Conti, P. S.
1984-01-01
Newly determined mass loss rates are presented for sixteen O-type stars in three open clusters. Combining the data with that already in the literature, no evidence is found that the rates are different in clusters with differing galactocentric distances and compositions, at least near the sun. There is still appreciable dispersion in the relationship between the mass loss rate and the stellar luminosity. It may be that the mass loss depends additionally on the stellar mass and/or radius, but these data cannot unequivocally indicate which physical dependence is correct. Evidence is found that a stellar wind increases as a massive star evolves from the zero-age main sequence.
Improved models of stellar core collapse and still no explosions: what is missing?
Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K
2003-06-20
Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
Long-Term Spectral Variability of the Spotted Star IN Com
NASA Astrophysics Data System (ADS)
Alekseev, I. Yu.; Kozlova, O. V.; Gorda, S. Yu.; Avvakumova, E. A.; Kozhevnikova, A. V.
2017-06-01
We present long-term (2004-2016) spectral observations (R = 20000) of IN Com in the regions of Hα, Hβ and He I 5876 Å lines. The unique feature of the stellar spectrum is the presence of the extended two-component emission with limits up to ± 400 km s-1 in the Hα line. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emission is also observed in Hβ and He I 5876 Å lines. Our results allow us to conclude that observational emission profiles are formed in optically thin hot gas. It is a result of presence of a circumstellar gas disk around IN Com. Its size is not exceed several stellar radii. The matter for the disk is supported by stellar wind. Detected variability of Hα emission parameters shows evident relation with UBVRI photometric activity of the star. This fact allowed us to link the long-term spectral variability with cycles of stellar activity of IN Com.
X-ray insights into star and planet formation.
Feigelson, Eric D
2010-04-20
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.
X-ray insights into star and planet formation
Feigelson, Eric D.
2010-01-01
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197
Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination
NASA Technical Reports Server (NTRS)
Wargelin, B.
2003-01-01
The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo
2014-12-01
We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings implymore » electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.« less
Swift, XMM-Newton, and NuSTAR Observations of PSR J2032+4127/MT91 213
NASA Astrophysics Data System (ADS)
Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Hou, X.; Takata, J.; Hui, C. Y.
2017-07-01
We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the γ-ray binary candidate with a period of 45-50 years. The coming periastron of the system was predicted to be in 2017 November, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/2016 showed that its X-ray emission has been brighter by a factors of ˜10 than that before 2013, probably revealing some ongoing activities between the pulsar wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM-Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with the stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme γ-ray binary during the periastron passage in late 2017.
An X-ray Study of a Massive Star and its Wind
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Sugawara, Yasuharu; Tsuboi, Yohko; Hamaguchi, Kenji
2010-10-01
WR 140 is one of the best known examples of a Wolf-Rayet stars. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The column density at periastron is about 30 times higher than that at pre-periastron, which can be explained as self-absorption by the Wolf-Rayet wind. The spectra are dominated by a line and continuum emission from a optically thin-thermal plasma. The strong Ne-K lines are evidence that the thermal plasma is shock-heated W-R wind materials by the interaction with the wind from the companion O star. We present the parameters of the wind, such as a mass-loss rate, which were calculated with the absorption and line emission in the spectra.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...
Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Wetzel, Andrew
2018-04-01
I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toi, K.; Ogawa, K.; Isobe, M.
2011-01-01
Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs thatmore » exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan
2016-10-01
We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less
NASA Astrophysics Data System (ADS)
Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio
2016-10-01
We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.
The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations
NASA Astrophysics Data System (ADS)
Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman
2017-10-01
We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.
Zooming in on the Starburst at the Core of the Phoenix Cluster
NASA Astrophysics Data System (ADS)
McDonald, Michael
2011-10-01
In a recently published letter to Nature, we report the discovery of the most X-ray luminous galaxy cluster in the known Universe, within which the intracluster medium is cooling at an unprecedented rate. In the core of this cluster, the brightest cluster galaxy is forming stars at an unmatched rate of 740 Msun/yr, which is highly unusual for this class of galaxy which are typically referred to as "red and dead". We suspect that the extreme cooling and star formation rates are intimately linked: the cooling intracluster gas is most likely providing fuel for the starburst. We request 2 orbits of near-UV and optical broadband WFC3-UVIS imaging in order to morphologically classify this starburst as a result of i} cooling, infalling gas {filamentary UV emission}; ii} a recent merger {tidal tails with both UV and optical emission}; or iii} a starburst- or AGN-driven wind {wide opening angle}. These data will also allow us to determine the stellar populations of both the starburst and the underlying, older stellar populations, and will provide a much sharper view of the central AGN, allowing us to more carefully extract the contribution to the extended UV emission from young stars. Our early results have already received substantial attention from the international press, and we expect that a dramatically improved picture of the heart of this cluster would stir up as much, if not more, interest from the public.
Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies
NASA Astrophysics Data System (ADS)
Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.
2018-04-01
Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.
The formation of disc galaxies in high-resolution moving-mesh cosmological simulations
NASA Astrophysics Data System (ADS)
Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker
2014-01-01
We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.
THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.
Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explainedmore » in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics.« less
NASA Astrophysics Data System (ADS)
Su, Kung-Yi; Hopkins, Philip F.; Hayward, Christopher C.; Faucher-Giguère, Claude-André; Kereš, Dušan; Ma, Xiangcheng; Robles, Victor H.
2017-10-01
Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback In Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological 'zoom-in' simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modelled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs). In contrast, removing stellar feedback leads to SFRs being overpredicted by factors of ˜10-100. Without feedback, neither galactic winds nor volume-filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scaleheights with unphysically dense clumps congregating at the galactic centre. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 1010-1013 M⊙, the additional physics investigated here (magnetohydrodynamic, conduction, viscosity, metal diffusion) have only weak (˜10 per cent-level) effects on regulating SFR and altering the balance of phases, outflows or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities and feedback. We add the caveat that active galactic nucleus feedback is not included in the present work.
Neutral winds in the polar thermosphere as measured from Dynamics Explorer
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Hays, P. B.; Spencer, N. W.; Wharton, L. E.
1982-01-01
Remote sensing measurements of the meridional thermospheric neutral wind using the Fabry-Perot Interferometer on Dynamics Explorer have been combined with in-situ measurements of the zonal component using the Wind and Temperature Spectrometer on the same spacecraft. The two data sets with appropriate spatial phasing and averaging determine the vector wind along the track of the polar orbiting spacecraft. A study of fifty-eight passes over the Southern (sunlit) pole has enabled the average Universal Time dependence of the wind field to be determined for essentially a single solar local time cut. The results show the presence of a 'back-ground' wind field driven by solar EUV heating upon which is superposed a circulating wind field driven by high latitude momentum and energy sources.
MERLIN observations of water maser proper motions in VY Canis Majoris
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Yates, J. A.; Cohen, R. J.
1998-09-01
MERLIN observations of the 22-GHz water masers in the circumstellar envelope of the supergiant VY CMa show an ellipsoidal distribution with a maximum extent of 700 mas east-west and 400 mas north-south. Comparison with observations made nine years earlier shows that the majority of maser features have survived and show proper motions throughout the region. The mean change in position is 28 mas and the proper motions are generally directed away from the assumed stellar position, and tend to be larger for features at greater projected distances. If the H_2O maser region is modelled as a partially filled thick spherical shell, and VY CMa is at a distance of 1.5 kpc, then the proper motion velocities in the direction of expansion are between 8kms^-1 at a distance of 75 mas from the assumed stellar position and 32kms^-1 at 360 mas. These velocities are consistent with the H_2O maser spectral line velocities which correspond to a maximum expansion velocity of 36kms^-1 at 400 mas from the assumed stellar position. These observations are consistent with radiation pressure on dust providing the force to accelerate the stellar wind as it passes through the H_2O maser shell. The H_2O maser region is elongated in the same direction as the dusty nebula around VY CMa. The water masers illuminate the small-scale dynamics and clumpiness which show the role of dust in driving the outflow. The overall ellipsoidal shape may be due to properties of the dust, such as its behaviour in the stellar magnetic field, or to interaction between the wind and circumstellar material. Maser monitoring also shows the difference between changes on the time-scale of stellar variability (a few years) and possible stages in the evolution of VY CMa to its likely fate as a supernova.
ALMA data suggest the presence of spiral structure in the inner wind of CW Leonis
NASA Astrophysics Data System (ADS)
Decin, L.; Richards, A. M. S.; Neufeld, D.; Steffen, W.; Melnick, G.; Lombaert, R.
2015-02-01
Context. Evolved low-mass stars lose a significant fraction of their mass through stellar winds. While the overall morphology of the stellar wind structure during the asymptotic giant branch (AGB) phase is thought to be roughly spherically symmetric, the morphology changes dramatically during the post-AGB and planetary nebula phase, during which bipolar and multi-polar structures are often observed. Aims: We aim to study the inner wind structure of the closest well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have implied a non-homogeneous mass-loss process for this star: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale, and multi-concentric shells are detected beyond 1''. Methods: We present the first ALMA Cycle 0 band 9 data around 650 GHz (450 μm) tracing the inner wind of CW Leo. The full-resolution data have a spatial resolution of 0.̋42 × 0.̋24, allowing us to study the morpho-kinematical structure of CW Leo within ~6''. Results: We have detected 25 molecular emission lines in four spectral windows. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position, which is assumed to be dominated by stellar emission. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and imply that the wind velocity increases rapidly from about 5 R⋆, almost reaching the terminal velocity at ~11 R⋆. The images prove that vibrational lines are excited close to the stellar surface and that SiO is a parent molecule. The channel maps for the brighter lines show a complex structure; specifically, for the 13CO J = 6-5 line, different arcs are detected within the first few arcseconds. The curved structure in the position-velocity (PV) map of the 13CO J = 6-5 line can be explained by a spiral structure in the inner wind of CW Leo, probably induced by a binary companion. From modelling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10-20° to the north-east and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R⋆). We tentatively estimate that the companion is an unevolved low-mass main-sequence star. Conclusions: A scenario of a binary-induced spiral shell can explain the correlated structure seen in the ALMA PV images of CW Leo. Moreover, this scenario can also explain many other observational signatures seen at different spatial scales and in different wavelength regions, such as the bipolar structure and the almost concentric shells. ALMA data hence for the first time provide the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale. Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Lee, Bomee; Giavalisco, Mauro; Whitaker, Katherine; Williams, Christina C.; Ferguson, Henry C.; Acquaviva, Viviana; Koekemoer, Anton M.; Straughn, Amber N.; Guo, Yicheng; Kartaltepe, Jeyhan S.; Lotz, Jennifer; Pacifici, Camilla; Croton, Darren J.; Somerville, Rachel S.; Lu, Yu
2018-02-01
We use the deep CANDELS observations in the GOODS North and South fields to revisit the correlations between stellar mass (M *), star formation rate (SFR) and morphology, and to introduce a fourth dimension, the mass-weighted stellar age, in galaxies at 1.2< z< 4. We do this by making new measures of M *, SFR, and stellar age thanks to an improved SED fitting procedure that allows various star formation history for each galaxy. Like others, we find that the slope of the main sequence (MS) of star formation in the ({M}* ;{SFR}) plane bends at high mass. We observe clear morphological differences among galaxies across the MS, which also correlate with stellar age. At all redshifts, galaxies that are quenching or quenched, and thus old, have high {{{Σ }}}1 (the projected density within the central 1 kpc), while younger, star-forming galaxies span a much broader range of {{{Σ }}}1, which includes the high values observed for quenched galaxies, but also extends to much lower values. As galaxies age and quench, the stellar age and the dispersion of {{{Σ }}}1 for fixed values of M * shows two different regimes: one at the low-mass end, where quenching might be driven by causes external to the galaxies; the other at the high-mass end, where quenching is driven by internal causes, very likely the mass given the low scatter of {{{Σ }}}1 (mass quenching). We suggest that the monotonic increase of central density as galaxies grow is one manifestation of a more general phenomenon of structural transformation that galaxies undergo as they evolve.
Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011
NASA Astrophysics Data System (ADS)
Sun, Youn-Jong; Jalón-Rojas, Isabel; Wang, Xiao Hua; Jiang, Donghui
2018-06-01
The Princeton Ocean Model (POM) was used to investigate an upwelling event in Jervis Bay, New South Wales (SE Australia), with varying wind directions and strengths. The POM was adopted with a downscaling approach for the regional ocean model one-way nested to a global ocean model. The upwelling event was detected from the observed wind data and satellite sea surface temperature images. The validated model reproduced the upwelling event showing the input of bottom cold water driven by wind to the bay, its subsequent deflection to the south, and its outcropping to the surface along the west and south coasts. Nevertheless, the behavior of the bottom water that intruded into the bay varied with different wind directions and strengths. Upwelling-favorable wind directions for flushing efficiency within the bay were ranked in the following order: N (0°; northerly) > NNE (30°; northeasterly) > NW (315°; northwesterly) > NE (45°; northeasterly) > ENE (60°; northeasterly). Increasing wind strengths also enhance cold water penetration and water exchange. It was determined that wind-driven downwelling within the bay, which occurred with NNE, NE and ENE winds, played a key role in blocking the intrusion of the cold water upwelled through the bay entrance. A northerly wind stress higher than 0.3 N m-2 was required for the cold water to reach the northern innermost bay.
The Supermassive Black Hole—Galaxy Connection
NASA Astrophysics Data System (ADS)
King, Andrew
2014-09-01
The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor should be in the range ˜1-30. A factor give black hole winds with velocities v˜0.1 c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical ( M- σ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical M- σ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10-3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out≃1200 km s-1 and drives rates in cool (molecular) gas, giving a typical outflow mechanical energy L mech≃0.05 L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is still incomplete, as there is no predictive theory of how the hole accretes gas from its surroundings. Recent progress in understanding how large-scale discs of gas can partially cancel angular momentum and promote dynamical infall offers a possible way forward.
A systematic investigation of the mass loss mechanism in dust forming long-period variable stars
NASA Astrophysics Data System (ADS)
Winters, J. M.; Le Bertre, T.; Jeong, K. S.; Helling, Ch.; Sedlmayr, E.
2000-09-01
In order to investigate the relations between the mass loss from pulsating red giants and quantities which can be obtained from observations, we have explored the behavior of theoretical models which treat the time-dependent hydrodynamics of circumstellar outflows, including a detailed treatment of the dust formation process. This approach, while ignoring effects such as a possible non-sphericity of the stellar atmospheres which are difficult to assess, accounts correctly for factors such as the grain formation and destruction which are crucial to the mass-loss mechanism. We built a grid of ~ 150 models covering a wide range of physical situations. This grid allows us to characterize the effects of different parameters, such as the stellar luminosity and temperature, the period and the amplitude of the pulsation, and the C/O element abundance ratio, on the behavior of AGB winds and on the rates of mass loss. We find two regimes for the stellar outflows. The first one (A) is characterized by stable winds with a layered structure of the circumstellar dust shell, outflow velocities in excess of 5 km s-1, and a large rate of mass loss. These outflows are dominated by radiation pressure on dust. For these models we find good correlations between near-infrared colors and the mass loss rates. In the second regime (B), the winds are slow and do not present a layered structure. The outflows displaying the second behavior come, e.g., from red giants with low luminosity, high temperature, or short period. For them there is no correlation between color and mass loss rate. The mass loss rates are low and never exceed 3 10-7 Msunyr-1. Radiation pressure on dust plays only a minor role in this regime. We have explored the effect of different parameters on the behavior of the stellar winds. We find that, in general, all other parameters been kept identical, there is a narrow range of values for each parameter within which the models abruptly change from B to A, and that once a model is stabilized in the A mode the changes in the values of each parameter have only a smooth effect on the wind characteristics. Table~2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
NASA Astrophysics Data System (ADS)
Moon, Ga-Hee
2011-06-01
It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated Bz and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from Bz minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of |Dstmin| and |Bzmin| for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.
A New Probe of Dust Attenuation in Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Leitherer, Claus
2017-08-01
We propose to develop, calibrate and test a new technique to measure dust attenuation in star-forming galaxies. The technique utilizes the strong stellar-wind emission lines in Wolf-Rayet stars, which are routinely observed in galaxy spectra locally and up to redshift 3. The He II 1640 and 4686 features are recombination lines whose intrinsic ratio is almost exclusively determined by atomic physics. Therefore it can serve as a stellar dust probe in the same way as the nebular hydrogen-line ratio can be used to measure the reddening of the gas phase. Archival spectra of Wolf-Rayet stars will be analyzed to calibrate the method, and panchromatic FOS and STIS spectra of nearby star-forming galaxies will be used as a first application. The new technique allows us to study stellar and nebular attenuation in galaxies separately and to test its effects at different stellar age and mass regimes.
Advances in Statistical and Deterministic Modeling of Wind-Driven Seas
2011-09-30
Zakharov. Scales of nonlinear relaxation and balance of wind- driven seas. Geophysical Research Abstracts Vol. 13, EGU2011-2042, 2011. EGU General ...Dyachenko A. “On canonical equation for water waves” at General Assembly 2011 of the European Geosciences Union in Vienna, Austria, 03 – 08 April...scattering and equilibrium ranges in wind- generated waves with application to spectrometry, J. Geoph. Res., 92, 49715029, 1987. [3] Hsiao S.V. and
NASA Technical Reports Server (NTRS)
Hein, L. A.; Myers, W. N.
1980-01-01
Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.
AGN feedback through UFO and galaxy-wide winds in the early Universe
NASA Astrophysics Data System (ADS)
Feruglio, C.; Piconcelli, E.; Bischetti, M.; Zappacosta, L.; Fiore, F.
2017-10-01
AGN feedback through massive molecular winds is today routinely observed in local AGN host galaxies, but not as such in the early universe. I will present the first evidence for a massive, AGN-driven molecular wind in the z 4 QSO APM08279, which also hosts the most well studied and persistent nuclear semi-raltivistic wind (UFO). This observation directly probes the expansion mechanism of a nuclear wind into the ISM on galaxy wide scales, that so far was constrained by a couple of other objects only (Feruglio et al. 2015, Tombesi et al. 2015). This result also opens the path toward the exploration of molecular AGN-driven winds at early epochs, close after the end of the Epoch of Reionisation (EoR).
Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.
2015-01-01
Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.
The sustainable growth of the first black holes
NASA Astrophysics Data System (ADS)
Pezzulli, Edwige; Volonteri, Marta; Schneider, Raffaella; Valiante, Rosa
2017-10-01
Super-Eddington accretion has been suggested as a possible formation pathway of 109 M⊙ supermassive black holes (SMBHs) 800 Myr after the big bang. However, stellar feedback from BH seed progenitors and winds from BH accretion discs may decrease BH accretion rates. In this work, we study the impact of these physical processes on the formation of z ˜ 6 quasar, including new physical prescriptions in the cosmological, data-constrained semi-analytic model GAMETE/QSOdust. We find that the feedback produced by the first stellar progenitors on the surrounding does not play a relevant role in preventing SMBHs formation. In order to grow the z ≳ 6 SMBHs, the accreted gas must efficiently lose angular momentum. Moreover, disc winds, easily originated in super-Eddington accretion regime, can strongly reduce duty cycles. This produces a decrease in the active fraction among the progenitors of z ˜ 6 bright quasars, reducing the probability to observe them.
The 4 micron spectra of compact infrared sources
NASA Technical Reports Server (NTRS)
Hofmann, R.; Larson, H. P.; Fink, U.
1986-01-01
High resolution 5 arcsec spectra in the 4 micron region are presented of the central 5 arcsec of the compact near infrared sources K3-50, W51-IRS2 East, and G333.6-0.2. From measured Br-alpha/Pf-beta line ratios and previously published infrared and radio maps, it is concluded that standard recombination theory fails to explain our observations in at least two cases. It is demonstrated that the data are consistent with thermal excitation of the hydrogen lines in strong stellar winds. The Pf-beta Hu-epsilon line ratio, which is completely insensitive to differential extinction, confirms the need for the stellar wind model for the core of G333.6-0.2. From the (K III) line it is estimated that the potassium abundance in G333.6-0.2 is at least equal to the solar value, and possibly enhanced by a factor up to 10.
Closed and open magnetic fields in stellar winds
NASA Technical Reports Server (NTRS)
Mullan, D. J.; Steinolfson, R. S.
1983-01-01
A numerical study of the interaction between a thermal wind and a global dipole field in the sun and in a giant star is reported. In order for closed field lines to persist near the equator (where a helmet-streamer-like configuration appears), the coronal temperature must be less than a critical value Tc, which scales as M/R. This condition is found to be equivalent to the following: for a static helmet streamer to persist, the sonic point above the helmet must not approach closer to the star than 2.2-2.6 stellar radii. Implications for rapid mass loss and X-ray emission from cool giants are pointed out. The results strengthen the case for identifying empirical dividing lines in the H-R diagram with a magnetic topology transition locus (MTTL). Support for the MTTL concept is also provided by considerations of the breakdown of magnetostatic equilibrium.
Effects of stellar evolution and ionizing radiation on the environments of massive stars
NASA Astrophysics Data System (ADS)
Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.
2014-09-01
We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.
Radar remote sensing of wind-driven land degradation processes in northeastern Patagonia.
del Valle, H F; Blanco, P D; Metternicht, G I; Zinck, J A
2010-01-01
Wind-driven land degradation negatively impacts on rangeland production and infrastructure in the Valdes Peninsula, northeastern Patagonia. The Valdes Peninsula has the most noticeable dunefields of the Patagonian drylands. Wind erosion has been assessed at different scales in this region, but often with limited data. In general, terrain features caused by wind activity are better discriminated by active microwaves than by sensors operating in the visible and infrared regions of the electromagnetic spectrum. This paper aims to analyze wind-driven land degradation processes that control the radar backscatter observed in different sources of radar imagery. We used subsets derived from SIR-C, ERS-1 and 2, ENVISAT ASAR, RADARSAT-1, and ALOS PALSAR data. The visibility of aeolian features on radar images is mostly a function of wavelength, polarization, and incidence angle. Stabilized sand deposits are clearly observed in radar images, with defined edges but also signals of ongoing wind erosion. One of the most conspicuous features corresponds to old track sand dunes, a mixture of active and inactive barchanoid ridges and parabolic dunes. This is a clear example of deactivation of migrating dunes under the influence of vegetation. The L-band data reveal details of these sand ridges, whereas the C-band data only allow detecting a few of the larger tracks. The results of this study enable us to make recommendations about the utility of some radar sensor configurations for wind-driven land degradation reconnaissance in mid-latitude regions.
Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows
NASA Astrophysics Data System (ADS)
Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei
2016-02-01
Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.
Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.
Martin, Raleigh L; Kok, Jasper F
2017-06-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.
Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress
Martin, Raleigh L.; Kok, Jasper F.
2017-01-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907
NASA Technical Reports Server (NTRS)
Rumpl, W. M.
1980-01-01
A model having a spherically symmetric velocity distribution with a higher density at the equatorial region was developed to simulate the UV spectrum of the Wolf-Rayet star HD 50896. The spectrum showed P Cygni-shaped profiles whose emissions are stronger than expected in a spherically symmetric stellar wind. The model was studied varying the inclination angle of the star-wind system and the polar to equatorial density ratios; it was shown that HD 50896 could possess a nonspherically symmetric wind and that its symmetry axis is inclined between 60 and 90 deg. It is possible that the velocity distribution of the wind could include an inner constant velocity plateau beyond which the wind accelerates to its terminal velocity as indicated by infrared continuum investigations.
3D Hydrodynamic & Radiative Transfer Models of HETG Line Profiles from Colliding Winds
NASA Astrophysics Data System (ADS)
Russell, Christopher
2016-09-01
Chandra has invested 2.52 Ms of HETG observations into 4 colliding-wind binary (CWB) systems. WR140 and eta Car are massive-star binaries with long periods that produce X-rays in a 3D, warped shock cone, while delta Ori A and HD150136 are short-period systems that show line profile changes due to embedded-wind-shock emission in the primary wind being partially evacuated by the secondary wind. HETG observations resolve the velocity structure in both types of systems. We propose 3D line-profile radiative-transfer calculations on existing 3D hydrodynamic simulations of these 4 CWBs. This is the first confrontation of these data with this level of modeling, and will provide greater understanding of their stellar, wind, and orbital properties, as well as the underlying CWB shock physics.
A catalog of 0.2 A resolution far-ultraviolet stellar spectra measured with Copernicus
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.; Jenkins, E. B.
1977-01-01
Spectra between 1000 and 1450 A for 60 O- and B-type stars observed by Copernicus at 0.2-A resolution are presented in three forms: tables containing the numerical data, plots showing renormalized spectra, and synthetic photographic spectra. The data have been corrected for all instrument effects of importance for the photometric accuracy except fluctuations in continuum level caused by small variations in spacecraft guidance. Spectrometer sensitivity curves are provided for use in converting to absolute fluxes. It is expected that this catalog will be of use for research on many aspects of stellar UV spectra, including spectral classification, line identification, abundance determinations, spectrum synthesis, model atmosphere calculations, flux distributions, bolometric corrections, stellar winds, and mass loss.
The ``Ghost Shell'': Discovery of the Forward Shock from Colliding Winds about Eta Carinae
NASA Astrophysics Data System (ADS)
Dorland, B. N.; Currie, D. G.; Kaufer, A.; Bacciotti, F.
2003-01-01
We report on the newly discovered ``Ghost Shell'' around eta Carinae. We have detected a high-velocity ( ~ - 850 km /s), spatially extended, narrow emission feature lying in front of the southeast lobe of eta Carinae's homunculus. This feature has the speed of a high-velocity shock but the spectrum of a low-velocity shock. We propose that the Ghost Shell is the forward shock between the fast stellar wind of the great eruption of 1842 and the older, slow, massive wind. This discovery is described in more detail in Currie, Dorland, & Kaufer (2002).
Star formation in early-type galaxies: the role of stellar winds and kinematics.
NASA Astrophysics Data System (ADS)
Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca
2015-08-01
Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in newly formed stars formed a few Gyr ago; the SF rate at the present epoch is low (≤0.1 M⊙/yr) and agrees well with that observed, at least for ETGs of stellar mass <1011 M⊙.
Resilience of quasi-isodynamic stellarators against trapped-particle instabilities.
Proll, J H E; Helander, P; Connor, J W; Plunk, G G
2012-06-15
It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.
Autonomous Electrothermal Facility for Oil Recovery Intensification Fed by Wind Driven Power Unit
NASA Astrophysics Data System (ADS)
Belsky, Aleksey A.; Dobush, Vasiliy S.
2017-10-01
This paper describes the structure of autonomous facility fed by wind driven power unit for intensification of viscous and heavy crude oil recovery by means of heat impact on productive strata. Computer based service simulation of this facility was performed. Operational energy characteristics were obtained for various operational modes of facility. The optimal resistance of heating element of the downhole heater was determined for maximum operating efficiency of wind power unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.
The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, whenmore » the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.« less
NASA Astrophysics Data System (ADS)
Tilley, Matt; Harnett, Erika; Winglee, Robert
2016-10-01
A three-dimensional, multifluid simulation of a giant planet's magnetospheric interaction with steady-state stellar wind from a Sun-like star was performed for four different orbital semi-major axes - 10, 5, 1 and 0.2 AU. We simulate the effect of the increasing, steady-state stellar wind pressure related to the planetary orbital semi-major axis on the global magnetospheric dynamics for a Saturn-like planet, including an Enceladus-like plasma torus. Mass loss processes are shown to vary with orbital distance, with the centrifugal interchange instability displayed only in the 10 AU and 5 AU cases which reach a state of mass loss equilibrium more slowly than the 1 AU or 0.2 AU cases. The compression of the magnetosphere in the 1 AU and 0.2 AU cases contributes to the quenching of the interchange process by increasing the ratio of total plasma thermal energy to corotational energy. The strength of field-aligned currents (FAC), associated with auroral radio emissions, are shown to increase in magnitude and latitudinal coverage with a corresponding shift equatorward from increased dynamic ram pressure experienced in the hotter orbits. Similar to observed hot Jovian planets, the warm exo-Saturn simulated in the current work shows enhanced ion density in the magnetosheath and magnetopause regions, as well as the plasma torus which could contribute to altered transit signals, suggesting that for planets in warmer (> 0.1 AU) orbits, planetary magnetic field strengths and possibly exomoons - via the plasma torus - could be observable with future missions.
NASA Astrophysics Data System (ADS)
Tilley, Matt A.; Harnett, Erika M.; Winglee, Robert M.
2016-08-01
A three-dimensional, multifluid simulation of a giant planet’s magnetospheric interaction with steady-state stellar wind from a Sun-like star was performed for four different orbital semimajor axes—10, 5, 1, and 0.2 au. We simulate the effect of the increasing, steady-state stellar wind pressure related to the planetary orbital semimajor axis on the global magnetospheric dynamics for a Saturn-like planet, including an Enceladus-like plasma torus. Mass-loss processes are shown to vary with orbital distance, with the centrifugal interchange instability displayed only in the 10 and 5 au cases, which reach a state of mass-loss equilibrium more slowly than the 1 or 0.2 au cases. The compression of the magnetosphere in the 1 and 0.2 au cases contributes to the quenching of the interchange process by increasing the ratio of total plasma thermal energy to corotational energy. The strength of field-aligned currents, associated with auroral radio emissions, is shown to increase in magnitude and latitudinal coverage with a corresponding shift equatorward from increased dynamic ram pressure experienced in the hotter orbits. Similar to observed hot Jovian planets, the warm exo-Saturn simulated in the current work shows enhanced ion density in the magnetosheath and magnetopause regions, as well as the plasma torus, which could contribute to altered transit signals, suggesting that for planets in warmer (>0.1 au) orbits, planetary magnetic field strengths and possibly exomoons—via the plasma torus—could be observable with future missions.