Science.gov

Sample records for driven subcritical systems

  1. Accelerator driven sub-critical core

    SciTech Connect

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  2. Detector positioning for the initial subcriticality level determination in accelerator-driven systems

    SciTech Connect

    Uyttenhove, W.; Van Den Eynde, G.; Baeten, P.; Kochetkov, A.; Vittiglio, G.; Wagemans, J.; Lathouwers, D.; Kloosterman, J. L.; Van Der Hagen, T. J. H. H.; Wols, F.; Billebaud, A.; Chabod, S.; Thybault, H. E.

    2012-07-01

    Within the GUINEVERE project (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) carried out at SCK-CEN in Mol, the continuous deuteron accelerator GENEPI-3C was coupled to the VENUS-F fast simulated lead-cooled reactor. Today the FREYA project (Fast Reactor Experiments for hYbrid Applications) is ongoing to study the neutronic behavior of this Accelerator Driven System (ADS) during different phases of operation. In particular the set-up of a monitoring system for the subcriticality of an ADS is envisaged to guarantee safe operation of the installation. The methodology for subcriticality monitoring in ADS takes into account the determination of the initial subcriticality level, the monitoring of reactivity variations, and interim cross-checking. At start-up, the Pulsed Neutron Source (PNS) technique is envisaged to determine the initial subcriticality level. Thanks to its reference critical state, the PNS technique can be validated on the VENUS-F core. A detector positioning methodology for the PNS technique is set up in this paper for the subcritical VENUS-F core, based on the reduction of higher harmonics in a static evaluation of the Sjoestrand area method. A first case study is provided on the VENUS-F core. This method can be generalised in order to create general rules for detector positions and types for full-scale ADS. (authors)

  3. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  4. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems

    SciTech Connect

    Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

    1998-06-27

    ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

  5. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-31

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.

  6. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  7. A fusion-driven subcritical system concept based on viable technologies

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jiang, J.; Wang, M.; Jin, M.; FDS Team

    2011-10-01

    A fusion-driven hybrid subcritical system (FDS) concept has been designed and proposed as spent fuel burner based on viable technologies. The plasma fusion driver can be designed based on relatively easily achieved plasma parameters extrapolated from the successful operation of existing fusion experimental devices such as the EAST tokamak in China and other tokamaks in the world, and the subcritical fission blanket can be designed based on the well-developed technologies of fission power plants. The simulation calculations and performance analyses of plasma physics, neutronics, thermal-hydraulics, thermomechanics and safety have shown that the proposed concept can meet the requirements of tritium self-sufficiency and sufficient energy gain as well as effective burning of nuclear waste from fission power plants and efficient breeding of nuclear fuel to feed fission power plants.

  8. High order statistical signatures from source-driven measurements of subcritical fissile systems

    NASA Astrophysics Data System (ADS)

    Mattingly, John Kelly

    1998-11-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements.

  9. The Physics Design for a Fusion Driven Sub-critical System

    NASA Astrophysics Data System (ADS)

    Bin, Wu

    2002-11-01

    The Fusion Driven Sub-critical System (FDS) is a sub-critical nuclear energy system drive by fusion neutron source, which provides a feasible, safe, economic and highly efficient potential of disposing High Level Waste (HLW) and produce fission nuclear fuel as a early application of fusion technology. This paper reviews the past physics reactor design of fusion-fission hybrid reactor in China, and a low aspect ratio tokamak energy system that has been proposed, which aims at high β, good confinement, and steady-state operation in a compact configuration at modest field. The system includes a low aspect ratio tokamak as fusion neutron driver, a radioactivity clean nuclear power system as blanket and novel concept of liquid metal conductor as centre conductor post. Parameters of such kind reactor are the following. Major radius 1.4m, Minor radius 1m, plasma current 9.2MA, Toroidal field 2.5T, Plasma edge q=5, Average density 1.6 10^20m^3, Average temperature 10keV, Plasma volume 50m^3, Bootstrap current fraction 0.72, Fusion power 100MW, Drive power 28MW, Neutron wall loading 1.0MW/m-2. The plasma configuration is an important part in the low-A tokamak. The Eq code has been used to get a equilibrium. From this calculation, we have found a simple set of PF coils that satisfies the requirements of the large elongation plasma configuration and a vertical field with less curve field lines in the low-A tokamak. The natural elongation can be attributed mostly to differences in the current density profile. In order to determine the feasibility of the low-A tokamak operation, a transient simulation has been made which includes the equilibrium, transport and plasma position shape control in the low-A tokamak. A 1-1/2 equilibrium evolution code has been used to make this simulation. The code is two-dimensional time dependent free boundary simulation code that advances the MHD equations describing the transport time-scale evolution of a axisymmetric tokamak plasma.

  10. Physics design of an accelerator for an accelerator-driven subcritical system

    NASA Astrophysics Data System (ADS)

    Li, Zhihui; Cheng, Peng; Geng, Huiping; Guo, Zhen; He, Yuan; Meng, Cai; Ouyang, Huafu; Pei, Shilun; Sun, Biao; Sun, Jilei; Tang, Jingyu; Yan, Fang; Yang, Yao; Zhang, Chuang; Yang, Zheng

    2013-08-01

    An accelerator-driven subcritical system (ADS) program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs) which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  11. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  12. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  13. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  14. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  15. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    PubMed

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  16. The Transmutation of Nuclear Waste in the Two-Zone Subcritical System Driven by High- Intensity Neutron Generator - 12098

    SciTech Connect

    Babenko, V.O.; Gulik, V.I.; Pavlovych, V.M.

    2012-07-01

    The main problems of transmutation of high-level radioactive waste (minor actinides and long-lived fission products) are considered in our work. The range of radioactive waste of nuclear power is analyzed. The conditions under which the transmutation of radioactive waste will be most effective are analyzed too. The modeling results of a transmutation of the main radioactive isotopes are presented and discussed. The transmutation of minor actinides and long-lived fission products are modeled in our work (minor actinides - Np-237, Am-241, Am-242, Am-243, Cm-244, Cm-245; long-lived fission products - I-129, Tc-99). The two-zone subcritical system is calculated with help of different neutron-physical codes (MCNP, Scale, Montebarn, Origen). The ENDF/B-VI nuclear data library used in above calculations. Thus, radioactive wastes can be divided into two main groups that need to be transmuted. The minor actinides form the first group and the long-lived fission products form the second one. For the purpose of effective transmutation these isotopes must be extracted from the spent nuclear fuel with the help of either PUREX technology or pyrometallurgical technology. The two-zone reactor system with fast and thermal regions is more effective for nuclear waste transmutation than the one-zone reactor. Modeling results show that nearly all radioactive wastes can be transmuted in the two-zone subcritical system driven by a high-intensity neutron generator with the external neutron source strength of 1.10{sup 13} n/sec. Obviously, transmutation rate will increase with a rise of the external neutron source strength. From the results above we can also see that the initial loading of radioactive isotopes into the reactor system should exceed by mass those isotopes that are finally produced. (authors)

  17. Accelerator driven system based on plutonium subcritical reactor and 660 MeV phasotron

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Barashenkov, V. S.; Buttsev, V. S.; Chultem, D.; Dudarev, S. Yu.; Furman, V. I.; Gudowski, W.; Janczyszyn, J.; Maltsev, A. A.; Onischenko, L. M.; Pogodajev, G. N.; Polanski, A.; Popov, Yu. P.; Puzynin, I. V.; Sissakian, A. N.; Taczanowski, S.

    1999-11-01

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient keff between 0.94 and 0.95 and the energetic gain about 20.

  18. Monitoring method for neutron flux for a spallation target in an accelerator driven sub-critical system

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang, He, Zhi-Yong; Yang, Lei; Zhang, Xue-Ying; Cui, Wen-Juan; Chen, Zhi-Qiang; Xu, Hu-Shan

    2016-07-01

    In this paper, we study a monitoring method for neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where a spallation target located vertically at the centre of a sub-critical core is bombarded vertically by high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose a multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied neutron production from a tungsten target bombarded by a 250 MeV-proton beam with Geant4-based Monte Carlo simulations. The simulation results indicate that the neutron flux at the central location is up to three orders of magnitude higher than the flux at lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with a fission chamber (FC), by establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for a FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for a FC in the environment of an ADS system. The results indicate that the proposed method functions very well. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03010000 and XDA03030000) and the National Natural Science Foundation of China(91426301).

  19. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    PubMed

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented. PMID:26932075

  20. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  1. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    NASA Astrophysics Data System (ADS)

    Vivanco, R.; Ghiglino, A.; de Vicente, J. P.; Sordo, F.; Terrón, S.; Magán, M.; Perlado, J. M.; Bermejo, F. J.

    2014-12-01

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final keff value of around 0.9 after the 50 days cycle.

  2. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    NASA Astrophysics Data System (ADS)

    Sinha, Amar; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P. S.; Bishnoi, Saroj

    2015-05-01

    The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated keff of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor ks and external neutron source efficiency φ∗ in great details. Experiments with D-T neutrons are also underway.

  3. Safety features of subcritical fluid fueled systems

    NASA Astrophysics Data System (ADS)

    Bell, Charles R.

    1995-09-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  4. Neutronics Study on Accelerator Driven Subcritical Systems with Thorium-Based Fuel for Comparison Between Solid and Molten-Salt Fuels

    SciTech Connect

    Ishimoto, Shunsuke; Ishibashi, Kenji; Tenzou, Hideki; Sasa, Toshinobu

    2002-06-15

    Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not available for use in current ADS engineering design. In this paper the neutron behavior in the ADS target based on the related experimental data is clarified, and the feasibility of the ADS regarding both the molten salts (Flibe: {sup 7}LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4}, chloride: NaCl-ThCl{sub 4}-{sup 233}UCl{sub 4}) and oxide ([Th, {sup 233}U]O{sub 2}) fuels is examined. The difference between the experiment and the calculated result at the ADS high-energy region is discussed. In a comparison of the fuels, the time evolution of k{sub eff} and the beam current in the burning period are calculated. The calculated results suggest that the ADS with solid fuel has better future prospects than that with molten-salt fuels. The ADS with Flibe molten-salt fuel tends to require a high beam current and consequently needs the installation of a metallic spallation target and the continuous removal for fission products and protactinium. In comparison with the Flibe fuel, the ADS with chloride fuel has a flux distribution that is similar to a solid fuel reactor.

  5. Neutron chain length distributions in subcritical systems

    SciTech Connect

    Nolen, S.D.; Spriggs, G.

    1999-09-27

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-{alpha} and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors.

  6. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  7. Materials Testing for an Accelerator-Driven Subcritical Molten Salt Fission System: A look at the Materials Science of Molten Salt Corrosion

    NASA Astrophysics Data System (ADS)

    Sooby, Elizabeth; Balachandran, Shreyas; Foley, David; Hartwig, Karl; McIntyre, Peter; Phongikaroon, Supathorn; Pogue, Nathaniel; Simpson, Michael; Tripathy, Prabhat

    2011-10-01

    For an accelerator-driven subcritical molten salt fission core to survive its 50+ year fuel life, the primary vessel, heat exchanger, and various internal components must be made of materials that resist corrosion and radiation damage in a high-temperature environment, (500-800 C). An experimental study of the corrosion behavior of candidate metals in contact with molten salt is being conducted at the Center for Advanced Energy Studies. Initial experiments have been run on Nb, Ta, Ni, two zirconium alloys, Hastelloy-N, and a series of steel alloys to form a base line for corrosion in both chloride and bromide salt. Metal coupons were immersed in LiCl-KCl or LiBr-KBr at 700 C in an inert-atmosphere. Salt samples were extracted on a time schedule over a 24-hr period. The samples were analyzed using inductively coupled plasma-mass spectrometry to determine concentrations of metals from corrosion. Preliminary results will be presented.

  8. Nonlinear excitation of subcritical fast ion-driven modes

    NASA Astrophysics Data System (ADS)

    Lesur, M.; Itoh, K.; Ido, T.; Itoh, S.-I.; Kosuga, Y.; Sasaki, M.; Inagaki, S.; Osakabe, M.; Ogawa, K.; Shimizu, A.; Ida, K.; the LHD experiment group

    2016-05-01

    In collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the presence of structures in phase-space. The growth of such structures is a nonlinear, kinetic mechanism, which provides a channel for free-energy extraction, different from conventional inverse Landau damping. However, such nonlinear growth requires the presence of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable (supercritical) mode, wave–wave coupling can provide a seed, which can lead to subcritical instability by either one of two mechanisms. Both mechanisms hinge on a collaboration between fluid nonlinearity and kinetic nonlinearity. If collisional velocity diffusion is low enough, the seed provided by the supercritical mode overcomes the threshold for nonlinear growth of phase-space structure. Then, the supercritical mode triggers the conventional subcritical instability. If collisional velocity diffusion is too large, the seed is significantly below the threshold, but can still grow by a sustained collaboration between fluid and kinetic nonlinearities. Both of these subcritical instabilities can be triggered, even when the frequency of the supercritical mode is rapidly sweeping. These results were obtained by modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple wave–wave coupling equations. This model is applied to bursty onset of geodesic acoustic modes in an LHD experiment. The model recovers several key features such as relative amplitude, timescales, and phase relations. It suggests that the strongest bursts are subcritical instabilities, with sustained collaboration between fluid and kinetic nonlinearities.

  9. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Sooby, Elizabeth; Adams, Marvin; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Phongikaroon, Supathorn; Pogue, Nathaniel; Sattarov, Akhdiyor; Simpson, Michael; Tripathy, Prabhat; Tsevkov, Pavel

    2013-04-01

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  10. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    SciTech Connect

    Sooby, Elizabeth; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Pogue, Nathaniel; Sattarov, Akhdiyor; Adams, Marvin; Tsevkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael; Tripathy, Prabhat

    2013-04-19

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  11. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    NASA Astrophysics Data System (ADS)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  12. Gravity-driven soap film dynamics in subcritical regimes

    NASA Astrophysics Data System (ADS)

    Auliel, M. I.; Castro, F.; Sosa, R.; Artana, G.

    2015-10-01

    We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions. We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers Me=O(10-1) . Considering the associated set of nondimensional numbers that characterize this flow, we show that the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.

  13. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    SciTech Connect

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-19

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  14. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-01

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  15. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.

    SciTech Connect

    Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

    2009-06-09

    electrons and the produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

  16. A small scale accelerator-driven subcritical assembly demonstration experiment at LAMPF

    SciTech Connect

    Wender, S.A.

    1994-12-31

    The coupling of a neutron-producing accelerator with a sub-critical fission assembly has been proposed at Los Alamos as a method of addressing (1) the destruction of weapons-grade plutonium, (2) the reduction of nuclear waste from commercial reactors and, (3) the generation of power using the thorium/uranium cycle. A small scale experiment is described that will demonstrate many of the aspects of this accelerator-driven transmutation technology. This experiment will use the high-power proton beam from the LAMPF accelerator. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning, transmutation of commercial spent fuel and energy production from thorium. The experiment will be operated at power levels around 5 MWt.

  17. IDENTIFICATION OF SUPER- AND SUBCRITICAL REGIONS IN SHOCKS DRIVEN BY CORONAL MASS EJECTIONS

    SciTech Connect

    Bemporad, A.; Mancuso, S.

    2011-10-01

    In this work, we focus on the analysis of a coronal mass ejection (CME) driven shock observed by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment. We show that white-light coronagraphic images can be employed to estimate the compression ratio X = {rho}{sub d}/{rho}{sub u} all along the front of CME-driven shocks. X increases from the shock flanks (where X {approx_equal} 1.2) to the shock center (where X {approx_equal} 3.0 is maximum). From the estimated X values, we infer the Alfven Mach number for the general case of an oblique shock. It turns out that only a small region around the shock center is supercritical at earlier times, while higher up in the corona the whole shock becomes subcritical. This suggests that CME-driven shocks could be efficient particle accelerators at the initiation phases of the event, while at later times they progressively loose energy, also losing their capability to accelerate high-energy particles. This result has important implications on the localization of particle acceleration sites and in the context of predictive space weather studies.

  18. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    SciTech Connect

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  19. Dynamical analysis of an accelerator-based fluid-fueled subcritical radioactive waste burning system

    NASA Astrophysics Data System (ADS)

    Woosley, Michael Louis, Jr.

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned. In particular, new applications have focused on the destruction of high-level radioactive waste. Systems can be designed to quickly destroy the actinides and long-lived fission products from light water reactor fuel, weapons plutonium, and other high-level defense wastes. The proposed development of these systems is used to motivate the need for the development of dynamic analysis methods for their nuclear kinetics. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes three elements: A discrete ordinates model is used to calculate the flux distribution for the source-driven system; A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity; A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model. Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. Modest initiating events can cause significant swings in system temperature and power. The circulation of the fluid fuel can lead to oscillations on the relatively short scale of the loop circulation time. The system responds quickly to reactivity changes because the large neutron source overwhelms the damping effect of delayed

  20. Subcritical Hopf bifurcation in dynamical systems described by a scalar nonlinear delay differential equation.

    PubMed

    Larger, Laurent; Goedgebuer, Jean-Pierre; Erneux, Thomas

    2004-03-01

    A subcritical Hopf bifurcation in a dynamical system modeled by a scalar nonlinear delay differential equation is studied theoretically and experimentally. The subcritical Hopf bifurcation leads to a significant domain of bistability where stable steady and time-periodic states coexist.

  1. Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    PubMed Central

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H. J.

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473

  2. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.

    PubMed

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H J

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

  3. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.

    PubMed

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H J

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473

  4. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    SciTech Connect

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten

  5. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  6. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  7. Magma-driven subcritical crack growth and implications for dike initiation from a magma chamber

    NASA Astrophysics Data System (ADS)

    Chen, Zuan; Jin, Z.-H.

    2006-10-01

    The purpose of this paper is to explore a viscoelastic energy dissipation theory for subcritical dike growth from a magma chamber. The theoretical relationship between the dike growth velocity and dike length is established using the viscoelastic subcritical crack growth theory proposed by the first author and the solutions of stress intensity factor at the crack tip derived by a perturbation method. Effects of magma chamber over-pressure, buoyancy and viscoelastic properties of the host rock on the subcritical growth rate are included in the model. The numerical results indicate that the viscous energy dissipation of the host rock could allow a short dike to slowly grow on the order of 10-7-10-5 m/s under modest over-pressure and to accelerate when the stress intensity factor increases close to the fracture toughness, followed by the unstable dike propagation. The proposed theory provides a reasonable understanding of dike initiation process from a magma chamber.

  8. PNS and statistical experiments simulation in subcritical systems using Monte-Carlo method on example of Yalina-Thermal assembly

    NASA Astrophysics Data System (ADS)

    Sadovich, Sergey; Talamo, A.; Burnos, V.; Kiyavitskaya, H.; Fokov, Yu.

    2014-06-01

    In subcritical systems driven by an external neutron source, the experimental methods based on pulsed neutron source and statistical techniques play an important role for reactivity measurement. Simulation of these methods is very time-consumed procedure. For simulations in Monte-Carlo programs several improvements for neutronic calculations have been made. This paper introduces a new method for simulation PNS and statistical measurements. In this method all events occurred in the detector during simulation are stored in a file using PTRAC feature in the MCNP. After that with a special code (or post-processing) PNS and statistical methods can be simulated. Additionally different shapes of neutron pulses and its lengths as well as dead time of detectors can be included into simulation. The methods described above were tested on subcritical assembly Yalina-Thermal, located in Joint Institute for Power and Nuclear Research SOSNY, Minsk, Belarus. A good agreement between experimental and simulated results was shown.

  9. Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs

    PubMed Central

    Bemporad, Alessandro; Mancuso, Salvatore

    2012-01-01

    White-light coronagraphic images of Coronal Mass Ejections (CMEs) observed by SOHO/LASCO C2 have been used to estimate the density jump along the whole front of two CME-driven shocks. The two events are different in that the first one was a “radio-loud” fast CME, while the second one was a “radio quiet” slow CME. From the compression ratios inferred along the shock fronts, we estimated the Alfvén Mach numbers for the general case of an oblique shock. It turns out that the “radio-loud” CME shock is initially super-critical around the shock center, while later on the whole shock becomes sub-critical. On the contrary, the shock associated with the “radio-quiet” CME is sub-critical at all times. This suggests that CME-driven shocks could be efficient particle accelerators at the shock nose only at the initiation phases of the event, if and when the shock is super-critical, while at later times they lose their energy and the capability to accelerate high energetic particles. PMID:25685431

  10. Conceptual design of thorium-fuelled Mitrailleuse accelerator-driven subcritical reactor using D-Be neutron source

    SciTech Connect

    Kokubo, Y.; Kamei, T.

    2012-07-01

    A distributed accelerator is a charged-particle accelerator that uses a new acceleration method based on repeated electrostatic acceleration. This method offers outstanding benefits not possible with the conventional radio-frequency acceleration method, including: (1) high acceleration efficiency, (2) large acceleration current, and (3) lower failure rate made possible by a fully solid-state acceleration field generation circuit. A 'Mitrailleuse Accelerator' is a product we have conceived to optimize this distributed accelerator technology for use with a high-strength neutron source. We have completed the conceptual design of a Mitrailleuse Accelerator and of a thorium-fuelled subcritical reactor driven by a Mitrailleuse Accelerator. This paper presents the conceptual design details and approach to implementing the subcritical reactor core. We will spend the next year or so on detailed design work, and then will start work on developing a prototype for demonstration. If there are no obstacles in setting up a development organization, we expect to finish verifying the prototype's performance by the third quarter of 2015. (authors)

  11. Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation

    NASA Astrophysics Data System (ADS)

    Pyragas, K.; Pyragas, V.; Benner, H.

    2004-11-01

    We consider the delayed feedback control of a torsion-free unstable periodic orbit originated in a dynamical system at a subcritical Hopf bifurcation. Close to the bifurcation point the problem is treated analytically using the method of averaging. We discuss the necessity of employing an unstable degree of freedom in the feedback loop as well as a nonlinear coupling between the controlled system and controller. To demonstrate our analytical approach the specific example of a nonlinear electronic circuit is taken as a model of a subcritical Hopf bifurcation.

  12. Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation.

    PubMed

    Pyragas, K; Pyragas, V; Benner, H

    2004-11-01

    We consider the delayed feedback control of a torsion-free unstable periodic orbit originated in a dynamical system at a subcritical Hopf bifurcation. Close to the bifurcation point the problem is treated analytically using the method of averaging. We discuss the necessity of employing an unstable degree of freedom in the feedback loop as well as a nonlinear coupling between the controlled system and controller. To demonstrate our analytical approach the specific example of a nonlinear electronic circuit is taken as a model of a subcritical Hopf bifurcation.

  13. Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Winske, D.; Gekelman, W.; Niemann, C.

    2015-11-01

    Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria.

  14. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-01

    Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  15. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    SciTech Connect

    Wender, S. A.; Venneri, F.; Bowman, C. D.; Arthur, E. D.; Heighway, E.; Beard, C. A.; Bracht, R. R.; Buksa, J. J.; Chavez, W.; DeVolder, B. G.; Park, J. J.; Parker, R. B.; Pillai, C.; Pitcher, E.; Potter, R. C.; Reid, R. S.; Russell, G. J.; Trujillo, D. A.; Weinacht, D. J.; Wilson, W. B.

    1995-09-15

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MWt.

  16. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    SciTech Connect

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-10-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW{sub t}.

  17. Neutronics for critical fission reactors and subcritical fission in hybrids

    NASA Astrophysics Data System (ADS)

    Salvatores, Massimo

    2012-06-01

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  18. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  19. Conception of electron beam-driven subcritical molten salt ultimate safety reactor

    NASA Astrophysics Data System (ADS)

    Abalin, S. S.; Alekseev, P. N.; Ignat'ev, V. V.; Kolyaskin, O. E.; Men'shikov, L. I.; Mostovoi, V. I.; Prusakov, V. N.; Subbotin, S. A.; Krasnykh, A. K.; Popov, Yu. P.; Rudenko, V. T.; Somov, L. N.; Dikansky, N. S.; Novokhatsky, A. V.; Dovbnia, A. N.

    1995-09-01

    This paper is a preliminary sketch of a conception to develop the ``ultimate safety reactor'' using modern reactor and accelerator technologies. This approach would not require a long-range R&D program. The ultimate safety reactor could produce heat and electric energy, expand the production of fuel, or be used for the transmutation of long-lived wastes. The use of the combined double molten salt reactor system allows adequate neutron multiplication to permit using an electron accelerator for the initial neutron flux. The general parameters of such a system are discussed in this paper.

  20. Extravehicular mobility unit subcritical liquid oxygen storage and supply system

    NASA Technical Reports Server (NTRS)

    Anderson, John; Martin, Timothy; Hodgson, ED

    1992-01-01

    The storage of life support oxygen in the Extravehicular Mobility Unit in the liquid state offers some advantages over the current method of storing the oxygen as a high pressure gas. Storage volume is reduced because of the increased density associated with liquid. The lower storage and operating pressures also reduce the potential for leakage or bursting of the storage tank. The potential for combustion resulting from adiabatic combustion of the gas within lines and components is substantially reduced. Design constraints on components are also relaxed due to the lower system pressures. A design study was performed to determine the requirements for a liquid storage system and prepare a conceptual design. The study involved four tasks. The first was to identify system operating requirements that influence or direct the design of the system. The second was to define candidate storage system concepts that could possibly satisfy the requirements. An evaluation and comparison of the candidate concepts was conducted in the third task. The fourth task was devoted to preparing a conceptual design of the recommended storage system and to evaluate concerns with integration of the concept into the EMU. The results are presented.

  1. Subcritical and supercritical fuel injection and mixing in single and binary species systems

    NASA Astrophysics Data System (ADS)

    Roy, Arnab

    Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and

  2. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R.T.; Buksa, J.; Houts, M.

    1994-09-01

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  3. Out-of-equilibrium stationary states, percolation, and subcritical instabilities in a fully nonconservative system

    NASA Astrophysics Data System (ADS)

    Génois, Mathieu; Hersen, Pascal; Bertin, Eric; Courrech du Pont, Sylvain; Grégoire, Guillaume

    2016-10-01

    The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute—where dunes do not interact—to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes. In the percolable phase, the system presents a percolation threshold when the initial density increases. This percolation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound. We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.

  4. System Driven Workarounds

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline. Safety reports highlighting system driven workarounds for the aviation community highlight the human workaround for the complex aviation system.

  5. Delayed feedback control of the Lorenz system: an analytical treatment at a subcritical Hopf bifurcation.

    PubMed

    Pyragas, V; Pyragas, K

    2006-03-01

    We develop an analytical approach for the delayed feedback control of the Lorenz system close to a subcritical Hopf bifurcation. The periodic orbits arising at this bifurcation have no torsion and cannot be stabilized by a conventional delayed feedback control technique. We utilize a modification based on an unstable delayed feedback controller. The analytical approach employs the center manifold theory and the near identity transformation. We derive the characteristic equation for the Floquet exponents of the controlled orbit in an analytical form and obtain simple expressions for the threshold of stability as well as for an optimal value of the control gain. The analytical results are supported by numerical analysis of the original system of nonlinear differential-difference equations.

  6. Accelerator-Driven Subcritical Fission in a Molten Salt Core: Green Nuclear Power for the New Millennium

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter

    2011-10-01

    Scientists at Texas A&M University, Brookhaven National Lab, and Idaho National Lab are developing a design for accelerator-drive subcritical fission in a molten salt core (ADSMS). Three high-power proton beams are delivered to spallation targets in a molten salt core, where they provide ˜3% of the fast neutrons required to sustain 600 MW of fission. The proton beams are produced by a flux-coupled stack of superconducting strong-focusing cyclotrons. The fuel consists of a eutectic of sodium chloride with either spent nuclear fuel from a conventional U power reactor (ADSMS-U) or thorium (ADSMS-Th). The subcritical core cannot go critical under any failure mode. The core cannot melt down even if all power is suddenly lost to the facility for a prolonged period. The ultra-fast neutronics of the core makes it possible to operate in an isobreeding mode, in which neutron capture breeds the fertile nuclide into a fissile nuclide at the same rate that fission burns the fissile nuclide, and consumes 90% of the fertile inventory instead of the 5% consumed in the original use in a conventional power plant. The ultra-fast neutronics produces a very low equilibrium inventory of the long-lived minor actinides, ˜10^4 less than what is produced in conventional power plants. ADSMS offers a method to safely produce the energy needs for all mankind for the next 3000 years.

  7. Electrically driven environmental control system

    SciTech Connect

    Mcnamara, J.E.

    1984-05-01

    An environmental control system (ECS) being developed under the title of energy efficient environmental control system is described. The ECS is a closed-loop, electrically driven, vapor cycle system. The vapor cycle will have a compressor driven by a variable speed, high-voltage dc motor. The reasons for selecting this type of system are discussed here. Breadboard testing of a variable speed compressor to demonstrate the feasibility of such an approach has been completed. The testing results were used to develop a preliminary design of a prototype compressor. In future phases of the program, the prototype compressor will be developed a prototype system will be constructed and laboratory tested and finally the prototype system will be flight demonstrated.

  8. Pattern Formation in Driven Systems

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine

    Model colloidal particles of two types, driven in opposite directions, will in two dimensions segregate into lanes, a phenomenon studied extensively by Lowen and co-workers [Dzubiella et al. Phys. Rev. E 65, 021402 (2002)]. We have simulated mixtures of oppositely-driven particles using three numerical protocols. We find that laning results from enhanced diffusion, in the direction perpendicular to the drive, of particles surrounded by particles of the opposite type, consistent with the observation of Vissers et al. [Soft Matter 7, 6, 2352 (2011)]. By comparing protocols we find that enhanced diffusion follows from a simple geometrical constraint: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This constraint implies that the effective lateral diffusion constant grows linearly with drive speed and as the square root of the packing fraction, a prediction supported by our numerics. By invoking an analogy between hard particles with environment-dependent mobilities and mutually attractive particles we argue that there exists an equilibrium system whose pattern-forming properties are similar to those of the driven system. Katherine Klymko acknowledges support from the NSF Graduate Research Fellowship.

  9. Mass preparation of oligosaccharides by the hydrolysis of chondroitin sulfate polysaccharides with a subcritical water microreaction system.

    PubMed

    Yamada, Shuhei; Matsushima, Keiichiro; Ura, Haruo; Miyamoto, Nobuyuki; Sugahara, Kazuyuki

    2013-04-19

    The biological functions of chondroitin sulfate (CS) are executed by the interaction of specific oligosaccharide sequences in the polysaccharide chain with effective proteins. Thus, CS oligosaccharides are expected to have pharmacological applications. Furthermore, the demand for CS in health food supplements and medication is growing. However, the absorbency of CS polysaccharides in the digestive system is very low. Since the activity of orally administered CS is expected to increase by depolymerization, industrial production of CS oligosaccharides is required. In this study, hydrolysis with subcritical and super-critical water was applied to the depolymerization of CS for the first time, and hydrolytic conditions for oligosaccharide production were examined. CS oligosaccharides principally containing an N-acetyl-D-galactosamine residue at their reducing ends were successfully obtained. No significant desulfation was found in CS oligosaccharides prepared under optimized conditions. The production of CS oligosaccharides by this method will have a strong influence on the CS-related materials market.

  10. Mass preparation of oligosaccharides by the hydrolysis of chondroitin sulfate polysaccharides with a subcritical water microreaction system.

    PubMed

    Yamada, Shuhei; Matsushima, Keiichiro; Ura, Haruo; Miyamoto, Nobuyuki; Sugahara, Kazuyuki

    2013-04-19

    The biological functions of chondroitin sulfate (CS) are executed by the interaction of specific oligosaccharide sequences in the polysaccharide chain with effective proteins. Thus, CS oligosaccharides are expected to have pharmacological applications. Furthermore, the demand for CS in health food supplements and medication is growing. However, the absorbency of CS polysaccharides in the digestive system is very low. Since the activity of orally administered CS is expected to increase by depolymerization, industrial production of CS oligosaccharides is required. In this study, hydrolysis with subcritical and super-critical water was applied to the depolymerization of CS for the first time, and hydrolytic conditions for oligosaccharide production were examined. CS oligosaccharides principally containing an N-acetyl-D-galactosamine residue at their reducing ends were successfully obtained. No significant desulfation was found in CS oligosaccharides prepared under optimized conditions. The production of CS oligosaccharides by this method will have a strong influence on the CS-related materials market. PMID:23454651

  11. Myrrha, a Multipurpose Accelerator Driven System for R&d - Present Status

    NASA Astrophysics Data System (ADS)

    D'Hondt, P.; Aït Abderrahim, H.; Kupschus, P.; Benoit, P.; Malambu, E.; Sobolev, V.; Aoust, T.; van Tichelen, K.; Arien, B.; Vermeersch, F.; de Bruyn, D.; Maes, D.; Haeck, W.; Jongen, Y.; Vandeplassche, D.

    2004-02-01

    Since 1998, SCK•CEN in partnership with IBA s.a., is designing a multipurpose ADS for R&D applications -MYRRHA - and is conducting an associated R&D support programme. MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R&D applications. It consists of a proton accelerator delivering a 350 MeV*5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. In a first stage, the project focuses mainly on demonstration of the ADS concept, safety research on sub-critical systems and nuclear waste transmutation studies. In a later stage, the device will also be dedicated to research on structural materials, nuclear fuel, liquid metal technology and associated aspects and on sub-critical reactor physics. Subsequently, it will be used for research on applications such as radioisotope production. The MYRRHA system is expected to become a major research infrastructure for the European partners involved in the P&T and ADS Demo development.

  12. Properties of the Feynman-alpha method applied to accelerator-driven subcritical systems.

    PubMed

    Taczanowski, S; Domanska, G; Kopec, M; Janczyszyn, J

    2005-01-01

    A Monte Carlo study of the Feynman-method with a simple code simulating the multiplication chain, confined to pertinent time-dependent phenomena has been done. The significance of its key parameters (detector efficiency and dead time, k-source and spallation neutrons multiplicities, required number of fissions etc.) has been discussed. It has been demonstrated that this method can be insensitive to properties of the zones surrounding the core, whereas is strongly affected by the detector dead time. In turn, the influence of harmonics in the neutron field and of the dispersion of spallation neutrons has proven much less pronounced.

  13. Comparison of Lead-Bismuth and Lead as Coolants for Accelerator Driven Systems

    SciTech Connect

    Bianchi, F.; Mattioda, F.; Meloni, P.

    2002-07-01

    In the framework of the Italian research program TRASCO (TRAsmutazione SCOrie, namely transmutation of radioactive wastes) and of the European research program PDS-XADS (Preliminary Design Study on an eXperimental Accelerator Driven System) the feasibility and operability of gas or liquid metal cooled accelerator driven system prototypes are currently under investigation. Initially the attention of the thermal-hydraulics group of ENEA research centre in Bologna has been focussed toward a lead-bismuth cooled subcritical system under natural or enhanced natural circulation according to the prototype design proposed. The interest in using lead as a coolant, which is characterized by a higher melting point, is explained by the need to increase the plant efficiency for the economic competitiveness, though the higher temperatures pose some technological problems. Moreover, the amount of activation products should result significantly lower. Of course the results obtained and the experience gained analysing the dynamical behaviour of the lead-bismuth cooled system cannot be directly transferred to lead cooled systems. This paper aims at presenting a preliminary comparison of lead-bismuth and lead in a simplified liquid metal cooled subcritical system, mainly from the thermal-hydraulics and system dynamics points of view. By means of the modified RELAP5 version, the dynamical behavior of a lead-bismuth or lead cooled system, which is intended to be a quite accurate representation of the Italian accelerator driven prototype XADS, has been studied. Although a more exhaustive comparison should take into account the necessarily different structural characteristics of lead-bismuth and lead cooled systems, the neutronic feedback on reactor power and also the slightly different neutronic properties of lead-bismuth and lead, the purely thermal-hydraulic analysis presented in this paper has shown that the dynamical behaviour of the XADS does not differ noticeable when lead is used

  14. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    SciTech Connect

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio; Davila, Jesus

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  15. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  16. Experimental study on the thorium-loaded accelerator-driven system at the Kyoto Univ. critical assembly

    SciTech Connect

    Pyeon, C. H.; Yagi, T.; Lim, J. Y.; Misawa, T.

    2012-07-01

    The experimental study on the thorium-loaded accelerator-driven system (ADS) is conducted in the Kyoto Univ. Critical Assembly (KUCA). The experiments are carried out in both the critical and subcritical states for attaining the reaction rates of the thorium capture and fission reactions. In the critical system, the thorium plate irradiation experiment is carried out for the thorium capture and fission reactions. From the results of the measurements, the thorium fission reactions are obtained apparently in the critical system, and the C/E values of reaction rates show the accuracy of relative difference of about 30%. In the ADS experiments with 14 MeV neutrons and 100 MeV protons, the subcritical experiments are carried out in the thorium-loaded cores to obtain the capture reaction rates through the measurements of {sup 115}In(n, {gamma}){sup 116m}In reactions. The results of the experiments reveal the difference between the reaction rate distributions for the change in not only the neutron spectrum but also the external neutron source. The comparison between the measured and calculated reaction rate distributions demonstrates a discrepancy of the accuracy of reaction rate analyses of thorium capture reactions through the thorium-loaded ADS experiments with 14 MeV neutrons. Hereafter, kinetic experiments are planned to be carried out to deduce the delayed neutron decay constants and subcriticality using the pulsed neutron method. (authors)

  17. Theoretical and Experimental Research in Neutron Spectra and Nuclear Waste Transmutation on Fast Subcritical Assembly with MOX Fuel

    NASA Astrophysics Data System (ADS)

    Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.

    2003-07-01

    The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.

  18. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  19. Subcritical and supercritical water oxidation of organic, wet wastes for carbon cycling in regenerative life support systems

    NASA Astrophysics Data System (ADS)

    Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim

    2016-07-01

    For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch

  20. YALINA-booster subcritical assembly pulsed-neutron experiments : data processing and spatial corrections.

    SciTech Connect

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    2010-10-11

    The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear energy applications using low enriched uranium. The YALINA-Booster subcritical assembly is utilized for studying the kinetics of accelerator driven systems with its highly intensive D-T or D-D pulsed neutron source. In particular, the pulsed neutron methods are used to determine the reactivity of the subcritical system. This report examines the pulsed-neutron experiments performed in the YALINA-Booster facility with different configurations for the subcritical assembly. The 1141 configuration with 90% U-235 fuel and the 1185 configuration with 36% or 21% U-235 fuel are examined. The Sjoestrand area-ratio method is utilized to determine the reactivities of the different configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from the experimental data are shown to be dependent on the detector locations inside the subcritical assembly and the types of detector used for the measurements. In this report, Bell's spatial correction factors are calculated based on a Monte Carlo model to remove the detector dependences. The large differences between the reactivity values given by the detectors in the fast neutron zone of the YALINA-Booster are reduced after applying the spatial corrections. In addition, the estimated reactivity values after the spatial corrections are much less spatially dependent.

  1. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  2. Ontology-driven health information systems architectures.

    PubMed

    Blobel, Bernd; Oemig, Frank

    2009-01-01

    Following an architecture vision such as the Generic Component Model (GCM) architecture framework, health information systems for supporting personalized care have to be based on a component-oriented architecture. Representing concepts and their interrelations, the GCM perspectives system architecture, domains, and development process can be described by the domains' ontologies. The paper introduces ontology principles, ontology references to the GCM as well as some practical aspects of ontology-driven approaches to semantically interoperable and sustainable health information systems.

  3. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  4. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  5. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  6. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  7. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  8. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  9. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  10. Modeling new coal projects: supercritical or subcritical?

    SciTech Connect

    Carrino, A.J.; Jones, R.B.

    2006-11-15

    Decisions made on new build coal-fired plants are driven by several factors - emissions, fuel logistics and electric transmission access all provide constraints. The crucial economic decision whether to build supercritical or subcritical units often depends on assumptions concerning the reliability/availability of each technology, the cost of on-fuel operations including maintenance, the generation efficiencies and the potential for emissions credits at some future value. Modeling the influence of these key factors requires analysis and documentation to assure the assets actually meet the projected financial performance. This article addresses some of the issue related to the trade-offs that have the potential to be driven by the supercritical/subcritical decision. Solomon Associates has been collecting cost, generation and reliability data on coal-fired power generation assets for approximately 10 years using a strict methodology and taxonomy to categorize and compare actual plant operations data. This database provides validated information not only on performance, but also on alternative performance scenarios, which can provide useful insights in the pro forma financial analysis and models of new plants. 1 ref., 1 fig., 3 tabs.

  11. Extending non-fatigue Mode I subcritical crack growth data to subcritical fatigue crack growth: Demonstration of the equivalence of the Charles' law and Paris law exponents

    NASA Astrophysics Data System (ADS)

    Keanini, Russell; Eppes, Martha-Cary

    2016-04-01

    Paris's law connects fatigue-induced subcritical crack growth and fatigue loading. Environmentally-driven subcritical crack growth, while a random process, can be decomposed into a spectrum of cyclic processes, where each spectral component is governed by Paris's law. Unfortunately, almost no data exists concerning the Paris law exponent, m; rather, the great majority of existing sub-critical crack growth measurements on rock have been carried out via Mode I tensile tests, where corresponding data are generally correlated using Charles' law, and where the latter, similar to Paris's law, exposes a power law relationship between crack growth rate and stress intensity. In this study, a statistical argument is used to derive a simple, rigorous relationship between the all-important Paris law and Charles law exponents, m and n. This result has a significant practical implication: subcritical fatigue crack growth in rock, driven by various random environmental weathering processes can now be predicted using available Mode I stress corrosion indices, n.

  12. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  13. MCNPX, MONK, and ERANOS analyses of the YALINA booster subcritical assembly.

    SciTech Connect

    Talamo, A.; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2011-05-01

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the {sup 3}He(n,p) reaction rates obtained with the californium neutron source.

  14. Odd-frequency superconductivity in driven systems

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander V.

    2016-09-01

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes holds for driven systems even in the absence of translation invariance. We then consider a model Hamiltonian for a superconductor coupled to an external driving potential and, treating the drive as a perturbation, we investigate the corrections to the anomalous Green's function, density of states, and spectral function. We find that in the presence of an external drive the anomalous Green's function develops terms that are odd in frequency and that the same mechanism responsible for these odd-frequency terms generates additional features in the density of states and spectral function.

  15. MYRRHA: A multipurpose accelerator driven system for research & development

    NASA Astrophysics Data System (ADS)

    Abderrahim, H. Aı̈t; Kupschus, P.; Malambu, E.; Benoit, Ph; Van Tichelen, K.; Arien, B.; Vermeersch, F.; D'hondt, P.; Jongen, Y.; Ternier, S.; Vandeplassche, D.

    2001-05-01

    SCK·CEN, the Belgian Nuclear Research Centre, in partnership with IBA s.a., Ion Beam Applications, is designing an ADS prototype, MYRRHA, and is conducting an associated R&D programme. The project focuses primarily on research on structural materials, nuclear fuel, liquid metals and associated aspects, on subcritical reactor physics and subsequently on applications such as nuclear waste transmutation, radioisotope production and safety research on sub-critical systems. The MYRRHA system is intended to be a multipurpose R&D facility and is expected to become a new major research infrastructure for the European partners presently involved in the ADS Demo development. Ion Beam Applications is performing the accelerator development. Currently the preliminary conceptual design of the MYRRHA system is under way and an intensive R&D programme is assessing the points of greatest risk in the present design. This work will define the final choice of characteristics of the facility. In this paper, we will report on the status of the pre-design study as of June 2000 as well as on the methods and results of the R&D programme.

  16. Sub-critical filtration conditions of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system: the effect of gas sparging intensity.

    PubMed

    Robles, A; Ruano, M V; García-Usach, F; Ferrer, J

    2012-06-01

    A submerged anaerobic MBR demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was operated using municipal wastewater at high levels of mixed liquor total solids (MLTS) (above 22 g L(-1)). A modified flux-step method was applied to assess the critical flux (J(C)) at different gas sparging intensities. The results showed a linear dependency between J(C) and the specific gas demand per unit of membrane area (SGD(m)). J(C) ranged from 12 to 19 LMH at SGD(m) values of between 0.17 and 0.5 Nm(3) h(-1) m(-2), which are quite low in comparison to aerobic MBR. Long-term trials showed that the membranes operated steadily at fluxes close to the estimated J(C), which validates the J(C) obtained by this method. After operating the membrane for almost 2 years at sub-critical levels, no irreversible fouling problems were detected, and therefore, no chemical cleaning was conducted.

  17. Mission Success Driven Space System Sparing Analysis

    NASA Technical Reports Server (NTRS)

    Knezevic, J.

    1995-01-01

    Among the maintenance resources, the spare parts are the most difficult to predict. Items in the space systems are very different from the point of view of reliability, cost, weight, volume, etc. The different combinations of spares make different contribution to the: mission success, spare investment, volume occupied and weight. Hence, the selection of spares for a mission planned must take into account all of these features. This paper presents the generic mission success driven sparing model developed, for the complex space systems. The mathematical analysis used in the model enables the user to select the most suitable selection of the spare package for the mission planned. The illustrative examples presented clearly demonstrate the applicability and usefulness of the model introduced.

  18. Periodically driven three-level systems

    NASA Astrophysics Data System (ADS)

    Kenmoe, M. B.; Fai, L. C.

    2016-09-01

    We study the dynamics of a three-level system (ThLS) sinusoidally driven in both longitudinal and transverse directions and in the presence of a uniaxial anisotropy D entering the generic Hamiltonian through the zero-energy splitting term D (Sz)2 where Sz is the projection of the spin vector along the quantization direction. As a consequence of the addition of this term, the order of the symmetry group of the Hamiltonian is increased by a unit and we observe a sequence of cascaded SU(3) Landau-Zener-Stückelberg-Majorana (LZSM) interferometers. The study is carried out by analytically and numerically calculating the probabilities of nonadiabatic and adiabatic evolutions. For nonadiabatic evolutions, two main approximations based on the weak and strong driving limits are discussed by comparing the characteristic frequency of the longitudinal drive with the amplitudes of driven fields. For each of the cases discussed, our analytical results quite well reproduce the gross temporal profile of the exact numerical probabilities. This allows us to check the range of validity of analytical results and confirm our assumptions. For adiabatic evolutions, a general theory is constructed allowing for the description of adiabatic passages in arbitrary ThLSs in which direct transitions between states with extremal spin projections are forbidden. A compact formula for adiabatic evolutions is derived and numerically tested for some illustrative cases. Interference patterns demonstrating multiple LZSM transitions are reported. Applications of our results to the nitrogen vacancy center in diamond are discussed.

  19. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    SciTech Connect

    Uyttenhove, W.; Baeten, P.; Kochetkov, A.; Vittiglio, G.; Wagemans, J.; Ban, G.; Lecolley, F.R.; Lecouey, J.L.; Marie, N.; Steckmeyer, J.C.; Billebaud, A.; Chabod, S.; Thyebault, H.E.; Dessagne, P.; Kerveno, M.; Mellier, F.

    2012-12-15

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate online reactivity monitoring and subcriticality level determination in accelerator driven systems (ADS). Therefore, the VENUS reactor at SCK.CEN in Mol, Belgium, was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS. The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of the online subcriticality monitoring methodology. Moreover, a benchmarking tool is required for nuclear data research and code validation. In this paper, the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the positive period method and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)

  20. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    SciTech Connect

    Uyttenhove, W.; Baeten, P.; Ban, G.; Billebaud, A.; Chabod, S.; Dessagne, P.; Kerveno, M.; Kochetkov, A.; Lecolley, F. R.; Lecouey, J. L.; Marie, N.; Mellier, F.; Steckmeyer, J. C.; Thyebault, H. E.; Vittiglio, G.; Wagemans, J.

    2011-07-01

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate on-line reactivity monitoring and subcriticality level determination in Accelerator Driven Systems. Therefore the VENUS reactor at SCK.CEN in Mol (Belgium) was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of the on-line subcriticality monitoring methodology. Moreover a benchmarking tool is required for nuclear data research and code validation. In this paper the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the rod drop technique and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)

  1. Theoretical analysis of the subcritical experiments performed in the IPEN/MB-01 research reactor facility

    SciTech Connect

    Lee, S. M.; Dos Santos, A.

    2012-07-01

    The theoretical analysis of the subcritical experiments performed at the IPEN/MB-01 reactor employing the coupled NJOY/AMPX-II/TORT systems was successfully accomplished. All the analysis was performed employing ENDF/B-VII.0. The theoretical approach follows all the steps of the subcritical model of Gandini and Salvatores. The theory/experiment comparison reveals that the calculated subcritical reactivity is in a very good agreement to the experimental values. The subcritical index ({xi}) shows some discrepancies although in this particular case some work still have to be made to model in a better way the neutron source present in the experiments. (authors)

  2. Computational dynamics of acoustically driven microsphere systems.

    PubMed

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry. PMID:26871188

  3. Computational dynamics of acoustically driven microsphere systems.

    PubMed

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.

  4. Monte Carlo modeling and analyses of YALINA booster subcritical assembly, Part III : low enriched uranium conversion analyses.

    SciTech Connect

    Talamo, A.; Gohar, Y.

    2011-05-12

    This study investigates the performance of the YALINA Booster subcritical assembly, located in Belarus, during operation with high (90%), medium (36%), and low (21%) enriched uranium fuels in the assembly's fast zone. The YALINA Booster is a zero-power, subcritical assembly driven by a conventional neutron generator. It was constructed for the purpose of investigating the static and dynamic neutronics properties of accelerator driven subcritical systems, and to serve as a fast neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinides. The first part of this study analyzes the assembly's performance with several fuel types. The MCNPX and MONK Monte Carlo codes were used to determine effective and source neutron multiplication factors, effective delayed neutron fraction, prompt neutron lifetime, neutron flux profiles and spectra, and neutron reaction rates produced from the use of three neutron sources: californium, deuterium-deuterium, and deuterium-tritium. In the latter two cases, the external neutron source operates in pulsed mode. The results discussed in the first part of this report show that the use of low enriched fuel in the fast zone of the assembly diminishes neutron multiplication. Therefore, the discussion in the second part of the report focuses on finding alternative fuel loading configurations that enhance neutron multiplication while using low enriched uranium fuel. It was found that arranging the interface absorber between the fast and the thermal zones in a circular rather than a square array is an effective method of operating the YALINA Booster subcritical assembly without downgrading neutron multiplication relative to the original value obtained with the use of the high enriched uranium fuels in the fast zone.

  5. Dynamical Critical Phenomena in Driven-Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Huber, S. D.; Altman, E.; Diehl, S.

    2013-05-01

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  6. Nonlinear Excitation of Subcritical Instabilities in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Lesur, M.; Itoh, K.; Ido, T.; Osakabe, M.; Ogawa, K.; Shimizu, A.; Sasaki, M.; Ida, K.; Inagaki, S.; Itoh, S.-I.; LHD Experiment Group

    2016-01-01

    In a collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the presence of structures in phase space. However, nonlinear growth requires the presence of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable (supercritical) mode, wave-wave coupling can provide a seed, which is significantly below the threshold, but can still grow by (and only by) the collaboration of fluid and kinetic nonlinearities. By modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple wave-wave coupling equations, it is shown that this new kind of subcritical instability can be triggered, even when the frequency of the supercritical mode is rapidly sweeping. The model is applied to the bursty onset of geodesic acoustic modes in a LHD experiment. The model recovers several key features such as relative amplitude, time scales, and phase relations. It suggests that the strongest bursts are subcritical instabilities, driven by this mechanism of combined fluid and kinetic nonlinearities.

  7. Investigation of Lead Target Nuclei Used on Accelerator-Driven Systems for Tritium Production

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydin, A.

    2012-02-01

    High-current proton accelerators are being researched at Los Alamos National Laboratory and other laboratories for accelerator production of tritium, transmuting long-lived radioactive waste into shorter-lived products, converting excess plutonium, and producing energy. These technologies make use of spallation neutrons produced in ( p,xn) and ( n,xn) nuclear reactions on high-Z targets. Through ( p,xn) and ( n,xn) nuclear reactions, neutrons are produced and are moderated by heavy water. These moderated neutrons are subsequently captured on 3He to produce tritium via the ( n,p) reaction. Tritium self-sufficiency must be maintained for a commercial fusion power plant. Rubbia succeeded in a proposal of a full scale demonstration plant of the Energy Amplifier. This plant is to be known the accelerator-driven system (ADS). The ADS can be used for production of neutrons in spallation neutron source and they can act as an intense neutron source in accelerator-driven subcritical reactors, capable of incinerating nuclear waste and of producing energy. Thorium and Uranium are nuclear fuels and Lead, Bismuth, Tungsten are the target nuclei in these reactor systems. The spallation targets can be Pb, Bi, W, etc. isotopes and these target material can be liquid or solid. Naturally Lead includes the 204Pb (%1.42), 206Pb (%24.1), 207Pb (%22.1) and 208Pb (%52.3) isotopes. The design of ADS systems and also a fusion-fission hybrid reactor systems require the knowledge of a wide range of better data. In this study, by using Hartree-Fock method with an effective nucleon-nucleon Skyrme interactions rms nuclear charge radii, rms nuclear mass radii, rms nuclear proton, neutron radii and neutron skin thickness were calculated for the 204, 206, 208Pb isotopes . The calculated results have been compared with those of the compiled experimental and theoretical values of other studies.

  8. Minimum transition values and the dynamics of subcritical bifurcation

    SciTech Connect

    Tu, S.; Reiss, E.L.

    1986-04-01

    Perturbation and asymptotic methods are presented for analyzing a class of subcritical bifurcation problems whose solutions possess minimum transition values. These minimum transition values are determined. In addition, the dynamics of the transitions from the basic state to the larger amplitude bifurcation states are obtained. The effects of imperfections on the response of the systems are also investigated. The method is presented for two model problems. However, it is valid for a wide class of problems in elastic and hydrodynamic stability, in reaction-diffusion systems and in other applications. In the first problem the authors obtain subcritical steady bifurcation states for a one-dimensional nonlinear diffusion problem. In the second problem they consider the subcritical Hopf bifurcation of periodic solutions for a higher order van der Pol-Duffing oscillator.

  9. Upper Subcritical Calculations Based on Correlated Data

    SciTech Connect

    Sobes, Vladimir; Rearden, Bradley T; Mueller, Don; Marshall, William BJ J; Scaglione, John M; Dunn, Michael E

    2015-01-01

    The American National Standards Institute and American Nuclear Society standard for Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations defines the upper subcritical limit (USL) as “a limit on the calculated k-effective value established to ensure that conditions calculated to be subcritical will actually be subcritical.” Often, USL calculations are based on statistical techniques that infer information about a nuclear system of interest from a set of known/well-characterized similar systems. The work in this paper is part of an active area of research to investigate the way traditional trending analysis is used in the nuclear industry, and in particular, the research is assessing the impact of the underlying assumption that the experimental data being analyzed for USL calculations are statistically independent. In contrast, the multiple experiments typically used for USL calculations can be correlated because they are often performed at the same facilities using the same materials and measurement techniques. This paper addresses this issue by providing a set of statistical inference methods to calculate the bias and bias uncertainty based on the underlying assumption that the experimental data are correlated. Methods to quantify these correlations are the subject of a companion paper and will not be discussed here. The newly proposed USL methodology is based on the assumption that the integral experiments selected for use in the establishment of the USL are sufficiently applicable and that experimental correlations are known. Under the assumption of uncorrelated data, the new methods collapse directly to familiar USL equations currently used. We will demonstrate our proposed methods on real data and compare them to calculations of currently used methods such as USLSTATS and NUREG/CR-6698. Lastly, we will also demonstrate the effect experiment correlations can have on USL calculations.

  10. System driven technology selection for future European launch systems

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  11. A Procedure to Predict the Subcritical Turbulent Onset Criterion Applied to a Modified Hasegawa-Wakatani Model

    NASA Astrophysics Data System (ADS)

    Friedman, Brett; Carter, Troy

    2014-10-01

    Linear eigenmode analysis is often used to predict whether a plasma or fluid system will be turbulent, but it fails for systems which have highly non-orthogonal linear eigenvectors. In fact, such systems may become turbulent despite having no unstable linear eigenvectors at all (subcritical turbulence). For about a century, researchers have attempted to predict critical parameters that mark the onset of subcritical turbulence with little success. Using recently-developed intuition regarding the role of non-orthogonal linear eigenvectors in subcritical turbulent sustainment, we have developed a method to calculate turbulent growth rates, which can be used to predict the onset of subcritical turbulence. We apply our procedure to 2D and 3D versions of the Hasegawa-Wakatani (HW) model, showing good agreement with nonlinear simulation results. We also use a modified version of the 3D HW model, which is subject to subcritical turbulence, in order to test our method in predicting the subcritical turbulent onset.

  12. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    SciTech Connect

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-06-15

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory.

  13. Theoretical and experimental analysis of an optical driven servo system

    NASA Astrophysics Data System (ADS)

    Lu, F.; Wang, X. J.; Huang, J. H.; Liu, Y. F.

    2016-09-01

    An optical driven servo system model based on single-type PLZT ceramic is proposed in this paper. The control equation of the proposed servo system is derived based on the mathematical model of PLZT with coupled multi-physics fields. The parameters of photodeformation of the PLZT actuator during both the illumination phase and light off phase are identified through the static experiment. Then displacement response of optical driven servo system is numerically simulated based on the control equation presented in this paper. After that, the closed-loop control experiment of optical driven servo system based on PLZT single-type ceramic with a simple on-off method is carried out. The experimental results show that the optical driven servo system with simple on-off method can achieve the target displacement by applying UV light to the PLZT actuator. Furthermore, an improved on-off control strategy is proposed to decrease the undesirable fluctuation around the target displacement.

  14. Theoretical and experimental analysis of an optical driven servo system

    NASA Astrophysics Data System (ADS)

    Lu, F.; Wang, X. J.; Huang, J. H.; Liu, Y. F.

    2016-09-01

    An optical driven servo system model based on single-type PLZT ceramic is proposed in this paper. The control equation of the proposed servo system is derived based on the mathematical model of PLZT with coupled multi-physics fields. The parameters of photodeformation of the PLZT actuator during both the illumination phase and light off phase are identified through the static experiment. Then displacement response of optical driven servo system is numerically simulated based on the control equation presented in this paper. After that, the closed-loop control experiment of optical driven servo system based on PLZT single-type ceramic with a simple on–off method is carried out. The experimental results show that the optical driven servo system with simple on–off method can achieve the target displacement by applying UV light to the PLZT actuator. Furthermore, an improved on–off control strategy is proposed to decrease the undesirable fluctuation around the target displacement.

  15. Differentiating between marketing-driven and technology-driven vendors of medical information systems.

    PubMed

    Friedman, B A; Mitchell, W; Singh, K

    1994-08-01

    Buyers of medical information systems such as laboratory information systems need to recognize that the vendors of such systems may pursue corporate strategies emphasizing expenditures on marketing and client services, expenditures on technology and research and development (R&D), or a more balanced approach. The strategic goals and objectives of a vendor of an information system should align closely with those of a potential hospital client. A restless hospital client seeking cutting-edge technology will probably be dissatisfied with a system vendor who emphasizes slow ongoing incremental system development. Objective criteria for distinguishing between a marketing-driven vendor and a technology-driven vendor of medical information systems, and their variants, are presented based on the ratio of marketing expenditures to sales revenue compared with the ratio of research and development expenditures to sales revenue of the company. More subjective narrative criteria are also offered for making such distinctions. PMID:8060224

  16. Thin Films and the Systems-Driven Approach

    SciTech Connect

    Zweibel, K.

    2005-01-01

    A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

  17. Exponentially Slow Heating in Periodically Driven Many-Body Systems.

    PubMed

    Abanin, Dmitry A; De Roeck, Wojciech; Huveneers, François

    2015-12-18

    We derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes. We discuss applications to other problems, including the decay of highly energetic excitations in cold atomic and solid-state systems. PMID:26722939

  18. Data driven propulsion system weight prediction model

    NASA Technical Reports Server (NTRS)

    Gerth, Richard J.

    1994-01-01

    The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.

  19. Subcritical growth of natural hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower

  20. Data-driven optimization of dynamic reconfigurable systems of systems.

    SciTech Connect

    Tucker, Conrad S.; Eddy, John P.

    2010-11-01

    This report documents the results of a Strategic Partnership (aka University Collaboration) LDRD program between Sandia National Laboratories and the University of Illinois at Urbana-Champagne. The project is titled 'Data-Driven Optimization of Dynamic Reconfigurable Systems of Systems' and was conducted during FY 2009 and FY 2010. The purpose of this study was to determine and implement ways to incorporate real-time data mining and information discovery into existing Systems of Systems (SoS) modeling capabilities. Current SoS modeling is typically conducted in an iterative manner in which replications are carried out in order to quantify variation in the simulation results. The expense of many replications for large simulations, especially when considering the need for optimization, sensitivity analysis, and uncertainty quantification, can be prohibitive. In addition, extracting useful information from the resulting large datasets is a challenging task. This work demonstrates methods of identifying trends and other forms of information in datasets that can be used on a wide range of applications such as quantifying the strength of various inputs on outputs, identifying the sources of variation in the simulation, and potentially steering an optimization process for improved efficiency.

  1. Coalescence cascade of dissipative solitons in parametrically driven systems.

    PubMed

    Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473

  2. Energy-driven pattern formation in planar dipole-dipole systems in the presence of weak noise

    NASA Astrophysics Data System (ADS)

    Kent-Dobias, Jaron; Bernoff, Andrew J.

    2015-03-01

    We study pattern formation in planar fluid systems driven by intermolecular cohesion (which manifests as a line tension) and dipole-dipole repulsion, which are observed in physical systems including ferrofluids in Hele-Shaw cells and Langmuir layers. When the dipolar repulsion is sufficiently strong, domains undergo forked branching reminiscent of viscous fingering. A known difficulty with these models is that the energy associated with dipole-dipole interactions is singular at small distances. Following previous work, we demonstrate how to ameliorate this singularity and show that in the macroscopic limit only the scale of the microscopic details relative to the macroscopic extent of a system is relevant and develop an expression for the system energy that depends only on a generalized line tension Λ that in turn depends logarithmically on that scale. We conduct numerical studies that use energy minimization to find equilibrium states. Following the subcritical bifurcations from the circle, we find a few highly symmetric stable shapes, but nothing that resembles the observed diversity of experimental and dynamically simulated domains. The application of a weak random background to the energy landscape stabilizes a wide range of domain morphologies recovering the diversity observed experimentally. With this technique, we generate a large sample of qualitatively realistic shapes and use them to create an empirical model for extracting Λ with high accuracy using only a shape's perimeter and morphology.

  3. Energy-driven pattern formation in planar dipole-dipole systems in the presence of weak noise.

    PubMed

    Kent-Dobias, Jaron; Bernoff, Andrew J

    2015-03-01

    We study pattern formation in planar fluid systems driven by intermolecular cohesion (which manifests as a line tension) and dipole-dipole repulsion, which are observed in physical systems including ferrofluids in Hele-Shaw cells and Langmuir layers. When the dipolar repulsion is sufficiently strong, domains undergo forked branching reminiscent of viscous fingering. A known difficulty with these models is that the energy associated with dipole-dipole interactions is singular at small distances. Following previous work, we demonstrate how to ameliorate this singularity and show that in the macroscopic limit only the scale of the microscopic details relative to the macroscopic extent of a system is relevant and develop an expression for the system energy that depends only on a generalized line tension Λ that in turn depends logarithmically on that scale. We conduct numerical studies that use energy minimization to find equilibrium states. Following the subcritical bifurcations from the circle, we find a few highly symmetric stable shapes, but nothing that resembles the observed diversity of experimental and dynamically simulated domains. The application of a weak random background to the energy landscape stabilizes a wide range of domain morphologies recovering the diversity observed experimentally. With this technique, we generate a large sample of qualitatively realistic shapes and use them to create an empirical model for extracting Λ with high accuracy using only a shape's perimeter and morphology. PMID:25871184

  4. Concept evaluation of nuclear fusion driven symbiotic energy systems

    NASA Astrophysics Data System (ADS)

    Renier, J. P.; Hoffman, T. J.

    An analysis of systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders is presented. Metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing were used. Neutronics depletion calculations are coupled with a scenario optimization and a cost analysis code. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The analyses of the symbiotic energy systems were performed at equilibrium, at the maximum rate of grid expansion and for a given nuclear power demand. Attractive schemes are identified based on D-T driven fusion-drivers operated with low plasma performance parameters.

  5. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    SciTech Connect

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  6. Subcritical crack growth under mode I, II, and III loading for Coconino sandstone

    NASA Astrophysics Data System (ADS)

    Ko, Tae Young

    In systems subjected to long-term loading, subcritical crack growth is the principal mechanism causing the time-dependent deformation and failure of rocks. Subcritical crack growth is environmentally-assisted crack growth, which can allow cracks to grow over a long period of time at stresses far smaller than their failure strength and at tectonic strain rates. The characteristics of subcritical crack growth can be described by a relationship between the stress intensity factor and the crack velocity. This study presents the results of studies conducted to validate the constant stress-rate test for determining subcritical crack growth parameters in Coconino sandstone, compared with the conventional testing method, the double torsion test. The results of the constant stress-rate test are in good agreement with the results of double torsion test. More importantly, the stress-rate tests can determine the parameter A with a much smaller standard deviation than the double torsion test. Thus the constant stress-rate test seems to be both a valid and preferred test method for determining the subcritical crack growth parameters in rocks. We investigated statistical aspects of the constant stress-rate test. The effects of the number of tests conducted on the subcritical crack growth parameters were examined and minimum specimen numbers were determined. The mean and standard deviation of the subcritical crack growth parameters were obtained by randomly selecting subsets from the original strength data. In addition, the distribution form of the subcritical crack growth parameters and the relation between the parameter n and A were determined. We extended the constant stress-rate test technique to modes II and III subcritical crack growth in rocks. The experimental results of the modes I, II and III tests show that the values of the subcritical crack growth parameters are similar to each other. The subcritical crack growth parameter n value for Coconino sandstone has the range

  7. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2002-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  8. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2003-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  9. Energy and particle currents in a driven integrable system

    NASA Astrophysics Data System (ADS)

    Crivelli, D.; Prelovšek, P.; Mierzejewski, M.

    2014-11-01

    We study the ratio of the energy and particle currents (jE/jN ) in an integrable one-dimensional system of interacting fermions. Both currents are driven by a finite (nonzero) dc electric field. In doped insulators, where the local conserved quantities saturate the so-called Mazur bound on the charge stiffness, jE/jN agrees with the linear-response theory, even though such agreement may be violated for each current alone. However, in the metallic regime with a nonsaturated Mazur bound, the ratio jE/jN in a driven system is shown to be much larger than predicted by the linear-response theory.

  10. Portable database driven control system for SPEAR

    SciTech Connect

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig.

  11. Creating physician-driven integrated delivery systems.

    PubMed

    Wagner, L

    1995-03-01

    Put doctors in control of key strategic and clinical decisions? Make them part owners or give them financial performance incentives? Yes, say many experts, that's the road to success for integrated systems. Read how they're doing it and evaluate your physician integration initiatives on HSL's 10-question self-assessment.

  12. Optimization of geometry, material and economic parameters of a two-zone subcritical reactor for transmutation of nuclear waste with SERPENT Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Gulik, Volodymyr; Tkaczyk, Alan Henry

    2014-06-01

    An optimization study of a subcritical two-zone homogeneous reactor was carried out, taking into consideration geometry, material, and economic parameters. The advantage of a two-zone subcritical system over a single-zone system is demonstrated. The study investigated the optimal volume ratio for the inner and outer zones of the subcritical reactor, in terms of the neutron-physical parameters as well as fuel cost. Optimal geometrical parameters of the system are suggested for different material compositions.

  13. Spontaneous rotation in a driven mechanical system

    NASA Astrophysics Data System (ADS)

    Alexander, T. J.

    2016-06-01

    We show that a mass free to circulate around a shaken pivot point exhibits resonance-like effects and large amplitude dynamics even though there is no natural frequency in the system, simply through driving under geometrical constraint. We find that synchronization between force and mass occurs over a wide range of forcing amplitudes and frequencies, even when the forcing axis is dynamically, and randomly, changed. Above a critical driving amplitude the mass will spontaneously rotate, with a fractal boundary dividing clockwise and anti-clockwise rotations. We show that this has significant implications for energy harvesting, with large output power over a wide frequency range. We examine also the effect of driving symmetry on the resultant dynamics, and show that if the shaking is circular the motion becomes constrained, whereas for anharmonic rectilinear shaking the dynamics may become chaotic, with the system mimicking that of the kicked rotor.

  14. HERCULES: A Pattern Driven Code Transformation System

    SciTech Connect

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing; Ilsche, Thomas; Joubert, Wayne; Graham, Richard L

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss the design, implementation and an initial evaluation of HERCULES.

  15. Onsager Coefficients in Periodically Driven Systems.

    PubMed

    Proesmans, Karel; Van den Broeck, Christian

    2015-08-28

    We evaluate the Onsager matrix for a system under time-periodic driving by considering all its Fourier components. By application of the second law, we prove that all the fluxes converge to zero in the limit of zero dissipation. Reversible efficiency can never be reached at finite power. The implication for an Onsager matrix, describing reduced fluxes, is that its determinant has to vanish. In the particular case of only two fluxes, the corresponding Onsager matrix becomes symmetric. PMID:26371634

  16. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-11-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  17. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  18. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  19. Hydrodynamic Instabilities in Blast-Driven Systems

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Johnsen, Eric

    2014-11-01

    Mixing from hydrodynamics instabilities such as Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz, occurs in a wide range of engineering applications such as inertial confinement fusion, supernova collapse, and scramjet combustion. The success of these applications depends on an accurate understanding of these phenomena. Following previous work investigating hydrodynamic mixing from the interaction of a perturbed interface with a planar blast wave, we model the perturbation growth by analyzing the different acceleration phases of a blast wave: an instantaneous acceleration (a pressure increase) followed by a gradual, time-dependent deceleration (a pressure decrease). Depending on the characteristics of these phases, the instability will be dominated by Richtmyer-Meshkov or Rayleigh-Taylor growth. We use a high-order accurate Discontinuous Galerkin method that prevents pressure errors at interfaces with variable specific heats ratios to simulate these systems and understand the different growth regimes.

  20. Butterfly Floquet Spectrum in Driven SU(2) Systems

    SciTech Connect

    Wang Jiao; Gong Jiangbin

    2009-06-19

    The Floquet spectrum of a class of driven SU(2) systems is shown to display a butterfly pattern with multifractal properties. The level crossing between Floquet states of the same parity or different parities is studied. The results are relevant to studies of fractal statistics, quantum chaos, coherent destruction of tunneling, and the validity of mean-field descriptions of Bose-Einstein condensates.

  1. Solar pond driven distillation and power production system

    SciTech Connect

    Johnson, D.H.; Leboeuf, C.M.; Waddington, D.

    1981-01-01

    A solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. 4 refs.

  2. Anomalous broadening in driven dissipative Rydberg systems

    NASA Astrophysics Data System (ADS)

    Boulier, Thomas; Goldschmidt, Elizabeth; Brown, Roger; Koller, Silvio; Young, Jeremy; Gorshkov, Alexey; Rolston, Steven; Porto, James

    2016-05-01

    Due to their strong, long-range, coherently-controllable interactions, Rydberg atoms have been proposed as a basis for quantum information processing and simulation of many-body physics. Using the coherent dynamics of such highly excited atomic states, however, requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. We report the observation of interaction-induced broadening of the two-photon 5s-18s Rydberg transition in ultra-cold 87Rb atoms, trapped in a 3D optical lattice. The measured linewidth increases by nearly two orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with spontaneously created populations of nearby Rydberg p-states. This dephasing mechanism implies that the timescales available for the coherent addressing of such systems are dramatically shortened, hampering many recent proposals to use Rydberg-dressed atoms for quantum simulation. Now at Physikalisch-Technische Bundesanstalt.

  3. Many-body energy localization transition in periodically driven systems

    SciTech Connect

    D’Alessio, Luca; Polkovnikov, Anatoli

    2013-06-15

    According to the second law of thermodynamics the total entropy of a system is increased during almost any dynamical process. The positivity of the specific heat implies that the entropy increase is associated with heating. This is generally true both at the single particle level, like in the Fermi acceleration mechanism of charged particles reflected by magnetic mirrors, and for complex systems in everyday devices. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. The dynamical localization is known to occur both at classical (Fermi–Ulam model) and at quantum levels (kicked rotor). However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in both classical and quantum periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. -- Highlights: •A dynamical localization transition in periodically driven ergodic systems is found. •This phenomenon is reminiscent of many-body localization in energy space. •Our results are valid for classical and quantum systems in the thermodynamic limit. •At critical frequency, the short time expansion for the evolution operator breaks down. •The transition is associated to a divergent time scale.

  4. Entanglement resonances of driven multi-partite quantum systems

    NASA Astrophysics Data System (ADS)

    Sauer, Simeon; Mintert, Florian; Gneiting, Clemens; Buchleitner, Andreas

    2012-08-01

    We show how to create maximally entangled dressed states of a weakly interacting multi-partite quantum system by suitably tuning an external, periodic driving field. Floquet theory allows us to relate, in a transparent manner, the occurrence of entanglement resonances to avoided crossings in the spectrum of quasi-energies, tantamount of well-defined conditions for the controlled, resonant interaction of particles. We demonstrate the universality of the phenomenon for periodically driven, weakly interacting two-level systems, by considering different interaction mechanisms and driving profiles. In particular, we show that entanglement resonances are a generic feature of driven, multi-partite systems, widely independent of the details of the interaction mechanism. Our results are therefore particularly relevant for experiments on interacting two-level systems, in which the microscopic realization of the inter-particle coupling is unknown.

  5. Group decision support system for customer-driven product design

    NASA Astrophysics Data System (ADS)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  6. Towards a Model-Driven Approach to Information System Evolution

    NASA Astrophysics Data System (ADS)

    Aboulsamh, Mohammed; Davies, Jim

    Models have always played an important role in information systems (IS) design: typically, entity-relationship diagrams or object models have been used to describe data structures and the relationships between them. Model transformation and code generation technologies have given models an even more important role: as part of the source code for the system. This "model-driven" approach, however, has application beyond initial implementation. This chapter shows how subsequent changes to a design, captured as an "evolution model", can be used to generate the data transformations required for the migration of data between different versions of the same system. The intention is to facilitate the adaptation of systems to changing requirements, using model-driven technologies for the rapid development of new versions, by reducing the cost and increasing the reliability of each migration step.

  7. A Model-Driven Development Method for Management Information Systems

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  8. Automated control of hierarchical systems using value-driven methods

    NASA Technical Reports Server (NTRS)

    Pugh, George E.; Burke, Thomas E.

    1990-01-01

    An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.

  9. Spallation Target Design for Accelerator-Driven Systems

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry

    2010-06-01

    A design methodology for the lead-bismuth eutectic (LBE) spallation target has been developed and applied. This methodology includes the target interface with the subcritical assembly and the different engineering aspects of the target design, physics, heat-transfer, hydraulics, structural, radiological, and safety analyses. Several design constrains were defined and utilized for the target design process to satisfy different engineering requirements and to minimize the time and the cost of the design development. Target interface requirements with the subcritical assembly were defined based on performance parameters and material damage issues to enhance the lifetime of the target structure. Different structural materials were considered to define the most promising candidate based on the current database including radiation effects.

  10. Neutron cross-sections above 20 MeV for design and modeling of accelerator driven systems

    NASA Astrophysics Data System (ADS)

    Blomgren, J.

    2007-02-01

    One of the outstanding new developments in the field of partitioning and transmutation (P{&}T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently several million data points can be found in various data libraries. At higher energies, data are scarce or even non-existent. With the development of nuclear techniques based on neutrons at higher energies, nowadays there is a need also for higher-energy nuclear data. To provide alternative to this lack of data, a wide program on neutron-induced data related to ADS for P{&}T is running at the 20-180 MeV neutron beam facility at `The Svedberg Laboratory' (TSL), Uppsala. The programme encompasses studies of elastic scattering, inelastic neutron production, i.e., (n, xn') reactions, light-ion production, fission and production of heavy residues. Recent results are presented and future program of development is outlined.

  11. A Temperature-driven Liquid Xenon Recirculation and Purification System

    NASA Astrophysics Data System (ADS)

    Benitez-Medina, Julio Cesar; Hall, Kendy

    2006-10-01

    We have built a liquid xenon recirculation and purification system in order to address the problem of inconsistencies in our Ba^+ fluorescence spectra. In our previous work our liquid xenon purity system did not include recirculation, and the liquid xenon contained ppm of electronegative impurities. By continuous recirculation through a getter purifier, ppb purity is expected. Our recirculation system is driven thermally, by applying heat to the evaporation region, instead of by the pump method used by others. The advantage of thermal driven recirculation is that there are no pressure surges. Therefore, the liquid is calm as it evaporates and condenses. This gives excellent optical quality for Ba^+ spectroscopy in liquid xenon. The goal of this work is to detect fluorescence from single Ba^+ daughter ions in the Enriched Xenon Observatory (EXO) double beta decay experiment.

  12. Subcritical transmutation of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Sommer, Christopher M.

    2011-07-01

    A series of fuel cycle simulations were performed using CEA's reactor physics code ERANOS 2.0 to analyze the transmutation performance of the Subcritical Advanced Burner Reactor (SABR). SABR is a fusion-fission hybrid reactor that combines the leading sodium cooled fast reactor technology with the leading tokamak plasma technology based on ITER physics. Two general fuel cycles were considered for the SABR system. The first fuel cycle is one in which all of the transuranics from light water reactors are burned in SABR. The second fuel cycle is a minor actinide burning fuel cycle in which all of the minor actinides and some of the plutonium produced in light water reactors are burned in SABR, with the excess plutonium being set aside for starting up fast reactors in the future. The minor actinide burning fuel cycle is being considered in European Scenario Studies. The fuel cycles were evaluated on the basis of TRU/MA transmutation rate, power profile, accumulated radiation damage, and decay heat to the repository. Each of the fuel cycles are compared against each other, and the minor actinide burning fuel cycles are compared against the EFIT transmutation system, and a low conversion ratio fast reactor.

  13. The GUINEVERE experiment: First PNS measurements in a lead moderated sub-critical fast core

    SciTech Connect

    Thyebault, H. E.; Billebaud, A.; Chabod, S.; Lecolley, F. R.; Lecouey, J. L.; Lehaut, G.; Marie, N.; Ban, G.

    2012-07-01

    The GUINEVERE (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) experimental program is dedicated to the study of Accelerator Driven System reactivity monitoring. It was partly carried out within the EUROTRANS integrated project (EURATOM FP6). GUINEVERE consists in coupling the fast core of the VENUS-F reactor (SCK-CEN, Mol (Belgium)), composed of enriched uranium and solid lead, with a T(d,n) neutron source provided by the GENEPI-3C deuteron accelerator. This neutron source can be operated in several modes: pulsed mode, continuous mode and also continuous mode with short beam interruptions (the so called 'beam trips'). In the past, the key questions of the reactivity control and monitoring in a subcritical system were studied in the MUSE experiments (1998-2004). These experiments highlighted the difficulty to determine precisely the reactivity with a single technique. This led to investigate a new strategy which is based on the combination of the relative reactivity monitoring via the core power to beam current relationship with absolute reactivity cross-checks during programmed beam interruptions. Consequently, to determine the reactivity, several dynamical techniques of reactivity determination have to be compared. In addition, their accuracy for absolute reactivity determination must be evaluated using a reference reactivity determination technique (from a critical state: rod drop and MSM measurements). The first sub-critical configuration which was studied was around k{sub eff} = 0.96 (SCI). Pulsed Neutron Source experiments (PNS) were carried out. The neutron population decrease was measured using fission chambers in different locations inside the core and the reflector. Neutron population time decrease was analyzed using fitting techniques and the Area Method Results obtained for the SCI reactivity will be shown, discussed and compared to the reference value given by the MSM method. (authors)

  14. Theory of many-body localization in periodically driven systems

    NASA Astrophysics Data System (ADS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-09-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau-Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  15. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  16. Current Driven Magnetic Damping in Dipolar-Coupled Spin System

    NASA Astrophysics Data System (ADS)

    Lee, Sung Chul; Pi, Ung Hwan; Kim, Keewon; Kim, Kwang Seok; Shin, Jaikwang; -in Chung, U.

    2012-07-01

    Magnetic damping of the spin, the decay rate from the initial spin state to the final state, can be controlled by the spin transfer torque. Such an active control of damping has given birth to novel phenomena like the current-driven magnetization reversal and the steady spin precession. The spintronic devices based on such phenomena generally consist of two separate spin layers, i.e., free and pinned layers. Here we report that the dipolar coupling between the two layers, which has been considered to give only marginal effects on the current driven spin dynamics, actually has a serious impact on it. The damping of the coupled spin system was greatly enhanced at a specific field, which could not be understood if the spin dynamics in each layer was considered separately. Our results give a way to control the magnetic damping of the dipolar coupled spin system through the external magnetic field.

  17. Ontology Driven Development and Science Information System Interoperability

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Crichton, D. J.; Joyner, R. S.; Rye, E. D.; Pds4 Data Standards Team Leads

    2010-12-01

    A domain ontology can be used to drive the development of a science information system and enable system interoperability and science data correlation. A domain ontology defines the data structures, the metadata for the science interpretation of the data, and the metadata that describes the context within which the data was captured, processed, and archived. In addition the ontology defines the organization of the data and their relationships. These definitions can be used to configure a registry-base information system from generic system components, generate schemas for data labeling and validation, and write standards documents for a variety of audiences. The resulting information system catalogs and tracks ingested data and allows the periodic harvesting of the registered metadata for sophisticated web-based search applications. An independent ontology and the data driven paradigm also allow the evolution of the domain’s information model independent from the system’s infrastructure. The Planetary Data System (PDS) is executing a plan to move the PDS to a fully online, federated system. This plan addresses new demands on the system including increasing data volume and complexity and number of missions. This poster provides an overview of the planetary science ontology and the data driven paradigm being used to development the PDS 2010 information system.

  18. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  19. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks. PMID:25166146

  20. Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere

    SciTech Connect

    John D. Bess; Jesson Hutchinson

    2009-09-01

    Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the

  1. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness. PMID:26277007

  2. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736

  3. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  4. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  5. ? filtering for stochastic systems driven by Poisson processes

    NASA Astrophysics Data System (ADS)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  6. Floquet approach to bichromatically driven cavity-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Malz, Daniel; Nunnenkamp, Andreas

    2016-08-01

    We develop a Floquet approach to solve time-periodic quantum Langevin equations in the steady state. We show that two-time correlation functions of system operators can be expanded in a Fourier series and that a generalized Wiener-Khinchin theorem relates the Fourier transform of their zeroth Fourier component to the measured spectrum. We apply our framework to bichromatically driven cavity optomechanical systems, a setting in which mechanical oscillators have recently been prepared in quantum-squeezed states. Our method provides an intuitive way to calculate the power spectral densities for time-periodic quantum Langevin equations in arbitrary rotating frames.

  7. Pulse neutron subcritical K/sub EFF/ measurements on water flooded arrays of fuel rods

    SciTech Connect

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.

    1980-07-01

    The pulsed neutron source technique has been utilized at the Pacific Northwest Laboratory for some twenty years for measurement of subcritical reactivities of a variety of fuel systems. One area of application has included measurements of subcritical reactivities of water flooded arrays of fuel rods. This report summarizes these measurements. The theory behind the measurement process is reviewed and the instrumentation of the measurement system discussed. Also, four experiment programs are described in detail, illustrating system use and flexibility. Some changes are suggested for system improvements to speed up data collection and data reduction, and some possible areas of future application of the method are described.

  8. Traffic and related self-driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  9. Subcritical Transition and Spiral Turbulence in Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Burin, M. J.; Czarnocki, C. J.; Dapron, T.; McDonald, K. R.

    2010-11-01

    We present measurements characterizing the transition to turbulence in Taylor-Couette flow for a fully cyclonic regime, i.e. with only the outer cylinder rotating. Under this arrangement the flow is linearly-stable and the shear-driven transition to turbulence is understood to be both `catastrophic' and spatiotemporally intermittent. En route to a fully turbulent state, we observe a regime featuring co-extant laminar/turbulent domains known as spiral turbulence. To better understand this regime, and the transition in general, we have obtained velocimetry data (via LDV) and angular momentum transport estimates (via torque), in addition to flow visualization. These observations are discussed with respect to similar transition phenomena in planar and counter-rotating Couette flows. By utilizing three different inner cylinder radii within the apparatus, we also demonstrate the sensitivity of the subcritical transition scenario to annular gap width.

  10. Stroboscopic prethermalization in weakly interacting periodically driven systems.

    PubMed

    Canovi, Elena; Kollar, Marcus; Eckstein, Martin

    2016-01-01

    Time-periodic driving provides a promising route toward engineering nontrivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable, noninteracting systems can synchronize with the driving into a nontrivial periodic motion, generic nonintegrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasiperiodic time evolution over many periods can also emerge in weakly interacting systems, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state. This behavior is the analog of prethermalization in quenched systems. The synchronized state can be described using a macroscopic number of approximate constants of motion. We corroborate these findings with numerical simulations for the driven Hubbard model.

  11. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems.

    PubMed

    Demchak, Barry; Krüger, Ingolf

    2012-07-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime, thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime. PMID:25383258

  12. Data-Driven Assistance Functions for Industrial Automation Systems

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Niggemann, Oliver

    2015-11-01

    The increasing amount of data in industrial automation systems overburdens the user in process control and diagnosis tasks. One possibility to cope with these challenges consists of using smart assistance systems that automatically monitor and optimize processes. This article deals with aspects of data-driven assistance systems such as assistance functions, process models and data acquisition. The paper describes novel approaches for self-diagnosis and self-optimization, and shows how these assistance functions can be integrated in different industrial environments. The considered assistance functions are based on process models that are automatically learned from process data. Fault detection and isolation is based on the comparison of observations of the real system with predictions obtained by application of the process models. The process models are further employed for energy efficiency optimization of industrial processes. Experimental results are presented for fault detection and energy efficiency optimization of a drive system.

  13. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems

    PubMed Central

    Demchak, Barry; Krüger, Ingolf

    2014-01-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime, thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime. PMID:25383258

  14. Advances in Optimizing Weather Driven Electric Power Systems.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  15. A universal piezo-driven ultrasonic cell microinjection system.

    PubMed

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  16. Efficient simulation of stochastically-driven quantum systems

    NASA Astrophysics Data System (ADS)

    Sarovar, Mohan; Grace, Matthew

    2013-03-01

    The simulation of noisy quantum systems is critical for accurate modeling of many experiments, including those implementing quantum information tasks. The expansion of a stochastic equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically-driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Forster resonance transfer in Rydberg atoms with non-perturbative position fluctuations. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Explicit solutions of normal form of driven oscillatory systems

    NASA Astrophysics Data System (ADS)

    Tsarouhas, George E.; Ross, John

    1987-12-01

    We consider an oscillatory dissipative system driven by external sinusoidal perturbations of given amplitude Q and frequency ω. The kinetic equations are transformed to normal form and solved for small Q, near a Hopf bifurcation to oscillations in the autonomous system, for ratios ωn to the autonomous frequency of irrational so that the response of the system is quasiperiodic. The system is assumed to have either two variables or is adequately described by two variables near the bifurcation, and we obtain explicit solutions for this general case. The equations show interesting effects of external perturbations on limit cycles, both stable and unstable. Next we treat a specific model (Brusselator) and show by comparison with results of numerical integration that the theory predicts well the shape of the perturbed limit cycle, its variation with changes in constraints and parameters, and the point of transition from quasiperiodic to periodic response.

  18. Integrative systems biology for data-driven knowledge discovery.

    PubMed

    Greene, Casey S; Troyanskaya, Olga G

    2010-09-01

    Integrative systems biology is an approach that brings together diverse high-throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost-effective manner. By using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of as yet unknown components of a system of interest and how its malfunction leads to disease.

  19. Integrative Systems Biology for Data Driven Knowledge Discovery

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2015-01-01

    Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756

  20. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477

  1. Critical quasienergy states in driven many-body systems

    NASA Astrophysics Data System (ADS)

    Bastidas, V. M.; Engelhardt, G.; Pérez-Fernández, P.; Vogl, M.; Brandes, T.

    2014-12-01

    We discuss singularities in the spectrum of driven many-body spin systems. In contrast to undriven models, the driving allows us to control the geometry of the quasienergy landscape. As a consequence, one can engineer singularities in the density of quasienergy states by tuning an external control. We show that the density of levels exhibits logarithmic divergences at the saddle points, while jumps are due to local minima of the quasienergy landscape. We discuss the characteristic signatures of these divergences in observables such as the magnetization, which should be measurable with current technology.

  2. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  3. Data driven uncertainty evaluation for complex engineered system design

    NASA Astrophysics Data System (ADS)

    Liu, Boyuan; Huang, Shuangxi; Fan, Wenhui; Xiao, Tianyuan; Humann, James; Lai, Yuyang; Jin, Yan

    2016-05-01

    Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail. The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carried out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.

  4. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  5. Decoherence and Relaxation in Driven Circuit QED Systems

    SciTech Connect

    Andre, Stephan; Brosco, Valentina; Schoen, Gerd; Fedorov, Arkady; Shnirman, Alexander

    2008-11-07

    Recent experiments on quantum state engineering with superconducting circuits realized concepts originally introduced in the field of quantum optics. Motivated by one such experiment we investigate a Josephson qubit coupled to a slow LC oscillator with frequency much lower than the qubit's energy splitting. The qubit is ac-driven to perform Rabi oscillations, and the Rabi frequency is tuned to resonance with the oscillator. The properties of this driven circuit QED system depend strongly on relaxation and decoherence effects in the qubit. We investigate both one-photon and two-photon qubit-oscillator coupling, the latter being dominant at the symmetry point of the qubit. When the qubit driving frequency is blue detuned, we find that the system exhibits lasing behavior; for red detuning the qubit cools the oscillator. Similar behavior is expected in an accessible range of parameters for a Josephson qubit coupled to a nano-mechanical oscillator. In a different parameter regime, furthering the analogies between superconducting and quantum optical systems, we investigate Sisyphus damping, which is the key element of the Sisyphus cooling protocol, as well as its exact opposite, Sisyphus amplification.

  6. Orbital storage and supply of subcritical liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  7. Dynamics of parabolic problems with memory. Subcritical and critical nonlinearities

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun

    2016-08-01

    In this paper, we study the long-time behavior of the solutions of non-autonomous parabolic equations with memory in cases when the nonlinear term satisfies subcritical and critical growth conditions. In order to do this, we show that the family of processes associated to original systems with heat source f(x, t) being translation bounded in Lloc 2 ( R ; L 2 ( Ω ) ) is dissipative in higher energy space M α , 0 < α ≤ 1, and possesses a compact uniform attractor in M 0 .

  8. Plug nozzles: The ultimate customer driven propulsion system

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  9. Design of Stirling-driven vapor-compression system

    SciTech Connect

    Kagawa, N.

    1998-07-01

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling and industrial usage because of their potential to save energy. Especially, there are many environmental merits of Stirling-driven vapor-compression (SDVC) systems. This paper introduces a design method for the SDVC based on reliable mathematical methods for Stirling and Rankine cycles with reliable thermophysical information for refrigerants. The model treats a kinematic Stirling engine and a scroll compressor coupled by a belt. Some experimental coefficients are used to formulate the SDVC items. The obtained results show the performance behavior of the SDVC in detail. The measured performance of the actual system agrees with the calculated results. Furthermore, the calculated results indicate attractive SDVC performance using alternative refrigerants.

  10. Fluctuation theorem in driven nonthermal systems with quenched disorder

    SciTech Connect

    Reichhardt, Charles; Reichhardt, C J; Drocco, J A

    2009-01-01

    We demonstrate that the fluctuation theorem of Evans and Searles can be used to characterize the class of dynamics that arises in nonthermal systems of collectively interacting particles driven over random quenched disorder. By observing the frequency of entropy-destroying trajectories, we show that there are specific dynamical regimes near depinning in which this theorem holds. Hence the fluctuation theorem can be used to characterize a significantly wider class of non-equilibrium systems than previously considered. We discuss how the fluctuation theorem could be tested in specific systems where noisy dynamics appear at the transition from a pinned to a moving phase such as in vortices in type-II superconductors, magnetic domain walls, and dislocation dynamics.

  11. Modeling pulse driven antenna systems with finite differences

    SciTech Connect

    Barth, M.; Pennock, S.; Ziolkowski, R.; McLeod, R.

    1990-03-01

    We have developed a capability of modeling the performance of general, pulse driven, antenna systems. Our approach is to use TSAR, a three dimensional finite difference time domain (FDTD) code, to model the antenna structure and the surrounding near field environment. We then use a far field projection algorithm to obtain its far field response. Specifically, this algorithm utilizes the tangential electric and magnetic fields at a specified surface of the TSAR FDTD computational volume and calculates the resulting fields far from the equivalent magnetic and electric sources. This approach will be illustrated by considering the TEB antenna system. The system is modeled with the code and the results are compared with anechoic chamber data. 10 figs., 2 tabs.

  12. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum).

    PubMed

    Khuwijitjaru, Pramote; Sayputikasikorn, Nucha; Samuhasaneetoo, Suched; Penroj, Parinda; Siriwongwilaichat, Prasong; Adachi, Shuji

    2012-01-01

    Cinnamon bark (Cinnamomum zeylanicum) powder was treated with subcritical water at 150 and 200°C in a semi-continuous system at a constant flow rate (3 mL/min) and pressure (6 MPa). Major flavoring compounds, i.e., cinnamaldehyde, cinnamic acid, cinnamyl alcohol and coumarin, were extracted at lower recoveries than the extraction using methanol, suggesting that degradation of these components might occur during the subcritical water treatment. Caffeic, ferulic, p-coumaric, protocatechuic and vanillic acids were identified from the subcritical water treatment. Extraction using subcritical water was more effective to obtain these acids than methanol (50% v/v) in both number of components and recovery, especially at 200°C. Subcritical water treatment at 200°C also resulted in a higher total phenolic content and DPPH radical scavenging activity than the methanol extraction. The DPPH radical scavenging activity and total phenolic content linearly correlated but the results suggested that the extraction at 200°C might result in other products that possessed a free radical scavenging activity other than the phenolic compounds.

  13. Inherent Safety of Fuels for Accelerator-Driven Systems

    SciTech Connect

    Eriksson, M.; Wallenius, J.; Jolkkonen, M.; Cahalan, J.E

    2005-09-15

    Transient safety characteristics of accelerator-driven systems using advanced minor actinide fuels have been investigated. Results for a molybdenum-based Ceramic-Metal (CerMet) fuel, a magnesia-based Ceramic-Ceramic fuel, and a zirconium-nitride-based fuel are reported. The focus is on the inherent safety aspects of core design. Accident analyses are carried out for the response to unprotected loss-of-flow and accelerator beam-overpower transients and coolant voiding scenarios. An attempt is made to establish basic design limits for the fuel and cladding. Maximum temperatures during transients are determined and compared with design limits. Reactivity effects associated with coolant void, fuel and structural expansion, and cladding relocation are investigated. Design studies encompass variations in lattice pitch and pin diameter. Critical mass studies are performed. The studies indicate favorable inherent safety features of the CerMet fuel. Major consideration is given to the potential threat of coolant voiding in accelerator-driven design proposals. Results for a transient test case study of a postulated steam generator tube rupture event leading to extensive coolant voiding are presented. The study underlines the importance of having a low coolant void reactivity value in a lead-bismuth system despite the high boiling temperature of the coolant. It was found that the power rise following a voiding transient increases dramatically near the critical state. The studies suggest that a reactivity margin of a few dollars in the voided state is sufficient to permit significant reactivity insertions.

  14. Assessment of americium and curium transmutation in magnesia based targets in different spectral zones of an experimental accelerator driven system

    NASA Astrophysics Data System (ADS)

    Haeck, W.; Malambu, E.; Sobolev, V. P.; Aït Abderrahim, H.

    2006-06-01

    The potential to incinerate minor actinides (MA) in a sub-critical accelerator-driven system (ADS) is a subject of study in several countries where nuclear power plants are present. The performance of the MYRRHA experimental ADS, as to the transmutation of Am and Cm in the inert matrix fuel (IMF) samples consisting of 40 vol.% (Cm0.1Am0.5Pu0.4)O1.88 fuel and 60 vol.% MgO matrix with a density of 6.077 g cm-3 in three various spectrum regions, were analysed at the belgian nuclear research centre SCK · CEN. The irradiation period of 810 effective full power days (EFPD) followed by a storage period of 2 years was considered. The ALEPH code system currently under development at SCK · CEN was used to carry out this study. The total amount of MA is shown to decrease in all three considered cases. For Am, the decrease is the largest in the reflector (89% decrease) but at the cost of a net Cm production (92% increase). In the two other positions (inside the core region), 20-30% of Am has disappeared but with a lower production of Cm (between 7% and 11%). In the reflector, a significant build-up of long-lived 245Cm, 246Cm, 247Cm and 248Cm was also observed while the production of these isotopes is 10-1000 times smaller in the core. The reduction of the Pu content is also the highest in the reflector position (41%). In the other positions the incinerated amount of Pu is much smaller: 1-5%.

  15. Distributed monitoring system for electric-motor-driven compressors

    SciTech Connect

    Castleberry, K.N.

    1996-01-01

    Personnel in the Instrumentation and Controls Division at the Oak Ridge National Laboratory, in association with the United States Enrichment corporation (USEC), the Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis (CSA) for several years. In that time CSA has proven to not only be useful for manually applied periodic monitoring of electrically driven equipment but it has also been demonstrated to be well suited for dedicated monitoring systems in industrial settings. Recent work has resulted in the development and installation of a system that can monitor up to 640 motor and compressor stages for various aerodynamic conditions in the gas compressors and electrical problems in the drive motors. This report describes a demonstration of that technology installed on 80 stages at each of the two USEC uranium enrichment plants.

  16. An AC drive system for a battery driven moped

    SciTech Connect

    Nandi, S.; Saha, S.; Sharon, M.; Sundersingh, V.P.

    1995-12-31

    A petrol driven moped is converted to an electric one by replacing the petrol engine by a three phase 1.5 HR, AC squirrel cage induction motor drive system. The motor voltage rating selected is 200 V to keep the DC boost voltage level to a reasonable value.f the power source used is a high energy density, 24 V, 110 Ah, Ni-Zn battery. A modified indirect current controlled step-up chopper as well as a standard push-pull DC-DC boost converter is studied for the boost scheme. A simple three phase quasi-square wave inverter is designed along with suitable protection for driving the motor. Successful trial test of the system has been conducted at the laboratory.

  17. Classification of topological phases in periodically driven interacting systems

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2016-05-01

    We consider topological phases in periodically driven (Floquet) systems exhibiting many-body localization, protected by a symmetry G . We argue for a general correspondence between such phases and topological phases of undriven systems protected by symmetry Z ⋊G where the additional Z accounts for the discrete time-translation symmetry. Thus, for example, the bosonic phases in d spatial dimensions without intrinsic topological order [symmetry-protected topological (SPT) phases] are classified by the cohomology group Hd +1[Z ⋊G ,U (1 ) ] . For unitary symmetries, we interpret the additional resulting Floquet phases in terms of the lower-dimensional SPT phases that are pumped to the boundary during one time step. These results also imply the existence of novel symmetry-enriched topological (SET) orders protected solely by the periodicity of the drive.

  18. A solar pond driven distillation and power production system

    NASA Astrophysics Data System (ADS)

    Johnson, D. H.; Leboeuf, C. M.; Waddington, D.

    In this paper a solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodynamic analysis of the energy and mass balances of the system has been performed and a performance model of the system has been developed. This has been used to size the system for the application of desalting saline tributaries of the Colorado River.

  19. REMOVAL OF ORGANIC POLLUTANTS FROM SUBCRITICAL WATER WITH ACTIVATED CARBON

    SciTech Connect

    Steven B. Hawthorne; Arnaud J. Lagadec

    1999-08-01

    The Energy & Environmental Research Center (EERC) has demonstrated that controlling the temperature (and to a lesser extent, the pressure) of water can dramatically change its ability to extract organics and inorganics from matrices ranging from soils and sediments to waste sludges and coal. The dielectric constant of water can be changed from about 80 (a very polar solvent) to <5 (similar to a nonpolar organic solvent) by controlling the temperature (from ambient to about 400 C) and pressure (from about 5 to 350 bar). The EERC has shown that hazardous organic pollutants such as pesticides, PACS (polycyclic aromatic hydrocarbons), and PCBs (polychlorinated biphenyls) can be completely removed from soils, sludges, and sediments at temperatures (250 C) and pressures (<50 atm) that are much milder than typically used for supercritical water processes (temperature >374 C, pressure >221 atm). In addition, the process has been demonstrated to be particularly effective for samples containing very high levels of contaminants (e.g., part per thousand). Current projects include demonstrating the subcritical water remediation process at the pilot scale using an 8-liter system constructed under separate funding during 1997. To date, subcritical water has been shown to be an effective extraction fluid for removing a variety of organic pollutants from soils and sludges contaminated with fossil fuel products and waste products, including PACS from soil (e.g., town gas sites), refining catalysts, and petroleum tank bottom sludges; PCBs from soil and sediments; toxic gasoline components (e.g., benzene) from soil and waste sludge; and phenols from petroleum refinery sludges. The obvious need to clean the wastewater from subcritical water processes led to preliminary experiments with activated carbon placed in line after the extractor. Initial experiments were performed before and after cooling the extractant water (e.g., with water at 200 C and with water cooled to 25 C

  20. Development and analysis of a metal-fueled accelerator-driven burner

    SciTech Connect

    Lypsch, F.; Hill, R.N.

    1994-08-01

    The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton beam/tungsten neutron source model is surrounded by a subcritical blanket using metallic fuel and sodium as coolant. The consequences of typical accident transients, namely unprotected transient overpower (TOP), loss of heat sink (LOHS), and loss of flow (LOP) were calculated for the hybrid system and compared to corresponding results for a metal-fueled fast reactor. Results indicate that the subcritical system exhibits superior performance for TOP (reactivity-induced) transits; however, only in the critical system are reactivity feedbacks able to cause passive shutdown in the LOHS ad LOP events. Therefore, for a full spectrum of accident initiators considered, the overall safety behavior of accelerator-driven metal-fueled systems can neither be concluded to be worse nor to be better than advanced reactor designs which rely on passive safety features.

  1. Solar pond-driven distillation and power production system

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Leboeuf, C. M.; Waddington, D.

    1981-12-01

    A solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodynamic analysis of the energy and mass balances of the system was performed and a performance model of the system is developed. This model is used to compute the requirements for desalting several saline tributaries of the Colorado River.

  2. Inelastic collapse in one-dimensional driven systems under gravity.

    PubMed

    Wakou, Jun'ichi; Kitagishi, Hiroyuki; Sakaue, Takahiro; Nakanishi, Hiizu

    2013-04-01

    We study inelastic collapse in a one-dimensional N-particle system when the system is driven from below under gravity. We investigate the hard-sphere limit of inelastic soft-sphere systems by numerical simulations to find how the collision rate per particle n(coll) increases as a function of the elastic constant of the sphere k when the restitution coefficient e is kept constant. For systems with large enough N>/~20, we find three regimes in e depending on the behavior of n(coll) in the hard-sphere limit: (i) an uncollapsing regime for 1≥e>e(c1), where n(coll) converges to a finite value, (ii) a logarithmically collapsing regime for e(c1)>e>e(c2), where n(coll) diverges as n(coll)~logk, and (iii) a power-law collapsing regime for e(c2)>e>0, where n(coll) diverges as n(coll)~k(α) with an exponent α that depends on N. The power-law collapsing regime shrinks as N decreases and seems not to exist for the system with N=3, while, for large N, the size of the uncollapsing and the logarithmically collapsing regime decreases as e(c1)=/~1-2.6/N and e(c2)=/~1-3.0/N. We demonstrate that this difference between large and small systems exists already in the inelastic collapse without external drive and gravity.

  3. Solar pond-driven distillation and power production system

    SciTech Connect

    Johnson, D.H.; Leboeuf, C.M.; Waddington, D.

    1981-12-01

    A solar pond-driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodyanamic analysis of the energy and mass balances of the system has been performed and a performance model of the system has been developed. This model was used to compute the requirements for desalting several saline tributaries of the Colorado River.

  4. Subcritical string and large N QCD

    SciTech Connect

    Thorn, Charles B.

    2008-10-15

    We pursue the possibility of using subcritical string theory in 4 spacetime dimensions to establish a string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the open string dynamics given by this model will determine the appropriate subcritical closed string theory, a tree level background of which should describe the sum of planar multiloop open string diagrams. We examine the one-loop open string diagram, which contains information about the closed string spectrum at weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions. We also analyze the field theory limit of the one-loop open string diagram and recover the correct running coupling behavior of the limiting gauge theory.

  5. The Nonlinear Dynamics of Time Dependent Subcritical Baroclinic Currents

    NASA Astrophysics Data System (ADS)

    Pedlosky, J.; Flierl, G. R.

    2006-12-01

    vacillations and turbulence. When the most unstable wave is not the longest wave in the system we have observed a cascade up scale to longer waves. Indeed, this classically subcritical flow shows most of the qualitative character of a strongly supercritical flow. This supports previous suggestions of the important role of background time dependence in maintaining the atmospheric and oceanic synoptic eddy field.

  6. Subcritical equilibria in Taylor-Couette flow.

    PubMed

    Deguchi, Kengo; Meseguer, Alvaro; Mellibovsky, Fernando

    2014-05-01

    Nonlinear equilibrium states characterized by strongly localized vortex pairs are calculated in the linearly stable parameter region of counterrotating Taylor-Couette flow. These subcritical states are rotating waves whose region of existence is consistent with the critical threshold for relaminarization observed in experiments. For sufficiently rapid outer cylinder rotation the solutions extend beyond the static inner cylinder case to corotation, thus exceeding, for the first time, the boundary defined by the inviscid Rayleigh's stability criterion.

  7. Statistics of the dissipated energy in driven diffusive systems.

    PubMed

    Lasanta, A; Hurtado, Pablo I; Prados, A

    2016-03-01

    Understanding the physics of non-equilibrium systems remains one of the major open questions in statistical physics. This problem can be partially handled by investigating macroscopic fluctuations of key magnitudes that characterise the non-equilibrium behaviour of the system of interest; their statistics, associated structures and microscopic origin. During the last years, some new general and powerful methods have appeared to delve into fluctuating behaviour that have drastically changed the way to address this problem in the realm of diffusive systems: macroscopic fluctuation theory (MFT) and a set of advanced computational techniques that make it possible to measure the probability of rare events. Notwithstanding, a satisfactory theory is still lacking in a particular case of intrinsically non-equilibrium systems, namely those in which energy is not conserved but dissipated continuously in the bulk of the system (e.g. granular media). In this work, we put forward the dissipated energy as a relevant quantity in this case and analyse in a pedagogical way its fluctuations, by making use of a suitable generalisation of macroscopic fluctuation theory to driven dissipative media.

  8. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  9. Linear Response Theory for Thermally Driven Quantum Open Systems

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Ogata, Y.; Pillet, C.-A.

    2006-05-01

    This note is a continuation of our recent paper [V. Jakšić Y. Ogata, and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. in press.] where we have proven the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes in thermally driven quantum open systems. In this note we extend the derivation of the Green-Kubo formula to heat and charge fluxes and discuss some other generalizations of the model and results of [V. Jakšić Y. Ogata and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. in press.].

  10. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  11. Kibble-Zurek scaling in periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Russomanno, Angelo; Dalla Torre, Emanuele G.

    2016-08-01

    We study the slow crossing of non-equilibrium quantum phase transitions in periodically driven systems. We explicitly consider a spin chain with a uniform time-dependent magnetic field and focus on the Floquet state that is adiabatically connected to the ground state of the static model. We find that this Floquet ground state undergoes a series of quantum phase transitions characterized by a non-trivial topology. To dynamically probe these transitions, we propose to start with a large driving frequency and slowly decrease it as a function of time. Combining analytical and numerical methods, we uncover a Kibble-Zurek scaling that persists in the presence of moderate interactions. This scaling can be used to experimentally demonstrate non-equilibrium transitions that cannot be otherwise observed.

  12. Development of an implantable motor-driven assist pump system.

    PubMed

    Mitamura, Y; Okamoto, E; Hirano, A; Mikami, T

    1990-02-01

    A motor-driven artificial pump and its transcutaneous energy transmission (TET) system have been developed. The artificial pump consists of a high-speed dc brushless motor driving a ball screw and magnetic coupling mechanism between the blood pump and ball screw. The ball screw transfers high-speed rotary motion into low-speed rectilinear motion by a single component. Magnetic coupling enables active blood filling without applying an excess negative pressure to the pump. The transcutaneous transformer is formed from a pair of concave/convex ferrite cores. This design minimizes lateral motion of the external core. Information on motor voltage is transmitted through the skin by infrared pulses. The motor voltage is regulated by controlling the duty ratio of the square pulse supplied to the primary coil. Pump flow of 5.6 l/min was obtained with a mean outlet pressure of 100 mmHg at a drive rate of 100 bpm under preload of 15 mmHg. The performance of synchronous pumping has been very satisfactory. Continuous pumping was maintained by the backup battery in the case of interruption of TET. 24 W were transmitted by TET system with 78 percent of efficiency. Temperature rise of the internal core was 0.2 C. The developed system is promising as an implantable assist pump system.

  13. A Humidity-Driven Prediction System for Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  14. Archetype Model-Driven Development Framework for EHR Web System

    PubMed Central

    Kimura, Eizen; Ishihara, Ken

    2013-01-01

    Objectives This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. Methods The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. Results We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. Conclusions We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems. PMID:24523991

  15. Development of an implantable motor-driven assist pump system.

    PubMed

    Mitamura, Y; Okamoto, E; Hirano, A; Mikami, T

    1990-02-01

    A motor-driven artificial pump and its transcutaneous energy transmission (TET) system have been developed. The artificial pump consists of a high-speed dc brushless motor driving a ball screw and magnetic coupling mechanism between the blood pump and ball screw. The ball screw transfers high-speed rotary motion into low-speed rectilinear motion by a single component. Magnetic coupling enables active blood filling without applying an excess negative pressure to the pump. The transcutaneous transformer is formed from a pair of concave/convex ferrite cores. This design minimizes lateral motion of the external core. Information on motor voltage is transmitted through the skin by infrared pulses. The motor voltage is regulated by controlling the duty ratio of the square pulse supplied to the primary coil. Pump flow of 5.6 l/min was obtained with a mean outlet pressure of 100 mmHg at a drive rate of 100 bpm under preload of 15 mmHg. The performance of synchronous pumping has been very satisfactory. Continuous pumping was maintained by the backup battery in the case of interruption of TET. 24 W were transmitted by TET system with 78 percent of efficiency. Temperature rise of the internal core was 0.2 C. The developed system is promising as an implantable assist pump system. PMID:2312139

  16. Critical quasienergy states in driven many-body systems

    NASA Astrophysics Data System (ADS)

    Bastidas Valencia, Victor Manuel; Engelhardt, Georg; Perez-Fernandez, Pedro; Vogl, Malte; Brandes, Tobias

    2015-03-01

    A quantum phase transition (QPT) is characterized by non-analyticities of ground-state properties at the critical points. Recently it has been shown that quantum criticality emerges also in excited states of the system, which is referred to as an excited-state quantum phase transition (ESQPT). This kind of quantum criticality is intimately related to a level clustering at critical energies, which results in a logarithmic singularity in the density of states. Most of the previous studies on quantum criticality in excited states have been focused on time independent systems. Here we study spectral singularities that appear in periodically-driven many-body systems and show how the external control allows one to engineer geometrical features of the quasienergy landscape. In particular, we study singularities in the quasienergy spectrum of a fully-connected network consisting of two-level systems with time-dependent interactions. We discuss the characteristic signatures of these singularities in observables like the magnetization, which should be measurable with current technology. The authors gratefully acknowledge financial support by the DFG via grants BRA 1528/7, BRA 1528/8, SFB 910 (V.M.B., T.B.), the Spanish Ministerio de Ciencia e Innovacion (Grants No. FIS2011-28738-C02-01) and Junta de Andalucia (Grants No. FQM160).

  17. Neutron noise measurements at the Delphi subcritical assembly

    SciTech Connect

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-07-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and {sup 252}Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-{alpha}), the autocorrelation (ACF, Rossi-{alpha}) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the {alpha} value fitted is higher when the detector is close to the boundary of the core or to the {sup 252}Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  18. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    PubMed

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-01

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min. PMID:16530210

  19. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    PubMed Central

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  20. Climate-driven population divergence in sex-determining systems.

    PubMed

    Pen, Ido; Uller, Tobias; Feldmeyer, Barbara; Harts, Anna; While, Geoffrey M; Wapstra, Erik

    2010-11-18

    Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse. In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development. However, the evolutionary causes of this diversity remain unknown. Here we show that live-bearing lizards at different climatic extremes of the species' distribution differ in their sex-determining mechanisms, with temperature-dependent sex determination in lowlands and genotypic sex determination in highlands. A theoretical model parameterized with field data accurately predicts this divergence in sex-determining systems and the consequence thereof for variation in cohort sex ratios among years. Furthermore, we show that divergent natural selection on sex determination across altitudes is caused by climatic effects on lizard life history and variation in the magnitude of between-year temperature fluctuations. Our results establish an adaptive explanation for intra-specific divergence in sex-determining systems driven by phenotypic plasticity and ecological selection, thereby providing a unifying framework for integrating the developmental, ecological and evolutionary basis for variation in vertebrate sex determination.

  1. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-06-15

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  2. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations.

  3. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  4. Fiber-coupled laser-driven flyer plates system.

    PubMed

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  5. Fiber-coupled laser-driven flyer plates system

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  6. OPIC: Ontology-driven Patient Information Capturing system for epilepsy.

    PubMed

    Sahoo, Satya S; Zhao, Meng; Luo, Lingyun; Bozorgi, Alireza; Gupta, Deepak; Lhatoo, Samden D; Zhang, Guo-Qiang

    2012-01-01

    The widespread use of paper or document-based forms for capturing patient information in various clinical settings, for example in epilepsy centers, is a critical barrier for large-scale, multi-center research studies that require interoperable, consistent, and error-free data collection. This challenge can be addressed by a web-accessible and flexible patient data capture system that is supported by a common terminological system to facilitate data re-usability, sharing, and integration. We present OPIC, an Ontology-driven Patient Information Capture (OPIC) system that uses a domain-specific epilepsy and seizure ontology (EpSO) to (1) support structured entry of multi-modal epilepsy data, (2) proactively ensure quality of data through use of ontology terms in drop-down menus, and (3) identify and index clinically relevant ontology terms in free-text fields to improve accuracy of subsequent analytical queries (e.g. cohort identification). EpSO, modeled using the Web Ontology Language (OWL), conforms to the recommendations of the International League Against Epilepsy (ILAE) classification and terminological commission. OPIC has been developed using agile software engineering methodology for rapid development cycles in close collaboration with domain expert and end users. We report the result from the initial deployment of OPIC at the University Hospitals Case Medical Center (UH CMC) epilepsy monitoring unit (EMU) as part of the NIH-funded project on Sudden Unexpected Death in Epilepsy (SUDEP). Preliminary user evaluation shows that OPIC has achieved its design objectives to be an intuitive patient information capturing system that also reduces the potential for data entry errors and variability in use of epilepsy terms. PMID:23304354

  7. OPIC: Ontology-driven Patient Information Capturing system for epilepsy.

    PubMed

    Sahoo, Satya S; Zhao, Meng; Luo, Lingyun; Bozorgi, Alireza; Gupta, Deepak; Lhatoo, Samden D; Zhang, Guo-Qiang

    2012-01-01

    The widespread use of paper or document-based forms for capturing patient information in various clinical settings, for example in epilepsy centers, is a critical barrier for large-scale, multi-center research studies that require interoperable, consistent, and error-free data collection. This challenge can be addressed by a web-accessible and flexible patient data capture system that is supported by a common terminological system to facilitate data re-usability, sharing, and integration. We present OPIC, an Ontology-driven Patient Information Capture (OPIC) system that uses a domain-specific epilepsy and seizure ontology (EpSO) to (1) support structured entry of multi-modal epilepsy data, (2) proactively ensure quality of data through use of ontology terms in drop-down menus, and (3) identify and index clinically relevant ontology terms in free-text fields to improve accuracy of subsequent analytical queries (e.g. cohort identification). EpSO, modeled using the Web Ontology Language (OWL), conforms to the recommendations of the International League Against Epilepsy (ILAE) classification and terminological commission. OPIC has been developed using agile software engineering methodology for rapid development cycles in close collaboration with domain expert and end users. We report the result from the initial deployment of OPIC at the University Hospitals Case Medical Center (UH CMC) epilepsy monitoring unit (EMU) as part of the NIH-funded project on Sudden Unexpected Death in Epilepsy (SUDEP). Preliminary user evaluation shows that OPIC has achieved its design objectives to be an intuitive patient information capturing system that also reduces the potential for data entry errors and variability in use of epilepsy terms.

  8. Drive system for engine-driven light vehicles

    SciTech Connect

    Matsutoh, T.; Wakatsuki, G.; Kitamura, Y.; Ishihara, T.

    1986-08-05

    A drive system is described for use in a light vehicle including an engine having a crankshaft and a wheel, the drive system including a friction roller disposed for frictional engagement with the wheel for transmitting the rotation of the engine to the wheel to the drive system being adapted to transmit the rotation of the wheel,the engine through the friction roller at the start of the engine. The drive system consists of: a drive shaft extending parallel with the crankshaft, the friction roller being supported on the drive shaft to be rotatively driven thereby; a power transmission means interposed between the drive shaft and the crankshaft, for transmitting the rotation of the drive shaft to the crankshaft with a given ratio of speed change appropriate for starting the engine; a one-way clutch engaging with the power transmission means and adapted to transmit only the rotation of the drive shaft to the crankshaft, whereby the rotation of the drive shaft is transmitted to the crankshaft through the power transmission means and the one-way clutch at the start of the engine; and a platetary gear assembly coupled to the power transmission means and adapted to transmit the rotation of the crankshaft to the drive shaft through the power transmission means with a given reduction ratio. The planetary gear assembly includes a centrifugal clutch disposed on the crankshaft for rotation therewith, the centrifugal clutch being adapted to transmit the rotation of the crankshaft to the drive shaft when the rotational speed of the crankshaft exceeds a predetermined value.

  9. Ultraintense Laser-Driven Relativistic Hydrodynamics for Plane Symmetric Systems

    NASA Astrophysics Data System (ADS)

    Talamo, James

    We consider the relativistic hydrodynamics of a plane symmetric, charged fluid system driven by an ultra-violent, ultra-intense laser. The resulting particle motion will be relativistic due to the strength of the laser. The fluid will accelerate violently with respect to an observer in the laboratory, so although the arena for the evolution is a smooth Minkowski spacetime, methods of general relativity will be invoked. Many systems in relativity can be cast into field theories, and we first extend the variational formulation of special relativity to laser-matter interactions. From this, a full set of four Euler equations arise that govern the hydrodynamics of a general 4-dimensional laser-matter system. The plane symmetry, however, naturally gives rise to two Killing vectors. This allows for a 2+2 reduction process to be used to analyze the system. This will allow for a reformulation of the 4-dimensional system of interacting particles as a 2-dimensional system of interacting plasma sheets. The transverse particle motion is shown to produce a change in the "effective mass" of the plasma sheets, which allows one to consider the sheets as a single entity. To achieve this, we first give the details of this 2+2 formalism and show how it can be used to write the underlying space time as a product of a base manifold and transverse Euclidean planes. We then establish a natural isomorphism between the geometrical objects (vectors, covectors, and tensors) on these manifolds. By examining the effects of this procedure in the LAB and comoving coordinate systems, we establish a coordinate transformation between them. Finally, we apply the results of the 2+2 split to the 4-dimensional Euler equations, which admit two constants of motion. This allows for us to define a plasma sheet as an equivalence class of particles whose spacetime positions differ only longitudinally and define a sheet proper time. Furthermore, the notion of particle thermodynamics can be, and is, generalized

  10. Sparsity-driven ideal observer for computed medical imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2015-03-01

    The Bayesian ideal observer (IO) has been widely advocated to guide hardware optimization. However, except for special cases, computation of the IO test statistic is computationally burdensome and requires an appropriate stochastic object model that may be difficult to determine in practice. Modern reconstruction methods, referred to as sparse reconstruction methods, exploit the fact that objects of interest typically possess sparse representations and have proven to be highly effective at reconstructing images from under-sampled measurement data. Moreover, in computed imaging approaches that employ compressive sensing concepts, imaging hardware and image reconstruction are innately coupled technologies. In this work, we propose a sparsity-driven IO (SD-IO) to guide the optimization of data acquisition parameters for modern computed imaging systems. The SD-IO employs a variational Bayesian inference method to estimate the posterior distribution and calculates an approximate likelihood ratio analytically as its test statistic. Since it assumes knowledge of low-level statistical properties of the object that are related to sparsity, the SD-IO exploits the same statistical information regarding the object that is utilized by highly effective sparse image reconstruction methods. Preliminary simulation results are presented to demonstrate the feasibility of the SD-IO calculation.

  11. Solar flares and avalanches in driven dissipative systems

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.; Mctiernan, J. M.; Bromund, Kenneth R.

    1993-01-01

    The contention of Lu and Hamilton (1991) that the energy release process in solar flares can be understood as avalanches of many small reconnection events is further developed. The dynamics of the complex magnetized plasma of solar active regions is modeled with a simple driven dissipative system, consisting of a vector field with local instabilities that cause rapid diffusion of the field. It is argued that the avalanches in this model are analogous to solar flares. The distributions of avalanches in this model are compared with the solar flare frequency distributions obtained from ISEE 3/ICE satellite observations. Quantitative agreement is found with the energy, peak luminosity, and duration distributions over four orders of magnitude in flare energy, from the largest flares down to the completeness limit of the observations. It is predicted that the power-law solar flare frequency distributions will be found to continue downward with the same logarithmic slopes to an energy of about 3 x 10 exp 25 ergs and duration of about 0.3 s, with deviations from power-law behavior below these values.

  12. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable

  13. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    SciTech Connect

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  14. Subcritical fatigue in fuse networks

    NASA Astrophysics Data System (ADS)

    Oliveira, C. L. N.; Vieira, A. P.; Herrmann, H. J.; Andrade, J. S., Jr.

    2012-11-01

    We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate —entering the phenomenological Paris law— and the microscopic damage accumulation exponent, γ, under the influence of disorder. The way the jumps of the growing crack, Δa, and the waiting time between successive breaks, Δt, depend on the type of material, via γ, are also investigated. We find that the averages of these quantities, \\left \\langle \\Delta a\\right \\rangle and \\left \\langle \\Delta t\\right \\rangle /\\left \\langle t_r\\right \\rangle , scale as power laws of the crack length a, \\left \\langle \\Delta a\\right \\rangle \\propto a^{\\alpha } and \\left \\langle \\Delta t\\right \\rangle /\\left \\langle t_r\\right \\rangle \\propto a^{-\\beta } , where \\left \\langle t_r\\right \\rangle is the average rupture time. Strikingly, our results show, for small values of γ, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of γ = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation.

  15. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations. PMID:23767588

  16. Dynamics and universality in noise-driven dissipative systems

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; Demler, Eugene; Giamarchi, Thierry; Altman, Ehud

    2012-05-01

    We investigate the dynamical properties of low-dimensional systems, driven by external noise sources. Specifically we consider a resistively shunted Josephson junction and a one-dimensional quantum liquid in a commensurate lattice potential, subject to 1/f noise. In absence of nonlinear coupling, we have shown previously that these systems establish a nonequilibrium critical steady state [Dalla Torre, Demler, Giamarchi, and Altman, Nat. Phys.1745-247310.1038/nphys1754 6, 806 (2010)]. Here, we use this state as the basis for a controlled renormalization group analysis using the Keldysh path integral formulation to treat the nonlinearities: the Josephson coupling and the commensurate lattice. The analysis to first order in the coupling constant indicates transitions between superconducting and localized regimes that are smoothly connected to the respective equilibrium transitions. However, at second order, the back action of the mode coupling on the critical state leads to renormalization of dissipation and emergence of an effective temperature. In the Josephson junction, the temperature is parametrically small allowing to observe a universal crossover between the superconducting and insulating regimes. The I-V characteristics of the junction displays algebraic behavior controlled by the underlying critical state over a wide range. In the noisy one-dimensional liquid, the generated dissipation and effective temperature are not small as in the junction. We find a crossover between a quasilocalized regime dominated by dissipation and another dominated by temperature. However, since in the thermal regime the thermalization rate is parametrically small, signatures of the nonequilibrium critical state may be seen in transient dynamics.

  17. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  18. K/sub infinity/-meter concept verified via subcritical-critical TRIGA experiments

    SciTech Connect

    Ocampo Mansilla, H.

    1983-01-01

    This work presents a technique for building a device to measure the k/sub infinity/ of a spent nuclear fuel assembly discharged from the core of a nuclear power plant. The device, called a k/sub infinity/-meter, consists of a cross-shaped subcritical assembly, two artificial neutron sources, and two separate neutron counting systems. The central position of the subcritical assembly is used to measure k/sub infinity/ of the spent fuel assembly. The initial subcritical assembly is calibrated to determine its k/sub eff/ and verify the assigned k/sub infinity/ of a selected fuel assembly placed in the central position. Count rates are taken with the fuel assembly of known k/sub infinity/'s placed in the central position and then repeated with a fuel assembly of unknown k/sub infinity/ placed in the central position. The count rate ratio of the unknown fuel assembly to the known fuel assembly is used to determine the k/sub infinity/ of the unknown fuel assembly. The k/sub infinity/ of the unknown fuel assembly is represented as a polynomial function of the count rate ratios. The coefficients of the polynomial equation are determined using the neutronic codes LEOPARD and EXTERMINATOR-II. The analytical approach has been validated by performing several subcritical/critical experiments, using the Penn State Breazeale TRIGA Reactor (PSBR), and comparing the experimental results with the calculations.

  19. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  20. Modelling the behaviour of oxide fuels containing minor actinides with urania, thoria and zirconia matrices in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Lemehov, S.; Messaoudi, N.; Van Uffelen, P.; Aı̈t Abderrahim, H.

    2003-06-01

    The Belgian Nuclear Research Centre, SCK • CEN, is currently working on the pre-design of the multipurpose accelerator-driven system (ADS) MYRRHA. A demonstration of the possibility of transmutation of minor actinides and long-lived fission products with a realistic design of experimental fuel targets and prognosis of their behaviour under typical ADS conditions is an important task in the MYRRHA project. In the present article, the irradiation behaviour of three different oxide fuel mixtures, containing americium and plutonium - (Am,Pu,U)O 2- x with urania matrix, (Am,Pu,Th)O 2- x with thoria matrix and (Am,Y,Pu,Zr)O 2- x with inert zirconia matrix stabilised by yttria - were simulated with the new fuel performance code MACROS, which is under development and testing at the SCK • CEN. All the fuel rods were considered to be of the same design and sizes: annular fuel pellets, helium bounded with the stainless steel cladding, and a large gas plenum. The liquid lead-bismuth eutectic was used as coolant. Typical irradiation conditions of the hottest fuel assembly of the MYRRHA subcritical core were pre-calculated with the MCNPX code and used in the following calculations as the input data. The results of prediction of the thermo-mechanical behaviour of the designed rods with the considered fuels during three irradiation cycles of 90 EFPD are presented and discussed.

  1. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  2. Subcritical-Water Extraction of Organics from Solid Matrices

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  3. Microdeformation and subcritical cracking in chalk

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne; Dysthe, Dag Kristian

    2016-04-01

    Deformation processes in chalks, both in relation to changing pore fluids and stress conditions has been of great interest as chalk is an important reservoir rock for both hydrocarbons and ground water. Lately it has also gained interest as a potential reservoir rock for captured CO2. Chalks are composed of large amounts of biogenic calcite grains, the skeletal debris of marine microorganisms. Its deformation is highly time and stress dependent, and governed by a transition from distributed to localized deformation at the onset of yield, affected by mechanisms such as subcritical crack growth and pore collapse. We present a microdeformation rig which makes use of thermal expansion as a means of subjecting small samples to strictly controlled tensile stresses. High resolution imaging provides resolutions down to 0.5 micrometers, enabling study of pore scale processes during slow deformation. Examples of localized and distributed deformation are presented.

  4. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  5. Massive subcritical compact arrays of plutonium metal

    SciTech Connect

    Rothe, R.E.

    1998-04-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.

  6. Buckle Driven Delamination in Thin Hard Film Compliant Substrate Systems

    NASA Astrophysics Data System (ADS)

    Moody, N. R.; Reedy, E. D.; Corona, E.; Adams, D. P.; Kennedy, M. S.; Cordill, M. J.; Bahr, D. F.

    2010-06-01

    Deformation and fracture of thin films on compliant substrates are key factors constraining the performance of emerging flexible substrate devices. [1-3] These systems often contain layers of thin polymer, ceramic and metallic films and stretchable interconnects where differing properties induce high normal and shear stresses. [4] As long as the films remain bonded to the substrates, they may deform far beyond their freestanding form. Once debonded, substrate constraint disappears leading to film failure. [3] Experimentally it is very difficult to measure properties in these systems at sub-micron and nanoscales. Theoretically it is very difficult to determine the contributions from the films, interfaces, and substrates. As a result our understanding of deformation and fracture behavior in compliant substrate systems is limited. This motivated a study of buckle driven delamination of thin hard tungsten films on pure PMMA substrates. The films were sputter deposited to thicknesses of 100 nm, 200 nm, and 400 nm with a residual compressive stress of 1.7 GPa. An aluminum oxide interlayer was added on several samples to alter interfacial composition. Buckles formed spontaneously on the PMMA substrates following film deposition. On films without the aluminum oxide interlayer, an extensive network of small telephone cord buckles formed following deposition, interspersed with regions of larger telephone cord buckles. (Figure 1) On films with an aluminum oxide interlayer, telephone cord buckles formed creating a uniform widely spaced pattern. Through-substrate optical observations revealed matching buckle patterns along the film-substrate interface indicating that delamination occurred for large and small buckles with and without an interlayer. The coexistence of large and small buckles on the same substrate led to two distinct behaviors as shown in Figure 2 where normalized buckle heights are plotted against normalized film stress. The behaviors deviate significantly from

  7. Determination of the multiplication factor and its bias by the {sup 252}Cf-source technique: A method for code benchmarking with subcritical configurations

    SciTech Connect

    Perez, R.B.; Valentine, T.E.; Mihalczo, J.T.; Mattingly, J.K.

    1997-08-01

    A brief discussion of the Cf-252 source driven method for subcritical measurements serves as an introduction to the concept and use of the spectral ratio, {Gamma}. It has also been shown that the Monte Carlo calculation of spectral densities and effective multiplication factors have as a common denominator the transport propagator. This commonality follows from the fact that the Neumann series expansion of the propagator lends itself to the Monte Carlo method. On this basis a linear relationship between the spectral ratio and the effective multiplication factor has been shown. This relationship demonstrates the ability of subcritical measurements of the ratio of spectral densities to validate transport theory methods and cross sections.

  8. Event-driven management algorithm of an Engineering documents circulation system

    NASA Astrophysics Data System (ADS)

    Kuzenkov, V.; Zebzeev, A.; Gromakov, E.

    2015-04-01

    Development methodology of an engineering documents circulation system in the design company is reviewed. Discrete event-driven automatic models using description algorithms of project management is offered. Petri net use for dynamic design of projects is offered.

  9. Streaked Optical Pyrometer System for Laser-Driven Shock-Wave Experiments on OMEGA

    SciTech Connect

    Miller, J.E.; Boehly, T.R.; Melchior, Meyerhofer, D.D.; Celliers, P.M.; Eggert, J.H.; Hicks, D.G.; Sorce, C.M.; Oertel, J.A.; Emmel, P.M.

    2007-03-23

    The temperature of laser-driven shock waves is of interest to inertial confinement fusion and high-energy-density physics. We report on a streaked optical pyrometer that measures the self-emission of laser-driven shocks simultaneously with a velocity interferometer system for any reflector (VISAR). Together these diagnostics are used to obtain the temporally and spatially resolved temperatures of ~Mbar shocks driven by the OMEGA laser. We provide a brief description of the diagnostic and how it is used with VISAR. Key spectral calibration results are discussed and important characteristics of the recording system are presented.

  10. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA.

    PubMed

    Miller, J E; Boehly, T R; Melchior, A; Meyerhofer, D D; Celliers, P M; Eggert, J H; Hicks, D G; Sorce, C M; Oertel, J A; Emmel, P M

    2007-03-01

    The temperature of laser-driven shock waves is of interest to inertial confinement fusion and high-energy-density physics. We report on a streaked optical pyrometer that measures the self-emission of laser-driven shocks simultaneously with a velocity interferometer system for any reflector (VISAR). Together these diagnostics are used to obtain the temporally and spatially resolved temperatures of approximately megabar shocks driven by the OMEGA laser. We provide a brief description of the diagnostic and how it is used with VISAR. Key spectral calibration results are discussed and important characteristics of the recording system are presented. PMID:17411209

  11. VIEW OF WATER SUPPLY TANK FOR THE PRESSURIZED SUBCRITICAL EXPERIMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WATER SUPPLY TANK FOR THE PRESSURIZED SUBCRITICAL EXPERIMENT (PSE), LOCATED IN STAIRWELL ADJACENT TO SP-SE ROOM, LEVEL -15’, LOOKING NORTH - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  12. Quantum dynamical field theory for nonequilibrium phase transitions in driven open systems

    NASA Astrophysics Data System (ADS)

    Marino, Jamir; Diehl, Sebastian

    2016-08-01

    We develop a quantum dynamical field theory for studying phase transitions in driven open systems coupled to Markovian noise, where nonlinear noise effects and fluctuations beyond semiclassical approximations influence the critical behavior. We systematically compare the diagrammatics, the properties of the renormalization group flow, and the structure of the fixed points of the quantum dynamical field theory and of its semiclassical counterpart, which is employed to characterize dynamical criticality in three-dimensional driven-dissipative condensates. As an application, we perform the Keldysh functional renormalization of a one-dimensional driven open Bose gas, where a tailored diffusion Markov noise realizes an analog of quantum criticality for driven-dissipative condensation. We find that the associated nonequilibrium quantum phase transition does not map into the critical behavior of its three-dimensional classical driven counterpart.

  13. Intense Flows in Librationally Driven Non-Axisymmetric Systems

    NASA Astrophysics Data System (ADS)

    Grannan, A. M.; Le Bars, M.; Cebron, D.; Aurnou, J. M.

    2013-12-01

    We present laboratory experimental results that demonstrate that librational forcing can drive intense motions of interior, low viscosity fluid layers. Longitudinal libration refers to small periodic changes in a satellite's mean rotation rate as it orbits a primary body. These libration studies are conducted using ellipsoidal acrylic containers filled with water. Particle image velocimetry (PIV) methods are used to measure the 2D velocity field in the equatorial plane over hundreds and thousands of libration cycles. In doing so we determine the coupled modes of the triadic resonance responsible for the instability that produces both intermittent and persistent turbulent motions in the bulk fluid. Additionally, we measure the amplitude and the growth rate for the instability and compare it with previous studies [1][2]. Excitation of global turbulence by librational forcing provides a mechanism for transferring rotational energy into fluid turbulence and thus may play an important role in the thermal evolution, interior dynamics, and magneto-hydrodynamics of librating bodies. [1] Cébron, D., M. Le Bars, J. Noir, J.M. Aurnou. (2012). Libration driven elliptical instability. Physics of Fluids 24, 061703. [2] Noir J., D. Cébron, M. Le Bars, A. Sauret, J.M. Aurnou (2012). Experimental study of libration-driven flows in non-axisymmetric containers, Physics of the Earth and Planetary Interiors 204-205, 1-10.

  14. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    SciTech Connect

    Carbonell, F. Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-10-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations.

  15. Event-driven contrastive divergence for spiking neuromorphic systems

    PubMed Central

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2014-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality. PMID:24574952

  16. Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Cooper, Paul D.; Sittler, Edward C.; Sturner, Steven J.; Rymer, Abigail M.; Hill, Matthew E.

    2007-01-01

    Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing.

  17. Subcritical crack growth in two titanium alloys.

    NASA Technical Reports Server (NTRS)

    Williams, D. N.

    1973-01-01

    Measurement of subcritical crack growth during static loading of precracked titanium alloys in salt water using samples too thin for plane strain loading to predominate was examined as a method for determining the critical stress intensity for crack propagation in salt water. Significant internal crack growth followed by arrest was found at quite low stress intensities, but crack growth rates were relatively low. Assuming these techniques provided a reliable measurement of the critical stress intensity, the value for annealed Ti-4Al-1.5Mo-0.5V alloy was apparently about 35 ksi-in. to the 1/2 power, while that for annealed Ti-4Al-3Mo-1V was below 45 ksi-in. to the 1/2 power. Crack growth was also observed in tests conducted in both alloys in an air environment. At 65 ksi-in. to the 1/2 power, the extent of crack growth was greater in air than in salt water. Ti-4Al-3Mo-1V showed arrested crack growth in air at a stress intensity of 45 ksi-in. to the 1/2 power.

  18. Transient Thermo-Hydraulic Analysis of the Windowless Target System for the Lead Bismuth Eutectic Cooled Accelerator Driven System

    SciTech Connect

    Bianchi, Fosco; Ferri, Roberta; Moreau, Vincent

    2006-07-01

    The target system, whose function is to supply an external neutron source to the ADS sub-critical core to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. A windowless option was chosen as reference configuration for the target system of the LBE-cooled ADS within the European PDS-XADS project in order to reduce the material damage and to increase its life. This document deals with the thermo-hydraulic results of the calculations performed with STAR-CD and RELAP5 codes for studying the behaviour of the windowless target system during off-normal operating conditions. It also reports a description of modifications properly implemented in the codes needed for this analysis. The windowless target system shows a satisfactory thermo-hydraulic behaviour for the analysed accidents, except for the loss of both pumps without proton beam shut-off and the beam trips lasting more than one second. (authors)

  19. Dynamics of a quantum two-state system in a linearly driven quantum bath

    NASA Astrophysics Data System (ADS)

    Reichert, J.; Nalbach, P.; Thorwart, M.

    2016-09-01

    When an open quantum system is driven by an external time-dependent force, the coupling of the driving to the central system is usually included, whereas the impact of the driving field on the bath is neglected. We investigate the effect of a quantum bath of linearly driven harmonic oscillators on the relaxation dynamics of a quantum two-level system which is not directly driven. In particular, we calculate the frequency-dependent response of the system when the bath is subject to Dirac and Gaussian driving pulses. We show that a time-retarded effective force on the system is induced by the driven bath which depends on the full history of the perturbation and the spectral characteristics of the underlying bath. In particular, when a structured Ohmic bath with a pronounced Lorentzian peak is considered, the dynamical response of the system to a driven bath is qualitatively different than that of the undriven bath. Specifically, additional resonances appear which can be directly associated with a Jaynes-Cummings-like effective energy spectrum.

  20. On Cyclical Phase Transformations in Driven Alloy Systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong K.

    2008-05-01

    Cyclical phase transformations occurring in driven materials syntheses such as ball milling are described in terms of a free energy minimization process of participant phases. The oscillatory flow behavior of metals with low stacking fault energies during hot working is taken as a prototype in which a ductile crystalline phase sustains undulation in its free energy, due to the alternate succession of work-hardening and work-softening mechanisms. A time-dependent, oscillatory free energy function is then obtained by solving a delay differential equation (DDE), which accounts for a time lag due to diffusion. To understand cyclical transitions on an atomistic scale, work is extended to molecular dynamics simulations. Under shear deformation, a two-dimensional nanocrystal shows cyclical transitions between an equilibrium rhombus and a nonequilibrium square phase. Three-dimensional simulations show crystalline-to-glass transitions at high strain rates, but very high shear strain rates are found to lead to a latticelike network structure in the plane perpendicular to the shear direction, with strings of atoms parallel to the shear direction.

  1. Enzyme catalyzed electricity-driven water softening system.

    PubMed

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD⁺ as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO₃. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO₃ the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water. PMID:23040397

  2. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect

    Lebedev, G. V. Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-15

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  3. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  4. Application of nonlinear time series models to driven systems

    SciTech Connect

    Hunter, N.F. Jr.

    1990-01-01

    In our laboratory we have been engaged in an effort to model nonlinear systems using time series methods. Our objectives have been, first, to understand how the time series response of a nonlinear system unfolds as a function of the underlying state variables, second, to model the evolution of the state variables, and finally, to predict nonlinear system responses. We hope to address the relationship between model parameters and system parameters in the near future. Control of nonlinear systems based on experimentally derived parameters is also a planned topic of future research. 28 refs., 15 figs., 2 tabs.

  5. Subcritical scattering from buried elastic shells.

    PubMed

    Lucifredi, Irena; Schmidt, Henrik

    2006-12-01

    Buried objects have been largely undetectable by traditional high-frequency sonars due to their insignificant bottom penetration. Further, even a high grazing angle sonar approach is vastly limited by the coverage rate dictated by the finite water depth, making the detection and classification of buried objects using low frequency, subcritical sonar an interesting alternative. On the other hand, such a concept would require classification clues different from the traditional high-resolution imaging and shadows to maintain low false alarm rates. A potential alternative, even for buried targets, is classification based on the acoustic signatures of man-made elastic targets. However, the elastic responses of buried and proud targets are significantly different. The objective of this work is to identify, analyze, and explain some of the effects of the sediment and the proximity of the seabed interface on the scattering of sound from completely and partially buried elastic shells. The analysis was performed using focused array processing of data from the GOATS98 experiment carried out jointly by MIT and SACLANTCEN, and a new hybrid modeling capability combining a virtual source-or wave-field superposition-approach with an exact spectral integral representation of the Green's functions for a stratified ocean waveguide, incorporating all multiple scattering between the object and the seabed. Among the principal results is the demonstration of the significant role of structural circumferential waves in converting incident, evanescent waves into backscattered body waves, emanating to the receivers at supercritical grazing angles, in effect making the target appear closer to the sonar than predicted by traditional ray theory.

  6. Exact free energy functional for a driven diffusive open stationary nonequilibrium system.

    PubMed

    Derrida, B; Lebowitz, J L; Speer, E R

    2002-07-15

    We obtain the exact probability exp[-LF([rho(x)])] of finding a macroscopic density profile rho(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system L-->infinity. F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in nonconvexity of F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state. PMID:12144382

  7. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    NASA Astrophysics Data System (ADS)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  8. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    SciTech Connect

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  9. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  10. Model-Driven Test Generation of Distributed Systems

    NASA Technical Reports Server (NTRS)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  11. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  12. Critical Test Of The Directly Driven Current System Concept

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Ohtani, S.; Hoffman, R.

    2009-12-01

    We present results from a study of the response of the magnetosphere-ionosphere system to southward turnings of the Interplanetary Magnetic Field. This is the period during which the M-I system is preconditioned for a subsequent substorm expansion phase onset. The loading process is manifested in the ionospheric current system and we show extensive observations challenging the “standard DP1-DP2 model”. We find significant differences in the response of the auroral electrojet system in the dark ionosphere vs. the sunlit ionosphere. This indicates a discontinuity located near or at the terminator.

  13. Image-Data-Driven Dynamically-Reconfigurable Multiprocessor System In Automated Histopathology

    NASA Astrophysics Data System (ADS)

    Shoemaker, R. L.; Bartels, P. H.; Bartels, H.; Griswold, W. G.; Hillman, D.; Maenner, R.

    1986-04-01

    The diagnostic evaluation of biomedical imagery by computer presents a massive data processing problem that may be effectively handled by multiprocessor computer systems such as the Heidelberg Polyp. A hardware and software configuration of the Polyp is described that can run as a data-driven system directed by a knowledge data base for efficient image analysis.

  14. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    ERIC Educational Resources Information Center

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  15. Energizing a Large Urban System: Reform through a Standards Driven Model.

    ERIC Educational Resources Information Center

    Robbins, Stephen B.

    This paper describes the District of Columbia Public School System (DCPS); articulates challenges it faced prior to standards based reform; presents strategies for reforming large urban systems' health and physical education (HPE) programs; and notes strategies for incorporating a standards-based performance-driven model. DCPS reading and math…

  16. Subcritical and supercritical water oxidation of CELSS model wastes.

    PubMed

    Takahashi, Y; Wydeven, T; Koo, C

    1989-01-01

    Controlled-Ecological-Life-Support-System (CELSS) model wastes were wet-oxidized at temperatures from 250 to 500 degrees C, i.e., below and above the critical point of water (374 degrees C and 218 kg/cm2 or 21.4 MPa). A solution of ammonium hydroxide and acetic acid and a slurry of human urine, feces, and wipes were used as model wastes. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 degrees C, i.e., above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. Although the extent of nitrogen oxidation to nitrous oxide (N2O) and/or nitrogen gas (N2) increased with reaction temperature, most of the nitrogen was retained in solution as ammonia near 400 degrees C. This important finding suggests that most of the nitrogen in the waste feed can be retained in solution as ammonia during oxidation at low supercritical temperatures and be subsequently used as a nitrogen source for plants in a CELSS while at the same time organic matter is almost completely oxidized to carbon dioxide and water. It was also found in this study the Hastelloy C-276 alloy reactor corroded during waste oxidation. The rate of corrosion was lower above than below the critical temperature for water.

  17. Periodically driven ergodic and many-body localized quantum systems

    SciTech Connect

    Ponte, Pedro; Chandran, Anushya; Papić, Z.; Abanin, Dmitry A.

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disordered spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.

  18. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    SciTech Connect

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs.

  19. Localized subcritical convective cells in temperature-dependent viscosity fluids

    NASA Astrophysics Data System (ADS)

    Solomatov, V. S.

    2012-06-01

    Numerical simulations of infinite Prandtl number convection in the stagnant lid regime of temperature-dependent viscosity convection demonstrate the existence of spatially localized, stable convective cells below the critical Rayleigh number (subcritical convection). These solutions are in stark contrast to the usual, supercritical, convective planforms, where convective cells form in the entire layer. The isolated cell has a shape of an axisymmetric dome with an upwelling at the center and thus appears as a very weak plume. Formation of these structures requires subcritical conditions and a localized initial temperature perturbation but does not require any spatial heterogeneity in the material properties or the heat flux. When several localized plumes form, they tend to attract to each other and form stable clusters. This type of subcritical convection may play a role in the formation and longevity of localized features on planetary bodies, including the crustal dichotomy and Tharsis region on Mars and the asymmetric pattern of volcanism on Mercury.

  20. Stochastic maximum principle in the Pontryagin's form for wide band noise driven systems

    NASA Astrophysics Data System (ADS)

    Bashirov, Agamirza E.

    2015-03-01

    The control problems for wide band noise driven systems have the following specific feature. A wide band noise is given by its autocovariance function. At the same time, different wide band noises may have the same autocovariance function. Therefore, it is important to obtain the results which are invariant under the change of wide band noises, corresponding to the same autocovariance function. In this paper, one such result is obtained: a stochastic maximum principle in the Pontryagin's form is proved for a control system driven by a state-dependent wide band noise. The result is demonstrated on an example of controlled stochastic differential equation of risky asset price.

  1. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    SCHWINKENDORF, K.N.

    2006-05-12

    information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

  2. Performance Assessment of a Large Scale Pulsejet- Driven Ejector System

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Litke, Paul J.; Schauer, Frederick R.; Bradley, Royce P.; Hoke, John L.

    2006-01-01

    Unsteady thrust augmentation was measured on a large scale driver/ejector system. A 72 in. long, 6.5 in. diameter, 100 lb(sub f) pulsejet was tested with a series of straight, cylindrical ejectors of varying length, and diameter. A tapered ejector configuration of varying length was also tested. The objectives of the testing were to determine the dimensions of the ejectors which maximize thrust augmentation, and to compare the dimensions and augmentation levels so obtained with those of other, similarly maximized, but smaller scale systems on which much of the recent unsteady ejector thrust augmentation studies have been performed. An augmentation level of 1.71 was achieved with the cylindrical ejector configuration and 1.81 with the tapered ejector configuration. These levels are consistent with, but slightly lower than the highest levels achieved with the smaller systems. The ejector diameter yielding maximum augmentation was 2.46 times the diameter of the pulsejet. This ratio closely matches those of the small scale experiments. For the straight ejector, the length yielding maximum augmentation was 10 times the diameter of the pulsejet. This was also nearly the same as the small scale experiments. Testing procedures are described, as are the parametric variations in ejector geometry. Results are discussed in terms of their implications for general scaling of pulsed thrust ejector systems

  3. Forecast and virtual weather driven plant disease risk modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  4. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    SciTech Connect

    Wang Jiao; Gong Jiangbin

    2010-02-15

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  5. Phase-field-crystal model of phase and microstructural stability in driven nanocrystalline systems

    NASA Astrophysics Data System (ADS)

    Ofori-Opoku, Nana; Hoyt, Jeffrey J.; Provatas, Nikolas

    2012-12-01

    We present a phase-field-crystal model for driven systems which describes competing effects between thermally activated diffusional processes and those driven by externally imposed ballistic events. The model demonstrates how the mesoscopic Enrique and Bellon [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.2885 84, 2885 (2000)] model of externally induced ballistic mixing can be incorporated into the atomistic phase-field-crystal formalism. The combination of the two approaches results in a model capable of describing the microstructural and compositional evolution of a driven system while incorporating elastoplastic effects. The model is applied to the study of grain growth in nanocrystalline materials subjected to an external driving.

  6. RBAC Driven Least Privilege Architecture For Control Systems

    SciTech Connect

    Hull, Julie; Markham, Mark

    2014-01-25

    The concept of role based access control (RBAC) within the IT environment has been studied by researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of RBAC which include reduced administrative workload and policies which are easier to analyze and apply. The goals of this research were to expand the application of RBAC in the following ways. • Apply RBAC to the control systems environment: The typical RBAC model within the IT environment is used to control a user’s access to files. Within the control system environment files are replaced with measurement (e.g., temperature) and control (e.g. valve) points organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC model is extended to support access to points and their parameters based upon roles while at the same time allowing permissions for the points to be defined at the asset level or point level directly. In addition, centralized policy administration with distributed access enforcement mechanisms was developed to support the distributed architecture of distributed control systems and SCADA. • Extend the RBAC model to include access control for software and devices: The established RBAC approach is to assign users to roles. This work extends that notion by first breaking the control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is then created for each of these three layers. The result is that RBAC can be used to define machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the potential to use RBAC for machine-to-machine connectivity within the internet of things. • Enable dynamic policy based upon the operating mode of the system: The IT environment is generally static with respect to policy. However, large cyber physical systems such as industrial controls have

  7. Measurable Control System Security through Ideal Driven Technical Metrics

    SciTech Connect

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based

  8. Many-body localization in periodically driven systems.

    PubMed

    Ponte, Pedro; Papić, Z; Huveneers, François; Abanin, Dmitry A

    2015-04-10

    We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase, in which eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time growth of entanglement entropy when the system is initially prepared in a product state, which distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms of an extensive number of emergent local integrals of motion, which naturally explains the spectral and dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving block decimation methods, suggest a direct transition between the two phases. PMID:25910094

  9. Systems biology driven software design for the research enterprise

    PubMed Central

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-01-01

    Background In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. Results We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. Conclusion By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data. PMID:18578887

  10. PHELIX: design of transformer-driven linear implosion system

    SciTech Connect

    Turchi, Peter J; Atchison, Walter L; Rousculp, Chris L; Reinovsky, Robert E

    2008-01-01

    Experiments involving electromagnetically-imploded, solid-density liners can be achieved at reduced cost and energy if we start with a scale-size based on diagnostic resolution, rather than on the largest capacitor bank or generator we could bring to bear. For minimum resolution of 100 microns or less, many useful experiments could be performed with initial liner diameters that are factors of two to three smaller than used on high-energy systems, such as Atlas, thereby reducing energy requirements to sub-megajoule levels. Reduction in scale-size, however, also decreases the inductance change associated with liner motion relative to other inductances in the circuit. To improve coupling efficiency to liner kinetic energy, we invoke a current step-up transformer. Scaling relations have been developed for reducing the size and energy of such systems and compared with detailed numerical simulations. We discuss these calculations and describe the engineering embodiment of the resulting design for a system called PHELIX (Precision High Energy-density Liner Implosion eXperiment).

  11. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    SciTech Connect

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  12. Data-driven systems and system-driven data: the story of the Flanders Heritage Inventory (1995-2015)

    NASA Astrophysics Data System (ADS)

    Van Daele, K.; Meganck, L.; Mortier, S.

    2015-08-01

    Over the past 20 years, heritage inventories in Flanders (Belgium) have evolved from printed books to digital inventories. It is obvious that a system that publishes a digital inventory needs to adapt to the user requirements. But, after years of working with a digital inventory system, it has become apparent that not only has the system been developed to the users needs, but also that user practice and the resulting data have been shaped by the system. Thinking about domain models and thesauri influenced our thinking about our methodology of surveying. Seeing our data projected on a common basemap led us to realise how intertwined and interdependent different types of heritage can be. The need for structured metadata has impressed upon us the need for good quality data, guaranteed by data entry standards, validation tools, and a strict editing workflow. Just as the researchers have transitioned from seeing their respective inventories as being significantly different to actually seeing the similarities between them, the information specialists have come to the realisation that there are synergies that can be achieved with other systems, both within and outside of our organisation. Deploying our inventories on the web has also changed how we communicate with the general public. Newer channels such as email and social media have enabled a more interactive way of communicating. But throughout the years, one constant has remained. While we do not expect the systems to live on, we do want the data in them to be available to future generations.

  13. Topological Instabilities in ac-Driven Bosonic Systems.

    PubMed

    Engelhardt, G; Benito, M; Platero, G; Brandes, T

    2016-07-22

    Under nonequilibrium conditions, bosonic modes can become dynamically unstable with an exponentially growing occupation. On the other hand, topological band structures give rise to symmetry protected midgap states. In this Letter, we investigate the interplay of instability and topology. Thereby, we establish a general relation between topology and instability under ac driving. We apply our findings to create dynamical instabilities which are strongly localized at the boundaries of a finite-size system. As these localized instabilities are protected by symmetry, they can be considered as topological instabilities. PMID:27494478

  14. A rapid fire, compulsator-driven railgun system

    NASA Astrophysics Data System (ADS)

    Spann, M. L.; Pratap, S. B.; Brinkman, W. G.; Perkins, D.; Thelen, R. F.

    1986-11-01

    Design and operational features details of a compulsator-equipped rapid fire railgun system are detailed, with emphasis on the compulsator hardware. The railgun is intended to fire ten 80 gr projectiles at velocities of 2 km/sec at a 60 Hz rate of fire. The disconnect switch which will protect the compulsator windings from damage during railgun malfunctions is described, along with the autoload mechanism for the projectiles, the discharge pulse injector, and the use of three railguns operated in sequence to prevent overheating of a single unit.

  15. Topological Instabilities in ac-Driven Bosonic Systems

    NASA Astrophysics Data System (ADS)

    Engelhardt, G.; Benito, M.; Platero, G.; Brandes, T.

    2016-07-01

    Under nonequilibrium conditions, bosonic modes can become dynamically unstable with an exponentially growing occupation. On the other hand, topological band structures give rise to symmetry protected midgap states. In this Letter, we investigate the interplay of instability and topology. Thereby, we establish a general relation between topology and instability under ac driving. We apply our findings to create dynamical instabilities which are strongly localized at the boundaries of a finite-size system. As these localized instabilities are protected by symmetry, they can be considered as topological instabilities.

  16. AN UPGRADE OF MAGNET-FIELD-DRIVEN TIMING SYSTEMS AT THE AGS.

    SciTech Connect

    TIAN, Y.; OERTER, B.

    2005-10-10

    An upgrade of the main magnet-field-driven timing systems at Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS) and Booster accelerators will be described in this paper. A novel approach using content addressable memory (CAM) is applied to overcome a weakness in the previous systems, which required a reproducible dwell field for proper operation. Upgraded from a multibus-based system to a VME-based system, the new timing system also proves easier to maintain and to diagnose. Details of the system architecture, as well as its application in other timing systems will be discussed.

  17. Antimatter Driven P-B11 Fusion Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2003-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing the plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system, which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement properties of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enters the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  18. Boundary driven open quantum many-body systems

    SciTech Connect

    Prosen, Tomaž

    2014-01-08

    In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.

  19. Topological gaps without masses in driven graphene-like systems

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio

    2014-03-01

    We illustrate the possibility of realizing band gaps in graphene-like systems that fall outside the existing classification of gapped Dirac Hamiltonians in terms of masses. As our primary example we consider a band gap arising due to time-dependent distortions of the honeycomb lattice. By means of an exact, invertible, and transport-preserving mapping to a time-independent Hamiltonian, we show that the system exhibits Chern-insulating phases with quantized Hall conductivities +/-e2 / h . The chirality of the corresponding gapless edge modes is controllable by both the frequency of the driving and the manner in which sublattice symmetry is broken by the dynamical lattice modulations. We demonstrate that, while these phases are in the same topological sector as the Haldane model, they are nevertheless separated from the latter by a gap-closing transition unless an extra parameter is added to the Hamiltonian. Finally, we discuss a promising possible realization of this physics in photonic lattices. This work is supported in part by DOE Grant DEF-06ER46316 (T.I. and C.C.).

  20. Antimatter Driven P-B11 Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  1. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  2. Adiabatic population transfer in a three-level system driven by delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Kuklinski, J. R.; Gaubatz, U.; Hioe, F. T.; Bergmann, K.

    1989-12-01

    We give a simple analytic solution that describes a novel method for population transfer in a three-level system driven by delayed pulses and which accounts for recent experimental results. This solution describes a procedure that is counterintuitive, and yet it is shown to be, in fact, one of the simplest solutions for multilevel systems arising from the adiabatic theorem. Its possible application to many-level systems is suggested.

  3. Quantum-classical correspondence principles for locally nonequilibrium driven systems.

    PubMed

    Smith, Eric

    2008-02-01

    Many of the core concepts and (especially field-theoretic) tools of statistical mechanics have developed within the context of thermodynamic equilibrium, where state variables are all taken to be charges, meaning that their values are inherently preserved under reversal of the direction of time. A principle concern of nonequilibrium statistical mechanics is to understand the emergence and stability of currents, quantities whose values change sign under time reversal. Whereas the correspondence between classical charge-valued state variables and their underlying statistical or quantum ensembles is quite well understood, the study of currents away from equilibrium has been more fragmentary, with classical descriptions relying on the asymmetric auxiliary-field formalism of Martin, Siggia, and Rose (and often restricted to the Markovian assumption of Doi and Peliti), while quantum descriptions employ a symmetric two-field formalism introduced by Schwinger and further clarified by Keldysh. In this paper we demonstrate that for quantum ensembles in which superposition is not violated by very strong conditions of decoherence, there is a large natural generalization of the principles and tools of equilibrium, which not only admits but requires the introduction of current-valued state variables. For these systems, not only do Martin-Siggia-Rose (MSR) and Schwinger-Keldysh (SK) field methods both exist, in some cases they provide inequivalent classical and quantum descriptions of identical ensembles. With these systems for examples, we can both study the correspondence between classical and quantum descriptions of currents, and also clarify the nature of the mapping between the structurally homologous but interpretationally different MSR and SK formalisms.

  4. Legislation for a Demand-Driven System. Go8 Backgrounder 22

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2011

    2011-01-01

    One of several important pieces of higher education legislation in Parliament in 2011 is the "Higher Education Support Act Amendment ("Demand-Driven System and Other Measures") Bill". As its title makes clear, this Bill is intended to bring into effect the Government's commitment (announced in March 2009) to uncap the supply of…

  5. Laser frequency down-conversion by means of a monochromatically driven two-level system

    NASA Astrophysics Data System (ADS)

    Soldatov, Andrey V.

    2016-09-01

    Conditions are found under which a simple two-level quantum system possessing dipole moment operator with permanent non-equal diagonal matrix elements and driven by external semiclassical monochromatic high-frequency EM (laser) field can radiate continuously at much lower frequency. Possible ways to experimental observation and practical implementation of the predicted effect for a wide range of applications are discussed.

  6. Subcritical Hopf bifurcation in a NMR laser with an injected signal

    SciTech Connect

    Baugher, A.; Hammack, P.; Lin, J.

    1989-02-01

    We present perturbational formulas necessary to calculate the amplitude of the rotating nuclear magnetization and its angular frequency in a ruby NMR laser with an injected signal exhibiting subcritical Hopf bifurcation (R. Holzner, B. Derighetti, M. Ravani, and E. Brun, Phys. Rev. A 36, 1280 (1987)). These formulas apply, in general, to any system reducible to a two-dimensional system with quadratic nonlinearity through application of the adiabatic elimination technique. For this laser model, in particular, we find that near the bifurcation point, the magnetization exhibits a hard transition without bistability or hysteresis.

  7. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  8. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  9. Sensor Driven Intelligent Control System For Plasma Processing

    SciTech Connect

    Bell, G.; Campbell, V.B.

    1998-02-23

    This Cooperative Research and Development Agreement (CRADA) between Innovative Computing Technologies, Inc. (IC Tech) and Martin Marietta Energy Systems (MMES) was undertaken to contribute to improved process control for microelectronic device fabrication. Process data from an amorphous silicon thin film deposition experiment was acquired to validate the performance of an intelligent, adaptive, neurally-inspired control software module designed to provide closed loop control of plasma processing machines used in the microelectronics industry. Data acquisition software was written using LabView The data was collected from an inductively coupled plasma (ICP) source, which was available for this project through LMES's RF/Microwave Technology Center. Experimental parameters measured were RF power, RF current and voltage on the antenna delivering power to the plasma, hydrogen and silane flow rate, chamber pressure, substrate temperature and H-alpha optical emission. Experimental results obtained were poly-crystallin silicon deposition rate, crystallinity, crystallographic orientation and electrical conductivity. Owing to experimental delays resulting from hardware failures, it was not possible to assemble a complete data for IC Tech use within the time and resource constraints of the CRADA. IC Tech was therefore not able to verify the performance of their existing models and control structures and validate model performance under this CRADA.

  10. Transient nature of Arctic spring systems driven by subglacial meltwater

    NASA Astrophysics Data System (ADS)

    Scheidegger, J. M.; Bense, V. F.; Grasby, S. E.

    2012-06-01

    In the High Arctic, supra- and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet-based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps.

  11. Subcritical crack growth behavior of dispersion oxide ceramics.

    PubMed

    Kirsten, Armin; Begand, Sabine; Oberbach, Thomas; Telle, Rainer; Fischer, Horst

    2010-10-01

    Zirconia (Y-TZP) is used as material for components of implants and prostheses because of its high short-term strength. The mechanical long-term reliability, however, is limited for Y-TZP because of hydrothermal aging effects and a pronounced tendency for subcritical crack growth. The hypothesis of this study was that a substantial amount of alumina in a zirconia matrix can help to significantly suppress subcritical crack growth and thereby improve the mechanical long-term reliability. The Weibull parameters as well as the parameters of the subcritical crack growth were determined for Alumina, Y-TZP, and two dispersion ceramics, that is Alumina Toughened Zirconia (ATZ, 20% alumina/80% Y-TZP), and Zirconia Toughened Alumina (ZTA, 75% alumina/25% Y-TZP). The long-term failure probability as a function of service time was predicted for the four ceramics. The parameter n of the subcritical crack growth was approx. 80% higher for ATZ compared to Y-TZP. In consequence, the estimated lifetime revealed a significant better mechanical long-term reliability for ATZ. It can be concluded that tailored dispersion oxide ceramics can address the aging problem of monolithic zirconia. This makes ATZ very interesting for components of joint replacement as well as for dental prostheses and implants.

  12. Comparison of a fuel-driven and steam-driven ejector in solid oxide fuel cell systems with anode off-gas recirculation: Part-load behavior

    NASA Astrophysics Data System (ADS)

    Engelbracht, Maximilian; Peters, Roland; Blum, Ludger; Stolten, Detlef

    2015-03-01

    This paper investigates the use of ejectors for recirculating anode off-gas in an SOFC system, focusing on the part-load capability of two different systems. In the first system, recirculation was enabled by a fuel-driven ejector. The part-load threshold of this system was determined by carbon formation and was 77.8% assuming a fuel utilization of 70% and suitable ejector geometry. The second system was based on a steam-driven ejector. The simulation results for this system showed an improved part-load capability of 37.8% as well as a slightly improved electrical efficiency. Here, the minimal part load was determined by the condensation temperature of the condenser used in the system.

  13. A new costing model in hospital management: time-driven activity-based costing system.

    PubMed

    Öker, Figen; Özyapıcı, Hasan

    2013-01-01

    Traditional cost systems cause cost distortions because they cannot meet the requirements of today's businesses. Therefore, a new and more effective cost system is needed. Consequently, time-driven activity-based costing system has emerged. The unit cost of supplying capacity and the time needed to perform an activity are the only 2 factors considered by the system. Furthermore, this system determines unused capacity by considering practical capacity. The purpose of this article is to emphasize the efficiency of the time-driven activity-based costing system and to display how it can be applied in a health care institution. A case study was conducted in a private hospital in Cyprus. Interviews and direct observations were used to collect the data. The case study revealed that the cost of unused capacity is allocated to both open and laparoscopic (closed) surgeries. Thus, by using the time-driven activity-based costing system, managers should eliminate the cost of unused capacity so as to obtain better results. Based on the results of the study, hospital management is better able to understand the costs of different surgeries. In addition, managers can easily notice the cost of unused capacity and decide how many employees to be dismissed or directed to other productive areas. PMID:23364414

  14. A microchip-based proteolytic digestion system driven by electroosmotic pumping.

    PubMed

    Jin, Lian Ji; Ferrance, Jerome; Sanders, Joshua C; Landers, James P

    2003-02-01

    Microchip-based proteomic analysis requires proteolytic digestion of proteins in microdevices. Enzyme reactors in microdevices, fabricated in glass, silicon, and PDMS substrates, have recently been demonstrated for model protein digestions. The common approach used for these enzyme reactors is employment of a syringe pump(s) to generate hydrodynamic flow, driving the proteins through the reactors. Here we present a novel approach, using electroosmotic flow (EOF) to electrokinetically pump proteins through a proteolytic system. The existence of EOF in the proteolytic system packed with immobilized trypsin gel beads was proven by imaging the movement of a neutral fluorescent marker. Digestions of proteins were subsequently carried out for 12 min, and the tryptic peptides were analyzed independently using capillary electrophoresis (CE) and MALDI-TOF mass spectrometry (MS). The results from CE analysis of the tryptic peptides from the EOF-driven proteolytic system and a conventional water bath digestion were comparable. MALDI-TOF MS was used to identify the parent protein and the tryptic peptides using MS-Fit database searching. The potential utility of the EOF-driven proteolytic system was demonstrated by direct electro-elution of proteins from an acrylamide gel into the proteolytic system, with elution and tryptic digestion achieved in a single step. The EOF-driven proteolytic system, thus, provides a simple way to integrate protein digestion into an electrophoretic micro total analysis system for protein analysis and characterization.

  15. A new costing model in hospital management: time-driven activity-based costing system.

    PubMed

    Öker, Figen; Özyapıcı, Hasan

    2013-01-01

    Traditional cost systems cause cost distortions because they cannot meet the requirements of today's businesses. Therefore, a new and more effective cost system is needed. Consequently, time-driven activity-based costing system has emerged. The unit cost of supplying capacity and the time needed to perform an activity are the only 2 factors considered by the system. Furthermore, this system determines unused capacity by considering practical capacity. The purpose of this article is to emphasize the efficiency of the time-driven activity-based costing system and to display how it can be applied in a health care institution. A case study was conducted in a private hospital in Cyprus. Interviews and direct observations were used to collect the data. The case study revealed that the cost of unused capacity is allocated to both open and laparoscopic (closed) surgeries. Thus, by using the time-driven activity-based costing system, managers should eliminate the cost of unused capacity so as to obtain better results. Based on the results of the study, hospital management is better able to understand the costs of different surgeries. In addition, managers can easily notice the cost of unused capacity and decide how many employees to be dismissed or directed to other productive areas.

  16. Drift- or fluctuation-induced ordering and self-organization in driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, D.; Platkowski, T.

    2002-10-01

    According to empirical observations, some pattern formation phenomena in driven many-particle systems are more pronounced in the presence of a certain noise level. We investigate this phenomenon of fluctuation-driven ordering with a cellular-automaton model of interactive motion in space and find an optimal noise strength, while order breaks down at high(er) fluctuation levels. Additionally, we discuss the phenomenon of noise- and drift-induced self-organization in systems that would show disorder in the absence of fluctuations. In the future, related studies may have applications to the control of many-particle systems such as the efficient separation of particles. The rather general formulation of our model in the spirit of game theory may allow to shed some light on several different kinds of noise-induced ordering phenomena observed in physical, chemical, biological, and socio-economic systems (e.g., attractive and repulsive agglomeration, or segregation).

  17. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOEpatents

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  18. A packet based, data driven telemetry system for autonomous experimental sub-orbital spacecraft

    SciTech Connect

    Kalibjian, J.R.

    1993-04-26

    A data driven telemetry system is described that responds to the rapid nature in which experimental satellite telemetry content is changed during the development process. It also meets the needs of a diverse experiment which the many phases of a mission may contain radically different types of telemetry data. The system emphasizes mechanisms for achieving high redundancy of critical data. A practical example of such an implementation, Brilliant Pebbles Flight Experiment Three (FE-3), is cited.

  19. Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Seetharaman, Guna; Darema, Frederica

    2013-05-01

    The Dynamic Data Driven Applications System (DDDAS) concept uses applications modeling, mathematical algorithms, and measurement systems to work with dynamic systems. A dynamic systems such as Automatic Target Recognition (ATR) is subject to sensor, target, and the environment variations over space and time. We use the DDDAS concept to develop an ATR methodology for multiscale-multimodal analysis that seeks to integrated sensing, processing, and exploitation. In the analysis, we use computer vision techniques to explore the capabilities and analogies that DDDAS has with information fusion. The key attribute of coordination is the use of sensor management as a data driven techniques to improve performance. In addition, DDDAS supports the need for modeling from which uncertainty and variations are used within the dynamic models for advanced performance. As an example, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between ATR and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements - an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and ATR.

  20. All-optically driven system in ultrasonic wave-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Zhang, Haifeng; Wang, Xingwei

    2016-04-01

    Ultrasonic wave based structural health monitoring (SHM) is an innovative method for nondestructive detection and an area of growing interest. This is due to high demands for wireless detection in the field of structural engineering. Through optically exciting and detecting ultrasonic waves, electrical wire connections can be avoided, and non-contact SHM can be achieved. With the combination of piezoelectric transducer (PZT) (which possesses high heat resistance) and the noncontact detection, this system has a broad range of applications, even in extreme conditions. This paper reports an all-optically driven SHM system. The resonant frequencies of the PZT transducers are sensitive to a variety of structural damages. Experimental results have verified the feasibility of the all-optically driven SHM system.

  1. Motion-driven electrochromic reactions for self-powered smart window system.

    PubMed

    Yeh, Min-Hsin; Lin, Long; Yang, Po-Kang; Wang, Zhong Lin

    2015-05-26

    The self-powered system is a promising concept for wireless networks due to its independent and sustainable operations without an external power source. To realize this idea, the triboelectric nanogenerator (TENG) was recently invented, which can effectively convert ambient mechanical energy into electricity to power up portable electronics. In this work, a self-powered smart window system was realized through integrating an electrochromic device (ECD) with a transparent TENG driven by blowing wind and raindrops. Driven by the sustainable output of the TENG, the optical properties, especially the transmittance of the ECD, display reversible variations due to electrochemical redox reactions. The maximum transmittance change at 695 nm can be reached up to 32.4%, which is comparable to that operated by a conventional electrochemical potentiostat (32.6%). This research is a substantial advancement toward the practical application of nanogenerators and self-powered systems.

  2. Motion-driven electrochromic reactions for self-powered smart window system.

    PubMed

    Yeh, Min-Hsin; Lin, Long; Yang, Po-Kang; Wang, Zhong Lin

    2015-05-26

    The self-powered system is a promising concept for wireless networks due to its independent and sustainable operations without an external power source. To realize this idea, the triboelectric nanogenerator (TENG) was recently invented, which can effectively convert ambient mechanical energy into electricity to power up portable electronics. In this work, a self-powered smart window system was realized through integrating an electrochromic device (ECD) with a transparent TENG driven by blowing wind and raindrops. Driven by the sustainable output of the TENG, the optical properties, especially the transmittance of the ECD, display reversible variations due to electrochemical redox reactions. The maximum transmittance change at 695 nm can be reached up to 32.4%, which is comparable to that operated by a conventional electrochemical potentiostat (32.6%). This research is a substantial advancement toward the practical application of nanogenerators and self-powered systems. PMID:25808880

  3. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  4. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations

  5. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise. PMID:27300844

  6. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  7. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  8. Current Trends and New Challenges of Databases and Web Applications for Systems Driven Biological Research

    PubMed Central

    Sreenivasaiah, Pradeep Kumar; Kim, Do Han

    2010-01-01

    Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and Web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases and Web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research. PMID:21423387

  9. Flux-driven cellular precipitation in open system to form porous Cu3Sn

    NASA Astrophysics Data System (ADS)

    Gusak, Andriy M.; Chen, Chih; Tu, K. N.

    2016-05-01

    Recently, a new morphology of porous Cu3Sn with lamellar structure is observed. Several possible explanations of the formation are proposed and compared. The most reasonable one seems to be the one based on a theory of flux-driven cellular precipitation in open system. Outflux of Sn from Cu6Sn5 generates simultaneously supersaturation with vacancies and with copper leading to the eutectoid-like transformation β → α + γ (where γ is void). The transformation is complete due to a complete outflux of Sn from the Cu6Sn5 phase. Simple formulae for prediction of the lamellar structure parameters and the propagation velocity are obtained and compared reasonably with experimental data. The suggested model can be interpreted as one more case of the flux-driven phase transformations in open systems.

  10. Prediction-driven coordination of distributed MPC controllers for linear unconstrained dynamic systems

    NASA Astrophysics Data System (ADS)

    Marcos, Natalia I.; Fraser Forbes, J.; Guay, Martin

    2014-08-01

    In this paper, a coordinated-distributed model predictive control (CDMPC) scheme is proposed for discrete-time, linear, unconstrained dynamic systems. The proposed control scheme incorporates a coordinator that communicates with local CDMPC controllers. With the assistance of the coordinator, the local CDMPC controllers adjust their calculated control actions iteratively to achieve the optimal plant-wide operation. A 'prediction-driven' algorithm is used to coordinate the local CDMPC controllers. Convergence of the prediction-driven algorithm is shown along with a stability analysis of the closed-loop system under coordinated-distributed control. A simulation example is used to illustrate the effectiveness of the proposed coordinated-distributed control scheme.

  11. Current trends and new challenges of databases and web applications for systems driven biological research.

    PubMed

    Sreenivasaiah, Pradeep Kumar; Kim, Do Han

    2010-01-01

    Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and Web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases and Web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research.

  12. Age distributions and dynamically changing hydrologic systems: Exploring topography-driven flow

    NASA Astrophysics Data System (ADS)

    Gomez, J. D.; Wilson, J. L.

    2013-03-01

    Natural systems are driven by dynamic forcings that change in time as well as space, behavior that is inherited by the system flow field and results in time-varying age distributions (ADs). This work presents a review of the mathematical tools and solution approaches used to model ADs in dynamic time-varying flow systems. A simple conceptual, numerical model is then used to explore the role of flow dynamics in ADs for topography-driven flow systems. This model is an analog for regional groundwater systems and hyporheic zones. This model demonstrates that relatively small fluctuations in the forcing, even though importantly affecting the flow in the system, can have minimal effects in ADs. However, as the intensity of fluctuation increases, still within the bounds observed in natural systems, ADs in shallow parts of the system become highly sensitive to dynamic flow conditions, leading to considerable changes in the moments and modality of the distributions with time. In particular, transient flow can lead to emergence of new modes in the AD, which would not be present under steady flow conditions. The discrepancy observed between ADs under steady and transient flow conditions is explained by enhancement of mixing due to temporal variations in the flow field. ADs in deeper parts of the system are characterized by multimodality and tend to be more stable over time even for large forcing fluctuations.

  13. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    SciTech Connect

    R.A. Kolesnikov; J.A. Krommes

    2004-10-21

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations.

  14. Large deviations in boundary-driven systems: Numerical evaluation and effective large-scale behavior

    NASA Astrophysics Data System (ADS)

    Bunin, Guy; Kafri, Yariv; Podolsky, Daniel

    2012-07-01

    We study rare events in systems of diffusive fields driven out of equilibrium by the boundaries. We present a numerical technique and use it to calculate the probabilities of rare events in one and two dimensions. Using this technique, we show that the probability density of a slowly varying configuration can be captured with a small number of long-wavelength modes. For a configuration which varies rapidly in space this description can be complemented by a local-equilibrium assumption.

  15. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  16. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect

    Mahderekal, Isaac; Vineyard, Edward

    2013-01-01

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  17. Operationalizing Demand-Driven Agricultural Research: Institutional Influences in a Public and Private System of Research Planning in the Netherlands

    ERIC Educational Resources Information Center

    Klerkx, Laurens; Leeuwis, Cees

    2009-01-01

    The trend towards demand-driven agricultural research has focused attention on the inclusion of farmers in research planning. Theoretically, this should enhance ownership and increase the applicability of research. However, in practice, several tensions emerge with regard to the operationalization of such "user-driven research planning systems",…

  18. Subcritical crack growth and mechanical weathering: a new consideration of how moisture influences rock erosion rates.

    NASA Astrophysics Data System (ADS)

    Eppes, Martha-Cary; Keanini, Russell; Hancock, Gregory S.

    2016-04-01

    The contributions of moisture to the mechanical aspects of rock weathering and regolith production are poorly quantified. In particular, geomorphologists have largely overlooked the role of subcritical crack growth processes in physical weathering and the fact that moisture strongly influences the rates of those processes. This influence is irrespective of the function that moisture plays in stress loading mechanisms like freezing or hydration. Here we present a simple numerical model that explores the efficacy of subcritical crack growth in granite rock subaerially exposed under a range of moisture conditions. Because most weathering-related stress loading for rocks found at, or near, Earth's surface (hereafter surface rocks) is cyclic, we modeled crack growth using a novel combination of Paris' Law and Charles' Law. This combination allowed us to apply existing empirically-derived data for the stress corrosion index of Charles' Law to fatigue cracking. For stress, we focused on the relatively straightforward case of intergranular stresses that arise during solar-induced thermal cycling by conductive heat transfer, making the assumption that such stresses represent a universal minimum weathering stress experienced by all surface rocks. Because all other tensile weathering-related stresses would be additive in the context of crack growth, however, our model can be adapted to include other stress loading mechanisms. We validated our calculations using recently published thermal-stress-induced cracking rates. Our results demonstrate that 1) weathering-induced stresses as modeled herein, and as published by others, are sufficient to propagate fractures subcritically over long timescales with or without the presence of water 2) fracture propagation rates increase exponentially with respect to moisture, specifically relative humidity 3) fracture propagation rates driven by thermal cycling are strongly dependent on the magnitude of diurnal temperature ranges and the

  19. A thermodynamic analysis of propagating subcritical cracks with cohesive zones

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1993-01-01

    The results of the so-called energetic approach to fracture with particular attention to the issue of energy dissipation due to crack propagation are applied to the case of a crack with cohesive zone. The thermodynamic admissibility of subcritical crack growth (SCG) is discussed together with some hypotheses that lead to the derivation of SCG laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.

  20. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II : pulsed neutron source.

    SciTech Connect

    Talamo, A.; Gohar, M. Y. A.; Rabiti, C.; Nuclear Engineering Division

    2008-10-22

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a {sup 3}He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment.

  1. Scattering of gravity waves in subcritical flows over an obstacle

    NASA Astrophysics Data System (ADS)

    Robertson, Scott; Michel, Florent; Parentani, Renaud

    2016-06-01

    We numerically study the scattering coefficients of linear water waves on stationary flows above a localized obstacle. We compare the scattering on trans- and subcritical flows, and then focus on the latter which have been used in recent analog gravity experiments. The main difference concerns the magnitude of the mode amplification: whereas transcritical flows display a large amplification (which is generally in good agreement with the Hawking prediction), this effect is heavily suppressed in subcritical flows. This is due to the transmission across the obstacle for frequencies less than some critical value. As a result, subcritical flows display high- and low-frequency behaviors separated by a narrow band around the critical frequency. In the low-frequency regime, transmission of long wavelengths is accompanied by nonadiabatic scattering into short wavelengths, whose spectrum is approximately linear in frequency. By contrast, in the high-frequency regime, no simple description seems to exist. In particular, for obstacles similar to those recently used, we observe that the upstream slope still affects the scattering on the downstream side because of some residual transmission.

  2. Study of the enantiomeric separation of oxfendazole and cetirizine using subcritical fluid chromatography on an amylose-based column.

    PubMed

    Toribio, L; del Nozal, M J; Bernal, J L; Cristofol, C; Alonso, C

    2006-07-21

    The enantiomeric separation of cetirizine and oxfendazole on a Chiralpak AD column using subcritical fluid chromatography has been studied in this work. The enantioseparation of cetirizine was only possible when 2-propanol was used as a modifier, obtaining better results in presence of the additives triethylamine (TEA) and trifluoroacetic acid (TFAA). On the contrary, 2-propanol provided the lowest enantioresolutions for oxfendazole, in this case the best results in terms of high resolution and short analysis time were obtained with ethanol. The study of the temperature effect revealed that in the case of cetirizine using 2-propanol, and oxfendazole using methanol, the separation was enthalpy-driven and the isoelution temperature was above the working range. Using ethanol or 2-propanol, the results showed that the oxfendazole enantioseparation was entropically driven and the isoelution temperatures were below the range studied.

  3. Data-driven output-feedback fault-tolerant L2 control of unknown dynamic systems.

    PubMed

    Wang, Jun-Sheng; Yang, Guang-Hong

    2016-07-01

    This paper studies the data-driven output-feedback fault-tolerant L2-control problem for unknown dynamic systems. In a framework of active fault-tolerant control (FTC), three issues are addressed, including fault detection, controller reconfiguration for optimal guaranteed cost control, and tracking control. According to the data-driven form of observer-based residual generators, the system state is expressed in the form of the measured input-output data. On this basis, a model-free approach to L2 control of unknown linear time-invariant (LTI) discrete-time plants is given. To achieve tracking control, a design method for a pre-filter is also presented. With the aid of the aforementioned results and the input-output data-based time-varying value function approximation structure, a data-driven FTC scheme ensuring L2-gain properties is developed. To illustrate the effectiveness of the proposed methodology, two simulation examples are employed.

  4. YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

    SciTech Connect

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    2010-10-11

    In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable model is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.

  5. Generalized Bose-Einstein condensation into multiple states in driven-dissipative systems.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Ketzmerick, Roland; Eckardt, André

    2013-12-13

    Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein condensation survives in a generalized form: the unambiguous selection of an odd number of states acquiring large occupations. Within mean-field theory we derive a criterion for when a single state and when multiple states are Bose selected in a noninteracting gas. We study the effect in several driven-dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between one and three selected states.

  6. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Castro-Palacio, J. C.

    2013-07-01

    Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.

  7. Dynamics of energy transport and entropy production in ac-driven quantum electron systems

    NASA Astrophysics Data System (ADS)

    Ludovico, María Florencia; Moskalets, Michael; Sánchez, David; Arrachea, Liliana

    2016-07-01

    We analyze the time-resolved energy transport and the entropy production in ac-driven quantum coherent electron systems coupled to multiple reservoirs at finite temperature. At slow driving, we formulate the first and second laws of thermodynamics valid at each instant of time. We identify heat fluxes flowing through the different pieces of the device and emphasize the importance of the energy stored in the contact and central regions for the second law of thermodynamics to be instantaneously satisfied. In addition, we discuss conservative and dissipative contributions to the heat flux and to the entropy production as a function of time. We illustrate these ideas with a simple model corresponding to a driven level coupled to two reservoirs with different chemical potentials.

  8. Maximum Entanglement in a Jaynes-Cummings System with Strongly Driven Atoms

    NASA Astrophysics Data System (ADS)

    Casagrande, F.; Lulli, A.

    We describe the entanglement of a Jaynes-Cummings system, where a two-level atom is also strongly driven by an external coherent field while it crosses a resonant cavity prepared in a coherent state. First we consider the atom-cavity field entanglement, described by the Von Neumann entropy. We find that it depends only on the interaction time and the initial atomic state. The entropy vanishes in the case of maximally polarized atom, independent of the interaction time, whereas it reaches its maximum value for atom in the upper or lower state and for long enough interaction times. Then we investigate the entanglement between two consecutive strongly driven atoms interacting with the cavity mode assumed in the vacuum state, showing that they never entangle in spite of the existence of atom-atom correlations.

  9. Cytoskeletal motor-driven active self-assembly in in vitro systems.

    PubMed

    Lam, A T; VanDelinder, V; Kabir, A M R; Hess, H; Bachand, G D; Kakugo, A

    2016-01-28

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. We focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly.

  10. Quantum system driven by incoherent a.c fields: Multi-crossing Landau Zener dynamics

    NASA Astrophysics Data System (ADS)

    Jipdi, M. N.; Fai, L. C.; Tchoffo, M.

    2016-10-01

    The paper investigates the multi-crossing dynamics of a Landau-Zener (LZ) system driven by two sinusoidal a.c fields applying the Dynamic Matrix approach (DMA). The system is shown to follow one-crossing and multi-crossing dynamics for low and high frequency regime respectively. It is shown that in low frequency regime, the resonance phenomenon occurs and leads to the decoupling of basis states; the effective gap vanishes and then the complete blockage of the system. For high frequency, the system achieves multi-crossing dynamics with two fictitious crossings; the system models a Landau-Zener-Stückelberg (LZS) interferometer with critical parameters that tailor probabilities. The system is then shown to depend only on the phase that permits the easiest control with possible application in implementing logic gates.

  11. User-Driven Design of a Data System for the International Polar Year

    NASA Astrophysics Data System (ADS)

    Parsons, Mark A.; Wilson, Bruce E.

    2007-02-01

    Discovery, Access, and Delivery of Data for IPY: Community Workshop and Seminar; Lamont-Doherty Earth Observatory, Palisades, N.Y., USA, 16-17 November 2006; Data systems must serve user needs. This is easier said than done, especially when trying to design a system that will provide discovery and access to a broad array of disparate data for users with differing expertise. The International Polar Year (IPY) provides a particular challenge with its emphasis on interdisciplinary research in the physical, life, and social sciences. Typically, systems designers try to enumerate the various requirements of the system and build the system to meet those requirements. The challenge is ensuring that the requirements accurately reflect evolving user needs and adequately address how a user will use the system to solve problems. A more user-driven and iterative approach is necessary.

  12. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.

  13. Integrating complex business processes for knowledge-driven clinical decision support systems.

    PubMed

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS. PMID:23366138

  14. Synchronous analog I/O for acquisition of chaotic data in periodically driven systems

    NASA Astrophysics Data System (ADS)

    DeSerio, Robert

    2004-04-01

    A new data acquisition technique has been designed for measuring chaotic attractors in periodically driven systems. Analog output hardware generates a continuous periodic waveform used in the drive while analog input hardware digitizes one or more chaotic waveforms characterizing the system phase space variables. With both processes synchronized to a common clock, the construction of multiple Poincaré sections is reduced to the simple process of redimensioning the chaotic waveforms and taking slices in one of the array indices. The implementation described here is applied to an electronic Duffing oscillator running at 1.6 kHz and provides quality Poincaré sections in near real time.

  15. Integrating complex business processes for knowledge-driven clinical decision support systems.

    PubMed

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

  16. Effective temperature in an interacting, externally driven, vertex system: theory and experiment on artificial spin ice

    SciTech Connect

    Nisoli, Cristiano; Li, Jiie; Ke, Xianglin; Lammert, Paul E; Schiffer, Peter; Crespi, Vincent H

    2009-01-01

    Frustrated arrays of interacting single-domain nanomagnets provide important model systems for statistical mechanics, because they map closely onto well-studied vertex models and are amenable to direct imaging and custom engineering. Although these systems are manifestly athermal, they demonstrate that the statistical properties of both hexagonal and square lattices can be described by an effective temperature based on the magnetostatic energy of the arrays. This temperature has predictive power for the moment configurations and is intimately related to how the moments are driven by an oscillating external field.

  17. Non-adiabatic effects on the optical response of driven systems

    NASA Astrophysics Data System (ADS)

    Fregoso, Benjamin M.; Kolodrubetz, Michael; Moore, Joel

    Periodically driven systems have received renewed interest due to their capacity to engineer non-trivial effective Hamiltonians. A characteristic of such systems is how they respond to weak periodicity-breaking drive, as for example when a laser is pulsed instead of continuous wave. We develop semi-classical equations of motion of a wave packet in the presence of electric and magnetic fields which are turned on non-adiabatically. We then show the emergence of significant corrections to electronic collective excitations and optical responses of topological insulator surface states, Weyl metals and semiconductor mono-chalcogenides.

  18. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations.

    PubMed

    Madzvamuse, Anotida; Ndakwo, Hussaini S; Barreira, Raquel

    2015-03-01

    By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30-39, 1972; Prigogine and Lefever, J Chem Phys 48:1695-1700, 1968; Schnakenberg, J Theor Biol 81:389-400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator-inhibitor mechanism as premises for pattern formation, activator-activator, inhibitor-inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the [Formula: see text] and [Formula: see text] components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range

  19. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  20. An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors

    NASA Astrophysics Data System (ADS)

    Szolc, Tomasz; Konowrocki, Robert; Michajłow, Maciej; Pręgowska, Agnieszka

    2014-12-01

    In the paper dynamic electromechanical interaction between the rotating machine drive system and the electric driving motor is considered. The investigations are performed by means of the circuit model of the asynchronous motor as well as using an advanced structural hybrid model of the drive system. Using the analytical solutions applied for the electrical and the mechanical systems the electromagnetic stiffness and coefficient of damping, both generated by the electric motor rotationally interacting with the mechanical system of the given dynamic properties, were determined. By means of experimentally validated computational responses obtained for torsional harmonic excitation induced by the driven machine working tool, a modification of dynamic properties of the mechanical system by the electromagnetic flux between the stator and the rotor has been studied.

  1. Critical slowing down, phase relations, and dissipation in driven oscillatory systems

    SciTech Connect

    Tsarouhas, G.E.; Ross, J. )

    1989-04-06

    Three dynamical properties of forced nonlinear systems are discussed with approximate analytic solutions obtained from the dynamic equations for oscillatory systems, near a supercritical Hopf bifurcation, driven by periodic perturbations of small amplitude. With these solutions we first obtain the phase difference between the response of the system and the periodic perturbation and its dependence on the parameters, and hence the mechanism, of the system. Second, we derive expressions for critical slowing down near edges of entrainment bands, with consideration of possible variation of both the radius and phase of the perturbed limit cycle with the amplitude of perturbation. Third, we show by analysis the previously numerically calculated variation of the dissipation within entrainment bands, which depends on the square of the amplitude of the response of the perturbed system.

  2. A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Yevgeniya; Fasli, Maria

    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit.

  3. Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born-Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.

  4. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L.

    PubMed

    Kwon, Hye-Lim; Chung, Myong-Soo

    2015-10-15

    Curcuminoids consisted curcumin, demethoxycurcumin and bisdemethoxycurcumin, were extracted from turmeric using subcritical solvent by varying conditions of temperature (110-150 °C), time (1-10 min), pressure (5-100 atm), solid-to-solvent ratio, and mixing ratio of solvent. Preliminary lab-scale experiments were conducted to determine the optimum extraction temperature and mixing ratio of water and ethanol for the pilot-scale extraction. The maximum yield of curcuminoids in the pilot-scale system was 13.58% (curcumin 4.94%, demethoxycurcumin 4.73%, and bisdemethoxycurcumin 3.91% in dried extracts) at 135 °C/5 min with water/ethanol mixture (50:50, v/v) as a solvent. On the other hand, the extraction yields of curcuminoids were obtained as 10.49%, 13.71% and 13.96% using the 50%, 95% and 100% ethanol, respectively, at the atmospheric condition (60 °C/120 min). Overall results showed that the subcritical solvent extraction is much faster and efficient extraction method considering extracted curcuminoids contents and has a potential to develop a commercial process for the extraction of curcuminoids.

  5. A data-driven prediction method for fast-slow systems

    NASA Astrophysics Data System (ADS)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  6. Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation.

    PubMed

    Hurtado, Pablo I; Lasanta, A; Prados, A

    2013-08-01

    We consider fluctuations of the dissipated energy in nonlinear driven diffusive systems subject to bulk dissipation and boundary driving. With this aim, we extend the recently introduced macroscopic fluctuation theory to nonlinear driven dissipative media, starting from the fluctuating hydrodynamic equations describing the system mesoscopic evolution. Interestingly, the action associated with a path in mesoscopic phase space, from which large-deviation functions for macroscopic observables can be derived, has the same simple form as in nondissipative systems. This is a consequence of the quasielasticity of microscopic dynamics, required in order to have a nontrivial competition between diffusion and dissipation at the mesoscale. Euler-Lagrange equations for the optimal density and current fields that sustain an arbitrary dissipation fluctuation are also derived. A perturbative solution thereof shows that the probability distribution of small fluctuations is always Gaussian, as expected from the central limit theorem. On the other hand, strong separation from the Gaussian behavior is observed for large fluctuations, with a distribution which shows no negative branch, thus violating the Gallavotti-Cohen fluctuation theorem, as expected from the irreversibility of the dynamics. The dissipation large-deviation function exhibits simple and general scaling forms for weakly and strongly dissipative systems, with large fluctuations favored in the former case but heavily suppressed in the latter. We apply our results to a general class of diffusive lattice models for which dissipation, nonlinear diffusion, and driving are the key ingredients. The theoretical predictions are compared to extensive numerical simulations of the microscopic models, and excellent agreement is found. Interestingly, the large-deviation function is in some cases nonconvex beyond some dissipation. These results show that a suitable generalization of macroscopic fluctuation theory is capable of

  7. A Climatological Study of Thermally Driven Wind Systems of the U.S. Intermountain West

    SciTech Connect

    Stewart, Jebb Q.; Whiteman, Charles D.; Steenburgh, W. J.; Bian, Xindi

    2002-05-01

    This paper investigates the diurnal evolution of thermally driven plain-mountain, valley, slope, and lake winds for summer fair-weather conditions in four regions of the Intermountain West where dense wind networks have been operated. Because of the diverse topography in these regions, the results are expected to be broadly representative of thermally driven wind climates in the Intermountain West. The regions include the Wasatch Front Valleys of northern Utah, the Snake River Plain of Idaho, the southern Nevada basin and range province, and central Arizona. The analysis examines wind characteristics including the regularity of the winds and interactions of four types of thermally driven winds. In general, on fair weather days, winds in all four regions exhibit a consistent direction from day to day at a given hour. A measure of this wind consistency is defined. The nighttime hours exhibit a high consistency, the daytime hours a moderate consistency, and transition periods a low consistency. The low consistency during the day-night and night-day transition periods reflects day-to-day variations in the timing of wind system reversals. Thermally driven circulations are similar in the four regions, but the Wasatch Front Valleys are influenced by lake breezes from the adjacent Great Salt Lake, the Snake River Plain is influenced by along-plain circulations and localized outflow from the Central Idaho Mountains, and winds in both southern Nevada and central Arizona are influenced by monsoonal plain-mountain circulations associated with regional-scale contrasts in elevation and surface heating.

  8. Development of an energy selector system for laser-driven proton beam applications

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Bijan Jia, S.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Margarone, D.; Pisciotta, P.; Romano, F.; Schillaci, F.; Stancampiano, C.; Tramontana, A.

    2014-03-01

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 1011 particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  9. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System

    PubMed Central

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki). PMID:26221624

  10. Self-driven perfusion culture system using a paper-based double-layered scaffold.

    PubMed

    Ozaki, Ai; Arisaka, Yoshinori; Takeda, Naoya

    2016-01-01

    Shear stress caused by fluid flow is known to promote tissue development from cells in vivo. Therefore, perfusion cultures have been studied to investigate the mechanisms involved and to fabricate engineered tissues in vitro, particularly those that include blood vessels. Microfluidic devices, which function with fine machinery of chambers and microsyringes for fluid flow and have small culture areas, are conventionally used for perfusion culture. In contrast, we have developed a self-driven perfusion culture system by using a paper-based double-layered scaffold as the fundamental component. Gelatin microfibers were electrospun onto a paper material to prepare the scaffold system, in which the constant perfusion of the medium and the scaffold for cell adhesion/proliferation were functionally divided into a paper and a gelatin microfiber layer, respectively. By applying both the capillary action and siphon phenomenon of the paper-based scaffold, which bridged two medium chambers at different height levels, a self-driven medium flow was achieved and the flow rate was also stable, constant, and quantitatively controllable. Moreover, the culture area was enlargeable to the cm(2) scale. The endothelial cells cultivated on this system oriented along the medium-flow direction, suggesting that the shear stress caused by medium flow was effectively applied. This perfusion culture system is expected to be useful for fabricating three-dimensional and large engineered tissues in the future. PMID:27550929

  11. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System.

    PubMed

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki). PMID:26221624

  12. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System.

    PubMed

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki).

  13. Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Arney, Dale; Rodgers, Erica; Antol, Jeff; Simon, Matthew; Hay, Jason; Larman, Kevin

    2015-01-01

    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities

  14. Threat driven modeling framework using petri nets for e-learning system.

    PubMed

    Khamparia, Aditya; Pandey, Babita

    2016-01-01

    Vulnerabilities at various levels are main cause of security risks in e-learning system. This paper presents a modified threat driven modeling framework, to identify the threats after risk assessment which requires mitigation and how to mitigate those threats. To model those threat mitigations aspects oriented stochastic petri nets are used. This paper included security metrics based on vulnerabilities present in e-learning system. The Common Vulnerability Scoring System designed to provide a normalized method for rating vulnerabilities which will be used as basis in metric definitions and calculations. A case study has been also proposed which shows the need and feasibility of using aspect oriented stochastic petri net models for threat modeling which improves reliability, consistency and robustness of the e-learning system. PMID:27119050

  15. Study on Operating Performance of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling, and industrial usage. There are several environmental merits of Stirling driven vapor compression (SDVC) systems. A design method for the SDVC, which is based on mathematical methods for Stirling and Ranking cycles, has been developed. The attractive SDVC performance using conventional and alternative refrigerants was shown. From the calculated Total Equivalent Warming Impact (TEWI) and operating costs, it became clear that the SDVC system with the alternative refrigerant has a higher potential as the future air-conditioning system.

  16. Threat driven modeling framework using petri nets for e-learning system.

    PubMed

    Khamparia, Aditya; Pandey, Babita

    2016-01-01

    Vulnerabilities at various levels are main cause of security risks in e-learning system. This paper presents a modified threat driven modeling framework, to identify the threats after risk assessment which requires mitigation and how to mitigate those threats. To model those threat mitigations aspects oriented stochastic petri nets are used. This paper included security metrics based on vulnerabilities present in e-learning system. The Common Vulnerability Scoring System designed to provide a normalized method for rating vulnerabilities which will be used as basis in metric definitions and calculations. A case study has been also proposed which shows the need and feasibility of using aspect oriented stochastic petri net models for threat modeling which improves reliability, consistency and robustness of the e-learning system.

  17. Evolution of a Driven Quantum System Toward a Quasi-Thermal State

    NASA Astrophysics Data System (ADS)

    Fotso, Herbert; Mikelsons, Karlis; Freericks, James; Department of Physics, Georgetown Univeristy Team

    2013-05-01

    We study the relaxation of an interacting system driven out of equilibrium by a constant electric field using Non-Equilibrium Dynamical Mean Field Theory. We use on the one hand a DMFT method which solves the steady state problem directly in frequency space, and on the other hand, a DMFT method that follows the transient time evolution of the system on the Keldysh contour. The system is described by the Falicov Kimball model which we follow across the metal - insulator transition. We find that the retarded Green's function quickly approaches that of the steady state while the lesser Green's function and, as a result the distribution function, slowly approach that of a steady state with an increased temperature due to the additional energy transferred to the system by the electric field. Analyses of this type can help understand the results of some experiments involving ultracold atomic gases.

  18. Development of dielectric elastomer driven micro-optical zoom lens system

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Jongkil; Chuc, Nguyen Huu; Choi, H. R.; Nam, J. D.; Lee, Y.; Jung, H. S.; Koo, J. C.

    2007-04-01

    Normally, various micro-scale devices adopt electromechanical actuators for their basic mechanical functions. Those types of actuators require a complicated power transfer system even for generating a tiny scale motion. Since the mechanical power transfer system for the micro-scale motion may require many components, the system design to fit those components into a small space is always challenging. Micro-optical zoom lens systems are recently popularly used for many portable IT devices such as digital cameras, camcorder, and cell phones, Noting the advantages of EAP actuators over the conventional electromechanical counterparts in terms of simple actuator mechanisms, a micro-optic device that is driven with the EAP actuator is introduced in the present work. EAP material selection, device design and fabrication will be also delineated.

  19. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  20. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel’s Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel’s Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  1. Bifurcation and hysteresis of plasma edge transport in a flux-driven system

    NASA Astrophysics Data System (ADS)

    Li, B.; Wang, X. Y.; Sun, C. K.; Zhou, A.; Liu, D.; Ma, C. H.; Wang, X. G.

    2016-10-01

    Transition dynamics and mean shear flow generation in plasma interchange turbulence are explored in a flux-driven system that resembles the plasma edge region. The nonlinear evolution of the interchange mode shows two confinement regimes with different transport levels. Large amplitude oscillations in the phase space of turbulence intensity and mean flow energy are observed and investigated. Both clockwise and counterclockwise oscillations occur during the transition between the two regimes. The Reynolds stress gradients are shown to play a critical role in the generation of mean sheared flows in the edge region. Both the forward and back transitions are simulated self-consistently and a significant hysteresis is found.

  2. Induced photoemission from driven nonadiabatic dynamics in an avoided crossing system

    SciTech Connect

    Arasaki, Yasuki; Mizuno, Yuta; Takatsuka, Kazuo; Scheit, Simona

    2014-12-21

    When vibrational dynamics on an ionic state (large dipole moment) is coupled to that on a neutral state (small dipole moment) such as at an avoided crossing in the alkali halide system, the population transfer between the states cause oscillation of the molecular dipole, leading to dipole emission. Such dynamics may be driven by an external field. We study how the coupled wavepacket dynamics is affected by the parameters (intensity, frequency) of the driving field with the aim of making use of the photoemission as an alternative detection scheme of femtosecond and subfemtosecond vibrational and electronic dynamics or as a characteristic optical source.

  3. Compositional Patterning in Systems Driven by Competing Dynamics Of Different Length Scale

    SciTech Connect

    Enrique, Raul A.; Bellon, Pascal

    2000-03-27

    We study an alloy system where short-ranged, thermally driven diffusion competes with externally imposed, finite-ranged, athermal atomic exchanges, as is the case in alloys under irradiation. Using a Cahn-Hilliard-type approach, we show that when the range of these exchanges exceeds a critical value labyrinthine concentration patterns at a mesoscopic scale can be stabilized. Furthermore, these steady-state patterns appear only for a window of the frequency of forced exchanges. Our results suggest that ion beams may provide a novel route to stabilize and tune the size of nanoscale structural features in materials. (c) 2000 The American Physical Society.

  4. Simulation of a Feedback System for the Attenuation of e-Cloud Driven Instability

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Fox, J.; Rivetta, C.; de Maria, R.; Rumolo, G.

    2009-05-04

    Electron clouds impose limitations on current accelerators that may be more severe for future machines, unless adequate measures of mitigation are taken. Recently, it has been proposed to use feedback systems operating at high frequency (in the GHz range) to damp single-bunch transverse coherent oscillations that may otherwise be amplified during the interaction of the beam with ambient electron clouds. We have used the simulation package WARP-POSINST and the code Headtail to study the growth rate and frequency patterns in space-time of the electron cloud driven beam breakup instability in the CERN SPS accelerator with, or without, an idealized feedback model for damping the instability.

  5. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics.

    PubMed

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel's Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel's Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  6. A fitness-driven cross-diffusion system from population dynamics as a gradient flow

    NASA Astrophysics Data System (ADS)

    Kondratyev, Stanislav; Monsaingeon, Léonard; Vorotnikov, Dmitry

    2016-09-01

    We consider a fitness-driven model of dispersal of N interacting populations, which was previously studied merely in the case N = 1. Based on some optimal transport distance recently introduced, we identify the model as a gradient flow in the metric space of Radon measures. We prove existence of global non-negative weak solutions to the corresponding system of parabolic PDEs, which involves degenerate cross-diffusion. Under some additional hypotheses and using a new multicomponent Poincaré-Beckner functional inequality, we show that the solutions converge exponentially to an ideal free distribution in the long time regime.

  7. Truncated correlation hierarchy schemes for driven-dissipative multimode quantum systems

    NASA Astrophysics Data System (ADS)

    Casteels, W.; Finazzi, S.; Le Boité, A.; Storme, F.; Ciuti, C.

    2016-09-01

    We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which is the sum of the exponents of the operators involved in the correlation functions: a ‘hard’ cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a ‘soft’ cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching crossover in the driven-dissipative Bose-Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.

  8. Truncated correlation hierarchy schemes for driven-dissipative multimode quantum systems

    NASA Astrophysics Data System (ADS)

    Casteels, W.; Finazzi, S.; Le Boité, A.; Storme, F.; Ciuti, C.

    2016-09-01

    We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which is the sum of the exponents of the operators involved in the correlation functions: a ‘hard’ cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a ‘soft’ cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching crossover in the driven-dissipative Bose–Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.

  9. An automated injection system for sub-micron sized channels used in shear-driven-chromatography.

    PubMed

    De Malsche, Wim; Clicq, David; Eghbali, Hamed; Fekete, Veronika; Gardeniers, Han; Desmet, Gert

    2006-10-01

    This paper describes a method to automatically and reproducibly inject sharply delimited sample plugs in the shallow (i.e., sub-micron) channels typically used in shear driven chromatography. The formation of asymmetric plugs, which typically occurs during loading of the sample in wide channels, is circumvented by etching a slit in the middle of the channel that is connected to a micro-well and a vacuum system with syringes for the supply of both the analyte and the mobile phase. The design of the injection slit was supported by a series of CFD simulations to optimize its shape and that of the corresponding injection well. The system was intensively tested experimentally and showed good reproducibility, both for the width and the area of the injected peaks (relative standard deviations are max. 4 and 6%, respectively). The concentration of the injected plug was found to be approximately 80% of the original sample concentration. It was also observed that with the current setup the lower limit of the peak width was about 120 microm. This is a consequence of the fact that the peak width originating from the convection filling step becomes negligible to the contribution of diffusion during the filling and flushing time. Being fully automated and perfectly closed, the presently proposed injection system also paves the way to integrate other functionalities in shear driven chromatography, i.e. gradient elution and parallelization. PMID:17102846

  10. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  11. Decoherence of a driven quantum system interacting with environment through many degrees of freedom

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongyuan; Chu, Shih-I.; Han, Siyuan

    2007-06-01

    We present a comprehensive approach for the study of decoherence of an ac-field-driven multilevel quantum system interacting with environment through many degrees of freedom. In this approach, the system is described by a reduced density operator and the environment is characterized by a number of spectral densities. The reduced density operator is governed by a master equation in which the effect of ac fields and leakage to non-computational states are included. The approach is applied to investigate decoherence of a SQUID flux qubit with a two-dimensional (2D) potential coupled to environment through its control and readout circuits. The calculated relaxation time agrees well with experimental result when the potential is quasi one-dimensional (1D). Effects of the second degree of freedom, which is frozen in a quasi-1D system, on relaxation and decoherence times are examined systematically by varying circuit parameters.

  12. Plug nozzles - The ultimate customer driven propulsion system. [applied to manned lunar and Martian landers

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in the study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  13. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  14. Anisotropic etching of monocrystalline silicon under subcritical conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pereyra, Nestor Gabriel

    Sub- and supercritical fluids remain an underexploited resource for materials processing. Around its critical point a common compound such as water behaves like a different substance exhibiting changes in its properties that modify its behavior as a solvent and unlock reaction paths not viable in other conditions. In the subcritical region water's properties can be directed by controlling temperature and pressure. Water and silicon are two of the most abundant, versatile, environmentally non-harmful, and simplest substances on Earth. They are among the most researched and best-known substances. Both are ubiquitous and essential for present-day world. Silicon is fundamental in semiconductor fabrication, microelectromechanical systems, and photovoltaic cells. Wet etching of silicon is a fabrication strategy shared by these three applications. Processing of silicon requires large amounts of water, often involving dangerous and environmentally hazardous chemicals. Yet, minimal knowledge is available on the ways high temperature water interacts with crystalline silicon. The purpose of this project is to identify and implement a method for the modification of monocrystalline silicon surfaces with three important characteristics: 1) requires minimal amounts of added chemicals, 2) controllability of morphological features formed, 3) reduced processing time. This will be accomplished by subjecting crystalline silicon to diluted alkaline solutions working in the subcritical region of water. This approach allows for variations on surface morphologies and etching rates by adapting the reactions conditions, with focus on composition and temperature of the solutions used. The work reported discusses the techniques used for producing surfaces with a variety of morphologies that ultimately allowed to create patterns and textures on silicon wafers, using highly diluted alkaline solutions that can be used for photovoltaic applications. These morphologies were created with a

  15. Resonant phenomenon of elliptical cylinder flows in a subcritical regime

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Sheng; Yen, Ruey-Hor

    2011-11-01

    The resonant phenomena in the wake behind a transversely vibrating elliptical cylinder with different axis ratios from Ar = 0.01 to Ar = 2.0 in the subcritical regime is numerically investigated. Navier-Stokes equations are solved by a spectral element code with a triangular mesh. Reynolds numbers range from 15 to 60 and the Roshko numbers range from 0.5 to 8 for different elliptical cylinders. Both the velocity and pressure responses in the wake are measured and analyzed. The investigations of the drag coefficients and the wake streamlines indicate that the cylinder's axis ratio has a minor effect on the resonant frequency, Ron. However, the cylinder's axis ratio is found to have a prominent effect on the resonant amplitude; namely, the smaller the cylinder's axis ratio, the stronger the occurrence of resonant amplitude. The investigations of resonant responses of both the velocity and pressure and the probe locations may provide information for designing a flow meter based on pressure responses in the subcritical regime. It shows that the ratio of velocity and pressure responses poses a great linear relationship against the probe distance behind the vibrating cylinder. Moreover, a resonant method based on the different resonant frequencies at different probed locations in the subcritical regime to predict the critical conditions is examined and verified for different elliptical cylinders. Finally, based on the critical values found, a reduced Reynolds number and a reduced Roshko number are proposed to unify the different linear relationships resulting from different elliptical cylinder flows. The result indicates that the effect of axis ratio can be stripped off in the reduced plane, which may be applied to a more generalized cylinder shape.

  16. Theoretical prediction of airplane stability derivatives at subcritical speeds

    NASA Technical Reports Server (NTRS)

    Tulinius, J.; Clever, W.; Nieman, A.; Dunn, K.; Gaither, B.

    1973-01-01

    The theoretical development and application is described of an analysis for predicting the major static and rotary stability derivatives for a complete airplane. The analysis utilizes potential flow theory to compute the surface flow fields and pressures on any configuration that can be synthesized from arbitrary lifting bodies and nonplanar thick lifting panels. The pressures are integrated to obtain section and total configuration loads and moments due side slip, angle of attack, pitching motion, rolling motion, yawing motion, and control surface deflection. Subcritical compressibility is accounted for by means of the Gothert similarity rule.

  17. The subcritical baroclinic instability in local accretion disc models

    NASA Astrophysics Data System (ADS)

    Lesur, G.; Papaloizou, J. C. B.

    2010-04-01

    Context. The presence of vortices in accretion discs has been debated for more than a decade. Baroclinic instabilities might be a way to generate these vortices in the presence of a radial entropy gradient. However, the nature of these instabilities is still unclear and 3D parametric instabilities can lead to the rapid destruction of these vortices. Aims: We present new results exhibiting a subcritical baroclinic instability (SBI) in local shearing box models. We describe the 2D and 3D behaviour of this instability using numerical simulations and we present a simple analytical model describing the underlying physical process. Methods: We investigate the SBI in local shearing boxes, using either the incompressible Boussinesq approximation or a fully compressible model. We explore the parameter space varying several local dimensionless parameters and we isolate the regime relevant for the SBI. 3D shearing boxes are also investigated using high resolution spectral methods to resolve both the SBI and 3D parametric instabilities. Results: A subcritical baroclinic instability is observed in flows stable for the Solberg-Hoïland criterion using local simulations. This instability is found to be a nonlinear (or subcritical) instability, which cannot be described by ordinary linear approaches. It requires a radial entropy gradient weakly unstable for the Schwartzchild criterion and a strong thermal diffusivity (or equivalently a short cooling time). In compressible simulations, the instability produces density waves which transport angular momentum outward with typically α ⪉ 3 × 10-3, the exact value depending on the background temperature profile. Finally, the instability survives in 3D, vortex cores becoming turbulent due to parametric instabilities. Conclusions: The subcritical baroclinic instability is a robust phenomenon, which can be captured using local simulations. The instability survives in 3D thanks to a balance between the 2D SBI and 3D parametric

  18. Electric field measurements at subcritical, oblique bow shock crossings

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Bensadoun, M.; Mozer, F. S.

    1987-01-01

    ISEE-1 electric field measurements at three oblique, subcritical dispersive bow shock crossings are presented. The potential drops across the shock due to the large spatial scale normal component of the electric field were found to vary between 340 and 520 V. The measurements provide the first observations in a space plasma of the oscillations in the normal component of the electric field connected with the whistler precursor phase standing at a collisionless shock. Intense, rapidly varying electric fields with peak amplitudes ranging up to 100 mV/m were observed at the magnetic ramp of the shock in the high time resolution data.

  19. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  20. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2016-07-12

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  1. Thermodynamics of two-stroke engine based on periodically driven two-level system

    NASA Astrophysics Data System (ADS)

    Chvosta, Petr; Holubec, Viktor; Ryabov, Artem; Einax, Mario; Maass, Philipp

    2010-01-01

    We investigate a microscopic motor based on an externally driven two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two energy levels are driven with a constant rate. The occupation probabilities of the two states evolve according to the Pauli rate equation and represent the delayed system's response to the external driving. We give the exact solution of the Pauli rate equation and discuss its thermodynamical consequences. In particular, we calculate the motor's efficiency, the power output, and the performance dependence on the control parameters. Secondly, we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. Our exact calculation of the evolution operator for the augmented process allows one to discuss in detail the probability density for the work during the limit cycle. In the strongly irreversible regime, the density shows strong deviations from a Gaussian shape.

  2. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    A gas engine-driven heat pump (GHP) uses a natural gas-or LPG-powered engine to drive the compressor in a vapor-compression refrigeration cycle. The GHP has the benefits of being able to use the fuel energy effectively by recovering waste heat from the engine jacket coolant and exhaust gas and also to keep high efficiency even at part-load operation by varying the engine speed with relative ease. Hence, energy-efficient heat source systems for air-conditioning and hot water supply may be constructed with GHP chillers in place of conventional electrical-driven heat pump chillers. GHPs will necessarily contribute to the peak shaving of electrical demand in summer. In this study, the performance characteristics of a 457kW GHP chiller have been investigated by a simulation model analysis, for both cooling and heating modes. From the results of the analysis, it has been found that the part-load characteristics of the GHP chiller are fairly well. The evaluation of the heat source systems using GHP chillers will be described in Part 2.

  3. Real World Data Driven Evolution of Volvo Cars’ Side Impact Protection Systems and their Effectiveness

    PubMed Central

    Jakobsson, Lotta; Lindman, Magdalena; Svanberg, Bo; Carlsson, Henrik

    2010-01-01

    This study analyses the outcome of the continuous improved occupant protection over the last two decades for front seat near side occupants in side impacts based on a real world driven working process. The effectiveness of four generations of improved side impact protection are calculated based on data from Volvo’s statistical accident database of Volvo Cars in Sweden. Generation I includes vehicles with a new structural and interior concept (SIPS). Generation II includes vehicles with structural improvements and a new chest airbag (SIPSbag). Generation III includes vehicles with further improved SIPS and SIPSbag as well as the new concept with a head protecting Inflatable Curtain (IC). Generation IV includes the most recent vehicles with further improvements of all the systems plus advanced sensors and seat belt pretensioner activation. Compared to baseline vehicles, vehicles of generation I reduce MAIS2+ injuries by 54%, generation II by 61% and generation III by 72%. For generation IV effectiveness figures cannot be calculated because of the lack of MAIS2+ injuries. A continuous improved performance is also seen when studying the AIS2+ pelvis, abdomen, chest and head injuries separately. By using the same real world driven working process, future improvements and possibly new passive as well as active safety systems, will be developed with the aim of further improved protection to near side occupants in side impacts. PMID:21050597

  4. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    PubMed

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  5. Rotationally driven Fragmentation in the Formation of the Binary Protostellar System L1551 IRS 5

    NASA Astrophysics Data System (ADS)

    Lim, Jeremy; Yeung, Paul K. H.; Hanawa, Tomoyuki; Takakuwa, Shigehisa; Matsumoto, Tomoaki; Saigo, Kazuya

    2016-08-01

    Both bulk rotation and local turbulence have been widely suggested to drive the fragmentation in collapsing cores that produces multiple star systems. Even when the two mechanisms predict different alignments for stellar spins and orbits, subsequent internal or external interactions can drive multiple systems toward or away from alignment, thus masking their formation processes. Here, we demonstrate that the geometrical and dynamical relationship between a binary system and its surrounding bulk envelope provide the crucial distinction between fragmentation models. We find that the circumstellar disks of the binary protostellar system L1551 IRS 5 are closely parallel, not just with each other but also with their surrounding flattened envelope. Measurements of the relative proper motion of the binary components spanning nearly 30 years indicate an orbital motion related to that of the envelope rotation. Eliminating orbital solutions whereby the circumstellar disks would be tidally truncated to sizes smaller than observed, the remaining solutions favor a circular or low-eccentricity orbit tilted by up to ˜25° from the circumstellar disks. Turbulence-driven fragmentation can generate local angular momentum to produce a coplanar binary system, but this would have no particular relationship to the system’s surrounding envelope. Instead, the observed properties conform with predictions for rotationally driven fragmentation. If the fragments were produced at different heights or on opposite sides of the mid-plane in the flattened central region of a rotating core, the resulting protostars would then exhibit circumstellar disks parallel with the surrounding envelope but tilted from the orbital plane, as is observed.

  6. An Integrative Computational Framework for Hypotheses-Driven Systems Biology Research in Proteomics and Genomics

    SciTech Connect

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.; Willse, Alan R.; Singhal, Mudita; McCue, Lee Ann; McDermott, Jason E.; Taylor, Ronald C.; Waters, Katrina M.; Oehmen, Christopher S.

    2009-04-01

    Systems biology research is sometimes categorized as either discovery science or hypothesis-driven science. However, we believe that hypotheses are always used regardless, and that explicit recognition that hypothesis testing underlies all high-throughput data analysis leads to better experimental designs, data analysis and interpretation of the data. We outline the current use of hypothesis testing for proteomics data analysis in systems biology research for several projects at the Pacific Northwest National Laboratory, and provide examples of where scientific principles can be used to formulate the hypotheses used to analyze the data. We additionally discuss the data infrastructure is required to (1) track the data from different projects and diverse assays, (2) pull the data together in a congruent manner, (3) analyze the data with respect to cellular networks, and (4) visualize the resulting networks and contrast those with information from bioinformatics databases.

  7. Thermalization in a Coherently Driven Ensemble of Two-Level Systems

    SciTech Connect

    Lesanovsky, Igor; Olmos, Beatriz; Garrahan, Juan P.

    2010-09-03

    We investigate the coherent quantum time evolution of a driven mesoscopic chain of two-level systems that interact via the van der Waals interaction in their excited state. The Hamiltonian is the sum of a classical lattice gas Hamiltonian and an off-diagonal driving term without classical counterpart. Starting from a product state we observe - beyond a certain interaction strength - thermalization of the system with respect to observables of the classical lattice gas. This transition can be studied experimentally with Rydberg atoms, ions, or polar molecules. We suggest how to experimentally determine the temperature of the thermal state which should allow for thermometry of the internal degrees of freedom of cold Rydberg gases whose external dynamics is frozen.

  8. Multifractality at non-Anderson disorder-driven transitions in Weyl semimetals and other systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gurarie, V.; Radzihovsky, L.

    2016-10-01

    Systems with the power-law quasiparticle dispersion ɛk ∝kα exhibit non-Anderson disorder-driven transitions in dimensions d > 2 α, as exemplified by Weyl semimetals, 1D and 2D arrays of ultracold ions with long-range interactions, quantum kicked rotors, and semiconductor models in high dimensions. We study the wavefunction structure in such systems and demonstrate that at these transitions they exhibit fractal behaviour with an infinite set of multifractal exponents. The multifractality persists even when the wavefunction localisation is forbidden by symmetry or topology and occurs as a result of elastic scattering between all momentum states in the band on length scales shorter than the mean free path. We calculate explicitly the multifractal spectra in semiconductors and Weyl semimetals using one-loop and two-loop renormalisation-group approaches slightly above the marginal dimension d = 2 α.

  9. Using XML Configuration-Driven Development to Create a Customizable Ground Data System

    NASA Technical Reports Server (NTRS)

    Nash, Brent; DeMore, Martha

    2009-01-01

    The Mission data Processing and Control Subsystem (MPCS) is being developed as a multi-mission Ground Data System with the Mars Science Laboratory (MSL) as the first fully supported mission. MPCS is a fully featured, Java-based Ground Data System (GDS) for telecommand and telemetry processing based on Configuration-Driven Development (CDD). The eXtensible Markup Language (XML) is the ideal language for CDD because it is easily readable and editable by all levels of users and is also backed by a World Wide Web Consortium (W3C) standard and numerous powerful processing tools that make it uniquely flexible. The CDD approach adopted by MPCS minimizes changes to compiled code by using XML to create a series of configuration files that provide both coarse and fine grained control over all aspects of GDS operation.

  10. Hydrodynamic Instabilities Driven by Acid-base Neutralization Reaction in Immiscible System

    NASA Astrophysics Data System (ADS)

    Asad, Ahmed; Yang, Ya-hui; Chai, Chuan; Wu, Jiang-tao

    2010-10-01

    The hydrodynamic instabilities driven by an acid-base neutralization reaction, in contact along a plane interface, placed in a Hele-Shaw cell under the gravitational field are reported. The system consists of the heavier aqueous tetramethyle-ammonium hydroxide below the lighter layer of organic phase with propionic acid as reacting specie. The effect of chemical composition on hydrodynamic instabilities during interfacial mass transfer accompanied by a neutralization reaction is investigated. Depending on the initial concentration of the reacting species, Marangoni convection in the form of roll cells or trains of waves is observed. Mach-Zehnder interferometer is used to measure the change in base concentration at the time of instability formation. The results show that the instabilities resulted from the convection flow are more efficient to the mechanism of mass transfer and can drastically alter pattern formation in the system.

  11. Versatile microwave-driven trapped ion spin system for quantum information processing.

    PubMed

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof

    2016-07-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  12. Versatile microwave-driven trapped ion spin system for quantum information processing.

    PubMed

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof

    2016-07-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.

  13. Versatile microwave-driven trapped ion spin system for quantum information processing

    PubMed Central

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof

    2016-01-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    TOFFER, H.

    2006-07-18

    and four (4) spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data, such as the uncertainty in fuel exposure impact on reactivity and the pulse neutron data evaluation methodology, failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

  15. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Han, Chulhee; Han, Young-Min; Choi, Seung-Bok

    2014-07-01

    A direct-drive valve (DDV) system is a kind of electrohydraulic servo valve system, in which the actuator directly drives the spool of the valve. In conventional DDV systems, the spool is generally driven by an electromagnetic actuator. Performance characteristics such as frequency bandwidth of DDV systems driven by the electromagnetic actuator are limited due to the actuator response property. In order to improve the performance characteristics of conventional DDV systems, in this work a new configuration for a direct-drive valve system actuated by a piezostack actuator with a flexible beam mechanism is proposed (in short, a piezo-driven DDV system). Its benefits are demonstrated through both simulation and experiment. After describing the geometric configuration and operational principle of the proposed valve system, a governing equation of the whole system is obtained by combining the dynamic equations of the fluid part and the structural parts: the piezostack, the flexible beam, and the spool. In the structural parts of the piezostack and flexible beam, a lumped parameter modeling method is used, while the conventional rule of the fluid momentum is used for the fluid part. In order to evaluate valve performances of the proposed system, an experimental apparatus consisting of a hydraulic circuit and the piezo-driven DDV system is established. The performance characteristics are evaluated in terms of maximum spool displacement, flow rate, frequency characteristics, and step response. In addition, in order to advocate the feasibility of the proposed dynamic model, a comparison between simulation and experiment is undertaken.

  16. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  17. Subcritical water extractor for Mars analog soil analysis.

    PubMed

    Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

    2008-06-01

    Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C). PMID:18680410

  18. Accelerated subcritical drying of large alkoxide silica gels

    NASA Astrophysics Data System (ADS)

    Wang, Shiho; Kirkbir, Fikret; Chaudhuri, S. R.; Sarkar, Arnab

    1992-12-01

    Fracture during drying has been the key hurdle in fabrication of large monolithic silica glass from alkoxide gels. Although existing literature suggests pore enlargement, aging, chemical additives, supercritical drying and freeze drying as helpful in avoiding fracture during drying, successful accelerated sub-critical drying of large silica monoliths from alkoxide gels has not yet been reported. In the present approach, acid catalyzed sols of TEOS, ethanol and water (pH equals 2) were cast as cylindrical rods in plastic molds of 8.0 and 10.0 cm diameter with volumes of 2000 cc and 3000 cc respectively. The resultant gels were aged for about 7 days and dried in a specially designed chamber under sub-critical conditions of the pore field. We have obtained monolithic dry gels in drying times of 3 - 7 days for sizes of 2000 - 3000 cc. The dry gels have narrow unimodal pore size distributions, with average pore radius of about 20 angstroms as measured by BET. Although capillary stress during drying increases with reduction of pore size, it was found that in this approach it is easier to dry gels of smaller pore size.

  19. Relationship analysis between flavonoids structure and subcritical water extraction (SWE).

    PubMed

    Ko, Min-Jung; Cheigh, Chan-Ick; Chung, Myong-Soo

    2014-01-15

    Subcritical water (about 10MPa) is an excellent solvent for extracting non-polar flavonoids by varying the temperature-dependent dielectric constant. This study determined the optimum conditions for subcritical water extraction (SWE), such as the time and temperature, for extracting flavonoids from eight plants, and their dependence on the chemical structure of flavonoids (polarity of side chains and the presence of sugar, and double bonds). Flavonoids having an OH side chain (quercetin at 170°C/10min) were optimally extracted at lower temperatures than O-CH3 (isorhamnetin at 190°C/15min) and H (kaempferol at 190°C/15min) side chains. The optimal temperatures of the glycoside forms including sugar, such as quercitrin (110°C/5min), spiraeoside (150°C/15min), and isoquercitrin (150°C/15min), were lower than of the less-polar aglycones (170°C/10min and 190°C/15min). Apigenin, having double bonds, was extracted well at a higher temperature (190°C/15min) than naringenin (170°C/15min) in SWE. PMID:24054224

  20. Subcritical Water Extractor for Mars Analog Soil Analysis

    NASA Astrophysics Data System (ADS)

    Amashukeli, Xenia; Grunthaner, Frank J.; Patrick, Steven B.; Yung, Pun To

    2008-06-01

    Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2 55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25 250°C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between ˜80 (at 25°C) and ˜30 (at 250°C).

  1. Cascades and cognitive state: focused attention incurs subcritical dynamics.

    PubMed

    Fagerholm, Erik D; Lorenz, Romy; Scott, Gregory; Dinov, Martin; Hellyer, Peter J; Mirzaei, Nazanin; Leeson, Clare; Carmichael, David W; Sharp, David J; Shew, Woodrow L; Leech, Robert

    2015-03-18

    The analysis of neuronal avalanches supports the hypothesis that the human cortex operates with critical neural dynamics. Here, we investigate the relationship between cascades of activity in electroencephalogram data, cognitive state, and reaction time in humans using a multimodal approach. We recruited 18 healthy volunteers for the acquisition of simultaneous electroencephalogram and functional magnetic resonance imaging during both rest and during a visuomotor cognitive task. We compared distributions of electroencephalogram-derived cascades to reference power laws for task and rest conditions. We then explored the large-scale spatial correspondence of these cascades in the simultaneously acquired functional magnetic resonance imaging data. Furthermore, we investigated whether individual variability in reaction times is associated with the amount of deviation from power law form. We found that while resting state cascades are associated with approximate power law form, the task state is associated with subcritical dynamics. Furthermore, we found that electroencephalogram cascades are related to blood oxygen level-dependent activation, predominantly in sensorimotor brain regions. Finally, we found that decreased reaction times during the task condition are associated with increased proximity to power law form of cascade distributions. These findings suggest that the resting state is associated with near-critical dynamics, in which a high dynamic range and a large repertoire of brain states may be advantageous. In contrast, a focused cognitive task induces subcritical dynamics, which is associated with a lower dynamic range, which in turn may reduce elements of interference affecting task performance. PMID:25788679

  2. IoT-Based User-Driven Service Modeling Environment for a Smart Space Management System

    PubMed Central

    Choi, Hoan-Suk; Rhee, Woo-Seop

    2014-01-01

    The existing Internet environment has been extended to the Internet of Things (IoT) as an emerging new paradigm. The IoT connects various physical entities. These entities have communication capability and deploy the observed information to various service areas such as building management, energy-saving systems, surveillance services, and smart homes. These services are designed and developed by professional service providers. Moreover, users' needs have become more complicated and personalized with the spread of user-participation services such as social media and blogging. Therefore, some active users want to create their own services to satisfy their needs, but the existing IoT service-creation environment is difficult for the non-technical user because it requires a programming capability to create a service. To solve this problem, we propose the IoT-based user-driven service modeling environment to provide an easy way to create IoT services. Also, the proposed environment deploys the defined service to another user. Through the personalization and customization of the defined service, the value and dissemination of the service is increased. This environment also provides the ontology-based context-information processing that produces and describes the context information for the IoT-based user-driven service. PMID:25420153

  3. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    NASA Astrophysics Data System (ADS)

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2014-11-01

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  4. IoT-based user-driven service modeling environment for a smart space management system.

    PubMed

    Choi, Hoan-Suk; Rhee, Woo-Seop

    2014-11-20

    The existing Internet environment has been extended to the Internet of Things (IoT) as an emerging new paradigm. The IoT connects various physical entities. These entities have communication capability and deploy the observed information to various service areas such as building management, energy-saving systems, surveillance services, and smart homes. These services are designed and developed by professional service providers. Moreover, users' needs have become more complicated and personalized with the spread of user-participation services such as social media and blogging. Therefore, some active users want to create their own services to satisfy their needs, but the existing IoT service-creation environment is difficult for the non-technical user because it requires a programming capability to create a service. To solve this problem, we propose the IoT-based user-driven service modeling environment to provide an easy way to create IoT services. Also, the proposed environment deploys the defined service to another user. Through the personalization and customization of the defined service, the value and dissemination of the service is increased. This environment also provides the ontology-based context-information processing that produces and describes the context information for the IoT-based user-driven service.

  5. Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2016-08-01

    A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Förster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.

  6. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    SciTech Connect

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P

    2014-11-15

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  7. Weather-driven dynamics in a dual-migrant system: moths and bats.

    PubMed

    Krauel, Jennifer J; Westbrook, John K; McCracken, Gary F

    2015-05-01

    Animal migrations generate large spatial and temporal fluctuations in biomass that provide a resource base for many predator-prey interactions. These interactions are often driven by continent-scale weather patterns and are difficult to study. Few studies have included migratory animals on more than a single trophic level or for periods spanning multiple entire seasons. We tracked migrations of three species of agricultural pest noctuid moths over the 2010-2012 autumn seasons as the moths travelled past a large colony of migratory Brazilian free-tailed bats (Tadarida brasiliensis) in Texas. Increases in moth abundance, mass of bats and duration of bat activity outside of the cave were correlated with passage of cold fronts over the study area and related increases in northerly wind. Moth responses to weather patterns varied among species and seasons, but overall moth abundances were low in late summer and spiked after one or more cold front passages in September and October. Changes in bat mass and behaviour appear to be consequences of bat migration, as cave use transitioned from summer maternity roost to autumn migratory stopover sites. Weather-driven migration is at considerable risk from climate change, and bat and moth responses to that change may have marked impacts on agricultural systems and bat ecosystem services.

  8. Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Plunk, G. G.; Xanthopoulos, P.; Helander, P.

    2016-08-01

    The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit where this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.

  9. Subcritical dyke propagation in a host rock with temperature-dependent viscoelastic properties

    NASA Astrophysics Data System (ADS)

    Chen, Zuan; Jin, Z.-H.

    2011-09-01

    In this paper, we examine the effects of temperature-dependent viscoelastic properties of the host rock on the subcritical growth of a dyke from a magma chamber. A theoretical relationship between the velocity of subcritical dyke growth and dyke length is established using a perturbation solution of stress intensity factor at the dyke tip and a viscoelastic crack growth theory in which the temperature-dependent creep properties are taken into account. The temperature field around the dyke is calculated using an analytic solution. The numerical results for a dyke subcritically propagating from a magma chamber indicate that while the general dyke growth characteristics are similar to those with constant creep properties, the subcritical dyke growth velocity is increased by an order of magnitude by considering the temperature dependence of the creep properties. Hence, the subcritical growth duration before the dyke reaches the unstable growth state is significantly shortened.

  10. Explicit solutions of normal form of driven oscillatory systems in entrainment bands

    NASA Astrophysics Data System (ADS)

    Tsarouhas, George E.; Ross, John

    1988-11-01

    As in a prior article (Ref. 1), we consider an oscillatory dissipative system driven by external sinusoidal perturbations of given amplitude Q and frequency ω. The kinetic equations are transformed to normal form and solved for small Q near a Hopf bifurcation to oscillations in the autonomous system. Whereas before we chose irrational ratios of the frequency of the autonomous system ωn to ω, with quasiperiodic response of the system to the perturbation, we now choose rational coprime ratios, with periodic response (entrainment). The dissipative system has either two variables or is adequately described by two variables near the bifurcation. We obtain explicit solutions and develop these in detail for ωn/ω=1; 1:2; 2:1; 1:3; 3:1. We choose a specific dissipative model (Brusselator) and test the theory by comparison with full numerical solutions. The analytic solutions of the theory give an excellent approximation for the autonomous system near the bifurcation. The theoretically predicted and calculated entrainment bands agree very well for small Q in the vicinity of the bifurcation (small μ); deviations increase with increasing Q and μ. The theory is applicable to one or two external periodic perturbations.

  11. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    SciTech Connect

    Bankaitis, H

    1982-03-01

    Several concepts of lightning accommodation systems for wind-driven turbine rotor blades were evaluated by submitting them to simulated lightning tests. Test samples representative of epoxy-fiberglass and wood-epoxy composite structural materials were submitted to a series of high-voltage and high-current damage tests. The high-voltage tests were designed to determine the strike points and current paths through the sample and the need for, and the most proper type of, lightning accommodation. The high-current damage tests were designed to determine the capability of the potential lightning accommodation system to sustain the 200-kA lightning current without causing damage to the composite structure. The observations and data obtained in the series of tests of lightning accommodation systems clearly led to the conclusions that composite-structural-material rotor blades require a lightning accommodation system; that the concepts tested prevent internal streamering; and that keeping discharge currents on the blade surface precludes structure penetration. Induced voltage effects or any secondary effects on the integral components of the total system could not be addressed. Further studies should be carried out to encompass effects on the total system design.

  12. Data-driven modeling, control and tools for cyber-physical energy systems

    NASA Astrophysics Data System (ADS)

    Behl, Madhur

    Energy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity. This requires the use of control-oriented predictive models of an energy system's dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems. We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about

  13. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    SciTech Connect

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.

  14. Bias-modulated dynamics of a strongly driven two-level system

    NASA Astrophysics Data System (ADS)

    Lü, Zhiguo; Yan, Yiying; Goan, Hsi-Sheng; Zheng, Hang

    2016-03-01

    We investigate the bias-modulated dynamics of a strongly driven two-level system using the counterrotating-hybridized rotating-wave (CHRW) method. This CHRW method treats the driving field and the bias on equal footing by a unitary transformation with two parameters ξ and ζ , and is nonperturbative in driving strength, tunneling amplitude, or bias. In addition, this CHRW method is beyond the traditional rotating-wave approximation (Rabi-RWA) and yet by properly choosing the two parameters ξ and ζ , the transformed Hamiltonian takes the RWA form with a renormalized energy splitting and a renormalized driving strength. The reformulated CHRW method possesses the same mathematical simplicity as the Rabi-RWA approach and thus allows us to calculate analytically the dynamics and explore explicitly the effect of the bias. We show that the CHRW method gives the accurate driven dynamics for a wide range of parameters as compared to the numerically exact results. When energy scales of the driving are comparable to the intrinsic energy scale of the two-level systems, the counterrotating interactions and static bias profoundly influence the generalized Rabi frequency. In this regime, where ordinary perturbation approaches fail, the CHRW works very well and efficiently. We also demonstrate the dynamics of the system in the strong-driving and off-resonance cases for which the Rabi-RWA method breaks down but the CHRW method remains valid. We obtain analytical expressions for the generalized Rabi frequency and bias-modulated Bloch-Siegert shift as functions of the bias, tunneling, and driving field parameters. The CHRW approach is a mathematically simple and physically clear method. It can be applied to treat some complicated problems for which a numerical study is difficult to perform.

  15. Drag in a resonantly driven polariton fluid

    NASA Astrophysics Data System (ADS)

    Berceanu, A. C.; Cancellieri, E.; Marchetti, F. M.

    2012-06-01

    We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect.

  16. Drag in a resonantly driven polariton fluid.

    PubMed

    Berceanu, A C; Cancellieri, E; Marchetti, F M

    2012-06-13

    We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect.

  17. The super- and sub-critical effects for dielectric constant in diethyl ether

    NASA Astrophysics Data System (ADS)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.

    2016-06-01

    Results of dielectric constant (ɛ) studies in diethyl ether for the surrounding of the gas - liquid critical point, TC - 130 K < T < TC + 50 K, are presented. The analysis recalls the physics of critical phenomena for portraying ɛ (T) evolution along branches of the coexistence curve, along its diameter (d(T)) and in the supercritical domain for T > TC. For the ultrasound sonicated system, the split into coexisting phases disappeared and dielectric constant approximately followed the pattern of the diameter. This may indicate the possibility of the extension of the "supercritical technology" into the ultrasound "homogenized" subcritical domain: the "strength" and the range of the precritical effect of d(T) are ca. 10× larger than for ɛ (T > TC).

  18. Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations

    DOE PAGESBeta

    Seal, Katyayani; Genov, Dentcho A.

    2012-01-01

    Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption) that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metalmore » concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.« less

  19. The super- and sub-critical effects for dielectric constant in diethyl ether.

    PubMed

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J

    2016-06-14

    Results of dielectric constant (ε) studies in diethyl ether for the surrounding of the gas - liquid critical point, TC - 130 K < T < TC + 50 K, are presented. The analysis recalls the physics of critical phenomena for portraying ε (T) evolution along branches of the coexistence curve, along its diameter (d(T)) and in the supercritical domain for T > TC. For the ultrasound sonicated system, the split into coexisting phases disappeared and dielectric constant approximately followed the pattern of the diameter. This may indicate the possibility of the extension of the "supercritical technology" into the ultrasound "homogenized" subcritical domain: the "strength" and the range of the precritical effect of d(T) are ca. 10× larger than for ε (T > TC). PMID:27306017

  20. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  1. Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    NASA Astrophysics Data System (ADS)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-06-01

    the TE modules. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high-performance TE devices, and microtechnologies to produce a compact, lightweight, combustion-driven TE power system prototype that operates on common fuels.

  2. [An Electroencephalogram-driven Personalized Affective Music Player System: Algorithms and Preliminary Implementation].

    PubMed

    Ma, Yong; Li, Juan; Lu, Bin

    2016-02-01

    In order to monitor the emotional state changes of audience on real-time and to adjust the music playlist, we proposed an algorithm framework of an electroencephalogram (EEG) driven personalized affective music recommendation system based on the portable dry electrode shown in this paper. We also further finished a preliminary implementation on the Android platform. We used a two-dimensional emotional model of arousal and valence as the reference, and mapped the EEG data and the corresponding seed songs to the emotional coordinate quadrant in order to establish the matching relationship. Then, Mel frequency cepstrum coefficients were applied to evaluate the similarity between the seed songs and the songs in music library. In the end, during the music playing state, we used the EEG data to identify the audience's emotional state, and played and adjusted the corresponding song playlist based on the established matching relationship. PMID:27382737

  3. Utilizing the Plateau-Rayleigh Instability with Heat-Driven Nano-Biosensing Systems.

    PubMed

    Liu, Dan-dan; Xu, Yu-mei; Ding, Xian-ting; Yang, Jian; Ma, Zhi-jun

    2015-08-01

    Plateau-Rayleigh instability describes the infinite falling stream of fluid breaks into smaller droplets. With the development of nanotechnology, more and more attention is being drawn to Plateau-Rayleigh instability. This surface tension-driven instability performs well in the preparation of the nanoparticles, especially in photonics applications, such as optical micro-resonators in nano-biosensing systems. In this article, we mainly adopt the thermal fluid coupling method. The effect of temperature field on instability is studied with the aid of numerical simulation. In addition, the radius of the inner fluid column, the thickness of the outer fluid, and the temperature gradient are also studied to explore how the factors influence the Plateau-Rayleigh instability. The wavelength of the instability is characterized by droplet diameter, which is formed through the process caused by Plateau-Rayleigh instability. PMID:25770095

  4. Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region

    SciTech Connect

    Xiao, C. Z.; Huang, T. W.; Liu, Z. J.; Zheng, C. Y.; He, X. T.; Qiao, B.

    2014-03-15

    Theoretical analysis and corresponding 1D Particle-in-Cell (PIC) simulations of ponderomotive driven Vlasov–Poisson system in electron acoustic wave (EAW) parametric region are demonstrated. Theoretical analysis identifies that under the resonant condition, a monochromatic EAW can be excited when the wave number of the drive ponderomotive force satisfies 0.26≲k{sub d}λ{sub D}≲0.53. If k{sub d}λ{sub D}≲0.26, nonlinear superposition of harmonic waves can be resonantly excited, called kinetic electrostatic electron nonlinear waves. Numerical simulations have demonstrated these wave excitation and evolution dynamics, in consistence with the theoretical predictions. The physical nature of these two waves is supposed to be interaction of harmonic waves, and their similar phase space properties are also discussed.

  5. Phantom instabilities in adiabatically driven systems: dynamical sensitivity to computational precision.

    PubMed

    Jafri, Haider Hasan; Singh, Thounaojam Umeshkanta; Ramaswamy, Ramakrishna

    2012-09-01

    We study the robustness of dynamical phenomena in adiabatically driven nonlinear mappings with skew-product structure. Deviations from true orbits are observed when computations are performed with inadequate numerical precision for monotone, periodic, or quasiperiodic driving. The effect of slow modulation is to "freeze" orbits in long intervals of purely contracting or purely expanding dynamics in the phase space. When computations are carried out with low precision, numerical errors build up phantom instabilities which ultimately force trajectories to depart from the true motion. Thus, the dynamics observed with finite precision computation shows sensitivity to numerical precision: the minimum accuracy required to obtain "true" trajectories is proportional to an internal timescale that can be defined for the adiabatic system.

  6. Flyer velocity characteristics of the laser-driven MiniFlyer system

    NASA Astrophysics Data System (ADS)

    Stahl, David B.; Gehr, Russell J.; Harper, Ron W.; Rupp, Ted D.; Sheffield, Stephen A.; Robbins, David L.

    2000-04-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity are discussed.

  7. Shielding Assessment of the MYRRHA Accelerator-Driven System Using the MCNP Code

    NASA Astrophysics Data System (ADS)

    Coeck, M.; Aoust, Th.; Vermeersch, F.; Abderrahim, A.

    The MYRRHA project includes the design and the development of an accelerator driven system (ADS) aimed at providing protons and neutrons for various R&D applications. With regard to the safety aspects, the assessment of the shielding and of the dose rates around the installation is an important task. In a first approach standard semi-empirical equations and attenuation factors found in the literature were applied. A more detailed determination of the neutron flux around the reactor is made here by Monte Carlo simulation with the code MCNP4B. The results of the shielding assessment give an estimate of the neutron flux at several positions around the core vessel and along the beam tube. Dose rates will be determined by applying the ICRP74 conversion factor.

  8. [An Electroencephalogram-driven Personalized Affective Music Player System: Algorithms and Preliminary Implementation].

    PubMed

    Ma, Yong; Li, Juan; Lu, Bin

    2016-02-01

    In order to monitor the emotional state changes of audience on real-time and to adjust the music playlist, we proposed an algorithm framework of an electroencephalogram (EEG) driven personalized affective music recommendation system based on the portable dry electrode shown in this paper. We also further finished a preliminary implementation on the Android platform. We used a two-dimensional emotional model of arousal and valence as the reference, and mapped the EEG data and the corresponding seed songs to the emotional coordinate quadrant in order to establish the matching relationship. Then, Mel frequency cepstrum coefficients were applied to evaluate the similarity between the seed songs and the songs in music library. In the end, during the music playing state, we used the EEG data to identify the audience's emotional state, and played and adjusted the corresponding song playlist based on the established matching relationship.

  9. Analytically solvable driven time-dependent two-level quantum systems

    NASA Astrophysics Data System (ADS)

    Barnes, Edwin; Das Sarma, Sankar

    2013-03-01

    Analytical solutions to the time-dependent Schrodinger equation describing a driven two-level system are invaluable to many areas of physics, but they are also extremely rare. Here, we present a simple algorithm based on a type of partial reverse-engineering that generates an unlimited number of exact analytical solutions for a general time-dependent Hamiltonian. We demonstrate this method by presenting several new exact solutions that are particularly relevant to qubit control in quantum computing applications. We further show that our formalism easily generates analytical control protocols for performing sweeps across energy level anti-crossings that execute perfect Landau-Zener interferometry and rapid adiabatic passage near the quantum speed limit. Work supported by LPS-CMTC, CNAM and IARPA

  10. The New Instructional Leadership: Creating Data-Driven Instructional Systems in Schools. WCER Working Paper No. 2005-9

    ERIC Educational Resources Information Center

    Halverson, Richard; Prichett, Reid; Grigg, Jeffrey; Thomas, Chris

    2005-01-01

    The recent demand for schools to respond to external accountability measures challenges school leaders to create school instructional systems that use data to guide the practices of teaching and learning. This paper considers how local school leaders build data-driven instructional systems (DDIS) by developing new programs and using existing…

  11. Utilizing a Low-Cost, Laser-Driven Interactive System (LaDIS) to Improve Learning in Developing Rural Regions

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Chang, Chun-Yen

    2014-01-01

    This study proposes an innovation Laser-Driven Interactive System (LaDIS), utilizing general IWBs (Interactive Whiteboard) didactics, to support student learning for rural and developing regions. LaDIS is a system made to support traditional classroom practices between an instructor and a group of students. This invention effectively transforms a…

  12. Data-driven stochastic models for spatial uncertainties in micromechanical systems

    NASA Astrophysics Data System (ADS)

    Alwan, Aravind; Aluru, N. R.

    2015-11-01

    Accurate uncertainty quantification in engineering systems requires the use of proper data-driven stochastic models that bear a good fidelity with respect to experimentally observed variations. This paper looks at a variety of modeling techniques to represent spatially varying uncertainties in a form that can be incorporated into numerical simulations. In the context of microelectromechanical systems, we consider spatial uncertainties at the device level in the form of surface roughness and at the wafer level in the form of non-uniformities that arise as a result of various microfabrication steps. We discuss methods to obtain roughness characterization data ranging from the use of a simple profilometer probe to imaging-based techniques for the extraction of digitized data from images. We model spatial uncertainties as second-order stochastic process and use Bayesian inference to estimate the model parameters from the input data. We apply the data-driven stochastic models generated from this process to micromechanical actuators and sensors in which these spatial uncertainties are likely to cause significant variation. These include an electrostatically-actuated torsion-spring micromirror, an electromechanical comb-drive actuator and a pressure sensor with a piezoresistive strain gauge. We show that the performance of these devices is sensitive to the presence of spatial uncertainties and a proper modeling of these uncertainties helps us make reliable predictions about the variation in device performance. Where data is available, we even show that the predicted variation can be validated against experimental observations, highlighting the significance of proper stochastic modeling in the analysis of such devices.

  13. Data-driven modeling based on volterra series for multidimensional blast furnace system.

    PubMed

    Gao, Chuanhou; Jian, Ling; Liu, Xueyi; Chen, Jiming; Sun, Youxian

    2011-12-01

    The multidimensional blast furnace system is one of the most complex industrial systems and, as such, there are still many unsolved theoretical and experimental difficulties, such as silicon prediction and blast furnace automation. For this reason, this paper is concerned with developing data-driven models based on the Volterra series for this complex system. Three kinds of different low-order Volterra filters are designed to predict the hot metal silicon content collected from a pint-sized blast furnace, in which a sliding window technique is used to update the filter kernels timely. The predictive results indicate that the linear Volterra predictor can describe the evolvement of the studied silicon sequence effectively with the high percentage of hitting the target, very low root mean square error and satisfactory confidence level about the reliability of the future prediction. These advantages and the low computational complexity reveal that the sliding-window linear Volterra filter is full of potential for multidimensional blast furnace system. Also, the lack of the constructed Volterra models is analyzed and the possible direction of future investigation is pointed out.

  14. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    NASA Astrophysics Data System (ADS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  15. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system.

    PubMed

    Wang, Guizhi; Jing, Wenping; Wang, Shuling; Xu, Yi; Wang, Zhangyong; Zhang, Zhouling; Li, Quanlong; Dai, Minhan

    2014-11-18

    We identified a barely noticed contributor, submarine groundwater discharge (SGD), to acidification of a coastal fringing reef system in Sanya Bay in the South China Sea based on time-series observations of Ra isotopes and carbonate system parameters. This coastal system was characterized by strong diel changes throughout the spring to neap tidal cycle of dissolved inorganic carbon (DIC), total alkalinity, partial pressure of CO2 (pCO2) and pH, in the ranges of 1851-2131 μmol kg(-1), 2182-2271 μmol kg(-1), 290-888 μatm and 7.72-8.15, respectively. Interestingly, the diurnal amplitudes of these parameters decreased from spring to neap tides, governed by both tidal pumping and biological activities. In ebb stages during the spring tide, we observed the lowest salinities along with the highest DIC, pCO2 and Ra isotopes, and the lowest pH and aragonite saturation state. These observations were consistent with a concurrent SGD rate up to 25 and 44 cm d(-1), quantified using Darcy's law and (226)Ra, during the spring tide ebb, but negligible at flood tides. Such tidal-driven SGD of low pH waters is another significant contributor to coastal acidification, posing additional stress on coastal coral systems, which would be even more susceptible in future scenarios under higher atmospheric CO2. PMID:25375182

  16. Direct observation of melting in a two-dimensional driven granular system

    PubMed Central

    Sun, Xiaoyan; Li, Yang; Ma, Yuqiang; Zhang, Zexin

    2016-01-01

    Melting is considered to be one of the most fundamental problems in physical science. Generally, dimensionality plays an important role in melting. In three-dimension, it’s well known that a crystal melts directly into a liquid via a first-order transition. In two-dimension (2D), however, the melting process has been widely debated whether it is a first-order transition or a two-step transition with an intermediate hexatic phase. Experimentally 2D melting has been intensively studied in equilibrium systems such as molecular and colloidal crystals, but rarely been explored in non-equilibrium system such as granular materials. In this paper, we experimentally studied the 2D melting in a driven granular model system at single particle level using video recording and particle tracking techniques. Measurements of orientational/translational correlation functions show evidences that the melting is a two-step transition. A novel concept of orientational/translational susceptibilities enable us to clearly resolve the intermediate hexatic phase. Our results are in excellent agreement with the two-step melting scenario predicted by KTHNY theory, and demonstrate that the KTHNY melting scenario can be extended to non-equilibrium systems. PMID:27052190

  17. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables

    NASA Astrophysics Data System (ADS)

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2013-12-01

    Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.

  18. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    SciTech Connect

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  19. Direct observation of melting in a two-dimensional driven granular system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyan; Li, Yang; Ma, Yuqiang; Zhang, Zexin

    2016-04-01

    Melting is considered to be one of the most fundamental problems in physical science. Generally, dimensionality plays an important role in melting. In three-dimension, it’s well known that a crystal melts directly into a liquid via a first-order transition. In two-dimension (2D), however, the melting process has been widely debated whether it is a first-order transition or a two-step transition with an intermediate hexatic phase. Experimentally 2D melting has been intensively studied in equilibrium systems such as molecular and colloidal crystals, but rarely been explored in non-equilibrium system such as granular materials. In this paper, we experimentally studied the 2D melting in a driven granular model system at single particle level using video recording and particle tracking techniques. Measurements of orientational/translational correlation functions show evidences that the melting is a two-step transition. A novel concept of orientational/translational susceptibilities enable us to clearly resolve the intermediate hexatic phase. Our results are in excellent agreement with the two-step melting scenario predicted by KTHNY theory, and demonstrate that the KTHNY melting scenario can be extended to non-equilibrium systems.

  20. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system.

    PubMed

    Wang, Guizhi; Jing, Wenping; Wang, Shuling; Xu, Yi; Wang, Zhangyong; Zhang, Zhouling; Li, Quanlong; Dai, Minhan

    2014-11-18

    We identified a barely noticed contributor, submarine groundwater discharge (SGD), to acidification of a coastal fringing reef system in Sanya Bay in the South China Sea based on time-series observations of Ra isotopes and carbonate system parameters. This coastal system was characterized by strong diel changes throughout the spring to neap tidal cycle of dissolved inorganic carbon (DIC), total alkalinity, partial pressure of CO2 (pCO2) and pH, in the ranges of 1851-2131 μmol kg(-1), 2182-2271 μmol kg(-1), 290-888 μatm and 7.72-8.15, respectively. Interestingly, the diurnal amplitudes of these parameters decreased from spring to neap tides, governed by both tidal pumping and biological activities. In ebb stages during the spring tide, we observed the lowest salinities along with the highest DIC, pCO2 and Ra isotopes, and the lowest pH and aragonite saturation state. These observations were consistent with a concurrent SGD rate up to 25 and 44 cm d(-1), quantified using Darcy's law and (226)Ra, during the spring tide ebb, but negligible at flood tides. Such tidal-driven SGD of low pH waters is another significant contributor to coastal acidification, posing additional stress on coastal coral systems, which would be even more susceptible in future scenarios under higher atmospheric CO2.

  1. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.

    PubMed

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2013-12-01

    Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water. PMID:24320358

  2. Extensions to Dynamic System Simulation of Fissile Solution Systems

    SciTech Connect

    Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  3. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  4. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  5. Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Highcock, E. G.; Cowley, S. C.

    2012-05-01

    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, numerical experiments show that even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence, limiting the ability of the velocity shear to suppress anomalous transport. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular (E × B) velocity shear is considered. The maximally simplified (but, as numerical simulations suggest, most promising for transport reduction) case of zero magnetic shear is treated in the framework of a local shearing box approximation. In this case there are no linearly growing eigenmodes, so all excitations are transient. In the PVG-dominated regime, the maximum amplification factor is found to be eN with N ∝ q/ɛ (safety factor/inverse aspect ratio), the maximally amplified wavenumbers perpendicular and parallel to the magnetic field are related by kyρi ≈ (ɛ/q)1/3k∥vthi/S, where ρi is the ion Larmor radius, vthi the ion thermal speed and S the E × B shear. In the ITG-dominated regime, N is independent of wavenumber and N ∝ vthi/(LTS), where LT is the ion-temperature scale length. Intermediate ITG-PVG regimes are also analysed and N is calculated as a function of q/ɛ, LT and S. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. Regimes with N ≲ 1 for all wavenumbers are possible for sufficiently low values of q/ɛ (≲7 in our model); ion-scale turbulence is expected to be fully suppressed in such regimes. For cases when it is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, ɛ, S and LT is proposed; it is argued that the transport is much less ‘stiff’ than in the ITG regime.

  6. Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations

    SciTech Connect

    Ning, C.; Haken, H. )

    1990-04-01

    By a suitable variable transformation we show that detuned lasers can be described by complex Lorenz equations and establish a close analogy between detuned lasers and baroclinic instability. The analogy enables us to get all analytical and exact results for the second threshold of the detuned single-mode lasers. In order to discriminate sub- from supercritical Hopf bifurcations, we use a combined approach of elimination procedure and normal form techniques to make a systematic calculation of the criterion for both of the systems. The influence of the parameter variations on the nature of the bifurcation is discussed in detail. For detuned lasers it is shown that, if we restrict ourselves to the case of {ital b}{le}1 ({ital b}={gamma}{sub {parallel}}/{gamma}{sub {perpendicular}}, i.e., the ratio of the longitudinal to the transversal relaxation constant of the atoms) and not-too-small {ital k} (={kappa}/{gamma}{sub {perpendicular}}, with {kappa} denoting the cavity relaxation constant) and {Delta}, for given {ital b} and {Delta} ({Delta} and {ital k} or {ital k} and {ital b}), there exists a {ital k}{sub {ital c}} ({ital b}{sub {ital c}} or {Delta}{sub {ital c}}) such that the Hopf bifurcation is subcritical if {ital k}{lt}{ital k}{sub {ital c}} ({ital b}{gt}{ital b}{sub {ital c}} or {Delta}{lt}{Delta}{sub {ital c}}) and supercritical if {ital k}{gt}{ital k}{sub {ital c}} ({ital b}{lt}{ital b}{sub {ital c}} or {Delta}{gt}{Delta}{sub {ital c}}). Numerical investigations show that period-doubling bifurcations to chaos exist not only for the subcritical but also for the supercritical case.

  7. TNT and RDX degradation and extraction from contaminated soil using subcritical water.

    PubMed

    Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun

    2015-01-01

    The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process.

  8. Effects of Ethanol Addition on the Efficiency of Subcritical Water Extraction of Proteins and Amino Acids from Porcine Placenta

    PubMed Central

    2015-01-01

    In a previous study, hydrolysates of porcine placenta were obtained and the extraction efficiency for proteins and amino acids was compared between sub- and super-critical water extraction systems; optimum efficiency was found to be achieved using subcritical water (170℃, 10 bar). In this study, the effects of adding ethanol to the subcritical water system were investigated. The lowest-molecular-weight extraction product detected weighed 434 Da, and the efficiency of extraction for low-molecular-weight products was increased when either the concentration of ethanol was decreased, or the extraction time was lengthened from 10 min to 30 min. The highest concentration of free amino acids (approximately 8 mM) was observed following 30 min extraction using pure distilled water. The concentration of free amino acids was significantly lower when ethanol was added or a shorter extraction time was used (p<0.05). Color change of the solution following extraction was measured. There were no significant differences in color between lysates produced with different extraction times when using distilled water (p>0.05); however, using different extraction times produced significant differences in color when using 20% or 50% ethanol solution for subcritical extraction (p<0.05). The range of pH for the hydrolysate solutions was 6.4-7.5. In conclusion, the investigated extraction system was successful in the extraction of ≤ 500 Da hydrolysates from porcine placenta, but addition of ethanol did not yield higher production of low-molecular-weight hydrolysates than that achieved by DW alone. PMID:26761837

  9. Effects of Ethanol Addition on the Efficiency of Subcritical Water Extraction of Proteins and Amino Acids from Porcine Placenta.

    PubMed

    Park, Sung Hee; Kim, Jae-Hyeong; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon

    2015-01-01

    In a previous study, hydrolysates of porcine placenta were obtained and the extraction efficiency for proteins and amino acids was compared between sub- and super-critical water extraction systems; optimum efficiency was found to be achieved using subcritical water (170℃, 10 bar). In this study, the effects of adding ethanol to the subcritical water system were investigated. The lowest-molecular-weight extraction product detected weighed 434 Da, and the efficiency of extraction for low-molecular-weight products was increased when either the concentration of ethanol was decreased, or the extraction time was lengthened from 10 min to 30 min. The highest concentration of free amino acids (approximately 8 mM) was observed following 30 min extraction using pure distilled water. The concentration of free amino acids was significantly lower when ethanol was added or a shorter extraction time was used (p<0.05). Color change of the solution following extraction was measured. There were no significant differences in color between lysates produced with different extraction times when using distilled water (p>0.05); however, using different extraction times produced significant differences in color when using 20% or 50% ethanol solution for subcritical extraction (p<0.05). The range of pH for the hydrolysate solutions was 6.4-7.5. In conclusion, the investigated extraction system was successful in the extraction of ≤ 500 Da hydrolysates from porcine placenta, but addition of ethanol did not yield higher production of low-molecular-weight hydrolysates than that achieved by DW alone. PMID:26761837

  10. PDS4: Meeting Big Data Challenges Via a Model-Driven Planetary Science Data Architecture and System

    NASA Astrophysics Data System (ADS)

    Law, E.; Hughes, J. S.; Crichton, D. J.; Hardman, S. H.; Joyner, R.; Ramirez, P.

    2014-12-01

    Big science data management entails cataloging, processing, distribution, multiple ways of analyzing and interpreting the data, long-term preservation, and international cooperation of massive amount of scientific data. PDS4, the next generation of the Planetary Data System (PDS), uses an information model-driven architectural approach coupled with modern information technologies and standards to meet theses challenges of big science data management. PDS4 is an operational example of the use of an explicit data system architecture and an ontology-base information model to drive the development, operations, and evolution of a scalable data system along the entire science data lifecycle from ground systems to the archives. This overview of PDS4 will include a description of its model-driven approach and its overall systems architecture. It will illustrate how the system is being used to help meet the expectations of modern scientists for interoperable data systems and correlatable data in the Big Data era.

  11. Sudden death and rebirth of entanglement for different dimensional systems driven by a classical random external field

    NASA Astrophysics Data System (ADS)

    Metwally, N.; Eleuch, H.; Obada, A.-S.

    2016-10-01

    The entangled behavior of different dimensional systems driven by classical external random field is investigated. The amount of the survival entanglement between the components of each system is quantified. There are different behaviors of entanglement that come into view decay, sudden death, sudden birth and long-lived entanglement. The maximum entangled states which can be generated from any of theses suggested systems are much fragile than the partially entangled ones. The systems of larger dimensions are more robust than those of smaller dimensions systems, where the entanglement decay smoothly, gradually and may vanish for a very short time. For the class of $2\\times 3$ dimensional system, the one parameter family is found to be more robust than the two parameters family. Although the entanglement of driven $ 2 \\times 3$ dimensional system is very sensitive to the classical external random field, one can use them to generate a long-lived entanglement.

  12. Simulation of current filamentation in a dc-driven planar gas discharge-semiconductor system

    NASA Astrophysics Data System (ADS)

    Mokrov, M. S.; Raizer, Yu P.

    2011-10-01

    We have performed a theoretical study of self-organized current filamentation in a dc-driven planar gas discharge-semiconductor system at very low currents and under cryogenic conditions. The discharge instability and the observed formation of current filaments are explained by a thermal mechanism, as proposed in our previous paper. We have found, for the first time, a stationary periodic current structure in a two-dimensional Cartesian geometry from first principles, by numerically solving the general system of continuity equations for ions and electrons, the Poisson equation for the electric field in the gas, together with the equation for gas temperature and the equation for electric field in the semiconductor. The space charge induced electric field redistribution, which usually leads to a discharge instability and is automatically included in the first three equations of the system, is practically absent at the very low currents considered, and thus it cannot be responsible for the discharge instability. This is why another mechanism of filamentation (thermal) should be considered. The calculated periodic current structure agrees with the hexagonal current pattern observed in the experiment, as well as with the periodic current structure found in the frame of the previously developed simple model. This serves as a corroboration of the fact that the thermal effect is essential for pattern formation under the conditions considered.

  13. System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.

    2010-12-01

    Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.

  14. High Performance Operation Control for Heat Driven Heat Pump System using Metal Hydride

    NASA Astrophysics Data System (ADS)

    Okamoto, Hideyuki; Masuda, Masao; Kozawa, Yoshiyuki

    lt is recognized that COP of heat driven heat pump system using metal hydride is 0.3-0.4 in general. In order to rise COP, we have proposed two kinds of specific operation control; the control of cycle change time according to cold heat load and the control of cooling water temperature according to outside air wet-bulb temperature. The characteristics of the heat pump system using metal hydride have grasped by various experiments and simulations. The validity of the simulation model has been confirmed by comparing with experimental results. As results of the simulations programmed for the actual operation control month by month, yearly COP has risen till 0.5-0.6 for practical scale air-conditioning system without regard for the building use. By the operation control hour by hour, yearly COP has risen till 0.6-0.65. Moreover, in the office building case added 40% sensible heat recovery, yearly COP has risen more than 0.8.

  15. A new practice-driven approach to develop software in a cyber-physical system environment

    NASA Astrophysics Data System (ADS)

    Jiang, Yiping; Chen, C. L. Philip; Duan, Junwei

    2016-02-01

    Cyber-physical system (CPS) is an emerging area, which cannot work efficiently without proper software handling of the data and business logic. Software and middleware is the soul of the CPS. The software development of CPS is a critical issue because of its complicity in a large scale realistic system. Furthermore, object-oriented approach (OOA) is often used to develop CPS software, which needs some improvements according to the characteristics of CPS. To develop software in a CPS environment, a new systematic approach is proposed in this paper. It comes from practice, and has been evolved from software companies. It consists of (A) Requirement analysis in event-oriented way, (B) architecture design in data-oriented way, (C) detailed design and coding in object-oriented way and (D) testing in event-oriented way. It is a new approach based on OOA; the difference when compared with OOA is that the proposed approach has different emphases and measures in every stage. It is more accord with the characteristics of event-driven CPS. In CPS software development, one should focus on the events more than the functions or objects. A case study of a smart home system is designed to reveal the effectiveness of the approach. It shows that the approach is also easy to be operated in the practice owing to some simplifications. The running result illustrates the validity of this approach.

  16. Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system.

    PubMed

    Kharkongor, D; Reenbohn, W L; Mahato, Mangal C

    2016-08-01

    We numerically solve the underdamped Langevin equation to obtain the trajectories of a particle in a sinusoidal potential driven by a temporally sinusoidal force in a medium with coefficient of friction periodic in space as the potential but with a phase difference. With the appropriate choice of system parameters, like the mean friction coefficient and the period of the applied field, only two kinds of periodic trajectories are obtained for all possible initial conditions at low noise strengths: one with a large amplitude and a large phase lag with respect to the applied field and the other with a small amplitude and a small phase lag. Thus, the periodic potential system is effectively mapped dynamically into a bistable system. Though the directional asymmetry, brought about only by the frictional inhomogeneity, is weak we find both the phenomena of stochastic resonance, with ready explanation in terms of the two dynamical states of trajectories, and ratchet effect simultaneously in the same parameter space. We analyze the results in detail attempting to find plausible explanations for each. PMID:27627287

  17. Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system

    NASA Astrophysics Data System (ADS)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2016-08-01

    We numerically solve the underdamped Langevin equation to obtain the trajectories of a particle in a sinusoidal potential driven by a temporally sinusoidal force in a medium with coefficient of friction periodic in space as the potential but with a phase difference. With the appropriate choice of system parameters, like the mean friction coefficient and the period of the applied field, only two kinds of periodic trajectories are obtained for all possible initial conditions at low noise strengths: one with a large amplitude and a large phase lag with respect to the applied field and the other with a small amplitude and a small phase lag. Thus, the periodic potential system is effectively mapped dynamically into a bistable system. Though the directional asymmetry, brought about only by the frictional inhomogeneity, is weak we find both the phenomena of stochastic resonance, with ready explanation in terms of the two dynamical states of trajectories, and ratchet effect simultaneously in the same parameter space. We analyze the results in detail attempting to find plausible explanations for each.

  18. Outflows Driven by a Potential Proto-Brown Dwarf Binary System IRAS 16253-2429

    NASA Astrophysics Data System (ADS)

    Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud; Wyrowski, Friedrich

    2015-08-01

    We have studied the molecular outflows driven by a potential proto-brown dwarf candidate IRAS 16253-2429 (hereafter IRAS 16253) with CO (2—1) using SMA and IRAM 30m telescope and CO (6—5) using APEX. Our SMA observations suggest that IRAS 16253 is hosting a binary system. The low mass of its envelope suggests that the central objects may eventually accrete only ~0.14 Msun of material (assuming the star formation efficiency is at most 0.3), which makes IRAS 16253 a potential proto brown dwarf binary system since the maximum mass of a brown dwarf is 0.08 Msun; one or two brown dwarfs may form depending on the current mass of the protostars and the future accretion process. The Position-Velocity diagrams of the outflows show sinusoidal structures which may be related to the outflow wiggling from the binary rotation. This allowed us to estimate the orbital period of the binary system. On the basis of Kepler's third law, we suggest that IRAS 16253 is very likely to contain at least one proto brown dwarf if the binary separation is less than ~0.5 arcsec. The large-scale outflows are further mapped with IRAM 30m telescope and APEX Champ+. We found that CO (6—5) traces high-excited gas around the precessing H2 jets and CO (2—1) likely probes the cold swept-up gas or entrained gas with cone-like structure.

  19. High Frequency Monitoring Reveals Aftershocks in Subcritical Crack Growth

    NASA Astrophysics Data System (ADS)

    Stojanova, M.; Santucci, S.; Vanel, L.; Ramos, O.

    2014-03-01

    By combining direct imaging and acoustic emission measurements, the subcritical propagation of a crack in a heterogeneous material is analyzed. Both methods show that the fracture proceeds through a succession of discrete events. However, the macroscopic opening of the fracture captured by the images results from the accumulation of more-elementary events detected by the acoustics. When the acoustic energy is cumulated over large time scales corresponding to the image acquisition rate, a similar statistics is recovered. High frequency acoustic monitoring reveals aftershocks responsible for a time scale dependent exponent of the power law energy distributions. On the contrary, direct imaging, which is unable to resolve these aftershocks, delivers a misleading exponent value.

  20. Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Rodriguez, Nuria; Gómez, Felipe; Amils, Ricardo

    2003-07-01

    The existence of possible hematitic strata on the surface of Mars demands a search for terrestrial analogues formed in unusual environments. This will help us to recognize and interpret environmental and, perhaps, biological signatures preserved in Mars' hematites. Such an analogue would allow us to establish valid reference systems based on geomicrobial and biogeochemical signatures. Two different aspects place the Tinto River inside the boundaries of a natural extreme system: its high level of biological diversity and the presence of fluvial rocks formed in the same acidic conditions as in the modern system, which could predate the Tertiary. Study of both the modern system and the ancient system is necessary to understand the formation of biosignatures. A chemolithotrophic community that biooxidizes the Iberian Pyritic Belt, acidifying water (pH between 0.9 and 3.0) and favoring high concentrations of ferric iron in solution (up to 20 g.L-1), maintains this iron-driven system. In spite of these extreme conditions, high microbial diversity was found. Its acidic bacteria, archaea, and eukarya constitute a complex community supported by algal biomass in highly stable hydrochemical conditions, which are achieved through iron buffering. The pH is maintained at constant low levels even at very high water dilution. In these conditions, iron minerals as oxyhydroxides, hydroxides, and sulfates are formed. The modern and recent parageneses contrast with the ancient Tinto River terrace mineral associations, which show dehydrated and desulfated iron oxides. If this dehydration process is considered, these Tinto River ironstones may be a key for knowing some aquatic habitats, which may have hosted a part of the early Mars biosphere.

  1. Marginally subcritical dynamics explain enhanced stimulus discriminability under attention

    PubMed Central

    Tomen, Nergis; Rotermund, David; Ernst, Udo

    2014-01-01

    Recent experimental and theoretical work has established the hypothesis that cortical neurons operate close to a critical state which describes a phase transition from chaotic to ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal information processing. However, although critical dynamics have been demonstrated in recordings of spontaneously active cortical neurons, little is known about how these dynamics are affected by task-dependent changes in neuronal activity when the cortex is engaged in stimulus processing. Here we explore this question in the context of cortical information processing modulated by selective visual attention. In particular, we focus on recent findings that local field potentials (LFPs) in macaque area V4 demonstrate an increase in γ-band synchrony and a simultaneous enhancement of object representation with attention. We reproduce these results using a model of integrate-and-fire neurons where attention increases synchrony by enhancing the efficacy of recurrent interactions. In the phase space spanned by excitatory and inhibitory coupling strengths, we identify critical points and regions of enhanced discriminability. Furthermore, we quantify encoding capacity using information entropy. We find a rapid enhancement of stimulus discriminability with the emergence of synchrony in the network. Strikingly, only a narrow region in the phase space, at the transition from subcritical to supercritical dynamics, supports the experimentally observed discriminability increase. At the supercritical border of this transition region, information entropy decreases drastically as synchrony sets in. At the subcritical border, entropy is maximized under the assumption of a coarse observation scale. Our results suggest that cortical networks operate at such near-critical states, allowing minimal attentional modulations of network excitability to substantially augment stimulus representation in the LFPs. PMID:25202240

  2. Marginally subcritical dynamics explain enhanced stimulus discriminability under attention.

    PubMed

    Tomen, Nergis; Rotermund, David; Ernst, Udo

    2014-01-01

    Recent experimental and theoretical work has established the hypothesis that cortical neurons operate close to a critical state which describes a phase transition from chaotic to ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal information processing. However, although critical dynamics have been demonstrated in recordings of spontaneously active cortical neurons, little is known about how these dynamics are affected by task-dependent changes in neuronal activity when the cortex is engaged in stimulus processing. Here we explore this question in the context of cortical information processing modulated by selective visual attention. In particular, we focus on recent findings that local field potentials (LFPs) in macaque area V4 demonstrate an increase in γ-band synchrony and a simultaneous enhancement of object representation with attention. We reproduce these results using a model of integrate-and-fire neurons where attention increases synchrony by enhancing the efficacy of recurrent interactions. In the phase space spanned by excitatory and inhibitory coupling strengths, we identify critical points and regions of enhanced discriminability. Furthermore, we quantify encoding capacity using information entropy. We find a rapid enhancement of stimulus discriminability with the emergence of synchrony in the network. Strikingly, only a narrow region in the phase space, at the transition from subcritical to supercritical dynamics, supports the experimentally observed discriminability increase. At the supercritical border of this transition region, information entropy decreases drastically as synchrony sets in. At the subcritical border, entropy is maximized under the assumption of a coarse observation scale. Our results suggest that cortical networks operate at such near-critical states, allowing minimal attentional modulations of network excitability to substantially augment stimulus representation in the LFPs.

  3. Simulation of driven self assembly of complex polymeric systems across multiple length scales

    NASA Astrophysics Data System (ADS)

    de Pablo, Juan

    2007-03-01

    The self assembly of macromolecular systems is often driven or facilitated by the application of external fields, including flow, voltage, or confinement. The structures that arise when external fields are applied often depend on the history of the sample, and it is therefore important to develop theoretical and computational methods capable of describing the order formation process across multiple length and time scales. Over the past several years we have developed several new classes of multiscale modeling techniques for study of the structure and properties of polymeric materials under external fields, including confinement or flows. For systems at equilibrium, these systems permit precise calculation of the free energy. For systems beyond equilibrium, these methods include the effects of fluctuating hydrodynamic interactions (for dilute and semidilute systems) and the effects of constraining molecules (for concentrated melts). These models and methods can be used to investigate the equilibrium structure and relaxation of a variety of fluids, including solutions of biological macromolecules. The usefulness and limitations of our proposed approach will be discussed in the context of three applications. The first application is concerned with the elongation and presentation of long DNA molecules in nanofluidic channels. A multiscale model, that includes fluctuating hydrodynamic interactions, has been used to design a gene mapping device and to interpret experimental data pertaining to the structure and dynamics of confined chromosome-length DNA. The second application is concerned with the study of liquid-crystal based biosensors. A multiscale model has been used to design a liquid-crystal based device in which nanoscale particles suspended in a liquid crystal self assemble into highly regular structures, including chains, upon exposure to proteins or virions. The third application focuses on the formation of ordered block copolymer structures on nanopatterned

  4. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.; Prichard, Andrew W.; Reid, Bruce D.; Burritt, James

    1998-01-01

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  5. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems

    NASA Astrophysics Data System (ADS)

    Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration

    2015-11-01

    One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).

  6. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.

    PubMed

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis.

  7. Self-Adaptive Event-Driven Simulation of Multi-Scale Plasma Systems

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Karimabadi, Homayoun

    2005-10-01

    Multi-scale plasmas pose a formidable computational challenge. The explicit time-stepping models suffer from the global CFL restriction. Efficient application of adaptive mesh refinement (AMR) to systems with irregular dynamics (e.g. turbulence, diffusion-convection-reaction, particle acceleration etc.) may be problematic. To address these issues, we developed an alternative approach to time stepping: self-adaptive discrete-event simulation (DES). DES has origin in operations research, war games and telecommunications. We combine finite-difference and particle-in-cell techniques with this methodology by assuming two caveats: (1) a local time increment, dt for a discrete quantity f can be expressed in terms of a physically meaningful quantum value, df; (2) f is considered to be modified only when its change exceeds df. Event-driven time integration is self-adaptive as it makes use of causality rules rather than parametric time dependencies. This technique enables asynchronous flux-conservative update of solution in accordance with local temporal scales, removes the curse of the global CFL condition, eliminates unnecessary computation in inactive spatial regions and results in robust and fast parallelizable codes. It can be naturally combined with various mesh refinement techniques. We discuss applications of this novel technology to diffusion-convection-reaction systems and hybrid simulations of magnetosonic shocks.

  8. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    PubMed Central

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  9. Ethnic Inequality in Choice-Driven Education Systems: A Longitudinal Study of Performance and Choice in England and Sweden

    ERIC Educational Resources Information Center

    Jackson, Michelle; Jonsson, Jan O.; Rudolphi, Frida

    2012-01-01

    The authors ask whether choice-driven education systems, with comprehensive schools and mass education at the secondary and tertiary level, represented in this article by England and Sweden, provide educational opportunities for ethnic minorities. In studying educational attainment, the authors make a theoretical distinction between mechanisms…

  10. One action system or two? Evidence for common central preparatory mechanisms in voluntary and stimulus-driven actions.

    PubMed

    Hughes, Gethin; Schütz-Bosbach, Simone; Waszak, Florian

    2011-11-16

    Human behavior is comprised of an interaction between intentionally driven actions and reactions to changes in the environment. Existing data are equivocal concerning the question of whether these two action systems are independent, involve different brain regions, or overlap. To address this question we investigated whether the degree to which the voluntary action system is activated at the time of stimulus onset predicts reaction times to external stimuli. We recorded event-related potentials while participants prepared and executed left- or right-hand voluntary actions, which were occasionally interrupted by a stimulus requiring either a left- or right-hand response. In trials where participants successfully performed the stimulus-driven response, increased voluntary motor preparation was associated with faster responses on congruent trials (where participants were preparing a voluntary action with the same hand that was then required by the target stimulus), and slower responses on incongruent trials. This suggests that early hand-specific activity in medial frontal cortex for voluntary action trials can be used by the stimulus-driven system to speed responding. This finding questions the clear distinction between voluntary and stimulus-driven action systems. PMID:22090496

  11. Impacts of observation-driven trait variation on carbon fluxes in an earth system projection

    NASA Astrophysics Data System (ADS)

    Verheijen, Lieneke; van Bodegom, Peter; Aerts, Rien; Brovkin, Victor

    2014-05-01

    Climate projections are still highly uncertain and differences in predicted terrestrial global carbon budgets by earth system models (ESMs) are large, both with respect to the size and direction of change. Part of these uncertainties in the land carbon dynamics are caused by differences in the modeled functional responses of vegetation in reaction to climatic drivers. In reality, changes in vegetation responses to the environment are driven by processes like species plasticity, acclimation, (genotypic) adaptation, species turnover and shifts in species abundances. These processes can cause shifts within community mean trait values, which in turn are will affect carbon fluxes to and from the system. Because most current dynamic global vegetation models (DGVMs, the terrestrial part of ESMs) are not species based, these processes are not or poorly modeled. The recent availability of a large trait database (TRY-database), including both field measurements and experimental data, enables parameterization of the models with observational trait data. Many community mean trait values correlate with local environmental conditions. Such trait-climate relationships can be used to model variation in traits in DGVMs and allow for spatial and temporal variation in functional vegetation responses. The aim of this study was to identify the impacts of observation-driven trait variation on modeled carbon fluxes in climate projections. We determined and incorporated relationships between observational trait and climate data for each plant functional type (PFT) in the DGVM JSBACH. Within each grid cell, traits were varied every year, based on the local climatic conditions in the model. We also included CO2 acclimation of traits based on FACE-experiments, as projections concern elevated CO2 concentrations. Impacts on global carbon budgets were large; in the simulation with variable traits the high latitudes (temperate, boreal and arctic areas) were stronger carbon sinks and the tropical

  12. A plate-driven model for enigmatic volcanic history of the Cascades-Yellowstone System

    NASA Astrophysics Data System (ADS)

    Szwaja, S.; Kincaid, C. R.; Druken, K. A.; MacDougall, J.

    2013-12-01

    The Cascades subduction system in the Pacific Northwest (USA) represents a complex tectonic setting, where rollback subduction of the Juan de Fuca plate beneath the North American plate, back-arc extension, and a possible mantle plume have been proposed to explain the complicated volcanic trends observed over the past 20 Ma. Plume and non-plume models have been developed to reconcile the voluminous Columbia River/Steens Flood Basalts (CSFB) (~20 Ma), the age progressive (15 Ma to present) Snake River Plain (SRP) that terminates at Yellowstone and the opposite, or westward trending High Lava Plains (HLP) volcanic track of eastern/central Oregon. We present results from laboratory experiments designed to test a plate-driven model for reproducing gross spatial-temporal characteristics of these three magmatic features. Models use a glucose fluid with temperature dependent viscosity in representing Earth's mantle and continuous rubber belts that kinematically reproduce subduction trends for the Cascades system. Experiments begin at 20 Ma with a volume of mantle residuum in the Cascades wedge that is elongated and restricted in the trench-parallel and trench-normal directions, respectively. The underlying assumption is that residuum was created in the wedge during an earlier plate steepening event that caused the flood basalts. Our models characterize dispersion patterns for the melt residuum material as it deforms within four-dimensional wedge circulation fields driven by rollback subduction (e.g. with a translational component of motion). Results show that residuum viscosity, relative to the ambient fluid, determines whether anomalous fluid can evolve to a morphology that matches the SRP/HLP tracks over ~15-20Ma. A weak residuum (e.g. retained partial melt) deforms over this time scale from the initial north-south oriented feature to an east-west trending morphology that is thin in both depth and north-south extent, material initially beneath CSFB is offset to the

  13. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    NASA Astrophysics Data System (ADS)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  14. A Pathophysiological Model-Driven Communication for Dynamic Distributed Medical Best Practice Guidance Systems.

    PubMed

    Hosseini, Mohammad; Jiang, Yu; Wu, Poliang; Berlin, Richard B; Ren, Shangping; Sha, Lui

    2016-11-01

    There is a great divide between rural and urban areas, particularly in medical emergency care. Although medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. In this paper, we propose the concept of distributed executable medical best practice guidance systems to assist adherence to best practice from the time that a patient first presents at a rural hospital, through diagnosis and ambulance transfer to arrival and treatment at a regional tertiary hospital center. We codify complex medical knowledge in the form of simplified distributed executable disease automata, from the thin automata at rural hospitals to the rich automata in the regional center hospitals. However, a main challenge is how to efficiently and safely synchronize distributed best practice models as the communication among medical facilities, devices, and professionals generates a large number of messages. This complex problem of patient diagnosis and transport from rural to center facility is also fraught with many uncertainties and changes resulting in a high degree of dynamism. A critically ill patient's medical conditions can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer. Such dynamics have yet to be addressed in existing literature on telemedicine. To address this situation, we propose a pathophysiological model-driven message exchange communication architecture that ensures the real-time and dynamic requirements of synchronization among distributed emergency best practice models are met in a reliable and safe manner. Taking the signs, symptoms, and progress of stroke patients transported across a geographically distributed healthcare network as the motivating use case, we implement our communication system and apply it to our developed best practice

  15. Knowledge-driven mineral potential modelling: applying the Mineral Systems Approach to the west Kimberley, Australia.

    NASA Astrophysics Data System (ADS)

    Lindsay, Mark; Ford, Arianne; Aitken, Alan; Dentith, Mike; Hollis, Julie; Tyler, Ian

    2014-05-01

    Regional prospectivity analysis of the west Kimberley has been undertaken using the results of geophysical structural interpretation and the mineral systems approach (MSA) to mineral potential modelling. Ore deposits are small expressions of much larger Earth processes and systems focusing mass and energy flux at multiple scales. The MSA provides a framework within which metal sources, fluid transport mechanisms and traps can be recognised and represented by predictor maps. Predictor maps act as proxies for mineral system processes and include distance to a particular geological feature, locations of rheological and chemical contrast, structural complexity and location of mantle-tapping structures. The approach to mineral potential modelling taken here combines different predictor maps in a knowledge-driven inference framework order to identify likely zones of mineralisation. Nickel-sulphide analysis indicates that the Inglis Fault and Yampi Fold Belt localises areas of increased mineral potential. Carbonate-hosted base metal prospectivity is restricted to regions overlying basement highs in the Lennard Shelf. A buried NW extension of the Oscar Range interpreted from geophysics is identified as a region of high mineral potential. Gold potential is mostly associated with the Inglis Fault, the Yampi Fold Belt and the central portion of the King Leopold Orogen. The centre, west and east of the King Leopold Orogen and parts of the Yampi Fold Belt show small, but high, regions of mineral potential for stratiform-hosted base metal deposits. The northwest and east of the King Leopold Orogen show small regions of tin-tungsten mineral potential. Intrusion-related base metal mineral potential is restricted to the Wotjulum Porphyry in the Yampi Fold Belt and the northern central part of the King Leopold Orogen.

  16. Geo-hazard harmonised data a driven process to environmental analysis system

    NASA Astrophysics Data System (ADS)

    Cipolloni, Carlo; Iadanza, Carla; Pantaloni, Marco; Trigila, Alessandro

    2015-04-01

    In the last decade an increase of damage caused by natural disasters has been recorded in Italy. To support environmental safety and human protection, by reducing vulnerability of exposed elements as well as improving the resilience of the involved communities, it need to give access to harmonized and customized data that is one of several steps towards delivering adequate support to risk assessment, reduction and management. In this contest has been developed SEIS and Copernicus-GEMES as infrastructure based on web services for environmental analysis, to integrates in its own system specifications and results from INSPIRE. The two landslide risk scenarios developed in different European projects driven the harmonization process of data that represents the basic element to have interoperable web services in environmental analysis system. From two different perspective we have built a common methodology to analyse dataset and transform them into INSPIRE compliant format following the Data Specification on Geology and on Natural Risk Zone given by INSPIRE. To ensure the maximum results and re-usability of data we have also applied to the landslide and geological datasets a wider Data model standard like GeoSciML, that represents the natural extension of INSPIRE data model to provide more information. The aim of this work is to present the first results of two projects concerning the data harmonisation process, where an important role is played by the semantic harmonisation using the ontology service and/or the hierarchy vocabularies available as Link Data or Link Open Data by means of URI directly in the data spatial services. It will be presented how the harmonised web services can provide an add value in a risk scenario analysis system, showing the first results of the landslide environmental analysis developed by the eENVplus and LIFE+IMAGINE projects.

  17. A Pathophysiological Model-Driven Communication for Dynamic Distributed Medical Best Practice Guidance Systems.

    PubMed

    Hosseini, Mohammad; Jiang, Yu; Wu, Poliang; Berlin, Richard B; Ren, Shangping; Sha, Lui

    2016-11-01

    There is a great divide between rural and urban areas, particularly in medical emergency care. Although medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. In this paper, we propose the concept of distributed executable medical best practice guidance systems to assist adherence to best practice from the time that a patient first presents at a rural hospital, through diagnosis and ambulance transfer to arrival and treatment at a regional tertiary hospital center. We codify complex medical knowledge in the form of simplified distributed executable disease automata, from the thin automata at rural hospitals to the rich automata in the regional center hospitals. However, a main challenge is how to efficiently and safely synchronize distributed best practice models as the communication among medical facilities, devices, and professionals generates a large number of messages. This complex problem of patient diagnosis and transport from rural to center facility is also fraught with many uncertainties and changes resulting in a high degree of dynamism. A critically ill patient's medical conditions can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer. Such dynamics have yet to be addressed in existing literature on telemedicine. To address this situation, we propose a pathophysiological model-driven message exchange communication architecture that ensures the real-time and dynamic requirements of synchronization among distributed emergency best practice models are met in a reliable and safe manner. Taking the signs, symptoms, and progress of stroke patients transported across a geographically distributed healthcare network as the motivating use case, we implement our communication system and apply it to our developed best practice

  18. Anticipatory gene regulation driven by maternal effects in an insect-host system.

    PubMed

    Nespolo, Roberto F; Silva, Andrea X; Figueroa, Christian C; Bacigalupe, Leonardo D

    2015-12-01

    Adaptive mechanisms involved in the prediction of future environments are common in organisms experiencing temporally variable environments. One of these is AGR (anticipatory gene regulation); in which differential gene expression occur in an individual, triggered by the experience of an ancestor. In this study, we explored the existence of AGR driven by a maternal effect, in an insect-host system. We analyzed gene expression of detoxifying systems in aphids across two generations, by shifting mothers and offspring from chemically defended to nondefended hosts, and vice versa. Then, we measured fitness (intrinsic rate of increase) and the relative abundance of transcripts from certain candidate genes in daughters, using RT-qPCR (quantitative reverse-transcription PCR). We found AGR in most cases, but responses varied according to the system being analyzed. For some pathways (e.g., cathepsins), the experience of both mothers and offsprings affected the response (i.e., when both, mother and daughter grew in the defended host, the maximum response was elicited; when only the mother grew in the defended host, an intermediate response was elicited; and when both, mother and daughter grew in a nondefended host, the response was undetectable). In other cases (esterases and GSTs), gene over-expression was maintained even if the daughter was transferred to the nondefended host. In spite of these changes at the gene-regulatory level, fitness was constant across hosts, suggesting that insects keep adapted thanks to this fluctuating gene expression. Also, it seems that that telescopic reproduction permits aphids to anticipate stressful environments, by minute changes in the timing of differential gene expression. PMID:27069609

  19. Data-Driven Synthesis for Investigating Food Systems Resilience to Climate Change

    NASA Astrophysics Data System (ADS)

    Magliocca, N. R.; Hart, D.; Hondula, K. L.; Munoz, I.; Shelley, M.; Smorul, M.

    2014-12-01

    The production, supply, and distribution of our food involves a complex set of interactions between farmers, rural communities, governments, and global commodity markets that link important issues such as environmental quality, agricultural science and technology, health and nutrition, rural livelihoods, and social institutions and equality - all of which will be affected by climate change. The production of actionable science is thus urgently needed to inform and prepare the public for the consequences of climate change for local and global food systems. Access to data that spans multiple sectors/domains and spatial and temporal scales is key to beginning to tackle such complex issues. As part of the White House's Climate Data Initiative, the USDA and the National Socio-Environmental Synthesis Center (SESYNC) are launching a new collaboration to catalyze data-driven research to enhance food systems resilience to climate change. To support this collaboration, SESYNC is developing a new "Data to Motivate Synthesis" program designed to engage early career scholars in a highly interactive and dynamic process of real-time data discovery, analysis, and visualization to catalyze new research questions and analyses that would not have otherwise been possible and/or apparent. This program will be supported by an integrated, spatially-enabled cyberinfrastructure that enables the management, intersection, and analysis of large heterogeneous datasets relevant to food systems resilience to climate change. Our approach is to create a series of geospatial abstraction data structures and visualization services that can be used to accelerate analysis and visualization across various socio-economic and environmental datasets (e.g., reconcile census data with remote sensing raster datasets). We describe the application of this approach with a pilot workshop of socio-environmental scholars that will lay the groundwork for the larger SESYNC-USDA collaboration. We discuss the

  20. SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)

    EPA Science Inventory

    The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...