Science.gov

Sample records for driven superconducting phase

  1. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  2. Bifurcation Diagram and Pattern Formation of Phase Slip Centers in Superconducting Wires Driven with Electric Currents

    NASA Astrophysics Data System (ADS)

    Rubinstein, J.; Sternberg, P.; Ma, Q.

    2007-10-01

    We provide here new insights into the classical problem of a one-dimensional superconducting wire exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip centers (PSC’s) where the order parameter vanishes. Retaining temperature and applied current as parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions can be found. One of the most interesting features of the analysis is the evident collision of real eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex elements of the spectrum.

  3. Qualitative modifications and new dynamic phases in the phase diagram of one-dimensional superconducting wires driven with electric currents

    NASA Astrophysics Data System (ADS)

    Kallush, Shimshon; Berger, Jorge

    2014-06-01

    After an initial transient period, the conduction regime in a one-dimensional superconducting wire that carries a fixed current is either normal, periodic, or stationary. The phase diagram for these possibilities was studied in Phys. Rev. Lett. 99, 167003 (2007), 10.1103/PhysRevLett.99.167003 for particular values of the length and the material parameters. We have extended this study to arbitrary length and to a range of material parameters that includes realistic values. Variation of the length leads to scaling laws for the phase diagram. Variation of the material parameters leads to new qualitative features and new phases, including a parameter region in which all three regimes are possible.

  4. Dynamics of driven superconducting vortices

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia Olson

    1998-09-01

    Vortices in superconductors exhibit rich dynamical behaviors that are relevant to the physical properties of the material. In this thesis, we use simulations to study the dynamics of flux-gradient-driven vortices in different types of samples. We make connections between the microscopic behavior of the vortices and macroscopic experimentally observable measurements. First, we systematically quantify the effect of the pinning landscape on the macroscopic properties of vortex avalanches and vortex plastic flow. We relate the velocity field, cumulative patterns of vortex flow channels, and voltage noise measurements with statistical quantities, such as distributions of avalanche sizes. Samples with a high density of strong pinning sites produce very broad avalanche distributions. Easy-flow vortex channels appear in samples with a low pinning density, and typical avalanche sizes emerge in an otherwise broad distribution of sizes. We observe a crossover from interstitial motion in narrow channels to pin-to-pin motion in broad channels as the pin density is increased. Second, we also analyze the microscopic dynamics of vortex motion through channels that form river-like fractal networks in a variety of superconducting samples, and relate it to macroscopic measurable quantities such as the power spectrum. As a function of pinning strength, we calculate the fractal dimension, tortuosity, and the corresponding voltage noise spectrum. Above a certain pinning strength, a remarkable universal drop in both tortuosity and noise power occurs when the vortex motion changes from braiding channels to unbraided channels. Third, we also present a new dynamic phase diagram for driven vortices with varying lattice softness that indicates that, at high driving currents, at least two distinct dynamic phases of flux flow appear depending on the vortex-vortex interaction strength. When the flux lattice is soft, the vortices flow in independently moving channels with smectic structure. For

  5. Anisotropic superconductivity driven by kinematic interaction

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.

    2000-11-01

    We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.

  6. Multigap superconductivity and barrier-driven resonances in superconducting nanofilms with an inner potential barrier

    NASA Astrophysics Data System (ADS)

    Doria, Mauro M.; Cariglia, Marco; Perali, Andrea

    2016-12-01

    We study the crossover in a zero-temperature superconducting nanofilm from a single to a double superconducting slab induced by a barrier in the middle. We use the Bogoliubov-de Gennes (BdG) equations in the Anderson approximation to show that the single-phase superconducting ground state of this heterostructure is intrinsically multigapped and has a new type of resonance caused by the strength of the barrier, thus distinct from the Thompson-Blatt shape resonance which is caused by tuning the thickness of the film. The simplest theoretical framework able to describe a finite height and very thin tunable insulating potential barrier in the middle is provided by a δ -function potential. In this framework, the even single-particle states are affected by the insulating barrier, whereas the odd ones are not. The new type of resonance, hereafter called barrier-driven resonance, is caused by the crossing of the even single-particle states through the Fermi surface. The lift of the even-odd degeneracy at the barrier reconfigures the pairing interaction and leads to a multigapped superconducting state with barrier-driven resonances.

  7. Phase slips in superconducting weak links

    SciTech Connect

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  8. Deterministic phase slips in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-11-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  9. Deterministic phase slips in mesoscopic superconducting rings

    PubMed Central

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-01-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity. PMID:27882924

  10. Phase competition in trisected superconducting dome

    PubMed Central

    Vishik, I. M.; Hashimoto, M.; He, Rui-Hua; Lee, Wei-Sheng; Schmitt, Felix; Lu, Donghui; Moore, R. G.; Zhang, C.; Meevasana, W.; Sasagawa, T.; Uchida, S.; Fujita, Kazuhiro; Ishida, S.; Ishikado, M.; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Hussain, Zahid; Devereaux, Thomas P.; Shen, Zhi-Xun

    2012-01-01

    A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi2Sr2CaCu2O8+δ, covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below Tc and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome. PMID:23093670

  11. Multiple Phase Transition in Unconventional Superconducting Films

    NASA Astrophysics Data System (ADS)

    Miyawaki, N.; Higashitani, S.

    2016-10-01

    When Andreev bound states are formed at the surfaces of a superconducting film, there may arise, as the ground state of the film, a superconducting state with broken time-reversal symmetry (T). In this state, Cooper pairs with a finite center-of-mass momentum q are formed without external fields. We focus on the T-breaking state in a d-wave superconducting film and investigate the effect of the Fermi surface shape on its stability region in the T-D^{-1} phase diagram (T: temperature, D: film thickness). The phase boundaries separating the normal state, the T-breaking superconducting state, and the trivial (q = 0 ) superconducting state are determined for various Fermi surface shapes ranging from cylindrical to square. It is found that the region of the T-breaking phase is substantially enlarged when the Fermi surface is square-shaped. This is mainly because the critical thickness D_c between the normal and T-breaking states is significantly reduced when the Fermi surface has a good nesting property.

  12. Phase competition in trisected superconducting dome

    NASA Astrophysics Data System (ADS)

    Vishik, Inna

    2012-02-01

    The momentum-resolved nature of angle-resolved photoemission spectroscopy (ARPES) has made it a key probe of emergent phases in the cuprates, such as superconductivity and the pseudogap, which have anisotropic momentum-space structure. ARPES can be used to infer the origin of spectral gaps from their distinct phenomenology---temperature, doping, and momentum dependence, and this principle has been used to argue that the pseudogap is a distinct phase from superconductivity, rather than a precursor [1]. We have studied Bi2Sr2CaCu2O8+δ (Bi-2212) using laser-ARPES, and our data give evidence for three distinct quantum phases comprising the superconducting ground state, accompanied by abrupt changes at p˜0.076 and p˜0.19 in the doping-and-temperature dependence of the gaps near the bond-diagonal (nodal) direction [2]. The latter doping likely marks the quantum critical point of the pseudogap, while the former represents a distinct competing phase at the edge of the superconducting dome. Additionally, we find that the pseudogap advances closer towards the node when superconductivity is weak, just below Tc or at low doping, and retreats towards the antinode well below Tc and at higher doping. This phase competition picture together with the two critical doping are synthesized into our proposed phase diagram, which also reconciles conflicting phase diagrams commonly used in the field. Our results underscore the importance of quantum critical phenomena to cuprate superconductivity, provide a microscopic picture of phase competition in momentum space, and predict the existence of phase boundaries inside the superconducting dome which are different from simple extrapolations from outside the dome. [4pt] [1] I. M. Vishik, W. S. Lee, R.-H. He, M. Hashimoto, Z. Hussain, T. P. Devereaux, and Z.-X. Shen. New J. Phys. 12, 105008 (2010). [0pt] [2] I. M. Vishik, M. Hashimoto, R.-H. He, W. S. Lee, F. Schmitt, D. H. Lu, R.G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K

  13. Odd-frequency Superconductivity in Driven Systems

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes in terms of parity under transformations that invert spin, space, time, and orbital degrees of freedom holds for driven systems even in the absence of translation invariance. We then discuss the conditions under which pair amplitudes which are odd in frequency can emerge in driven systems. Considering a model Hamiltonian for a superconductor coupled to an external driving potential, we investigate the influence of the drive on the anomalous Green's function, density of states, and spectral function. We find that the anomalous Green's function develops odd in frequency component in the presence of an external drive. Furthermore we investigate how these odd-frequency terms are related to satellite features in the density of states and spectral function. Supported by US DOE BES E 304.

  14. Odd-frequency superconductivity in driven systems

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander V.

    2016-09-01

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes holds for driven systems even in the absence of translation invariance. We then consider a model Hamiltonian for a superconductor coupled to an external driving potential and, treating the drive as a perturbation, we investigate the corrections to the anomalous Green's function, density of states, and spectral function. We find that in the presence of an external drive the anomalous Green's function develops terms that are odd in frequency and that the same mechanism responsible for these odd-frequency terms generates additional features in the density of states and spectral function.

  15. Superconducting phase domains for memory applications

    NASA Astrophysics Data System (ADS)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu.; Golubov, A. A.

    2016-01-01

    In this work, we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer, and a thin superconducting film (s). We demonstrate the breakdown of a spatial uniformity of the superconducting order in the s-film and its decomposition into domains with a phase shift π. The effect is sensitive to the thickness of the s layer and the widths of the F and N films in the direction along the sIS interface. We predict the existence of a regime where the structure has two energy minima and can be switched between them by an electric current injected laterally into the structure. The state of the system can be non-destructively read by an electric current flowing across the junction.

  16. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  17. Superconductivity of MgB2: covalent bonds driven metallic.

    PubMed

    An, J M; Pickett, W E

    2001-05-07

    A series of calculations on MgB2 and related isoelectronic systems indicates that the layer of Mg2+ ions lowers the nonbonding B pi ( p(z)) bands relative to the bonding sigma ( sp(x)p(y)) bands compared to graphite, causing sigma-->pi charge transfer and sigma band doping of 0.13 holes/cell. Because of their two dimensionality the sigma bands contribute strongly to the Fermi level density of states. Calculated deformation potentials of gamma point phonons identify the B bond stretching modes as dominating the electron-phonon coupling. Superconductivity driven by sigma band holes is consistent with the report of destruction of superconductivity by doping with Al.

  18. Homogeneous superconducting phase in TiN film: A complex impedance study

    NASA Astrophysics Data System (ADS)

    Diener, P.; Schellevis, H.; Baselmans, J. J. A.

    2012-12-01

    The low frequency complex impedance of a high resistivity 92 μ Ω cm and 100 nm thick TiN superconducting film has been measured via the transmission of several high sensitivity GHz microresonators, down to TC/50. The temperature dependence of the kinetic inductance follows closely BCS local electrodynamics, with one well defined superconducting gap. This evidences the recovery of a homogeneous superconducting phase in TiN far from the disorder and composition driven transitions. Additionally, we observe a linearity between resonator quality factor and frequency temperature changes, which can be described by a two fluid model.

  19. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  20. Superconductivity of calcium in phase VI

    NASA Astrophysics Data System (ADS)

    Szcze&şacute; niak, R.; Durajski, A. P.

    2012-01-01

    The properties of the superconducting state of calcium in phase VI were analyzed. By using the imaginary axis Eliashberg equations it has been shown, that the Coulomb pseudopotential reaches the high value equal to 0.215. In the considered case, the critical temperature is not properly described by the Allen-Dynes formula and it should be calculated with an use of the modified expression. In the paper the exact solutions of the Eliashberg equations on the real axis were also obtained. On this basis it was stated, that the effective potential of the electron-electron interaction is attractive for the frequencies lower or equal to the maximum phonon frequency. Then, the dimensionless parameter 2 Δ(0)/ kBTC = 4.10 was calculated. In the last step it has been proven, that the ratio of the electron effective mass to the bare electron mass is high and reaches its maximum equal to 2.36 for the critical temperature.

  1. Two distinct superconducting phases in LiFeAs

    PubMed Central

    Nag, P. K.; Schlegel, R.; Baumann, D.; Grafe, H.-J.; Beck, R.; Wurmehl, S.; Büchner, B.; Hess, C.

    2016-01-01

    A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance. PMID:27297474

  2. Crystal structure of the superconducting phase of sulfur hydride

    NASA Astrophysics Data System (ADS)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  3. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE PAGES

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  4. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    SciTech Connect

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; Varghese, Philip

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.

  5. Optimization of the superconducting phase of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-15

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH{sub 3} phase and the stable orthorhombic structure of hydrogen sulfide SH{sub 2}, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH{sub 3} phase. Sequential stages for obtaining and conservation of the SH{sub 2} phase are proposed. The properties of two (SH{sub 2} and SH{sub 3}) superconducting phases of hydrogen sulfide are compared.

  6. Superconducting switch concept applied to superconducting undulator phase-error correction

    SciTech Connect

    Madur, A.; Trillaud, F.; Dietderich, D.; Marks, S.; Prestemon, S.; Schlueter, R.

    2010-06-23

    Superconducting undulator (SCU) technology has the potential to significantly enhance the performance of synchrotron radiation sources for storage ring and FEL applications. Since 2002, our team at Lawrence Berkeley National Laboratory has been performing R and D on superconducting undulators, including the fabrication of three Nb{sub 3}Sn prototypes. We have demonstrated experimentally the possibility to provide the prototype with trim coils that could be used for phase error correction. The research effort that we report here demonstrates the possibility to add degrees of freedom to the field correction provided by these coils in a cryogenic environment. By means of bridge of superconducting switches, we can modify the current direction through a trim coil. Here we describe the design of the experimental bridge we fabricated, the results we obtained and finally the generalized concept one could plan to apply to correct the phase errors with trim coils connected to a network of superconducting bridges.

  7. Quantum phase slip phenomenon in ultra-narrow superconducting nanorings

    PubMed Central

    Arutyunov, Konstantin Yu.; Hongisto, Terhi T.; Lehtinen, Janne S.; Leino, Leena I.; Vasiliev, Alexander L.

    2012-01-01

    The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature Tc thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole range of experimentally obtainable temperatures. The observation has been associated with quantum fluctuations capable to quench zero resistivity in superconducting nanowires even at temperatures T→0. Here we demonstrate that in tiny superconducting nanorings the same phenomenon is responsible for suppression of another basic attribute of superconductivity - persistent currents - dramatically affecting their magnitude, the period and the shape of the current-phase relation. The effect is of fundamental importance demonstrating the impact of quantum fluctuations on the ground state of a macroscopically coherent system, and should be taken into consideration in various nanoelectronic applications. PMID:22389762

  8. Pressure-driven formation and stabilization of superconductive chromium hydrides

    NASA Astrophysics Data System (ADS)

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-12-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ˜ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2-4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2.

  9. Pressure-driven formation and stabilization of superconductive chromium hydrides

    PubMed Central

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  10. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei

    2017-03-01

    A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm‑2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.

  11. Pressure driven phase transition in 1T-TiSe2, a MOIPT+DMFT study

    NASA Astrophysics Data System (ADS)

    Koley, S.

    2017-02-01

    The nature of unconventional superconductivity associated with charge density wave order in transition metal dichalcogenides is currently a debated issue. Starting from a normal state electronic structure followed by a charge ordered state how superconductivity in 1T-TiSe2 arises with applied pressure is still under research. A preformed excitonic liquid driven ordered state mediated superconductivity is found in broad class of TMD on the border of CDW. Using dynamical mean field theory with input from noninteracting band structure calculation, I show a phase transition appearing near about 2 GPa pressure at a temperature of 2 K as a result of exciton-phonon coupling.

  12. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  13. Development of passive superconducting bearings. Phase 3

    NASA Astrophysics Data System (ADS)

    Rao, Dantam K.

    1993-05-01

    This report documents the development of a passive superconducting bearing that is used to levitate relatively heavy rotors. This bearing was used to levitate a 7 lb rotor and spin at speeds of up to 12,000 rpm. The success of this effort indicates that the superconducting bearings have the potential for transition from a mere laboratory curiosity to a functional bearing component in a wider range of practical applications such as cryoturbopumps, miniature cryocoolers, and magnetic refrigerators. In addition, several configurations using superconductors to support loads along a single axis were investigated. The effort was directed to identify a specific configuration that offers a very high stiffness.

  14. Electronic phase separation transition as the origin of the superconductivity and pseudogap phase of cuprates

    NASA Astrophysics Data System (ADS)

    de Mello, E. V. L.; Kasal, R. B.; Passos, C. A. C.

    2009-06-01

    To deal with the physics of cuprate superconductivity we propose an electronic phase separation transition that segregates the holes into high and low density domains. The calculated grain boundary potential favors the development of intragrain superconducting amplitudes. The zero resistivity transition arises only when the intergrain Josephson coupling EJ is of the order of the thermal energy and phase locking takes place among the superconducting grains. We show that this approach explains the pseudogap and superconducting phases and it also reproduces some recent scanning tunneling microscopy data.

  15. Electronic phase separation transition as the origin of the superconductivity and pseudogap phase of cuprates.

    PubMed

    de Mello, E V L; Kasal, R B; Passos, C A C

    2009-06-10

    To deal with the physics of cuprate superconductivity we propose an electronic phase separation transition that segregates the holes into high and low density domains. The calculated grain boundary potential favors the development of intragrain superconducting amplitudes. The zero resistivity transition arises only when the intergrain Josephson coupling E(J) is of the order of the thermal energy and phase locking takes place among the superconducting grains. We show that this approach explains the pseudogap and superconducting phases and it also reproduces some recent scanning tunneling microscopy data.

  16. Phase segregation of superconductivity and ferromagnetism at the LaAlO3/SrTiO3 interface.

    PubMed

    Mohanta, N; Taraphder, A

    2014-01-15

    The highly conductive two-dimensional electron gas formed at the interface between insulating SrTiO3 and LaAlO3 shows low-temperature superconductivity coexisting with inhomogeneous ferromagnetism. The Rashba spin-orbit interaction with the in-plane Zeeman field of the system favors p(x) ± ip(y)-wave superconductivity at finite momentum. Owing to the intrinsic disorder at the interface, the role of spatial inhomogeneity in the superconducting and ferromagnetic states becomes important. We find that, for strong disorder, the system breaks up into mutually excluded regions of superconductivity and ferromagnetism. This inhomogeneity-driven electronic phase separation accounts for the unusual coexistence of superconductivity and ferromagnetism observed at the interface.

  17. Conceptual design of a Gyrotron-driven superconducting ECR ion source

    SciTech Connect

    Countryman, P.J.; Lyneis, C.M.; Wolgast, R.C.

    1989-03-01

    The conceptual design for a superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is presented. It is designed to take advantage of frequency scaling in ECRIS and be driven at 28 GHz by a laboratory scale gyrotron. The superconducting coils are surrounded by a warm bore iron yoke. Possible applications include cyclotrons, heavy-ion synchrotrons, ion implantation in semiconductors, and experiments in atomic physics. 10 refs., 5 figs., 1 tab.

  18. Phase and amplitude stabilization of beam-loaded superconducting resonators

    SciTech Connect

    Delayen, J.R.

    1992-01-01

    A model has been developed to analyze the static and dynamic behavior of superconducting accelerating cavities operated in self-excited loops in the presence of phase and amplitude feedback, ponderomotive effects, and beam loading. This is an extension of an earlier analysis of the stabilization of superconducting cavities which has been the basis of the control system of several superconducting accelerators but did not include beam loading. Conditions have been derived to ensure static and dynamic stability in the presence of ponderomotive effects (coupling between the mechanical and electromagnetic modes of the cavity through the radiation pressure). Expressions for the effect of fluctuations of cavity frequency and beam amplitude and phase on the cavity-field amplitude and phase and beam-energy gain have been obtained.

  19. Phase and amplitude stabilization of beam-loaded superconducting resonators

    SciTech Connect

    Delayen, J.R.

    1992-10-01

    A model has been developed to analyze the static and dynamic behavior of superconducting accelerating cavities operated in self-excited loops in the presence of phase and amplitude feedback, ponderomotive effects, and beam loading. This is an extension of an earlier analysis of the stabilization of superconducting cavities which has been the basis of the control system of several superconducting accelerators but did not include beam loading. Conditions have been derived to ensure static and dynamic stability in the presence of ponderomotive effects (coupling between the mechanical and electromagnetic modes of the cavity through the radiation pressure). Expressions for the effect of fluctuations of cavity frequency and beam amplitude and phase on the cavity-field amplitude and phase and beam-energy gain have been obtained.

  20. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  1. Process for preparing superconducting film having substantially uniform phase development

    DOEpatents

    Bharacharya, R.; Parilla, P.A.; Blaugher, R.D.

    1995-12-19

    A process is disclosed for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material. 3 figs.

  2. Process for preparing superconducting film having substantially uniform phase development

    DOEpatents

    Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.

    1995-01-01

    A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.

  3. Thermodynamics of entropy-driven phase transformations.

    PubMed

    Radosz, A; Ostasiewicz, K; Magnuszewski, P; Damczyk, J; Radosiński, Ł; Kusmartsev, F V; Samson, J H; Mituś, A C; Pawlik, G

    2006-02-01

    Thermodynamic properties of one-dimensional lattice models exhibiting entropy-driven phase transformations are discussed in quantum and classical regimes. Motivated by the multistability of compounds exhibiting photoinduced phase transitions, we consider systems with asymmetric, double, and triple well on-site potential. One finds that among a variety of regimes, quantum versus classical, discrete versus continuum, a key feature is asymmetry distinguished as a "shift" type and "shape" type in limiting cases. The behavior of the specific heat indicates one phase transformation in a "shift" type and a sequence of two phase transformations in "shape"-type systems. Future analysis in higher dimensions should allow us to identify which of these entropy-driven phase transformations would evolve into phase transitions of the first order.

  4. Magnetic phases in three-flavor color superconductivity

    SciTech Connect

    Ferrer, Efrain J.; Incera, Vivian de la

    2007-08-15

    The best natural candidates for the realization of color superconductivity are quark stars--not yet confirmed by observation--and the extremely dense cores of compact stars, many of which have very large magnetic fields. To reliably predict astrophysical signatures of color superconductivity, a better understanding of the role of the star's magnetic field in the color-superconducting phase that is realized in the core is required. This paper is an initial step in that direction. The field scales at which the different magnetic phases of a color superconductor with three quark flavors can be realized are investigated. Going from weak to strong fields, the system first undergoes a symmetry transmutation from a color-flavor-locked (CFL) phase to a magnetic-CFL (MCFL) phase, and then a phase transition from the MCFL phase to the paramagnetic-CFL (PCFL) phase. The low-energy effective theory for the excitations of the diquark condensate in the presence of a magnetic field is derived using a covariant representation that takes into account all the Lorentz structures contributing at low energy. The field-induced masses of the charged mesons and the threshold field at which the CFL{yields} MCFL symmetry transmutation occurs are obtained in the framework of this low-energy effective theory. The relevance of the different magnetic phases for the physics of compact stars is discussed.

  5. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride.

    PubMed

    Pan, Xing-Chen; Chen, Xuliang; Liu, Huimei; Feng, Yanqing; Wei, Zhongxia; Zhou, Yonghui; Chi, Zhenhua; Pi, Li; Yen, Fei; Song, Fengqi; Wan, Xiangang; Yang, Zhaorong; Wang, Baigeng; Wang, Guanghou; Zhang, Yuheng

    2015-07-23

    Tungsten ditelluride has attracted intense research interest due to the recent discovery of its large unsaturated magnetoresistance up to 60 T. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we boost the electronic properties by applying a high pressure, and introduce superconductivity successfully. Superconductivity sharply appears at a pressure of 2.5 GPa, rapidly reaching a maximum critical temperature (Tc) of 7 K at around 16.8 GPa, followed by a monotonic decrease in Tc with increasing pressure, thereby exhibiting the typical dome-shaped superconducting phase. From theoretical calculations, we interpret the low-pressure region of the superconducting dome to an enrichment of the density of states at the Fermi level and attribute the high-pressure decrease in Tc to possible structural instability. Thus, tungsten ditelluride may provide a new platform for our understanding of superconductivity phenomena in transition metal dichalcogenides.

  6. Phase shielding soliton in parametrically driven systems.

    PubMed

    Clerc, Marcel G; Garcia-Ñustes, Mónica A; Zárate, Yair; Coulibaly, Saliya

    2013-05-01

    Parametrically driven extended systems exhibit dissipative localized states. Analytical solutions of these states are characterized by a uniform phase and a bell-shaped modulus. Recently, a type of dissipative localized state with a nonuniform phase structure has been reported: the phase shielding solitons. Using the parametrically driven and damped nonlinear Schrödinger equation, we investigate the main properties of this kind of solution in one and two dimensions and develop an analytical description for its structure and dynamics. Numerical simulations are consistent with our analytical results, showing good agreement. A numerical exploration conducted in an anisotropic ferromagnetic system in one and two dimensions indicates the presence of phase shielding solitons. The structure of these dissipative solitons is well described also by our analytical results. The presence of corrective higher-order terms is relevant in the description of the observed phase dynamical behavior.

  7. Demonstrating a driven reset protocol for a superconducting qubit.

    PubMed

    Geerlings, K; Leghtas, Z; Pop, I M; Shankar, S; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H

    2013-03-22

    Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving appropriate qubit and cavity transitions. Our protocol, called the double drive reset of population, is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5% in less than 3 μs; faster times and higher fidelity are predicted upon parameter optimization.

  8. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    SciTech Connect

    Poole, B R; Harris, J R

    2011-03-07

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.

  9. The 23 K superconducting phase YPd 2B 2C

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Rusakova, I.; Meng, R. L.; Cao, Y.; Gautier-Picard, P.; Chu, C. W.

    1994-09-01

    We have carried out a systematic structural, electric, and magnetic study on YPdBC samples with different compositions with emphasis on the as-cast and annealed YPd 5B 3C 0.3 which was first reported to superconduct at ∼ 23 K by Cava et al. We found that the tetragonal body-centered YPd 2B 2C with lattice parameters a=3.71 Å and c=10.81 Å is the phase responsible for the 23 K superconductivity and that YPd 2B 2C is metastable, which is consistent with the suggestion made by Cava et al. [1]: it is not stable at high temperatures nor stabilizable by Ni doping, although its isostructural compound, YNi 2B 2C, exists. Two new phases with Y:Pd ratios of 1:7 and 2:3, respectively, have also bee detected.

  10. Chern-Simons-Higgs transitions out of topological superconducting phases

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Nayak, Chetan

    2015-10-01

    In this study, we examine effective field theories of superconducting phases with topological order, making a connection to proposed realizations of exotic topological phases (including those hosting Ising and Fibonacci anyons) in superconductor-quantum Hall heterostructures. Our effective field theories for the non-Abelian superconducting states are non-Abelian Chern-Simons theories in which the condensation of vortices carrying non-Abelian gauge flux leads to the associated Abelian quantum Hall states. This Chern-Simons-Higgs condensation process is dual to the emergence of superconducting non-Abelian topological phases in coupled chain constructions. In such transitions, the chiral central charge of the system generally changes, so they fall outside the description of bosonic condensation transitions put forth by Bais and Slingerland [F. A. Bais and J. K. Slingerland, Phys. Rev. B 79, 045316 (2009), 10.1103/PhysRevB.79.045316] (though the two approaches agree when the described transitions coincide). Our condensation process may be generalized to Chern-Simons theories based on arbitrary Lie groups, always describing a transition from a Lie algebra to its Cartan subalgebra. We include several instructive examples of such transitions.

  11. Superconducting Accelerating Structure for High-Current Cyclotrons for Accelerator-Driven Subcritical Fission

    NASA Astrophysics Data System (ADS)

    Pogue, Nathaniel; McIntyre, Peter; Sattarov, Akhdiyor

    2011-10-01

    An accelerator driven molten salt fission core is being designed to provide reliable power by subcritical nuclear fission for the next few millennia. Fission is driven by proton beams from a flux-coupled stack of three high-current cyclotrons. A key innovation in attaining the needed beam current and efficiency is a superconducting Niobium rf accelerating cavity that can accelerate bunches in the 200 orbits uniformly. The unique design allows for several cavities to be stacked, and also provides uniform acceleration and eliminates higher order modes in the cyclotron. The design and properties of the superconducting cavity will increase the efficiency of the cyclotron and the overall energy amplification from the molten salt core by an order of magnitude compared to conventional designs.

  12. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming

  13. Bismuthates: BaBiO3 and related superconducting phases

    NASA Astrophysics Data System (ADS)

    Sleight, Arthur W.

    2015-07-01

    BaBiO3 has the perovskite structure, but tilting of the BiO6 octahedra destroy the ideal cubic symmetry except at temperatures above 820 K. BaBiO3 is a diamagnetic semiconductor due to a charge density wave (CDW), which is equivalent to a Ba2Bi3+Bi5+O6 representation. Recent calculations and experimental results confirm that there is no significant deviation from the oxidation states of 3+ and 5+. Superconductivity with a Tc as high as 13 K occurs for BaPb1-xBixO3 phases where the 6s band is about 25% filled, and superconductivity with a Tc as high as 34 K occurs for Ba1-xKxBiO3 phases where the 6s band is about 35% filled. Structures in these two solid solutions can have cubic, tetragonal, orthorhombic, or monoclinic symmetry. However, superconductivity has only been observed when the symmetry is tetragonal.

  14. Quantum phases in circuit QED with a superconducting qubit array

    PubMed Central

    Zhang, Yuanwei; Yu, Lixian; Liang, J. -Q; Chen, Gang; Jia, Suotang; Nori, Franco

    2014-01-01

    Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighbor spin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization. PMID:24522250

  15. Quantum phases in circuit QED with a superconducting qubit array.

    PubMed

    Zhang, Yuanwei; Yu, Lixian; Liang, J-Q; Chen, Gang; Jia, Suotang; Nori, Franco

    2014-02-13

    Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighbor spin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses Z(z)₂ ⊗ Z₂ symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization.

  16. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  17. Josephson phase diffusion in the superconducting quantum interference device ratchet

    SciTech Connect

    Spiechowicz, Jakub; Łuczka, Jerzy

    2015-05-15

    We study diffusion of the Josephson phase in the asymmetric superconducting quantum interference device (SQUID) subjected to a time-periodic current and pierced by an external magnetic flux. We analyze a relation between phase diffusion and quality of transport characterized by the dc voltage across the SQUID and efficiency of the device. In doing so, we concentrate on the previously reported regime [J. Spiechowicz and J. Łuczka, New J. Phys. 17, 023054 (2015)] for which efficiency of the SQUID attains a global maximum. For long times, the mean-square displacement of the phase is a linear function of time, meaning that diffusion is normal. Its coefficient is small indicating rather regular phase evolution. However, it can be magnified several times by tailoring experimentally accessible parameters like amplitudes of the ac current or external magnetic flux. Finally, we prove that in the deterministic limit this regime is essentially non-chaotic and possesses an unexpected simplicity of attractors.

  18. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    PubMed Central

    Nair, Sunil; Stockert, O.; Witte, U.; Nicklas, M.; Schedler, R.; Kiefer, K.; Thompson, J. D.; Bianchi, A. D.; Fisk, Z.; Wirth, S.; Steglich, F.

    2010-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity. PMID:20457945

  19. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    SciTech Connect

    Thompson, Joe E; Nair, S; Stockert, O; Witte, U; Nicklas, M; Schedler, R; Bianchi, A; Fisk, Z; Wirth, S; Steglich, K

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  20. Early Work on Defect Driven Phase Transitions

    NASA Astrophysics Data System (ADS)

    Kosterlitz, J. Michael; Thouless, David J.

    2016-12-01

    This article summarizes the early history of the theory of phase transitions driven by topological defects, such as vortices in superfluid helium films or dislocations and disclinations in two-dimensional solids. We start with a review of our two earliest papers, pointing out their errors and omissions as well as their insights. We then describe the work, partly done by Kosterlitz but mostly done by other people, which corrected these oversights, and applied these ideas to experimental systems, and to numerical and experimental simulations.

  1. Interlayer tunneling spectroscopy of mixed-phase BSCCO superconducting whiskers

    NASA Astrophysics Data System (ADS)

    Kizilaslan, O.; Truccato, M.; Simsek, Y.; Aksan, M. A.; Koval, Y.; Müller, P.

    2016-06-01

    In this work, we present a study on the interlayer tunneling spectroscopy (ITS) of mixed-phase BiSrCaCuO (BSCCO) superconducting whiskers. The tunneling experiments were carried out on the artificial cross-whisker (twist angle of 90°) junctions. A multiple superconducting energy gap in the cross-whisker junctions was observed, which is attributed to the presence of different doping levels of two Bi2Sr2CaCu2O8+δ phases (Bi-2212), rather than two different phases, in the BSCCO whiskers, namely Bi2Sr2CaCu2O8+δ and Bi2Sr2Ca2Cu3O8+δ (Bi-2212 and Bi-2223). The temperature dependence of the energy gaps was discussed in the framework of the BCS T-dependence. On the other hand, the carrier concentration of the cross-whisker junction was changed by the carrier injection process. The effects of the carrier injection on the critical current, I c, and the ITS of intrinsic Josephson junctions were investigated in details.

  2. Superconductivity

    DTIC Science & Technology

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  3. Coherent Population Trapping in a Superconducting Phase Qubit

    NASA Astrophysics Data System (ADS)

    Kelly, William R.; Dutton, Zachary; Ohki, Thomas A.; Schlafer, John; Mookerji, Bhaskar; Kline, Jeffery S.; Pappas, David P.

    2010-03-01

    The phenomenon of Coherent Population Trapping (CPT) of an atom (or solid state ``artificial atom''), and the associated effect of Electromagnetically Induced Transparency (EIT), are clear demonstrations of quantum interference due to coherence in multi-level quantum systems. We report observation of CPT in a superconducting phase qubit by simultaneously driving two coherent transitions in a λ-type configuration, utilizing the three lowest lying levels of a local minimum of the phase qubit. We observe ˜60% suppression of excited state population under conditions of two-photon resonance, where EIT and CPT are expected to occur. We present data and matching theoretical simulations showing the development of CPT in time. We also used the observed time dependence of the excited state population to characterize quantum dephasing times of the system, as predicted in [1]. [1] K.V. Murali, Z. Dutton, W.D. Oliver, D.S. Crankshaw, and T.P.Orlando, Phys. Rev. Lett. 93, 087003 (2004).

  4. Superconducting high-pressure phases composed of hydrogen and iodine

    DOE PAGES

    Shamp, Andrew; Zurek, Eva

    2015-09-25

    Evolutionary structure searches predict three new phases of iodine polyhydrides stable under pressure. Insulating P1-H5I, consisting of zigzag chains of (HI) δ+ and H 2 molecules, is stable between 30-90 GPa. Cmcm-H2I and P6/mmm-H4I are found on the 100, 150 and 200 GPa convex hulls. These two phases are good metals, even at 1 atm, because they consist of monoatomic lattices of iodine. At 100 GPa the superconducting transition temperature, Tc, of H2I and H4I are estimated to be 7.8 and 17.5 K, respectively. Lastly, the increase in Tc relative to elemental iodine results from a larger ωlog from themore » light mass of hydrogen, and an enhanced from modes containing H/I and H/H vibrations.« less

  5. Switching device for the superconducting phase transition measurements of thin W films using a single superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Sáfrán, G.; Loidl, M.; Meier, O.; Angloher, G.; Pröbst, F.; Seidel, W.

    1999-06-01

    A simple superconducting switch has been developed for the measurements of the low temperature superconducting phase transitions of several thin W samples connected simultaneously to a single superconducting quantum interference device. The switch, based on a Ti thin film resistor, can be set to normal or to superconducting within the cryostat by adjusting its temperature above or below the transition temperature by means of a thin film heater. The experimental setup, circuit and device properties, are discussed in detail. As an example of its application the superconducting phase transitions of two thin W samples on sapphire connected in series were measured subsequently as a function of temperature by applying two switches connected parallel to the samples. The switches exhibited a resistance of 67 Ω-1 kΩ at 4 K depending on the thickness and geometry of the Ti film and on the substrate material. The deviation from the real electrical resistance value of the samples caused by the finite resistance of the switches was found to be a maximum of 6×10-6 Ω. This, compared to the resistances to be measured (about 2×10-2 Ω), we consider negligible. The application of several switches within a cryostat can multiply the number of specimens measured in the same cooling cycle, enabling a more efficient characterization of the cryogenic properties of superconducting specimens.

  6. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films.

    PubMed

    Baturina, T I; Mironov, A Yu; Vinokur, V M; Baklanov, M R; Strunk, C

    2007-12-21

    We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.

  7. Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing

    2016-02-01

    Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.

  8. kz Dependent Electronic Structure Studies of CaC6 and Inter Layer State Driven Superconductivity

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Chul; Koh, Yoonyoung; Kim, Beomyoung; Kim, Yeongwook; Kim, Junsung; Kim, Keunsu; Rotenberg, Eli; Denlinger, Jonathan; Kim, Changyoung; Yonsei University Team; Postech Collaboration; Advanced light source Collaboration

    2015-03-01

    We performed angle-resolved photoemission experiments on CaC6 and measured kz dependent electronic structures to investigate the interlayer states. The results reveal a spherical interlayer Fermi surface centered at the Γ point. We also find the graphene driven band possesses a weak kz dispersion. The overall electronic structure shows a peculiar single graphene layer periodicity in the kz direction although CaC6 unit cell is supposed to contain three graphene layers. This suggests that c-axis ordering of Ca has little effect on the electronic structure of CaC6. In addition to CaC6, we also studied the non-superconducting BaC6. For BaC6, the graphene band Dirac point energy is smaller than that of CaC6. Based on data from CaC6 and BaC6, we rule out Cxy phonon mode as the origin of the superconductivity in CaC6, which strongly suggests interlayer state driven supercondutivity.

  9. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  10. Collective Quantum Phase-Slip Dynamics in Superconducting Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Skacel, Sebastian T.; Voss, Jan N.; Bier, Tobias; Radke, Lucas; Weides, Martin; Rotzinger, Hannes; Mooij, Hans E.; Ustinov, Alexey V.

    2014-03-01

    Superconducting nanowire arrays exhibit quantum phase-slip (QPS) phenomenon if the superconductor has a very high normal-state sheet resistance. We experimentally study QPS effects in arrays of nanowires embedded in a resonant circuit at GHz frequencies. We probe this circuit at ultra-low microwave power, applied flux and mK temperatures. The nanowires are fabricated utilizing aluminium grown in a precisely-controlled oxygen atmosphere. In this way, we aim to control the QPS rate for a given wire width. The wires are defined with conventional electron beam lithography down to a width of 20 nm. We will present the fabrication of the nanowire arrays and first microwave measurements at mK temperatures. Center for Functional Nanostructures, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany.

  11. High-pressure superconducting phase diagram of 6Li: Isotope effects in dense lithium

    PubMed Central

    Schaeffer, Anne Marie; Temple, Scott R.; Bishop, Jasmine K.; Deemyad, Shanti

    2015-01-01

    We measured the superconducting transition temperature of 6Li between 16 and 26 GPa, and report the lightest system to exhibit superconductivity to date. The superconducting phase diagram of 6Li is compared with that of 7Li through simultaneous measurement in a diamond anvil cell (DAC). Below 21 GPa, Li exhibits a direct (the superconducting coefficient, α, Tc∝M−α, is positive), but unusually large isotope effect, whereas between 21 and 26 GPa, lithium shows an inverse superconducting isotope effect. The unusual dependence of the superconducting phase diagram of lithium on its atomic mass opens up the question of whether the lattice quantum dynamic effects dominate the low-temperature properties of dense lithium. PMID:25538300

  12. Ultrasonic signatures at the superconducting and the pseudogap phase boundaries in YBCO cuprates.

    SciTech Connect

    Shehter, Arkady; Migliori, Albert; Betts, Jonathan B.; Balakirev, Fedor F.; McDonald, Ross David; Riggs, Scott C.; Ramshaw, Brad; Liang, Ruixing; Hardy, Walter N.; Bonn, Doug A.

    2012-08-28

    A major issue in the understanding of cuprate superconductors is the nature of the metallic state from which high temperature superconductivity emerges. Central to this issue is the pseudogap region of the doping-temperature phase diagram that extends from room temperature to the superconducting transition. Although polarized neutron scattering studies hint at magnetic order associated with the pseudogap, there is no clear thermodynamic evidence for a phase boundary. Such evidence has a straightforward physical interpretation, however, it is difficult to obtain over a temperature range wide enough to encompass both the pseudogap and superconducting phases. We address this by measuring the elastic response of detwinned single crystals, an underdoped YBCO{sub 6.60} with superconducting transition at T{sub c} = 61.6K and a slightly overdoped YBCO{sub 6.98} with T{sub c} = 88.0K. We observe a discontinuity in the elastic moduli across the superconducting transition. Its magnitude requires that pair formation is coincident with superconducting coherence (the onset of the Meissner effect). For both crystals the elastic response reveals a phase transition at the pseudogap boundary. In slightly overdoped YBCO that transition is 20K below T{sub c}, extending the pseudogap phase boundary inside the superconducting dome. This supports a description of the metallic state in cuprates where a pseudogap phase boundary evolves into a quantum critical point masked by the superconducting dome.

  13. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    PubMed Central

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  14. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  15. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  16. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE PAGES

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; ...

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  17. Superconductivity-related insulating behavior.

    PubMed

    Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D

    2004-03-12

    We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.

  18. Superconducting high-pressure phases composed of hydrogen and iodine

    SciTech Connect

    Shamp, Andrew; Zurek, Eva

    2015-09-25

    Evolutionary structure searches predict three new phases of iodine polyhydrides stable under pressure. Insulating P1-H5I, consisting of zigzag chains of (HI) δ+ and H 2 molecules, is stable between 30-90 GPa. Cmcm-H2I and P6/mmm-H4I are found on the 100, 150 and 200 GPa convex hulls. These two phases are good metals, even at 1 atm, because they consist of monoatomic lattices of iodine. At 100 GPa the superconducting transition temperature, Tc, of H2I and H4I are estimated to be 7.8 and 17.5 K, respectively. Lastly, the increase in Tc relative to elemental iodine results from a larger ωlog from the light mass of hydrogen, and an enhanced from modes containing H/I and H/H vibrations.

  19. Superconducting phase in UGe2 by AC calorimetry

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Aoki, Dai; Knebel, Georg; Flouquet, Jacques

    2012-12-01

    We report on the detection of the superconducting transition Tsc in the superconducting ferromagnet UGe2 by AC calorimetry under pressure. Our results confirm the small value of the specific heat jump. We suggest that this observation is intrinsic in origin and does not arises from a distribution of Tsc due to pressure gradient or sample defects.

  20. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  1. Phase relations and superconductivity in the Fe7(Se1-yTey)8 system: Effect of phase coexistence

    NASA Astrophysics Data System (ADS)

    Baranov, N. V.; Abouhaswa, A. S.; Selezneva, N. V.; Kazantsev, V. A.; Ibrahim, P. N. G.

    2016-11-01

    The effect of the Te for Se substitution in the Fe7Se8 compound having a layered NiAs-type structure has been studied by means of X-ray diffraction, scanning electron microscopy, thermal expansion, electrical resistivity and magnetization measurements. The growth of Te tellurium content in Fe7(Se1-yTey)8 above y ∼ 0.15 is found to result in the phase segregation; besides the NiAs-type phase the superconducting tetragonal PbO-type phase appears in these samples. It has been observed that the crystal structure and composition of the hexagonal Fe7(Se,Te)8 phase (P63/mmc) transforms with increasing Te content to the CdI2-type phase (P 3 bar m 1) and then to the monoclinic Fe3(Se,Te)4-type phase (I12/m1). The concentration intervals in which these NiAs-type phases coexist with the tetragonal phase have been determined. At y ≥ 0.4, the Fe7(Se1-yTey)8 samples show bulk superconductivity with higher superconducting transition temperatures (Tc up to 17.8 K) compared with single-phase samples of Fe(Se,Te). Such an enhancement is suggested to result from the interactions between the superconducting and non-superconducting phases coexisting in Fe7(Se1-yTey)8.

  2. Circuit QED and sudden phase switching in a superconducting qubit array.

    PubMed

    Tian, L

    2010-10-15

    Superconducting qubits connected in an array can form quantum many-body systems such as the quantum Ising model. By coupling the qubits to a superconducting resonator, the combined system forms a circuit QED system. Here, we study the nonlinear behavior in the many-body state of the qubit array using a semiclassical approach. We show that sudden switchings as well as a bistable regime between the ferromagnetic phase and the paramagnetic phase can be observed in the qubit array. A superconducting circuit to implement this system is presented with realistic parameters.

  3. Fate of the inert three-flavor, spin-zero, color-superconducting phases

    SciTech Connect

    Malekzadeh, H.

    2006-09-15

    I investigate some of the inert phases in three-flavor, spin-zero, color-superconducting quark matter: the color-flavor-locked (CFL) phase (the analogue of the B phase in superfluid {sup 3}He), the A and A* phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. It is shown that the 2SC phase is identical to the A* phase up to a color rotation. The CFL phase is the energetically favored phase except for a small region of intermediate densities where the 2SC/A* phase is favored.

  4. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  5. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy

    PubMed Central

    Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Kusar, P.; Mihailovic, D.

    2014-01-01

    In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the transition to the superconducting state. In high-temperature superconductors, the possibility that pairing and phase coherence are distinct and independent processes has led to intense experimental search of their separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above the critical transition temperature. Empirically establishing a close correspondence between the superfluid density measured by THz spectroscopy and superconducting optical pump-probe response over a wide region of temperature, we find that in differently doped Bi2Sr2CaCu2O8+δ crystals the pairing gap amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law divergence as T → Tc, thus showing that phase coherence and gap formation are distinct processes which occur on different timescales. PMID:25014162

  6. Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates

    NASA Astrophysics Data System (ADS)

    Cirillo, C.; Trezza, M.; Chiarella, F.; Vecchione, A.; Bondarenko, V. P.; Prischepa, S. L.; Attanasio, C.

    2012-10-01

    Robust porous silicon substrates were employed for generating interconnected networks of superconducting ultrathin Nb nanowires. Scanning electron microscopy analysis was performed to investigate the morphology of the samples, which constitute of polycrystalline single wires with grain size of about 10 nm. The samples exhibit nonzero resistance over a broad temperature range below the critical temperature, fingerprint of phase slippage processes. The transport data are satisfactory reproduced by models describing both thermal and quantum fluctuations of the superconducting order parameter in thin homogeneous superconducting wires.

  7. Exploring quantum phases by driven dissipation

    NASA Astrophysics Data System (ADS)

    Lang, Nicolai; Büchler, Hans Peter

    2015-07-01

    Dephasing and decay are the intrinsic dissipative processes prevalent in any open quantum system and the dominant mechanisms for the loss of coherence and entanglement. This inadvertent effect not only can be overcome but can even be capitalized on in a dissipative quantum simulation by means of tailored couplings between the quantum system and the environment. In this context it has been demonstrated that universal quantum computation can be performed using purely dissipative elements, and furthermore, the efficient preparation of highly entangled states is possible. In this article, we are interested in nonequilibrium phase transitions appearing in purely dissipative systems and the exploration of quantum phases in terms of a dissipative quantum simulation. To elucidate these concepts, we scrutinize exemplarily two paradigmatic models: the transverse-field Ising model and the considerably more complex Z2 lattice gauge theory. We show that the nonequilibrium phase diagrams parallel the quantum phase diagrams of the Hamiltonian "blueprint" theories.

  8. Controlling An Inverter-Driven Three-Phase Motor

    NASA Technical Reports Server (NTRS)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  9. Quantum phase transition in ultra small doubly connected superconducting cylinders

    NASA Astrophysics Data System (ADS)

    Sternfeld, I.; Koret, R.; Shtrikman, H.; Tsukernik, A.; Karpovski, M.; Palevski, A.

    2008-02-01

    The kinetic energy of Cooper pairs, in doubly connected superconducting cylinders, is a function of the applied flux and the ratio between the diameter of the cylinder and the zero temperature coherence length d/ ξ(0). If d >ξ(0) the known Little-Parks oscillations are observed. On the other hand if d <ξ(0), the superconducting state is energetically not favored around odd multiples of half flux quanta even at T∼0, resulting in the so called destructive regime [Y. Liu, et al., Science 294 (2001) 2332]. We developed a novel technique to fabricate superconducting doubly connected nanocylinders with both diameter and thickness less than 100 nm, and performed magnetoresistance measurements on such Nb and Al cylinders. In the Nb cylinders, where d >ξ(0), we observed the LP oscillations. In the Al cylinders we did not observe a transition to the superconducting state due to the proximity effect, resulted from an Au layer coating the Al. However, we did observe Altshuler-Aronov-Spivak (h/2e) oscillations in these cylinders.

  10. Superconducting resonator used as a phase and energy detector for linac setup

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  11. Phase formation and superconductivity in PIT-type (Bi,Pb)-1212

    SciTech Connect

    Murphy, N. M.; Dorris, S. E.; Miller, D. J.; Luo, Z. P.; Claus, H.; Maroni, V. A.

    2000-01-13

    It was shown via powder-in-tube (PIT) processing that the (Bi,Pb)-1212 phase readily forms inside a silver sheath at 920 C in air. Composition, oxygen pressure, time, and temperature were all varied to study their effects on (Bi,Pb)-1212 phase purity and superconductivity.

  12. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.

    PubMed

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-07-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.

  13. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces

    PubMed Central

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-01-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2−xSrxCuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542

  14. Time-reversal symmetry breaking superconductivity in the coexistence phase with magnetism in Fe pnictides.

    PubMed

    Hinojosa, Alberto; Fernandes, Rafael M; Chubukov, Andrey V

    2014-10-17

    We argue that superconductivity in the coexistence region with spin-density-wave (SDW) order in weakly doped Fe pnictides erdiffers qualitatively from the ordinary s(+-) state outside the coexistence region as it develops an additional gap component which is a mixture of intrapocket singlet (s(++)) and interpocket spin-triplet pairings (the t state). The coupling constant for the t channel is proportional to the SDW order and involves interactions that do not contribute to superconductivity outside of the SDW region. We argue that the s(+-)- and t-type superconducting orders coexist at low temperatures, and the relative phase between the two is, in general, different from 0 or π, manifesting explicitly the breaking of the time-reversal symmetry promoted by long-range SDW order. We argue that time reversal may get broken even before true superconductivity develops.

  15. Structural difference between a superconducting sodium cobalt oxide and its related phase

    NASA Astrophysics Data System (ADS)

    Takada, Kazunori; Sakurai, Hiroya; Takayama-Muromachi, Eiji; Izumi, Fujio; Dilanian, Ruben A.; Sasaki, Takayoshi

    2004-01-01

    Monolayer hydrate (MLH) Na xCoO 2· y'H 2O was obtained from superconducting bilayer hydrate (BLH) Na xCoO 2· yH 2O by partial extraction of H 2O molecules between the CoO 2 layers. Magnetization measurements indicated that electron densities in the CoO 2 layer of the MLH phase remained unchanged after the water extraction. Nevertheless, superconductivity was completely suppressed in the MLH phase. This strongly suggests that the highly 2D nature in the BLH phase due to its thick insulating layers consisting of H 2O molecules and Na + ions plays an important role for inducing superconductivity.

  16. Chemical analysis of superconducting phase in K-doped picene

    NASA Astrophysics Data System (ADS)

    Kambe, Takashi; Nishiyama, Saki; Nguyen, Huyen L. T.; Terao, Takahiro; Izumi, Masanari; Sakai, Yusuke; Zheng, Lu; Goto, Hidenori; Itoh, Yugo; Onji, Taiki; Kobayashi, Tatsuo C.; Sugino, Hisako; Gohda, Shin; Okamoto, Hideki; Kubozono, Yoshihiro

    2016-11-01

    Potassium-doped picene (K3.0picene) with a superconducting transition temperature (T C) as high as 14 K at ambient pressure has been prepared using an annealing technique. The shielding fraction of this sample was 5.4% at 0 GPa. The T C showed a positive pressure-dependence and reached 19 K at 1.13 GPa. The shielding fraction also reached 18.5%. To investigate the chemical composition and the state of the picene skeleton in the superconducting sample, we used energy-dispersive x-ray (EDX) spectroscopy, MALDI-time-of-flight (MALDI-TOF) mass spectroscopy and x-ray diffraction (XRD). Both EDX and MALDI-TOF indicated no contamination with materials other than K-doped picene or K-doped picene fragments, and supported the preservation of the picene skeleton. However, it was also found that a magnetic K-doped picene sample consisted mainly of picene fragments or K-doped picene fragments. Thus, removal of the component contributing the magnetic quality to a superconducting sample should enhance the volume fraction.

  17. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  18. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  19. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    SciTech Connect

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  20. Nanoscale phase separation and superconductivity in the one-dimensional Hirsch model

    NASA Astrophysics Data System (ADS)

    Anfossi, Alberto; Degli Esposti Boschi, Cristian; Montorsi, Arianna

    2009-06-01

    We investigate numerically at various fillings the ground state of the one-dimensional Hubbard model with correlated hopping x (Hirsch model). It is found that, for a large range of filling values n around half filling, and for repulsive Coulomb interaction u≤uc(x,n) , phase separation at a nanoscale (NPS phase) between two conducting phases at different densities occurs when x≳2/3 . The NPS phase is accompanied by the opening of a spin gap and the system behaves as a Luther-Emery liquid with dominant superconducting correlations. Close to half filling, an anomalous peak emerges in the charge structure factor related to the density of doubly occupied sites, which determines the size of the droplets in the NPS phase. For 1/2≲x≲2/3 a crossover to a homogeneous phase, still superconducting, takes place.

  1. Superconductivity phase diagram of Na(x)CoO2*1.3H2O.

    PubMed

    Schaak, R E; Klimczuk, T; Foo, M L; Cava, R J

    2003-07-31

    The microscopic origin of superconductivity in the high-transition-temperature (high-T(c)) copper oxides remains the subject of active inquiry; several of their electronic characteristics are well established as universal to all the known materials, forming the experimental foundation that all theories must address. The most fundamental of those characteristics, for both the copper oxides and other superconductors, is the dependence of the superconducting T(c) on the degree of electronic band filling. The recent report of superconductivity near 4 K in the layered sodium cobalt oxyhydrate, Na(0.35)CoO2*1.3H2O, is of interest owing to both its triangular cobalt-oxygen lattice and its generally analogous chemical and structural relationships to the copper oxide superconductors. Here we show that the superconducting T(c) of this compound displays the same kind of behaviour on chemical doping that is observed in the high-T(c) copper oxides. Specifically, the optimal superconducting T(c) occurs in a narrow range of sodium concentrations (and therefore electron concentrations) and decreases for both underdoped and overdoped materials, as observed in the phase diagram of the copper oxide superconductors. The analogy is not perfect, however, suggesting that Na(x)CoO2*1.3H2O, with its triangular lattice geometry and special magnetic characteristics, may provide insights into systems where coupled charge and spin dynamics play an essential role in leading to superconductivity.

  2. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    DOE PAGES

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; ...

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less

  3. Phase formation and superconducting properties of mechanically alloyed Nb3(Al1-x Ge x ) system

    NASA Astrophysics Data System (ADS)

    Li, Pingyuan; Chen, Yongliang; Xu, Liyuan; Zhang, Yun; Pan, Xifeng; Yan, Guo; Zhang, Yong; Cheng, C. H.; Feng, Yong; Zhao, Yong

    2016-07-01

    Mechanically alloyed Nb3(Al1-x Ge x ) compounds with nominal composition x = 0%, 10%, 15%, 20%, 25% and 30% were synthesized using high-energy ball milling. The effects of Ge content and sintering temperature on the formation of the Nb3Al superconducting phase at a relatively low temperature without the extremely high-temperature rapid heating, quenching and transformation process were studied. The results revealed that Ge doping in Nb3Al improved the formation of the A15 phase at low temperatures, enhanced the superconducting transition temperature (T c), and refined the grain structure, thus improving the overall superconducting properties. The pinning behavior was also studied for the optimized sample.

  4. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    PubMed Central

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun

    2016-01-01

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. This proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra. PMID:26785835

  5. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    SciTech Connect

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.

  6. Spin-orbit driven Peierls transition and possible exotic superconductivity in CsW2O6

    NASA Astrophysics Data System (ADS)

    Streltsov, Sergey V.; Mazin, Igor I.; Heid, Rolf; Bohnen, Klaus-Peter

    2016-12-01

    We study ab initio a pyrochlore compound, CsW2O6 , which exhibits a yet unexplained metal-insulator transition. We find that (1) the reported low-T structure is likely inaccurate and the correct structure has a twice larger cell; (2) the insulating phase is not of a Mott or dimer-singlet nature, but a rare example of a three-dimensional Peierls transition, with a simultaneous condensation of three density waves; (3) the spin-orbit interaction plays a crucial role, forming well-nested bands. The high-T (HT) phase, if stabilized, could harbor a unique eg+i eg superconducting state that breaks time reversal symmetry, but is not chiral. This state was predicted in 1999, but not observed. We speculate about possible ways to stabilize the HT phase while keeping the conditions for superconductivity.

  7. Superconductivity in FeSe Thin Films Driven by the Interplay between Nematic Fluctuations and Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Fernandes, Rafael M.

    2016-11-01

    The origin of the high-temperature superconducting state observed in FeSe thin films, whose phase diagram displays no sign of magnetic order, remains a hotly debated topic. Here we investigate whether fluctuations arising due to the proximity to a nematic phase, which is observed in the phase diagram of this material, can promote superconductivity. We find that nematic fluctuations alone promote a highly degenerate pairing state, in which both s -wave and d -wave symmetries are equally favored, and Tc is consequently suppressed. However, the presence of a sizable spin-orbit coupling or inversion symmetry breaking at the film interface lifts this harmful degeneracy and selects the s -wave state, in agreement with recent experimental proposals. The resulting gap function displays a weak anisotropy, which agrees with experiments in monolayer FeSe and intercalated Li1 -x(OH )xFeSe .

  8. Phase diagram and neutron spin resonance of superconducting NaFe1 -xCuxAs

    NASA Astrophysics Data System (ADS)

    Tan, Guotai; Song, Yu; Zhang, Rui; Lin, Lifang; Xu, Zhuang; Tian, Long; Chi, Songxue; Graves-Brook, M. K.; Li, Shiliang; Dai, Pengcheng

    2017-02-01

    We use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe1 -xCuxAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x ≈2 % with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x ≈50 % . Using transport measurements, we demonstrate that the resistivity in NaFe1 -xCuxAs exhibits non-Fermi-liquid behavior near x ≈1.8 % . Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis in NaFe0.98Cu0.02As . The resonance is high in energy relative to the superconducting transition temperature Tc but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe1 -xCuxAs is continuously connected to an antiferromagnetically ordered insulating phase near x ≈50 % with significant electronic correlations. Therefore, electron correlations is an important ingredient of superconductivity in NaFe1 -xCuxAs and other iron pnictides.

  9. Phase congruency map driven brain tumour segmentation

    NASA Astrophysics Data System (ADS)

    Szilágyi, Tünde; Brady, Michael; Berényi, Ervin

    2015-03-01

    Computer Aided Diagnostic (CAD) systems are already of proven value in healthcare, especially for surgical planning, nevertheless much remains to be done. Gliomas are the most common brain tumours (70%) in adults, with a survival time of just 2-3 months if detected at WHO grades III or higher. Such tumours are extremely variable, necessitating multi-modal Magnetic Resonance Images (MRI). The use of Gadolinium-based contrast agents is only relevant at later stages of the disease where it highlights the enhancing rim of the tumour. Currently, there is no single accepted method that can be used as a reference. There are three main challenges with such images: to decide whether there is tumour present and is so localize it; to construct a mask that separates healthy and diseased tissue; and to differentiate between the tumour core and the surrounding oedema. This paper presents two contributions. First, we develop tumour seed selection based on multiscale multi-modal texture feature vectors. Second, we develop a method based on a local phase congruency based feature map to drive level-set segmentation. The segmentations achieved with our method are more accurate than previously presented methods, particularly for challenging low grade tumours.

  10. Cooling of Compact Stars with Color Superconducting Phase in Quark-hadron Mixed Phase

    NASA Astrophysics Data System (ADS)

    Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka; Fujimoto, Masayuki

    2013-03-01

    We present a new scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star that has high effective temperature, and it is consistent with the cooling without exotic phases. The observation also gives the mass range of M >= 1.5 M ⊙, which may conflict with the current plausible cooling scenario of compact stars. There are some cooled compact stars such as Vela or 3C58, which can barely be explained by the minimal cooling scenario, which includes the neutrino emission by nucleon superfluidity (PBF). Therefore, we invoke the exotic cooling processes, where a heavier star cools faster than lighter one. However, the scenario seems to be inconsistent with the observation of Cas A. Therefore, we present a new cooling scenario to explain the observation of Cas A by constructing models that include a quark color superconducting (CSC) phase with a large energy gap; this phase appears at ultrahigh density regions and reduces neutrino emissivity. In our model, a compact star has a CSC quark core with a low neutrino emissivity surrounded by high emissivity region made by normal quarks. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency without considering nucleon superfluidity. Furthermore, we show that our scenario is consistent with the recent observations of the effective temperature of Cas A during the last 10 years, including nucleon superfluidity.

  11. Structural phase transformations and high-T/sub c/ superconductivity

    SciTech Connect

    Axe, J.D.; You, H.; Hohlwein, D.; Cox, D.E.; Moss, S.C.; Forster, K.; Hor, P.; Meng, R.L.; Chu, C.W.

    1987-01-01

    This report presents a brief discussion of the connection between high T/sub c/ superconductivity and crystal structure instability. High resolution synchrotron x-ray powder diffraction measurements have been performed on the superconductor La/sub 1.8/Ba/sub 0.2/CuO/sub 4/. These measurements show broadening of Bragg peaks, attributed to reduction of the crystal's tetragonal symmetry. This same phenomenon was observed when individual crystals were illuminated by a narrow x-ray beam. The report concludes by recommending further investigations into superconductor crystalline structure. (JDH)

  12. Diagnosis of Interaction-driven Topological Phase via Exact Diagonalization

    NASA Astrophysics Data System (ADS)

    Wu, Han-Qing; He, Yuan-Yao; Fang, Chen; Meng, Zi Yang; Lu, Zhong-Yi

    2016-08-01

    We propose a general scheme for diagnosing interaction-driven topological phases in the weak interaction regime using exact diagonalization (ED). The scheme comprises the analysis of eigenvalues of the point-group operators for the many-body eigenstates and the correlation functions for physical observables to extract the symmetries of the order parameters and the topological numbers of the underlying ground states at the thermodynamic limit from a relatively small size system afforded by ED. As a concrete example, we investigate the interaction effects on the half-filled spinless fermions on the checkerboard lattice with a quadratic band crossing point. Numerical results support the existence of a spontaneous quantum anomalous Hall phase purely driven by a nearest-neighbor weak repulsive interaction, separated from a nematic Mott insulator phase at strong repulsive interaction by a first-order phase transition.

  13. Diagnosis of Interaction-driven Topological Phase via Exact Diagonalization.

    PubMed

    Wu, Han-Qing; He, Yuan-Yao; Fang, Chen; Meng, Zi Yang; Lu, Zhong-Yi

    2016-08-05

    We propose a general scheme for diagnosing interaction-driven topological phases in the weak interaction regime using exact diagonalization (ED). The scheme comprises the analysis of eigenvalues of the point-group operators for the many-body eigenstates and the correlation functions for physical observables to extract the symmetries of the order parameters and the topological numbers of the underlying ground states at the thermodynamic limit from a relatively small size system afforded by ED. As a concrete example, we investigate the interaction effects on the half-filled spinless fermions on the checkerboard lattice with a quadratic band crossing point. Numerical results support the existence of a spontaneous quantum anomalous Hall phase purely driven by a nearest-neighbor weak repulsive interaction, separated from a nematic Mott insulator phase at strong repulsive interaction by a first-order phase transition.

  14. Classification of topological phases in periodically driven interacting systems

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2016-05-01

    We consider topological phases in periodically driven (Floquet) systems exhibiting many-body localization, protected by a symmetry G . We argue for a general correspondence between such phases and topological phases of undriven systems protected by symmetry Z ⋊G where the additional Z accounts for the discrete time-translation symmetry. Thus, for example, the bosonic phases in d spatial dimensions without intrinsic topological order [symmetry-protected topological (SPT) phases] are classified by the cohomology group Hd +1[Z ⋊G ,U (1 ) ] . For unitary symmetries, we interpret the additional resulting Floquet phases in terms of the lower-dimensional SPT phases that are pumped to the boundary during one time step. These results also imply the existence of novel symmetry-enriched topological (SET) orders protected solely by the periodicity of the drive.

  15. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    SciTech Connect

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-29

    Here, the complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2-zSz. We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈ 1.5), the block AF phase with root 5 x root 5 iron vacancy order (y ≈ 1.6), and the iron vacancy-free phase (y ≈ 2); and (ii) the iron vacancy-free superconducting phase (z = 0) evolves into an iron vacancy-free metallic phase with sulfur substitution (z > 1.5) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y > 1.6) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √5 x √5 iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  16. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    DOE PAGES

    Wang, Meng; Yi, Ming; Tian, Wei; ...

    2016-02-29

    Here, the complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2-zSz. We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈ 1.5), the block AF phase with root 5 x root 5 iron vacancy order (y ≈ 1.6), and the iron vacancy-free phase (y ≈ 2); and (ii) the iron vacancy-free superconducting phase (z =more » 0) evolves into an iron vacancy-free metallic phase with sulfur substitution (z > 1.5) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y > 1.6) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √5 x √5 iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.« less

  17. Shrinking of the Cooper Pair Insulator Phase in Thin Films with Ultrasmall Superconducting Islands

    NASA Astrophysics Data System (ADS)

    Joy, J. C.; Zhang, X.; Zhao, C.; Valles, J. M., Jr.; Fernandes, G.; Xu, J. M.

    The ubiquity of the bosonic Cooper Pair Insulator (CPI) phase near the two-dimensional superconductor to insulator transition (SIT) is a long standing question. While a number of two dimensional materials exhibit bosonic insulating phases similar to the Mott Insulator in arrays of ultrasmall, Josephson coupled superconducting islands, others show behaviors consistent with a fermionic insulating phase. Utilizing specially prepared anodized aluminum oxide substrates, we are able to fabricate films reminiscent of arrays of superconducting islands whose properties are tunable by varying the substrate morphology. Our recent work has focused on arrays of islands which possess an energy level spacing comparable to the mean field superconducting gap, where one expects pair breaking followed by fermionic Anderson Localization as the dominant mechanism by which superconductivity is destroyed. Early results show that the paradigmatic bosonic insulator exists only very near the disorder tuned SIT, while films only marginally deeper in the insulating phase exhibit transport distinct from the CPI's reentrant, activated transport. We are grateful for the support of NSF Grant No. DMR-1307290, the AFOSR, and the AOARD. Currently at Northwestern Polytechnical University, Xian, China.

  18. Phase transitions mediated by the nucleation of single vortices in a superconducting channel

    NASA Astrophysics Data System (ADS)

    Sobnack, M. B.; Kusmartsev, F. V.

    2013-10-01

    We study the nucleation of single vortices in a 2D channel in a superconducting/superfluid state which connects two bulk samples. Using real space renormalization group techniques, we show that boundary effects associated with the nucleation of single vortices drives the system to a phase transition at a temperature lower than the Berezinskĭ-Kosterlitz-Thouless temperature.

  19. Superconductivity in an expanded phase of ZnO: an ab initio study

    NASA Astrophysics Data System (ADS)

    Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.

    2015-04-01

    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.

  20. Driven phase space vortices in plasmas with nonextensive velocity distribution

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  1. Quantum phase transition in a multiconnected superconducting Jaynes-Cummings lattice

    NASA Astrophysics Data System (ADS)

    Seo, Kangjun; Tian, Lin

    2015-05-01

    The connectivity and tunability of superconducting qubits and resonators provide us with an appealing platform to study the many-body physics of microwave excitations. Here we present a multiconnected Jaynes-Cummings lattice model which is symmetric with respect to the nonlocal qubit-resonator couplings. Our calculation shows that this model exhibits a Mott insulator-superfluid-Mott insulator phase transition at commensurate fillings, featured by symmetric quantum critical points. Phase diagrams in the grand canonical ensemble are also derived, which confirm the incompressibility of the Mott insulator phase. Different from a general-purposed quantum computer, it only requires two operations to demonstrate this phase transition: the preparation and the detection of commensurate many-body ground state. We discuss the realization of these operations in a superconducting circuit.

  2. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Flores Livas, Jose; Amsler, Maximilian; Sanna, Antonio; Heil, Christoph; Boeri, Lilia; Profeta, Gianni; Wolverton, Crhis; Goedecker, Stefan; Gross, E. K. U.

    Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (Tc) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work the phase diagram of PHn (n = 1 , 2 , 3 , 4 , 5 , 6) was extensively explored by means of ab initio crystal structure prediction methods. The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1 , 2 , 3 display Tc's comparable to experiments, it remains questionable if the measured values of Tc can be fully attributed to a phase-pure compound of PHn. This work was done within the NCCR MARVEL project.

  3. Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks

    NASA Astrophysics Data System (ADS)

    Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David

    2002-06-01

    We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.

  4. Signatures of topological quantum phase transitions in driven and dissipative qubit arrays

    NASA Astrophysics Data System (ADS)

    Dong, Y. L.; Neupert, Titus; Chitra, R.; Schmidt, Sebastian

    2016-07-01

    We study photonic signatures of symmetry broken and topological phases in a driven, dissipative circuit QED realization of spin-1/2 chains. Specifically, we consider the transverse-field XY model and a dual model with three-spin interactions. The former has a ferromagnetic and a paramagnetic phase, while the latter features, in addition, a symmetry protected topological phase. Using the method of third quantization, we calculate the nonequilibrium steady state of the open spin chains for arbitrary system sizes and temperatures. We find that the bilocal correlation function of the spins at both ends of the chain provides a sensitive measure for both symmetry-breaking and topological phase transitions of the systems, but no universal means to distinguish between the two types of transitions. Both models have equivalent representations in terms of free Majorana fermions, which host zero, one and two topological Majorana end modes in the paramagnetic, ferromagnetic, and symmetry protected topological phases, respectively. The correlation function we study retains its bilocal character in the fermionic representation, so that our results are equally applicable to the fermionic models in their own right. We propose a photonic realization of the dissipative transverse-field XY model in a tunable setup, where an array of superconducting transmon qubits is coupled at both ends to a photonic microwave circuit.

  5. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides

    PubMed Central

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-01-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40–110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification. PMID:26490223

  6. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides

    NASA Astrophysics Data System (ADS)

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-10-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40-110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification.

  7. Superconductivity of high-pressure phases of S and Se to 230 GPa

    NASA Astrophysics Data System (ADS)

    Struzhkin, Viktor; Gregoryanz, Eugene; Timofeev, Yuri; Eremets, Mikhail; Mao, Ho-Kwang; Hemley, Russell

    2000-03-01

    We have investigated in detail the superconducting state of sulfur in its β-Po phase from 160 to 230 GPa. The superconducting Tc is close to 17 K from 160 to 200 GPa, and drops to 15 K at 230 GPa. Similar behavior was predicted recently [1] from ab initio LDA calculations. The high value of Tc in the β-Po phase is consistent with electon-phonon coupling mechanism with reasonably strong electron-phonon coupling (λ=0.76), and with the standard value of the Morel-Anderson pseudopotential μ^*=0.11 [1]. Our measurements in Se at high pressures indicate superconductivity from 17 to 23 GPa, which apparently has not been previously reported. We relate this behavior to the occurence of new metastable phase in Se which can be observed on decompression from 30 GPa at low temperatures. The results for Tc in Se at higher pressures will be also presented. We will also discuss the similiarities in high-pressure induced superconductivity of chalcogen family members: S, Se, and Te. ^1 Sven P. Rudin and Amy Y. Liu, Phys. Rev. Lett. 83, 3049 (1999).

  8. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    PubMed Central

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-01-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593

  9. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-03-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.

  10. The non-magnetic collapsed tetragonal phase of CaFe2As2 and superconductivity in the iron pnictides

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2014-03-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences. Work at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences.

  11. Interlayer-state-driven superconductivity in CaC6 studied by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Chul; Koh, Yoonyoung; Kim, Beomyoung; Kim, Youngwook; Kim, Jun Sung; Kim, Keun Su; Rotenberg, Eli; Denlinger, Jonathan D.; Kim, Changyoung

    2015-12-01

    We performed angle-resolved photoemission experiments on CaC6 and measured kz-dependent electronic structures to investigate the interlayer states. The results reveal a spherical interlayer Fermi surface centered at the Γ point. We also find that the graphene-driven band possesses a weak kz dispersion. The overall electronic structure shows a peculiar single-graphene-layer periodicity in the kz direction although the CaC6 unit cell is supposed to contain three graphene layers. This suggests that the c -axis ordering of Ca has little effect on the electronic structure of CaC6. In addition to CaC6, we also studied the a low-temperature superconductor BaC6. For BaC6, the graphene-band Dirac-point energy is smaller than that of CaC6. Based on data from CaC6 and BaC6, we rule out the Cx y phonon mode as the origin of the superconductivity in CaC6, which strongly suggests interlayer-state-driven superconductivity.

  12. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    NASA Astrophysics Data System (ADS)

    Ku, Wei; Yildirim, Yucel

    2012-02-01

    A generic theory [1] of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental ``second gap'' in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering) processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure dx^2-y^2 wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity. [4pt] [1] Y. Yildirim and Wei Ku, PRX 1, 011011 (2011).

  13. Phase Competition and Superconductivity in κ-(BEDT-TTF)2X: Importance of Intermolecular Coulomb Interactions

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Seo, Hitoshi; Yunoki, Seiji

    2017-03-01

    We theoretically study the competition among different electronic phases in molecular conductors κ-(BEDT-TTF)2X. The ground-state properties of a 3/4-filled extended Hubbard model with the κ-type geometry are investigated by a variational Monte Carlo method. We find various competing phases: dimer-Mott insulator, polar charge-ordered insulator, 3-fold charge-ordered metal, and superconductivity, whose pairing symmetry is an "extended-s + dx2 - y2"-wave type. Our results show that the superconducting phase is stabilized not on the verge of the Mott metal-insulator transition but near charge order instabilities, clearly indicating the importance of the intradimer charge degree of freedom and the intermolecular Coulomb interactions, beyond the simple description of the half-filled Hubbard model.

  14. Perturbation theory of a superconducting 0 - π impurity quantum phase transition.

    PubMed

    Žonda, M; Pokorný, V; Janiš, V; Novotný, T

    2015-03-06

    A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.

  15. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOEpatents

    Yuan; Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  16. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

    PubMed Central

    Lai, Xiaofang; Liu, Ying; Lü, Xujie; Zhang, Sijia; Bu, Kejun; Jin, Changqing; Zhang, Hui; Lin, Jianhua; Huang, Fuqiang

    2016-01-01

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Finally, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS. PMID:27498699

  17. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS.

    PubMed

    Lai, Xiaofang; Liu, Ying; Lü, Xujie; Zhang, Sijia; Bu, Kejun; Jin, Changqing; Zhang, Hui; Lin, Jianhua; Huang, Fuqiang

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Finally, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.

  18. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

    SciTech Connect

    Lai, Xiaofang; Liu, Ying; Lu, Xujie; Zhang, Sijia; Bu, Kejun; Jin, Changqing; Zhang, Hui; Lin, Jianhua; Huang, Fuqiang

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.

  19. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

    DOE PAGES

    Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less

  20. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Heguri, Satoshi; Kobayashi, Mototada; Tanigaki, Katsumi

    2015-07-01

    Superconductivity in aromatic hydrocarbons doped with potassium (K) such as K3 [picene (PCN)] and K3 [phenanthrene (PHN)] is found for only armchair-type polycyclic aromatic hydrocarbon. In this paper the thermodynamics of the reaction processes of PHN or anthracene (AN, zigzag type) with K was studied using differential scanning calorimetry and x-ray diffraction. We show that PHN decomposes during the reaction, triggered by hydrogen abstraction, to give metal hydride KH and unknown amorphous. No stable doped phases exist in Kx(PHN ) with stoichiometries of x =1 -3 . However, in the case of AN, a stable doped phase forms. We claim that PHN, which has been reported to be energetically more stable in the ground state than AN by first principle calculations, is unstable upon doping. We also suggest that the superconductivity in K3(PCN ) is due to the misinterpretation of experimental data, which actually arises from ferromagnetic impurities. We have never detected the superconductivity above 2 K in these compounds. The superconductivity in both Kx(PHN ) and Kx(PCN ) is concluded to be highly questionable.

  1. Coexistence of ferromagnetism and superconductivity close to a quantum phase transition: the Heisenberg- to Ising-type crossover.

    PubMed

    Nevidomskyy, Andriy H

    2005-03-11

    A microscopic mean-field theory of the phase coexistence between ferromagnetism and superconductivity in the weakly ferromagnetic itinerant electron system is constructed, while incorporating a realistic mechanism for superconducting pairing due to the exchange of critical spin fluctuations. The self-consistent solution of the resulting equations determines the superconducting transition temperature which is shown to depend strongly on the exchange splitting. The effect of phase crossover from isotropic (Heisenberg-like) to uniaxial (Ising-like) spin fluctuations near the quantum phase transition is analyzed and the generic phase diagram is obtained. This scenario is then applied to the case of itinerant ferromagnet ZrZn2, which sheds light on the proposed phase diagram of this compound. A possible explanation of superconductivity in UGe2 is also discussed.

  2. Nonlinear Phase Dynamics in a Driven Bosonic Josephson Junction

    SciTech Connect

    Boukobza, Erez; Moore, Michael G.; Cohen, Doron; Vardi, Amichay

    2010-06-18

    We study the collective dynamics of a driven two-mode Bose-Hubbard model in the Josephson interaction regime. The classical phase space is mixed, with chaotic and regular components, which determine the dynamical nature of the fringe visibility. For a weak off-resonant drive, where the chaotic component is small, the many-body dynamics corresponds to that of a Kapitza pendulum, with the relative phase {phi} between the condensates playing the role of the pendulum angle. Using a master equation approach we show that the modulation of the intersite potential barrier stabilizes the {phi}={pi} 'inverted pendulum' coherent state, and protects the fringe visibility.

  3. Novel superconducting phases of Tl-based compounds

    NASA Technical Reports Server (NTRS)

    Kostadinov, I. Z.; Mateev, M.; Michov, M.; Skumriev, V.; Tsakin, E.

    1991-01-01

    Researchers report the measurements of the I(sub c)(T) of the 102 K phase. They also discuss briefly the composition of the lattice parameters and the ac susceptibility relation to the grain size and microstructure.

  4. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Amsler, Maximilian; Heil, Christoph; Sanna, Antonio; Boeri, Lilia; Profeta, Gianni; Wolverton, Chris; Goedecker, Stefan; Gross, E. K. U.

    2016-01-01

    Hydrogen-rich compounds have been extensively studied both theoretically and experimentally in the quest for novel high-temperature superconductors. Reports on sulfur hydride attaining metallicity under pressure and exhibiting superconductivity at temperatures as high as 200 K have spurred an intense search for room-temperature superconductors in hydride materials. Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (TC) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work, the phase diagram of PHn (n =1 ,2 ,3 ,4 ,5 ,6 ) was extensively explored by means of ab initio crystal structure predictions using the minima hopping method (MHM). The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1 ,2 ,3 display TC's comparable to experiments, it remains uncertain if the measured values of TC can be fully attributed to a phase-pure compound of PHn.

  5. Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets

    NASA Astrophysics Data System (ADS)

    Li, Hai-Feng

    2016-10-01

    Understanding the nature of all possible ground states and especially magnetic-field-driven phase transitions of antiferromagnets represents a major step towards unravelling the real nature of interesting phenomena such as superconductivity, multiferroicity or magnetoresistance in condensed-matter science. Here a consistent mean-field calculation endowed with antiferromagnetic (AFM) exchange interaction (J), easy axis anisotropy (γ), uniaxial single-ion anisotropy (D) and Zeeman coupling to a magnetic field parallel to the AFM easy axis consistently unifies the AFM state, spin-flop (SFO) and spin-flip transitions. We reveal some mathematically allowed exotic spin states and fluctuations depending on the relative coupling strength of (J, γ and D). We build the three-dimensional (J, γ and D) and two-dimensional (γ and D) phase diagrams clearly displaying the equilibrium phase conditions and discuss the origins of various magnetic states as well as their transitions in different couplings. Besides the traditional first-order type one, we unambiguously confirm an existence of a second-order type SFO transition. This study provides an integrated theoretical model for the magnetic states of collinear antiferromagnets with two interpenetrating sublattices and offers a practical approach as an alternative to the estimation of magnetic exchange parameters (J, γ and D), and the results may shed light on nontrivial magnetism-related properties of bulks, thin films and nanostructures of correlated electron systems.

  6. Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3

    PubMed Central

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H.C.; Beasley, M.R.; Geballe, T.H.; Kramer, M.J.; Fisher, I.R.

    2015-01-01

    The phase diagram of BaPb1−xBixO3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high-resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare with the Ginzburg–Landau coherence length. We find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome. PMID:26373890

  7. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying amore » connection between the structural phase separation and the shape of the superconducting dome.« less

  8. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    PubMed

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  9. Superconductivity in the amorphous phase of topological insulator Bi x Sb100-x alloys

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, J.; Lauinger, C.; Zoraghi, M.; Stiller, M.; Sharma, S.; Häussler, P.

    2017-01-01

    In this work we investigated the electrical properties of rapidly quenched amorphous Bi x Sb{}100-x alloys in the temperature range of 1.2 K to 345 K. The resistance reveals that for a broad range of different compositions, including that for the topological insulator (TI), a superconducting state in the amorphous phase is present. After crystallization and annealing at an intermediate temperature, we found that in pure Bi and Bi x Sb{}100-x alloys with composition corresponding to the TI, the superconductivity persists, but the transition shifts to a lower temperature. The highest superconducting transition temperature {T}{{C}0} was found for pure Bi and those TI’s, with a shift to low temperatures when the Sb content is increased. After annealing at a maximum temperature of T = 345 K, the samples are non-superconducting within the experimental range and the behavior changes from semiconducting-like for pure Bi, to metallic-like for pure Sb. Transition temperature {T}{{C}0} of the amorphous Bi x Sb{}100-x alloys have been calculated in the BCS-Eliashberg-McMillan framework, modified for binary alloys. The results can explain the experimental results and show that amorphous Bi x Sb{}100-x exhibits a strong to intermediate electron-phonon coupling.

  10. Critical exponent of quantum phase transitions driven by colored noise

    NASA Astrophysics Data System (ADS)

    Nagy, D.; Domokos, P.

    2016-12-01

    We demonstrate that criticality in a driven-dissipative system is strongly influenced by the spectral properties of the bath. We study the open-system realization of the Dicke model, where a bosonic cavity mode couples to a large spin formed by two motional modes of an atomic Bose-Einstein condensate. The cavity mode is driven by a high-frequency laser and it decays to a Markovian bath, while the atomic mode interacts with a colored bath. We reveal that the soft mode fails to describe the characteristics of the criticality. We calculate the critical exponent of the superradiant phase transition and identify an inherent relation to the low-frequency spectral density function of the colored bath. We show that a finite temperature of the colored bath does not modify qualitatively this dependence on the spectral density function.

  11. Enhancement of superconductivity under pressure and the magnetic phase diagram of tantalum disulfide single crystals

    PubMed Central

    Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.

    2016-01-01

    In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature. PMID:27534898

  12. Superconducting properties of the KxWO3 tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family

    NASA Astrophysics Data System (ADS)

    Haldolaarachchige, Neel; Gibson, Quinn; Krizan, Jason; Cava, R. J.

    2014-03-01

    We report on the superconducting properties of the KxWO3 tetragonal tungsten bronze. The highest superconducting transition temperature (Tc=2.1 K) was obtained for K0.38WO3. Tc decreases linearly with increasing K content. Using the measured values for the upper critical field Hc2 and the specific heat C, we estimate the orbital critical field Hc2(0), coherence length ξ(0), Debye temperature ΘD, and coupling constant λe-p. The magnitude of the specific-heat jump at Tc suggests that the KxWO3 tetragonal tungsten bronze is a weakly coupled superconductor. The superconducting phase diagram of the doped tungsten bronze family is presented.

  13. The superconducting phase and electronic excitations of (Rb,Cs) Fe 2 As 2

    NASA Astrophysics Data System (ADS)

    Kanter, J.; Shermadini, Z.; Khasanov, R.; Amato, A.; Bukowski, Z.; Batlogg, B.

    2011-03-01

    We present specific heat, transport and Muon-Spin Rotation (μ SR) results on (Rb,Cs) Fe 2 As 2 . RbFe 2 As 2 was only recently found to be superconducting below 2.6 K by Bukowski et al. Compared to the related BaFe 2 As 2 the electron density is lower and no magnetic order is observed. For the superconducting phase the superfluid density was calculated from μ SR data. The temperature dependence of the superfluid density and the magnetic penetration depth is well described by a multi-gap scenario. In addition the electronic contribution the specific heat was studied for different compositions and magnetic fields and reveals a high value for the Sommerfeld coefficient γ .

  14. A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Hao, L. Y.; Zhou, X. J.; Yang, Z. B.; Zhang, H. L.; Sun, H. C.; Cao, H. X.; Dai, P. H.; Li, J.; Hatano, T.; Wang, H. B.; Wen, Q. Y.; Wu, P. H.

    2016-12-01

    We report a practical superconducting terahertz (THz) source, comprising a stack of Bi2Sr2CaCu2O8 intrinsic Josephson junctions (IJJs) and a vanadium dioxide (VO2) tunable attenuator with coplanar interdigital contacts. The electrical triggering phase transitions are observed not only at room temperature, but also at low temperatures, which provides a proof of the electrical triggering. Applying this, the VO2 attenuator is implemented for the independent regulations on the emission powers from the IJJ THz emitter, remaining frequencies and temperatures unchanged. The attenuation can be tuned smoothly and continuously within a couple of volts among which the maximum is, respectively, -5.6 dB at 20 K or -4.3 dB at 25 K. Such a power-adjustable radiation source, including the VO2 attenuator, can further expand its practicability in cryogenic THz systems, like superconducting THz spectrometers.

  15. Lamb-shift enhancement and detection in strongly driven superconducting circuits.

    PubMed

    Gramich, Vera; Gasparinetti, Simone; Solinas, Paolo; Ankerhold, Joachim

    2014-07-11

    It is shown that strong driving of a quantum system substantially enhances the Lamb shift induced by broadband reservoirs, which are typical for solid-state devices. By varying drive parameters the impact of environmental vacuum fluctuations with continuous spectral distribution onto system observables can be tuned in a distinctive way. This provides experimentally feasible measurement schemes for the Lamb shift in superconducting circuits based on Cooper pair boxes, where it can be detected either in shifted dressed transition frequencies or in pumped charge currents.

  16. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S’/S superconducting weak links

    PubMed Central

    Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.

    2016-01-01

    Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137

  17. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    SciTech Connect

    Kagan, M. Yu.; Val'kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.

    2013-10-15

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d{sub xy}, p, s, and d{sub x{sup 2}-y{sup 2}} symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d{sub x{sup 2}-y{sup 2}} symmetry and high critical temperatures T{sub c} {approx} 100 K near the half-filling are determined.

  18. Enhanced Superconductivity in Close Proximity to the Structural Phase Transition of Sr1-xBaxNi2P2

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutaka; Kitahama, Yutaka; Iba, Keita; Takasuga, Masaya; Nohara, Minoru

    2017-03-01

    The structural evolution and superconductivity of a 122-type solid solution Sr1-xBaxNi2P2 were studied. We found that an orthorhombic-tetragonal structural phase transition takes place at x = 0.5, and is characterized by the P-P dimers breaking. The superconducting transition temperature exhibited its highest value of 2.85 K at x = 0.4.

  19. Superconducting Properties and Phase Analysis of Nb-Si Thin Films Produced by Sputtering

    NASA Astrophysics Data System (ADS)

    Ohshima, Shigetoshi; Shiba, Takashi; Kawanobe, Tadashi; Wakiyama, Tokuo

    1986-09-01

    Nb-Si films were deposited on Nb.84Si.16, Ti3Au and W3Re films with an A15 structure by sputtering. The films with double layers were analyzed using Auger electron spectroscopy. Phase analyses of the sputtered Nb-Si films were carried out by X-ray diffraction studies. The A15 Nb.78Si.22 and Nb.75Si.25 films were grown epitaxially on Nb.84Si.16 and W3Re substrate films. The superconducting transition temperatures of these epitaxial films were found to range between 5 and 9 K.

  20. Superconductivity and crystal structure of high-pressure phases in V-Ru-H system

    NASA Astrophysics Data System (ADS)

    Animonov, V. Ye.; Belash, I. T.; Ponyatovskiy, Ye. G.; Rashchupkin, V. I.; Romanenko, I. M.

    1987-10-01

    In the search for materials which, upon hydrogenation, form phase with higher superconductor transition temperature, V-Ru alloys were selected for study. Specimens were produced by mixing electrolytic powder of each metal into three batches with 10, 18, 33 atom percent. respectively, compacting the mixtures under a pressure of 20 kbar at room temperature, and then sintering them in an induction furnace in an argon atmosphere. The compacts were annealed at 1200 C in vacuum (10 to the -6 torr) for 24 h then cooled in the furnace. The specimens of three alloys, now containing 10, 18.5., 34+0.4 atom percent Ru, respectively, were hydrogenated in an H2 atmosphere at 300 C under pressures up to 70 kbar for 24 h and then quenched under pressure to about -180 C. The hydrogen content was then determined accurately within 5 percent, from the amount of H2 evolving during thermal decomposition at 500 C. The superconducting transition temperature was measured by the inductive method. The results reveal formation of a phase with the atomic hydrogen-to-metal ratio H:Me approx = 1 and an f.c.c. metal sublattice in the V sub 90 Ru sub 10-H alloy, only this phase being superconductive at temperatures T greater than or = 2K with a 0.3 K wide transition range.

  1. Superconducting phase diagram of InxWO3 synthesized by indium deintercalation

    NASA Astrophysics Data System (ADS)

    Bocarsly, Joshua D.; Hirai, Daigorou; Ali, M. N.; Cava, R. J.

    2013-07-01

    We report the superconducting phase diagram of the hexagonal tungsten bronze (HTB) InxWO3. The InxWO3 samples were prepared by indium deintercalation of the thermodynamically stable parent phase In0.33WO3. By employing this technique, a lowest indium content in the HTB phase of x \\sim 0.07 was achieved, which cannot be obtained by conventional solid-state reaction. In addition, accurately and reproducibly controlled indium content and homogeneous samples enable us to perform a systematic study of the physical properties of InxWO3. Most of the InxWO3 samples exhibit a superconducting transition and the highest transition temperature T_{\\text{c}} = 4.2\\text{K} in InxWO3 was observed at x= 0.11 . The indium content dependence of T_{\\text{c}}(x) shows remarkable similarities to other MxWO3 (M=\\text{K} and Rb) HTBs. Our results reveal the universality of physical properties in the HTB family and give a strategy to achieve higher T_{\\text{c}} in HTBs.

  2. Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.

  3. London theory for superconducting phase transitions in external magnetic fields: application to UPt3.

    PubMed

    Agterberg, D F; Dodgson, Matthew J W

    2002-07-01

    For multicomponent superconductors, it is known that the presence of symmetry breaking fields can lead to multiple superconducting phase transitions. Motivated by recent small angle neutron scattering experiments on the vortex state of UPt3, the London theory in the vicinity of such phase transitions is determined. It is found that the form of this London theory is in general quite different than that for conventional superconductors. This is due to the existence of a diverging correlation length associated with these phase transitions. One striking consequence is that nontrivial vortex lattices exist arbitrarily close to H(c1). Applications to UPt3, CeIn3, U(1-x)Th(x)Be(13), electron doped cuprate superconductors, Sr(2)RuO(4), and MgCNi(3) are discussed.

  4. Electrostatically Driven Granular Media: Phase Transitions, Patterns and Vortices

    NASA Astrophysics Data System (ADS)

    Aranson, Igor

    2003-03-01

    Large ensembles of small particles display fascinating collective behavior when they acquire an electric charge and respond to competing long-range electromagnetic and short-range contact forces. Many industrial technologies face the challenge of assembling and separating such single- or multi-component micro and nano- size ensembles. The dynamics of conducting microparticles in strong electric field in the air or in deep vacuum was studied in Refs. [1,2]. Phase transitions and clustering instability of the electrostatically driven granular gas were found. A continuum model for the phase separation and coarsening in was formulated in terms of a Ginzburg-Landau equation subject to conservation of the total number of grains. In the regime of well-developed clusters, the continuum model is used to derive "sharp-interface" equations that govern the dynamics of the interphase boundary. The situation is remarkably different when the cell is filled with poorly conducting liquid (toluene-ethanol mixute). We have found that metallic particles form a rich variety of phases not observed in the air-filled cell. These phases include static precipitates: honeycombs lattices and Wigner crystals; and novel dynamic condensates: toroidal vortices and pulsating rings. The observed phenomena are attributed to interaction between particles and electro-hydrodynamic flows produced by the action of the electric field on ionic charges in the bulk of liquid. 1. I.S. Aranson, D. Blair, V.A. Kalatsky, G.W. Crabtree, W.-K. Kwok, V.M. Vinokur, and U.Welp, Phys. Rev. Lett. 84, 3306 (2000) 2. I.S. Aranson, B. Meerson, P.V. Sasorov, and V.M. Vinokur, Phys. Rev. Lett. 88, 204301 (2002)

  5. Epitaxial growth of hexagonal tungsten bronze Cs x WO3 films in superconducting phase region exceeding bulk limit

    NASA Astrophysics Data System (ADS)

    Soma, Takuto; Yoshimatsu, Kohei; Ohtomo, Akira

    2016-07-01

    We report epitaxial synthesis of superconducting Cs x WO3 (x = 0.11, 0.20, and 0.31) films on Y-stabilized ZrO2 (111) substrates. The hexagonal crystal structure was verified not only for the composition within the stable region of the bulk (x = 0.20 and 0.31), but also for the out-of-range composition (x = 0.11). The onset of the superconducting transition was recorded at 5.8 K for x = 0.11. We found a strong correlation between the superconducting transition temperature (T C) and the c-axis length, irrespective of the Cs content. These results indicated that the hidden superconducting phase region of hexagonal tungsten bronze is accessible using epitaxial synthesis of lightly doped films.

  6. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    SciTech Connect

    Eltschka, Matthias Jäck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R.; Kondrashov, Oleg V.; Skvortsov, Mikhail A.; Kern, Klaus

    2015-09-21

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.

  7. Magnetic and superconducting phase diagram of the half-Heusler topological semimetal HoPdBi.

    PubMed

    Nikitin, A M; Pan, Y; Mao, X; Jehee, R; Araizi, G K; Huang, Y K; Paulsen, C; Wu, S C; Yan, B H; de Visser, A

    2015-07-15

    We report a study of the magnetic and electronic properties of the non-centrosymmetric half-Heusler antiferromagnet HoPdBi (TN = 2.0 K). Magnetotransport measurements show HoPdBi has a semimetallic behavior with a carrier concentration n = 3.7 × 10(18) cm(-3) extracted from the Shubnikov-de Haas effect. The magnetic phase diagram in the field-temperature plane has been determined by transport, magnetization, and thermal expansion measurements: magnetic order is suppressed at BM ~ 3.6 T for T --> 0. Superconductivity with Tc ~ 1.9 K is found in the antiferromagnetic phase. Ac-susceptibility measurements provide solid evidence for bulk superconductivity below Tc = 0.75 K with a screening signal close to a volume fraction of 100%. The upper critical field shows an unusual linear temperature variation with Bc2(T --> 0) = 1.1 T. We also report electronic structure calculations that classify HoPdBi as a new topological semimetal, with a non-trivial band inversion of 0.25 eV.

  8. Structures of the metallic and superconducting high pressure phases of solid CS2

    PubMed Central

    Zarifi, Niloofar; Liu, Hanyu; Tse, John S.

    2015-01-01

    First principles structural prediction and molecular dynamics (MD) calculations have been performed to examine the structures responsible for the recently reported metallic and superconducting phases of highly compressed CS2. The low pressure experimental molecular crystal structure was found to be metastable and transformed into a disordered structure above 10 GPa. At 60 GPa, the predicted low energy structures show molecular CS2 is separated into C and S dominant regions. A crystalline structure with the P21/m symmetry was found to be most stable from 60 to 120 GPa. The structure is formed from alternate layers of hexagonal C rings and S 2D-square-nets linked by C-S bonds. A non-crystalline structure with similar features structure is also predicted by MD calculations. Electron-phonon coupling calculations show this crystalline phase is superconductive. Contrary to the suggestions made from the experiments, no magnetism was found in all predicted low enthalpy high pressure structures. Moreover, the theoretical results do not support the proposal on the existence of hypervalent 6-coordinated carbon at 120 GPa. PMID:25982346

  9. Structures of the metallic and superconducting high pressure phases of solid CS2.

    PubMed

    Zarifi, Niloofar; Liu, Hanyu; Tse, John S

    2015-05-18

    First principles structural prediction and molecular dynamics (MD) calculations have been performed to examine the structures responsible for the recently reported metallic and superconducting phases of highly compressed CS2. The low pressure experimental molecular crystal structure was found to be metastable and transformed into a disordered structure above 10 GPa. At 60 GPa, the predicted low energy structures show molecular CS2 is separated into C and S dominant regions. A crystalline structure with the P21/m symmetry was found to be most stable from 60 to 120 GPa. The structure is formed from alternate layers of hexagonal C rings and S 2D-square-nets linked by C-S bonds. A non-crystalline structure with similar features structure is also predicted by MD calculations. Electron-phonon coupling calculations show this crystalline phase is superconductive. Contrary to the suggestions made from the experiments, no magnetism was found in all predicted low enthalpy high pressure structures. Moreover, the theoretical results do not support the proposal on the existence of hypervalent 6-coordinated carbon at 120 GPa.

  10. Self-driven cooling loop for a large superconducting magnet in space

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Snyder, H. A.

    1992-01-01

    Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.

  11. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  12. Gain-assisted optical bistability and multistability in superconducting phase quantum circuits

    NASA Astrophysics Data System (ADS)

    Amini Sabegh, Z.; Maleki, M. A.; Mahmoudi, M.

    2017-02-01

    We study the absorption and optical bistability (OB) behavior of the superconducting phase quantum circuits in the four-level cascade and closed-loop configurations. It is shown that the OB is established in both configurations and it can be controlled by the intensity and frequency of applied fluxes. It is also demonstrated that the gain-assisted OB is generated in both configurations and can switch to the gain-assisted optical multistability (OM) only by changing the relative phase of applied fluxes in closed-loop quantum system. It is worth noting that the several significant output fluxes with negligible inputs can be seen in bistable behavior of the closed-loop configuration due to the nonlinear processing.

  13. Possible "Magnéli" Phases and Self-Alloying in the Superconducting Sulfur Hydride

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke; Sano, Wataru; Arita, Ryotaro; Tsuneyuki, Shinji

    2016-08-01

    We theoretically give an infinite number of metastable crystal structures for the superconducting sulfur hydride HxS under pressure. Previously predicted crystalline phases of H2S and H3S have been thought to have important roles for experimentally observed low and high Tc, respectively. The newly found structures are long-period modulated crystals where slablike H2S and H3S regions intergrow on a microscopic scale. The extremely small formation enthalpy for the H2S -H3S boundary indicated by first-principles calculations suggests possible alloying of these phases through the formation of local H3S regions. The modulated structures and gradual alloying transformations between them not only explain the peculiar pressure dependence of Tc in sulfur hydride observed experimentally, but also could prevail in the experimental samples under various compression schemes.

  14. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    NASA Astrophysics Data System (ADS)

    Wong, C. H.; Wu, R. P. H.; Lortz, R.

    2017-03-01

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature TDC is observed when the inner superconducting cylindrical surface is rotated in the angular plane. TDC reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below TDC. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  15. Self-heterodyne detection of the in situ phase of an atomic superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Mathew, R.; Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.; Edwards, Mark; Tiesinga, E.

    2015-09-01

    We present theoretical and experimental analysis of an interferometric measurement of the in situ phase drop across and current flow through a rotating barrier in a toroidal Bose-Einstein condensate (BEC). This experiment is the atomic analog of the rf-superconducting quantum interference device (SQUID). The phase drop is extracted from a spiral-shaped density profile created by the spatial interference of the expanding toroidal BEC and a reference BEC after release from all trapping potentials. We characterize the interferometer when it contains a single particle, which is initially in a coherent superposition of a torus and reference state, as well as when it contains a many-body state in the mean-field approximation. The single-particle picture is sufficient to explain the origin of the spirals, to relate the phase-drop across the barrier to the geometry of a spiral, and to bound the expansion times for which the in situ phase can be accurately determined. Mean-field estimates and numerical simulations show that the interatomic interactions shorten the expansion time scales compared to the single-particle case. Finally, we compare the mean-field simulations with our experimental data and confirm that the interferometer indeed accurately measures the in situ phase drop.

  16. Phase coherent dynamics of a superconducting flux qubit with capacitive bias readout

    NASA Astrophysics Data System (ADS)

    Deppe, F.; Mariantoni, M.; Menzel, E. P.; Saito, S.; Kakuyanagi, K.; Tanaka, H.; Meno, T.; Semba, K.; Takayanagi, H.; Gross, R.

    2007-12-01

    We present a systematic study of the phase coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching-dc-superconducting quantum interference device (SQUID) method. In this scheme, the dc SQUID bias current pulse is applied via a capacitor instead of a resistor, giving rise to a narrow bandpass instead of a pure low-pass filter configuration of the electromagnetic environment. Measuring one and the same qubit with both setups allows a direct comparison. With the capacitive method about four times faster switching pulses and an increased visibility are achieved. Furthermore, the deliberate engineering of the electromagnetic environment, which minimizes the noise due to the bias circuit, is facilitated. Right at the degeneracy point, the qubit coherence is limited by energy relaxation. We find two main noise contributions. White noise limits the energy relaxation and contributes to the dephasing far from the degeneracy point. 1/f noise is the dominant source of dephasing in the direct vicinity of the optimal point. The influence of 1/f noise is also supported by nonrandom beatings in the Ramsey and spin echo decay traces. Numeric simulations of a coupled qubit-oscillator system indicate that these beatings are due to the resonant interaction of the qubit with at least one pointlike fluctuator, coupled especially strongly to the qubit.

  17. Unconventional superconducting phases for the two-dimensional extended Hubbard model on a square lattice

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Lai, Chen-Yen; Shi, Chuntai; Tsai, Shan-Wen

    2013-08-01

    We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density wave phase that is known to occur at half filling when 4V>U gives way to a dxy-wave superconducting instability away from half filling, when the Fermi surface is not perfectly nested, and for sufficiently large repulsive V and a range of on-site repulsive interaction U. In addition, when nesting is further suppressed and in the presence of a nearest-neighbor attraction, a triplet time-reversal breaking (px+ipy)-wave pairing instability emerges, competing with the dx2-y2 pairing state that is known to dominate at fillings just slightly away from half. At even smaller fillings, where the Fermi surface no longer presents any nesting, the (px+ipy)-wave superconducting phase dominates in the whole regime of on-site repulsions and nearest-neighbor attractions, while dxy pairing occurs in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would be required, in addition to rotation of the system to create vortices. We discuss possible ways of experimentally engineering the required interaction terms in a cold atom system.

  18. Microscopic Derivation of the Ginzburg-Landau Equations for the Periodic Anderson Model in the Coexistence Phase of Superconductivity and Antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Zlotnikov, A. O.

    2016-12-01

    On the basis of the periodic Anderson model, the microscopic Ginzburg-Landau equations for heavy-fermion superconductors in the coexistence phase of superconductivity and antiferromagnetism have been derived. The obtained expressions are valid in the vicinity of quantum critical point of heavy-fermion superconductors when the onset temperatures of antiferromagnetism and superconductivity are sufficiently close to each other. It is shown that the formation of antiferromagnetic ordering causes a decrease of the critical temperature of superconducting transition and order parameter in the phase of coexisting superconductivity and antiferromagnetism.

  19. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    SciTech Connect

    A.C. Dexter, G. Burt, R.G. Carter, I. Tahir, H. Wang, K. Davis, R. Rimmer

    2011-03-01

    The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  20. New Developments in Nb3Sn PIT Strand: The Effects of Titanium and Second Phase Additions on the Superconducting Properties

    SciTech Connect

    Motowidlo, L.R.; Ghosh, A.; Distin, J.; Lee, P.J.; Larbalestier, D.C.; Ghosh, A.K.

    2011-08-03

    We report the effect of titanium on the transport properties of multifilament PIT strand. In addition, the effect of second phase yttrium additions on the microstructure and the bulk pinning force are reported for PIT Nb{sub 3}Sn mono-core wires. High resolution SEM, EDS, magnetization, and transport measurements were utilized to evaluate the superconducting properties.

  1. Isotope effect in the superconducting high-pressure simple cubic phase of calcium from first principles

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Rousseau, Bruno; Bergara, Aitor

    2012-06-01

    It has been recently shown [I. Errea, B. Rousseau, and A. Bergara, Phys. Rev. Lett. 106, 165501 (2011)] that the phonons of the high-pressure simple cubic phase of calcium are stabilized by strong quantum anharmonic effects. This was obtained by a fully ab initio implementation of the self-consistent harmonic approximation including explicitly anharmonic coefficients up to fourth order. The renormalized anharmonic phonons make possible to estimate the superconducting transition temperature in this system, and a sharp agreement with experiments is found. In this work, this analysis is extended in order to study the effect of anharmonicity in the isotope effect. According to our calculations, despite the huge anharmonicity in the system, the isotope coefficient is predicted to be 0.45, close to the 0.5 value expected for a harmonic BCS superconductor.

  2. Local geometric phase and quantum-state tomography for a superconducting qubit threaded by a magnetic flux

    NASA Astrophysics Data System (ADS)

    Kang, Kicheon

    2014-02-01

    We investigate the local geometric phase induced by Faraday's law of induction in a superconducting charge qubit threaded by an Aharonov-Bohm flux. A quantum-state reconstruction scheme, which is based on measurement of three complementary quantities, that is, the extra charge and two local currents, is introduced. We find that, while the variation of the local phase with magnetic field is determined by Faraday's law, incorporation of the time-reversal symmetry enables complete determination of the local phase. This procedure clearly demonstrates that the local geometric phase is a physical quantity (aside from a global phase factor), in contrast to the standard description of the Aharonov-Bohm effect.

  3. Structure and magnetic property of potassium intercalated pentacene: observation of superconducting phase in K x C22H14.

    PubMed

    Nakagawa, Takeshi; Yuan, Zhen; Zhang, Jun; Yusenko, Kirill V; Drathen, Christina; Liu, QingQing; Margadonna, Serena; Jin, Changqing

    2016-12-07

    We report the results from systematic investigations on the structure and magnetic properties of potassium intercalated pentacene as a function of potassium content, K x C22H14 (1  ⩽  x  ⩽  3). Synchrotron radiation powder x-ray diffraction technique revealed that there are two different stable phases can be obtained via potassium intercalation, namely, K1C22H14 phase and K3C22H14 phase. Structural phase transition was induced when the potassium content was increased to the nominal value x  =  3. This phase transition is accompanied by drastic change in their magnetic property, where those samples with compositions K1C22H14 shows ferromagnetic behavior and those with near K3C22H14 lead to observation of superconductivity with transition temperature, T c, of 4.5 K. It is first time that superconductivity was observed in linear oligoacenes. Both magnetization study and synchrotron radiation powder x-ray diffraction clearly indicates that the superconducting phase belong to K3C22H14 as a result of phase transition from triclinic to monoclinic structure induced by chemical doping.

  4. Structure and magnetic property of potassium intercalated pentacene: observation of superconducting phase in K x C22H14

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takeshi; Yuan, Zhen; Zhang, Jun; Yusenko, Kirill V.; Drathen, Christina; Liu, QingQing; Margadonna, Serena; Jin, Changqing

    2016-12-01

    We report the results from systematic investigations on the structure and magnetic properties of potassium intercalated pentacene as a function of potassium content, K x C22H14 (1  ⩽  x  ⩽  3). Synchrotron radiation powder x-ray diffraction technique revealed that there are two different stable phases can be obtained via potassium intercalation, namely, K1C22H14 phase and K3C22H14 phase. Structural phase transition was induced when the potassium content was increased to the nominal value x  =  3. This phase transition is accompanied by drastic change in their magnetic property, where those samples with compositions K1C22H14 shows ferromagnetic behavior and those with near K3C22H14 lead to observation of superconductivity with transition temperature, T c, of 4.5 K. It is first time that superconductivity was observed in linear oligoacenes. Both magnetization study and synchrotron radiation powder x-ray diffraction clearly indicates that the superconducting phase belong to K3C22H14 as a result of phase transition from triclinic to monoclinic structure induced by chemical doping.

  5. A unifying phase diagram with correlation-driven superconductor-to-insulator transition for the 122 series of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Niu, X. H.; Chen, S. D.; Jiang, J.; Ye, Z. R.; Yu, T. L.; Xu, D. F.; Xu, M.; Feng, Y.; Yan, Y. J.; Xie, B. P.; Zhao, J.; Gu, D. C.; Sun, L. L.; Mao, Qianhui; Wang, Hangdong; Fang, Minghu; Zhang, C. J.; Hu, J. P.; Sun, Z.; Feng, D. L.

    2016-02-01

    The 122 series of iron chalcogenide superconductors, for example KxFe2 -ySe2 , only possesses electron Fermi pockets. Their distinctive electronic structure challenges the picture built upon iron pnictide superconductors, where both electron and hole Fermi pockets coexist. However, partly due to the intrinsic phase separation in this family of compounds, many aspects of their behavior remain elusive. In particular, the evolution of the 122 series of iron chalcogenides with chemical substitution still lacks a microscopic and unified interpretation. Using angle-resolved photoemission spectroscopy, we studied a major fraction of 122 iron chalcogenides, including the isovalently "doped" KxFe2 -ySe2 -zSz,RbxFe2 -ySe2 -zTez , and (Tl,K) xFe2 -ySe2 -zSz . We found that the bandwidths of the low energy Fe 3 d bands in these materials depend on doping; and more crucially, as the bandwidth decreases, the ground state evolves from a metal to a superconductor, and eventually to an insulator, yet the Fermi surface in the metallic phases is unaffected by the isovalent dopants. Moreover, the correlation-driven insulator found here with small band filling may be a novel insulating phase. Our study shows that almost all the known 122-series iron chalcogenides can be understood via one unifying phase diagram which implies that moderate correlation strength is beneficial for the superconductivity.

  6. Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto

    2015-12-01

    We find the angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states (or the twisted kink crystals) in which a phase and an amplitude of a pair potential modulate simultaneously in a quasi-one-dimensional superconducting ring with a static Zeeman magnetic field applied on the ring and static Aharonov-Bohm magnetic flux penetrating the ring. The superconducting ring with magnetic flux produces a persistent current, whereas the Zeeman split of Fermi energy results in the spatial modulation of the pair potential. We show that these two magnetic fields stabilize the FFLO phase in a large parameter region of the magnetic fields. We further draw the phase diagram with the two kinds of first-order phase transitions; one corresponds to phase slips separating the Aharonov-Bohm magnetic flux, and the other separates the number of peaks of the pair amplitude for the Zeeman magnetic field.

  7. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    SciTech Connect

    Berrada, K.

    2014-01-15

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.

  8. Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits.

    PubMed

    Lin, Z R; Inomata, K; Koshino, K; Oliver, W D; Nakamura, Y; Tsai, J S; Yamamoto, T

    2014-07-25

    The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.

  9. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.

    2017-01-01

    First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.

  10. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2014-01-01

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit-environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution.

  11. FAST TRACK COMMUNICATION: Magnetic excitations of Fe1 + ySexTe1 - x in magnetic and superconductive phases

    NASA Astrophysics Data System (ADS)

    Babkevich, P.; Bendele, M.; Boothroyd, A. T.; Conder, K.; Gvasaliya, S. N.; Khasanov, R.; Pomjakushina, E.; Roessli, B.

    2010-04-01

    We have used inelastic neutron scattering and muon-spin rotation to compare the low energy magnetic excitations in single crystals of superconducting Fe1.01Se0.50Te0.50 and non-superconducting Fe1.10Se0.25Te0.75. We confirm the existence of a spin resonance in the superconducting phase of Fe1.01Se0.50Te0.50, at an energy of 7 meV and a wavevector of (1/2, 1/2, 0). The non-superconducting sample exhibits two incommensurate magnetic excitations at (1/2, 1/2, 0) ± (0.18, - 0.18, 0) which rise steeply in energy, but no resonance is observed at low energies. A strongly dispersive low energy magnetic excitation is also observed in Fe1.10Se0.25Te0.75 close to the commensurate antiferromagnetic ordering wavevector (1/2 - δ, 0, 1/2), where δ≈0.03. The magnetic correlations in both samples are found to be quasi-two-dimensional in character and persist well above the magnetic (Fe1.10Se0.25Te0.75) and superconducting (Fe1.01Se0.50Te0.50) transition temperatures.

  12. Bulk superconductivity in Tl 2Ba 2CaCu 2O 8 and TlBa 2Ca 2Cu 3O 9 phases

    NASA Astrophysics Data System (ADS)

    Sulpice, A.; Giordanengo, B.; Tournier, R.; Hervieu, M.; Maignan, A.; Martin, C.; Michel, C.; Provost, J.

    1988-09-01

    Well-crystallized Tl 2Ba 2CaCu 2O 8 phases have been observed superconducting or normal below 108 K depending on their stoichiometry. This observation is an evidence that a (Cu IL&.zbnd;O -) mixed valence induced by vacancies or substitution on different sites gives rise to superconductivity in this phase. The new phase TlBa 2Ca 2CuO 9 which intrinsically contains a mixed valence has been observed as having a sharp transition to bulk superconductivity in the Meissner effect at a critical temperature of 120 K. This temperature is much higher than the recently observed one.

  13. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  14. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films.

    PubMed

    He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2013-07-01

    The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

  15. Behavior of embedded phase in shock-driven two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuehner, Garrett; Wayne, Patrick; Olmstead, Dell; Corbin, Clint; Bernard, Tennille; Vorobieff, Peter; Truman, C. Randall

    2013-11-01

    We present an experimental study of droplet acceleration in a shock-driven two-phase flow (air with embedded liquid droplets). The droplets (propylene glycol, diameter 0.5-3 μm) were pre-mixed with the air in the test section of a shock tube, then impulsively accelerated with planar shock wave with a Mach number of 1.7. A cross-section of the flow is illuminated with multiple pulses from Nd:YAG lasers, producing time-resolved visualizations of the seeded volume. The images are then analyzed to quantify droplet velocity and acceleration from the shock passage to about 1.5 ms after the shock. Based on the velocity measurements, we can resolve the droplet lag after the shock, when the massive droplets ``catch up'' with the flow of the surrounding air, as well as validate our earlier estimates of boundary layer growth. This research is supported by NNSA (US National Nuclear Security Agency).

  16. Phonon-driven superconductivity in the vicinity of ferroelectric and charge density wave ordering in La(O,F)BiX2 (X=S, Se, O)

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner

    2015-03-01

    Examples of layered superconductors include cuprates, MgB2, CaC6, and recent iron-pnictides. Recently a new family of layered materials containing BiS2 planes, was discovered to be superconducting at temperatures up to 10 K. In order to reveal the mechanism of superconductivity, here we present results from first-principles calculations with many surprising findings for La(O,F) Bi X2 for X=S, Se, and O. The parent compound LaOBiS2 possesses anharmonic ferroelectric soft phonons at the zone center with a rather large polarization of P ~ 10 μC/cm2. Upon electron doping, new unstable phonon branches appear along the entire line Q=(q,q,0), causing Bi/S atoms to order in a one-dimensional charge density wave (CDW). We find that BiS2 is a strong electron-phonon coupled superconductor in the vicinity of competing ferroelectric and CDW phases. We discuss similar results for X=Se and hypothetical compound X=0. These results will be compared with another interesting system, namely Ba1-xKxBiO3, which exhibits several phases, including CDW, an incommensurate pseudo ferroelectric, and superconductivity at 31 K. Our results suggest new directions to tune the balance between these phases and increase Tc in this new class of materials.

  17. Model of an exotic chiral superconducting phase in a graphene bilayer.

    PubMed

    Hosseini, Mir Vahid; Zareyan, Malek

    2012-04-06

    We theoretically demonstrate the formation of a new type of unconventional superconductivity in graphene materials, which exhibits a gapless property. The studied superconductivity is based on an interlayer pairing of chiral electrons in bilayer graphene, which results in an exotic s-wave spin-triplet condensate order with anomalous thermodynamic properties. These include the possibility of a temperature-induced condensation causing an increase of the pairing gap with increasing temperature and an entropy of the stable superconducting state which can be higher than its value in the normal state. Our study reveals the analogy of the interlayer superconductivity in graphene materials to the color superconductivity in dense quark matter and the gapless pairing states in nuclear matter and ultracold atomic gases.

  18. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    SciTech Connect

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high-resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare with the Ginzburg–Landau coherence length. We find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

  19. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    SciTech Connect

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

  20. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  1. Topological Quantum Phase Transition and Superconductivity Induced by Pressure in the Bismuth Tellurohalide BiTeI.

    PubMed

    Qi, Yanpeng; Shi, Wujun; Naumov, Pavel G; Kumar, Nitesh; Sankar, Raman; Schnelle, Walter; Shekhar, Chandra; Chou, Fang-Cheng; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2017-03-06

    A pressure-induced topological quantum phase transition has been theoretically predicted for the semiconductor bismuth tellurohalide BiTeI with giant Rashba spin splitting. In this work, evolution of the electrical transport properties in BiTeI and BiTeBr is investigated under high pressure. The pressure-dependent resistivity in a wide temperature range passes through a minimum at around 3 GPa, indicating the predicted topological quantum phase transition in BiTeI. Superconductivity is observed in both BiTeI and BiTeBr, while resistivity at higher temperatures still exhibits semiconducting behavior. Theoretical calculations suggest that superconductivity may develop from the multivalley semiconductor phase. The superconducting transition temperature, Tc , increases with applied pressure and reaches a maximum value of 5.2 K at 23.5 GPa for BiTeI (4.8 K at 31.7 GPa for BiTeBr), followed by a slow decrease. The results demonstrate that BiTeX (X = I, Br) compounds with nontrivial topology of electronic states display new ground states upon compression.

  2. Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer

    NASA Astrophysics Data System (ADS)

    Mallett, B. P. P.; Khmaladze, J.; Marsik, P.; Perret, E.; Cerreta, A.; Orlita, M.; Biškup, N.; Varela, M.; Bernhard, C.

    2016-11-01

    We show that in Pr0.5La0.2Ca0.3MnO3 /YBa2Cu3O7 (PLCMO/YBCO) multilayers the low temperature state of YBCO is very resistive and resembles that of a granular superconductor or a frustrated Josephson-junction network. Notably, a coherent superconducting response can be restored with a large magnetic field which also suppresses the charge-orbital order in PLCMO. This coincidence suggests that the granular superconducting state of YBCO is induced by the charge-orbital order of PLCMO. The coupling mechanism and the nature of the induced inhomogeneous state in YBCO remain to be understood.

  3. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  4. Topology-driven magnetic quantum phase transition in topological insulators.

    PubMed

    Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu

    2013-03-29

    The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.

  5. Nonequilibrium Phase Transition in a Periodically Driven XY Spin Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Ilievski, Enej

    2011-08-01

    We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-(1)/(2) chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system’s parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.

  6. Electronic Structure of the Cuprate Superconducting and Pseudogap Phases from Spectroscopic Imaging STM

    SciTech Connect

    Davis, J.C.; Schmidt, A.R.; Fujita, K.; Kim, E.-A.; Lawler, M.J.; Eisaki, H.; Uchida, S.; Lee, D.-H.

    2011-06-21

    We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E = {Delta}{sub 0}. We find that the Bogoliubov quasiparticle interference (QPI) signatures of delocalized Cooper pairing are restricted to a k-space arc, which terminates near the lines connecting k = {+-}({pi}/a{sub 0},0) to k = {+-}(0,{pi}/a{sub 0}). This arc shrinks continuously with decreasing hole density such that Luttinger's theorem could be satisfied if it represents the front side of a hole-pocket that is bounded behind by the lines between k = {+-}({pi}/a{sub 0},0) and k = {+-}(0,{pi}/a{sub 0}). In both phases, the only broken symmetries detected for the |E| < {Delta}{sub 0} states are those of a d-wave superconductor. The second class of states occurs proximate to the PG energy scale E = {Delta}{sub 1}. Here the non-dispersive electronic structure breaks the expected 90{sup o}-rotational symmetry of electronic structure within each unit cell, at least down to 180{sup o}-rotational symmetry. This electronic symmetry breaking was first detected as an electronic inequivalence at the two oxygen sites within each unit cell by using a measure of nematic (C{sub 2}) symmetry. Incommensurate non-dispersive conductance modulations, locally breaking both rotational and translational symmetries, coexist with this intra-unit-cell electronic symmetry breaking at E = {Delta}{sub 1}. Their characteristic wavevector Q is determined by the k-space points where Bogoliubov QPI terminates and therefore changes continuously with doping. The distinct broken electronic symmetry states (intra-unit-cell and finite Q) coexisting at E {approx} {Delta}{sub 1} are

  7. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over.

    PubMed

    Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji

    2014-11-18

    Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

  8. Electric field driven mesoscale phase transition in polarized colloids

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian

    2016-11-01

    A mesoscale phase transition in a polarized suspension was reported by Kumar, Khusid, Acrivos, PRL95, 2005 and Agarwal, Yethiraj, PRL102, 2009. Following the application of a strong AC field, particles aggregated head-to-tail into chains that bridged the interelectrode gap and then formed a cellular pattern, in which large particle-free domains were enclosed by particle-rich thin walls. Cellular structures were not observed in numerous simulations of field induced phase transitions in a polarized suspension. A requirement for matching the particle and fluid densities to avoid particle settling limits terrestrial experiments to negatively polarized particles. We present data on the phase diagram and kinetics of the phase transition in a neutrally buoyant, negatively polarized suspension subjected to a combination of AC and DC. Surprisingly, a weak DC component drastically speeds up the formation of a cellular pattern but does not affect its key characteristic. However, the application of a strong DC field destroys the cellular pattern, but it restores as the DC field strength is reduced. We also discuss the design of experiments to study phase transitions in a suspension of positively polarized, non-buoyancy-matched particles in the International Space Station. Supported by NASA's Physical Science Research Program, NNX13AQ53G.

  9. Easy method for measurement of environmental impedance and superconducting phase fluctuations in one-dimensional arrays of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Chen; Lin, Kuan-Yu; Liou, Saxon; Ho, I.-Lin; Kuo, Watson

    2017-04-01

    We conduct microwave impedance measurements on a one-dimensional (1D) array of Josephson junctions to experimentally determine the Josephson inductance and shunt resistance of the constituent junctions. The effective Josephson energy provides an estimate of the environmental impedance, which is greatly increased due to phase fluctuations in the neighboring junctions. This enhancement is attributed to the charge solitons in the 1D system. In general, the environmental impedance is dominated by the junction’s normal resistance in the superconducting phase coherent regime, but overwhelmed by zero-bias resistance and differential resistance, respectively, in the Coulomb blockaded regime and in the phase fluctuating regime. The change in phase fluctuations owing to a dc bias agrees with the finite temperature phase diffusion model.

  10. Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus

    PubMed Central

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2016-01-01

    We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well. PMID:26907366

  11. Transition to a labyrinthine phase in a driven granular medium

    NASA Astrophysics Data System (ADS)

    Merminod, Simon; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2015-12-01

    Labyrinthine patterns arise in two-dimensional physical systems submitted to competing interactions, in fields ranging from solid-state physics to hydrodynamics. For systems of interacting particles, labyrinthine and stripe phases were studied in the context of colloidal particles confined into a monolayer, both numerically by means of Monte Carlo simulations and experimentally using superparamagnetic particles. Here we report an experimental observation of a labyrinthine phase in an out-of-equilibrium system constituted of macroscopic particles. Once sufficiently magnetized, they organize into short chains of particles in contact and randomly orientated. We characterize the transition from a granular gas state towards a solid labyrinthine phase, as a function of the ratio of the interaction strength to the kinetic agitation. The spatial local structure is analyzed by means of accurate particle tracking. Moreover, we explain the formation of these chains using a simple model.

  12. Kinetically driven ordered phase formation in binary colloidal crystals

    NASA Astrophysics Data System (ADS)

    Bochicchio, D.; Videcoq, A.; Ferrando, R.

    2013-02-01

    The aggregation of binary colloids of the same size and balanced charges is studied by Brownian dynamics simulations for dilute suspensions. It is shown that, under appropriate conditions, the formation of colloidal crystals is dominated by kinetic effects leading to the growth of well-ordered crystallites of the sodium-chloride (NaCl) bulk phase. These crystallites form with very high probability even when the cesium-chloride (CsCl) phase is more stable thermodynamically. Global optimization searches show that this result is not related to the most favorable structures of small clusters, which are either amorphous or of the CsCl structure. The formation of the NaCl phase is related to the specific kinetics of the crystallization process, which takes place by a two-step mechanism. In this mechanism, dense fluid aggregates form at first and then crystallization follows. It is shown that the type of short-range order in these dense fluid aggregates determines which phase is finally formed in the crystallites. The role of hydrodynamic effects in the aggregation process is analyzed by stochastic rotation dynamics - molecular dynamics simulations, and we find that these effects do not play a major role in the formation of the crystallites.

  13. Ultrafast phase-change logic device driven by melting processes.

    PubMed

    Loke, Desmond; Skelton, Jonathan M; Wang, Wei-Jie; Lee, Tae-Hoon; Zhao, Rong; Chong, Tow-Chong; Elliott, Stephen R

    2014-09-16

    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change-based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change-based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change-based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates.

  14. Ultrafast phase-change logic device driven by melting processes

    PubMed Central

    Loke, Desmond; Skelton, Jonathan M.; Wang, Wei-Jie; Lee, Tae-Hoon; Zhao, Rong; Chong, Tow-Chong; Elliott, Stephen R.

    2014-01-01

    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change–based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change–based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change–based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates. PMID:25197044

  15. Hydrostatic Pressure Study on 3-K Phase Superconductivity in Sr2RuO4-Ru Eutectic Crystals by AC Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Yaguchi, Hiroshi; Watanabe, Hiromichi; Sakaue, Akira

    2012-12-01

    We have investigated the effect of hydrostatic pressure on 3-K phase superconductivity in Sr2RuO4-Ru eutectic crystals by means of AC magnetic susceptibility measurements. We have found that the application of hydrostatic pressure suppresses the superconducting transition temperature Tc of the 3-K phase with a pressure coefficient of dTc/dP ≈ -0.2 K/GPa, similar to the case of the 1.5-K phase. We have also observed that the effect of hydrostatic pressure on the 3-K phase seems to be elastic whilst that of uniaxial pressure is plastic.

  16. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. )

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  17. Structural Stability Driven by the Spin-Orbit Coupling and the Superconductivity in simple-cubic Polonium

    NASA Astrophysics Data System (ADS)

    Kang, Chang-Jong; Kim, Kyoo; Min, B. I.

    2013-03-01

    Polonium is the only element which has the simple-cubic (SC) structure in the periodic table. We have studied its structural stability based on the phonon dispersion calculations using the first-principles all-electron full-potential band method. We have demonstrated that the strong spin-orbit coupling (SOC) in SC-Po suppresses the Peierls instability and makes the SC structure stable. We have also discussed the structural chirality realized in beta-Po, as a consequence of the phonon instability. Further, we have investigated the possible superconductivity in SC-Po, and predicted that it becomes a superconductor with Tc ~ 4 K at ambient pressure. The transverse soft phonon mode at q ~ 2/3 R, which is greatly affected by the SOC, plays an important role both in the structural stability and the superconductivity in SC-Po. We have explored effects of the SOC and the volume variation on the phonon dispersions and superconducting properties of SC-Po.

  18. Dynamical Symmetry Breaking and Phase Transitions in Driven Diffusive Systems

    NASA Astrophysics Data System (ADS)

    Baek, Yongjoo; Kafri, Yariv; Lecomte, Vivien

    2017-01-01

    We study the probability distribution of a current flowing through a diffusive system connected to a pair of reservoirs at its two ends. Sufficient conditions for the occurrence of a host of possible phase transitions both in and out of equilibrium are derived. These transitions manifest themselves as singularities in the large deviation function, resulting in enhanced current fluctuations. Microscopic models which implement each of the scenarios are presented, with possible experimental realizations. Depending on the model, the singularity is associated either with a particle-hole symmetry breaking, which leads to a continuous transition, or in the absence of the symmetry with a first-order phase transition. An exact Landau theory which captures the different singular behaviors is derived.

  19. Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal KxFe2-ySe2

    DOE PAGES

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; ...

    2016-02-11

    Here, we report how the superconducting phase forms in pseudo-single-crystal KxFe2-ySe2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition. It should bemore » emphasized that the phase separation in pseudo-single-crystal KxFe2-ySe2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less

  20. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    and by invited authors selected by the editor. We are grateful to IUPAP, ICTP and the European Office of Aerospace Research and Development, Air Force Office of Scientific Research, United States Air Force Laboratory. We would like to acknowledge the authors for their careful work, and finally we thank Dr L Smith the publisher of Journal of Physics: Condensed Matter for her patience and help. Superconducting materials contents Raman spectrum in the pseudogap phase of the underdoped cuprates: effect of phase coherence and the signature of the KT-type superconducting transitionTao Li and Haijun Liao Pressure effects on Dirac fermions in α-(BEDT-TTF)2I3Takahiro Himura, Takao Morinari and Takami Tohyama Effect of Zn doping in hole-type 1111 phase (Pr, Sr)FeAsOXiao Lin, Chenyi Shen, Chen Lv, Jianjian Miao, Hao Tan, Guanghan Cao and Zhu-An Xu Superconductivity and ferromagnetism in EuFe2(As1 - xPx)2*Guanghan Cao, Shenggao Xu, Zhi Ren, Shuai Jiang, Chunmu Feng and Zhu'an Xu OInhomogeneous superconductivity in organic conductors: the role of disorder and magnetic fieldS Haddad, S Charfi-Kaddour and J-P Pouget

  1. Phase-space treatment of the driven quantum harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Campos, Diógenes

    2017-03-01

    A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the standard position and momentum wave functions, together with expressions for the ηth derivatives with respect to q and p, respectively. Afterwards, general formulae for momentum, position and energy expectation values are obtained, and the Ehrenfest theorem is verified. Subsequently, general expressions for the cross-Wigner functions are deduced. Finally, a specific example is considered to numerically and graphically illustrate some results.

  2. Joint measurement of current-phase relations and transport properties of hybrid junctions using a three junctions superconducting quantum interference device

    SciTech Connect

    Basset, J.; Delagrange, R.; Weil, R.; Kasumov, A.; Bouchiat, H.; Deblock, R.

    2014-07-14

    We propose a scheme to measure both the current-phase relation and differential conductance dI/dV of a superconducting junction, in the normal and the superconducting states. This is done using a dc Superconducting Quantum Interference Device with two Josephson junctions in parallel with the device under investigation and three contacts. As a demonstration, we measure the current-phase relation and dI/dV of a small Josephson junction and a carbon nanotube junction. In this latter case, in a regime where the nanotube is well conducting, we show that the non-sinusoidal current phase relation we find is consistent with the theory for a weak link, using the transmission extracted from the differential conductance in the normal state. This method holds great promise for future investigations of the current-phase relation of more exotic junctions.

  3. Resistance fluctuations in insulating silicon films with superconducting nanoprecipitates - superconductor-to-metal or vortex matter phase transition?

    NASA Astrophysics Data System (ADS)

    Heera, V.; Fiedler, J.; Skorupa, W.

    2015-11-01

    Silicon films with Ga-rich nanoprecipitates are superconductors or insulators in dependence on their normal state resistance. Even in the insulating state of the film superconducting nanoprecipitates exist below the critical temperature of 7 K and determine its complex transport behavior. In this range sometimes large, random resistance jumps appear that are accompanied by little temperature changes. The resistance fluctuates between a well-defined low-resistance value and a broader band of higher resistances. Jumps to higher resistance are associated with a temperature decrease and vice versa. We present experimental results on these fluctuations and suppose a first order phase transition in the film as probable origin.

  4. Direct Preparation of Fine Powders of the 80 K Superconducting Phase in the Bi-Ca-Sr-Cu-O System by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Tohge, Noboru; Tatsumisago, Masahiro; Minami, Tsutomu; Okuyama, Kikuo; Arai, Kouji; Kousaka, Yasuo

    1989-07-01

    Submicron powders of the 80 K superconducting phase in the Bi-Ca-Sr-Cu-O system have been directly prepared by the spray pyrolysis of aqueous solutions of corresponding metal nitrates, Bi:Ca:Sr:Cu=1:1:1:2. The powders obtained were spheres with uniformly distributed diameters below 1 μm. The crystalline phase of these powders was found to greatly depend on the oxygen partial pressure in the carrier gas as well as the decomposition temperature. The preparation conditions for the 80 K superconducting phase were examined.

  5. Comparative studies between the influence of single- and multi-walled carbon nanotubes addition on Gd-123 superconducting phase

    NASA Astrophysics Data System (ADS)

    Abou-Aly, A. I.; Anas, M.; Ebrahim, Shaker; Awad, R.; Eldeen, I. G.

    2016-12-01

    The effect of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) addition on the phase formation and the superconducting properties of GdBa2Cu3O7-δ phase has been studied. Therefore, composite superconductor samples of type (CNTs)x GdBa2Cu3O7-δ, 0.0 ≤ x ≤ 0.1 wt.% have been synthesized by a standard solid-state reaction technique. The samples have been characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of XRD show an enhancement in the phase formation up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively. SEM and TEM reveal that CNTs form an electrical network resulting in well-connected superconducting grains. The electrical properties of the prepared samples have been examined by electric resistivity and I-V measurements, and their results reinforce the XRD, SEM and TEM. Consequently, both Tc and Jc improve as the addition percentage increases up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively.

  6. One-phase dual converter for two quadrant power control of superconducting magnets

    SciTech Connect

    Ehsani, M.; Kustom, R.I.; Boom, R.W.

    1985-01-01

    This paper presents the results of theoretical and experimental development of a new dc-ac-dc converter for superconducting magnet power supplies. The basic operating principles of the circuit are described followed by a theoretical treatment of the dynamics and control of the system. The successful results of the first experimental operation and control of such a circuit are presented and discussed.

  7. Flux phase, Neel antiferromagnetism, and superconductivity in the [ital t]-[ital J] model

    SciTech Connect

    Sandalov, I.S. Kirensky Institute of Physics of RAS, 660036 Krasnoyarsk ); Richter, M. )

    1994-11-01

    The kinematic interactions give rise to the instability of the paramagnetic state with respect to a transition to the superconducting state at [delta][lt]0.3 and [ital t][gt][ital J]. The renormalization of the effective bandwidth [ital W][sub eff]([delta]) in the expression for the temperature of the supeconducting instability [ital T][sub [ital c

  8. Confinement-Driven Phase Separation of Quantum Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Pantalei, C.; Kaiser, H.; Sokol, P. E.

    2012-08-01

    We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure He4 adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of He3-He4 mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ˜2.3nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures.

  9. Dynamic phase transitions of a driven Ising chain in a dissipative cavity

    NASA Astrophysics Data System (ADS)

    Luo, Xi-Wang; Zhang, Yu-Na; Zhou, Xingxiang; Guo, Guang-Can; Zhou, Zheng-Wei

    2016-11-01

    We study the nonequilibrium quantum phase transition of an Ising chain in a dissipative cavity driven by an external transverse light field. When driving and dissipation are in balance, the system can reach a nonequilibrium steady state which undergoes a superradiant phase transition as the driving strength increases. Interestingly, the superradiant field changes the effective bias of the Ising chain in return and drives its own transition between the ferromagnetic and the paramagnetic phase. We study the rich physics in this system with sophisticated behavior and investigate important issues in its dynamics such as the stability of the system and criticality of the phase transition.

  10. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection.

    PubMed

    Delacour, Cécile; Pannetier, Bernard; Villegier, Jean-Claude; Bouchiat, Vincent

    2012-07-11

    We present low-temperature electronic transport properties of superconducting nanowires obtained by nanolithography of 4-nm-thick niobium nitride (NbN) films epitaxially grown on sapphire substrate. Below 6 K, clear evidence of phase slippages is observed in the transport measurements. Upon lowering the temperature, we observe the signatures of a crossover between a thermal and a quantum behavior in the phase slip regimes. We find that phase slips are stable even at the lowest temperatures and that no hotspot is formed. The photoresponse of these nanowires is measured as a function of the light irradiation wavelength and temperature and exhibits a behavior comparable with previous results obtained on thicker films.

  11. Interaction-driven phases in a Dirac semimetal: exact diagonalization results.

    PubMed

    Guo, Huaiming; Jia, Yongfei

    2014-11-26

    The interaction-driven phases in the Dirac semimetal (SM) of the π-flux model on the square lattice are studied with nearest-(NN), next-nearest-(NNN) and next-next-nearest-neighbor (NNNN) interactions using the exact diagonalization method. We find that the NN interaction drives a phase transition from the SM phase to a charge density wave insulator. In the presence of the NNN interaction, the system becomes an anisotropic SM for small interactions and an insulator with the stripe order for large ones. The NNNN interaction drives the Dirac SM to a dimmerized insulator. The interplay of the NNN and NNNN interactions is also studied. We find that the NNNN interaction firstly eliminates the effect of the NNN interaction and then develops its favorable order. In the calculations, the signature of the interaction-driven quantum anomalous Hall phase is not found.

  12. Design of single-phase driven screw-thread-type ultrasonic motor.

    PubMed

    Chang, Lien-Kai; Tsai, Mi-Ching

    2016-05-01

    Most screw-thread-type ultrasonic motors are designed to be two-phase driven. This paper aims to present a novel single phase driven design that generates the required wobble motion, thus significantly simplifying the driving circuit of the ultrasonic motor. The proposed single-phase driven screw-thread-type ultrasonic motor works with two orthogonal bending modes generated by an asymmetric stator design. The novel stator design can improve the vibration displacement and further enhance the performance of the single phase driven motor. The vibration characteristics of the asymmetric stator structure were analyzed by ANSYS finite element analysis software. Based on the design and analysis processes, a prototype of the desired screw-thread-type ultrasonic motor was fabricated and tested. When the operating voltage is 200 Vpp, the obtained main characteristics of the proposed motor are as follows: the working frequency is between 28.3 and 29.5 kHz; the maximum no-load velocity is approximately 4.1 mm s(-1); and the thrust force is 1.6 N.

  13. Design of single-phase driven screw-thread-type ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Chang, Lien-Kai; Tsai, Mi-Ching

    2016-05-01

    Most screw-thread-type ultrasonic motors are designed to be two-phase driven. This paper aims to present a novel single phase driven design that generates the required wobble motion, thus significantly simplifying the driving circuit of the ultrasonic motor. The proposed single-phase driven screw-thread-type ultrasonic motor works with two orthogonal bending modes generated by an asymmetric stator design. The novel stator design can improve the vibration displacement and further enhance the performance of the single phase driven motor. The vibration characteristics of the asymmetric stator structure were analyzed by ANSYS finite element analysis software. Based on the design and analysis processes, a prototype of the desired screw-thread-type ultrasonic motor was fabricated and tested. When the operating voltage is 200 Vpp, the obtained main characteristics of the proposed motor are as follows: the working frequency is between 28.3 and 29.5 kHz; the maximum no-load velocity is approximately 4.1 mm s-1; and the thrust force is 1.6 N.

  14. Fabrication of Janus droplets by evaporation driven liquid-liquid phase separation.

    PubMed

    Zhang, Qingquan; Xu, Meng; Liu, Xiaojun; Zhao, Wenfeng; Zong, Chenghua; Yu, Yang; Wang, Qi; Gai, Hongwei

    2016-04-11

    We present a universal and scalable method to fabricate Janus droplets based on evaporation driven liquid-liquid phase separation. In this work, the morphologies and chemical properties of separate parts of the Janus droplets can be flexibly regulated, and more complex Janus droplets (such as core-shell Janus droplets, ternary Janus droplets, and multiple Janus droplets) can be constructed easily.

  15. Evolution of High-Temperature Superconductivity from a Low-T_{c} Phase Tuned by Carrier Concentration in FeSe Thin Flakes.

    PubMed

    Lei, B; Cui, J H; Xiang, Z J; Shang, C; Wang, N Z; Ye, G J; Luo, X G; Wu, T; Sun, Z; Chen, X H

    2016-02-19

    We report the evolution of superconductivity in an FeSe thin flake with systematically regulated carrier concentrations by the liquid-gating technique. With electron doping tuned by the gate voltage, high-temperature superconductivity with an onset at 48 K can be achieved in an FeSe thin flake with T_{c} less than 10 K. This is the first time such high temperature superconductivity in FeSe is achieved without either an epitaxial interface or external pressure, and it definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with T_{c}^{onset} as high as 48 K in bulk FeSe. Intriguingly, our data also indicate that the superconductivity is suddenly changed from a low-T_{c} phase to a high-T_{c} phase with a Lifshitz transition at a certain carrier concentration. These results help to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on the further pursuit of a higher T_{c} in these materials.

  16. Evolution of High-Temperature Superconductivity from a Low-Tc Phase Tuned by Carrier Concentration in FeSe Thin Flakes

    NASA Astrophysics Data System (ADS)

    Lei, B.; Cui, J. H.; Xiang, Z. J.; Shang, C.; Wang, N. Z.; Ye, G. J.; Luo, X. G.; Wu, T.; Sun, Z.; Chen, X. H.

    2016-02-01

    We report the evolution of superconductivity in an FeSe thin flake with systematically regulated carrier concentrations by the liquid-gating technique. With electron doping tuned by the gate voltage, high-temperature superconductivity with an onset at 48 K can be achieved in an FeSe thin flake with Tc less than 10 K. This is the first time such high temperature superconductivity in FeSe is achieved without either an epitaxial interface or external pressure, and it definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with Tconset as high as 48 K in bulk FeSe. Intriguingly, our data also indicate that the superconductivity is suddenly changed from a low-Tc phase to a high-Tc phase with a Lifshitz transition at a certain carrier concentration. These results help to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on the further pursuit of a higher Tc in these materials.

  17. Superconductivity phase diagram of Se-substituted CeO0.5F0.5Bi(S1-xSex)2

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yoshikazu; Hiroi, Takafumi; Miura, Osuke

    2016-02-01

    We investigated the effects of Se substitution on the lattice constants and superconducting properties of CeO0.5F0.5Bi(S1-xSex)2. With increasing Se concentration, the a lattice constant increased, while the c lattice constant did not show any significant increase between x = 0.1 and x = 0.5. Bulk superconductivity was observed in samples with x = 0.2-0.4, and the superconducting transition temperature was the highest at x = 0.3. The obtained superconductivity phase diagram was compared to those of LaO0.5F0.5Bi(S1-xSex)2 and NdO0.5F0.5Bi(S1-xSex)2.

  18. Quantum Memristors with Superconducting Circuits

    PubMed Central

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  19. Quantum Memristors with Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.

    2017-02-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  20. Quantum Memristors with Superconducting Circuits.

    PubMed

    Salmilehto, J; Deppe, F; Di Ventra, M; Sanz, M; Solano, E

    2017-02-14

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  1. Elastic, superconducting, and thermodynamic properties of the cubic metallic phase of AlH3 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wei, Yong-Kai; Ge, Ni-Na; Ji, Guang-Fu; Chen, Xiang-Rong; Cai, Ling-Cang; Zhou, Su-Qin; Wei, Dong-Qing

    2013-09-01

    The lattice dynamic, elastic, superconducting, and thermodynamic properties of the high-pressure cubic metallic phase AlH3 are studied within density function theory. The calculated elastic modulus and phonon dispersion curves at various pressures indicate that the cubic phase is both mechanically and dynamically stable above 73 GPa. The superconducting transition temperature was calculated using Allen-Dynes modification of the McMillan formula based on the Bardeen-Cooper-Schrieffer theory. It is found that Tc approaches a linear decrease in the low pressure range at the rate dTC/dP ≈-0.22 K/GPa but gradually decreases exponentially at higher pressure, and then it becomes 0 K upon further compression. The calculations indicate that Tc is about 2.042 K at 110 GPa, in agreement with experimental results. The soft phonon modes, especially the lowest acoustic mode, contribute almost 79% to the total electron-phonon coupling parameter sλ for cubic AlH3 at 73 GPa. However, they disappear gradually with increasing pressure, showing a responsibility for the variation of Tc. The thermodynamic properties of cubic AlH3, such as the dependence of thermal expansion coefficient αV on pressure and temperature, the specific heat capacity CP, as well as the electronic specific heat coefficient Cel, were also investigated by the quasi-harmonic approximation theory.

  2. Entropy-driven formation of chiral nematic phases by computer simulations

    PubMed Central

    Dussi, Simone; Dijkstra, Marjolein

    2016-01-01

    Predicting the macroscopic chiral behaviour of liquid crystals from the microscopic chirality of the particles is highly non-trivial, even when the chiral interactions are purely entropic in nature. Here we introduce a novel chiral hard-particle model, namely particles with a twisted polyhedral shape and obtain a stable fully entropy-driven cholesteric phase by computer simulations. By slightly modifying the triangular base of the particle, we are able to switch from a left-handed prolate (calamitic) to a right-handed oblate (discotic) cholesteric phase using the same right-handed twisted particle model. Furthermore, we show that not only prolate and oblate chiral nematic phases, but also other novel entropy-driven phases, namely chiral blue phases, chiral nematic phases featuring both twist and splay deformations, chiral biaxial nematic phases with one of the axes twisted, can be obtained by varying particle biaxiality and chirality. Our results allow to identify general guidelines for the stabilization of these phases. PMID:27067806

  3. Entropy-driven formation of chiral nematic phases by computer simulations

    NASA Astrophysics Data System (ADS)

    Dussi, Simone; Dijkstra, Marjolein

    2016-04-01

    Predicting the macroscopic chiral behaviour of liquid crystals from the microscopic chirality of the particles is highly non-trivial, even when the chiral interactions are purely entropic in nature. Here we introduce a novel chiral hard-particle model, namely particles with a twisted polyhedral shape and obtain a stable fully entropy-driven cholesteric phase by computer simulations. By slightly modifying the triangular base of the particle, we are able to switch from a left-handed prolate (calamitic) to a right-handed oblate (discotic) cholesteric phase using the same right-handed twisted particle model. Furthermore, we show that not only prolate and oblate chiral nematic phases, but also other novel entropy-driven phases, namely chiral blue phases, chiral nematic phases featuring both twist and splay deformations, chiral biaxial nematic phases with one of the axes twisted, can be obtained by varying particle biaxiality and chirality. Our results allow to identify general guidelines for the stabilization of these phases.

  4. Photoassociation dynamics driven by second- and third-order phase-modulated laser fields

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Chen, Mao-Du; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin

    2016-05-01

    We investigate theoretically the photoassociation dynamics of ultracold 85Rb atoms driven by second- and third-order phase-modulated laser fields. The interplay between the second-order and third-order terms of the phase-modulated pulse has an obvious influence on photoassociation dynamics. The different combinations of the second-order and third-order phase coefficients lead to different pulse shapes. Most of the molecular population in the excited electronic state driven only by the third-order phase pulses can be distributed in a single vibrational level. The second-order term of the phase-modulated pulse can change the instantaneous frequency, and therefore the final population is distributed on several resonant vibrational levels, instead of concentrating on a single level. Although the second- and third-order phase-modulated pulse covers more resonant vibrational levels, the total population on the resonant vibrational levels is much smaller than that controlled only by the third-order phase pulse. In particular, the third-order term of the phase-modulated pulse can weaken the ‘multiple interaction’ to some degree.

  5. Coherent A1g Phonon in thin Film Superconductor FeSe0.5Te0.5: π/2 Phase Difference over Superconducting Phase Transition

    NASA Astrophysics Data System (ADS)

    Zhao, Jimin; Wu, Yanling; Hu, Minhui; Tian, Yichao; Cao, Lixin; Wang, Rui

    2014-03-01

    Coherent A1 g phonon mode in a thin film superconductor FeSe0.5Te0.5 was generated and detected using ultrafast laser pulses. At below and above the transition temperature Tc, the coherent lattice oscillation we observed exhibited a π/2 phase difference, manifesting a ``displacive limit ~ impulsive limit'' transition upon crossing a phase transition within the same sample. We ascribe this π/2 phase difference to the different lifetimes (τc) of excited charge density components that couples to the fully symmetric A1 g phonon mode, i.e. the different strength of electron-phonon couplings. In the superconducting and paramagnetic metallic states the lifetimes of such carrier excitations are largely different. Our investigation reveals possible correlation of superconducting electrons with zone-center optical phonons. Our 170nm thin film sample contains tension stress, which leads to enhanced Tc and thus facilitated our measurements. Financially supported by the National Basic Research Program of China (2012CB821402), the NSFC (11274372, 10974246) and the External Cooperation Program of Chinese Academy of Sciences (GJHZ1403).

  6. Parametric study on phase separation of binary mixtures in a lid driven cavity: A DPD study

    NASA Astrophysics Data System (ADS)

    Gidituri, Harinadha; Anand, Vijay; Panchagnula, Mahesh; Vedantam, Srikanth

    2016-11-01

    We investigate the phase separation behavior of binary mixtures in two dimensional periodic and lid driven cavity domains using dissipative particle dynamics (DPD). The effect of DPD parameters like repulsion coefficient, dissipative coefficient, cut-off radius, and weight function exponent on domain size growth has been studied. The phase separation is delayed for low values of repulsion coefficient. Under these conditions, a few clusters of the dispersed phase are distributed in a continuous phase. This is because of weak inter-particle repulsion. As we increase the repulsion coefficient value, this behavior disappears. The domain growth rate is also observed to increase with an increase in the value of the dissipation coefficient as well as cut-off radius. Finally, the dynamics of phase separation in the lid driven cavity problem are significantly different when compared to that in the periodic domain, due to the formation of a stable vortex in the cavity. The vortex results in a dynamic equilibrium between clustering and separation. The distribution of cluster sizes is studied as a function of the driven cavity parameters.

  7. Gravity driven high throughput phase detecting cytometer based on quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Wang, Shouyu; Yan, Keding; Sun, Nan; Ferraro, Pietro; Li, Zhenhua; Liu, Fei

    2014-04-01

    Phase distribution detection of cells and tissues is concerned since it is an important auxiliary method for observing biological samples. High speed and large amount cell detection is needed for its high detecting efficiency. In this paper, we have proposed a simple large scale biological sample phase detection device called gravity driven high throughput phase detecting cytometer based on quantitative interferometric microscopy to obtain flowing red blood cells phase. The system could realize high throughput phase detecting and statistical analysis with high detecting speed and in real time. The statistical characteristics of red blood cells could be obtained which might be helpful for biological analysis and disease detection. We believe this method is a powerful tool to quantitatively measure the phase distribution of biological samples.

  8. Nonequilibriun Dynamic Phases of Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1998-03-01

    We present results from extensive simulations of driven vortex lattices interacting with periodic pinning arrays. Changing an applied driving force produces an exceptionally rich variety of distinct dynamic phases which include over a dozen well defined plastic flow phases. Transitions between different dynamical phases are marked by sharp jumps in the V(I) curves that coincide with distinct changes in the vortex trajectories and vortex lattice order. A series of dynamical phase diagrams are presented which outline the onset of the different dynamical phases (C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev. Lett. 78), 2648 (1997); and to be published. Videos are avaliable at http://www-personal.engin.umich.edu/ñori/. Using force balance arguments, several of the phase boundaries can be derived analyticaly.

  9. Synthesis of Y1BaCu3O(x) superconducting powders by intermediate phase reactions

    NASA Technical Reports Server (NTRS)

    Moure, C.; Fernandez, J. F.; Tartaj, J.; Recio, P.; Duran, P.

    1991-01-01

    A procedure for synthesizing Y1Ba2Cu3O(x) by solid state reactions was developed. The method is based on the use of barium compounds, previously synthesized, as intermediate phases for the process. The reaction kinetics of this procedure were established between 860 C and 920 C. The crystal structure and the presence of second phases were studied by means of XRD. The sintering behavior and ceramic parameters were also determined. The orthorhombic type-I structure was obtained on the synthesized bodies after a cooling cycle in an air atmosphere. Superconducting transition took place at 91 K. Sintering densities higher than 95 percent D sub th were attained at temperatures below 940 C.

  10. Characteristics of the electric field accompanying a longitudinal acoustic wave in a metal. Anomaly in the superconducting phase

    NASA Astrophysics Data System (ADS)

    Avramenko, Yu. A.; Bezuglyi, E. V.; Burma, N. G.; Kolobov, I. G.; Fil', V. D.; Shevchenko, O. A.; Gokhfeld, V. M.

    2002-05-01

    The temperature dependence of the amplitude and phase of the electric potential arising at a plane boundary of a conductor when a longitudinal acoustic wave is incident normally on it is investigated theoretically and experimentally. The surface potential is formed by two contributions, one of which is spatially periodic inside the sample, with the period of the acoustic field; the second is aperiodic and arises as a result of an additional nonuniformity of the electron distribution in a surface layer of the metal. In the nonlocal of parameters region the second contribution is dominant. The phases of these contributions are shifted by approximately π/2. For metals found in the normal state the experiment is in qualitative agreement with the theory. The superconducting transition is accompanied by catastrophically rapid vanishing of the electric potential, in sharp contrast to the theoretical estimates, which predict behavior similar to the BCS dependence of the attenuation coefficient for longitudinal sound.

  11. Electron—phonon Coupling and the Superconducting Phase Diagram of the LaAlO3—SrTiO3 Interface

    PubMed Central

    Boschker, Hans; Richter, Christoph; Fillis-Tsirakis, Evangelos; Schneider, Christof W.; Mannhart, Jochen

    2015-01-01

    The superconductor at the LaAlO3—SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron—phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron—phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron—phonon coupling in relation to the superconducting phase diagram. The electron—phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band. PMID:26169351

  12. Atomistic description for temperature-driven phase transitions in BaTiO3

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Liu, S.; Grinberg, I.; Rappe, A. M.

    2016-10-01

    Barium titanate (BaTiO3) is a prototypical ferroelectric perovskite that undergoes the rhombohedral-orthorhombic-tetragonal-cubic phase transitions as the temperature increases. In this paper, we develop a classical interatomic potential for BaTiO3 within the framework of the bond-valence theory. The force field is parametrized from first-principles results, enabling accurate large-scale molecular dynamics (MD) simulations at finite temperatures. Our model potential for BaTiO3 reproduces the temperature-driven phase transitions in isobaric-isothermal ensemble (N P T ) MD simulations. This potential allows for the analysis of BaTiO3 structures with atomic resolution. By analyzing the local displacements of Ti atoms, we demonstrate that the phase transitions of BaTiO3 exhibit a mix of order-disorder and displacive characters. Besides, from a detailed observation of structural dynamics during phase transition, we discover that the global phase transition is associated with changes in the equilibrium value and fluctuations of each polarization component, including the ones already averaging to zero, Contrary to the conventional understanding that temperature increase generally causes bond-softening transition, the x -polarization component (the one which is polar in both the orthorhombic and the tetragonal phases) exhibits a bond-hardening character during the orthorhombic-to-tetragonal transition. These results provide further insight about the temperature-driven phase transitions in BaTiO3.

  13. Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In1−xCdx)5

    PubMed Central

    Howald, Ludovic; Stilp, Evelyn; de Réotier, Pierre Dalmas; Yaouanc, Alain; Raymond, Stéphane; Piamonteze, Cinthia; Lapertot, Gérard; Baines, Christopher; Keller, Hugo

    2015-01-01

    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature—tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1−xCdx)5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure. PMID:26224422

  14. Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In(1-x)Cdx)5.

    PubMed

    Howald, Ludovic; Stilp, Evelyn; de Réotier, Pierre Dalmas; Yaouanc, Alain; Raymond, Stéphane; Piamonteze, Cinthia; Lapertot, Gérard; Baines, Christopher; Keller, Hugo

    2015-07-30

    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In(1-x)Cdx)5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.

  15. Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration

    PubMed Central

    Mercier, Manuel R.; Foxe, John J.; Fiebelkorn, Ian C.; Butler, John S.; Schwartz, Theodore H.; Molholm, Sophie

    2013-01-01

    Findings in animal models demonstrate that activity within hierarchically early sensory cortical regions can be modulated by cross-sensory inputs through resetting of the phase of ongoing intrinsic neural oscillations. Here, subdural recordings evaluated whether phase resetting by auditory inputs would impact multisensory integration processes in human visual cortex. Results clearly showed auditory-driven phase reset in visual cortices and, in some cases, frank auditory event-related potentials (ERP) were also observed over these regions. Further, when audiovisual bisensory stimuli were presented, this led to robust multisensory integration effects which were observed in both the ERP and in measures of phase concentration. These results extend findings from animal models to human visual cortices, and highlight the impact of cross-sensory phase resetting by a non-primary stimulus on multisensory integration in ostensibly unisensory cortices. PMID:23624493

  16. Electronic inhomogeneities in the superconducting phase of CaFe1.96Ni0.04As2 single crystals

    NASA Astrophysics Data System (ADS)

    Dutta, Anirban; Kumar, Neeraj; Thamizhavel, A.; Gupta, Anjan K.

    2015-02-01

    Superconductivity in CaFe2-xNixAs2 emerges in close proximity to an antiferromagnetic (AFM) ordered parent state and the AFM phase overlaps with superconducting (SC) phase for a small range of x-values. We present scanning tunneling microscopy and spectroscopy study of an underdoped CaFe2-xNixAs2 single crystal in the vicinity of the boundary of the two phases. Both resistivity and magnetic susceptibility measurements show a superconducting TC of 15 K and from later we deduce a superconducting fraction of 1.2%. Topographic images show reasonably flat surface with signatures of atomic resolution. Spectra between 120 K and 20 K are spatially homogeneous and show signatures of spin density wave (SDW) gap. Below TC, spectra show significant spatial inhomogeneity with a depression in density of states in±5 meV energy range. Inhomogeneity reduces significantly as the temperature goes above TC and disappears completely far above TC. These observations are discussed in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the SC dome boundary on the underdoped side of the phase diagram.

  17. Conformity-driven agents support ordered phases in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto; Antonioni, Alberto; Caravelli, Francesco

    2016-05-01

    We investigate the spatial Public Goods Game in the presence of fitness-driven and conformity-driven agents. This framework usually considers only the former type of agents, i.e., agents that tend to imitate the strategy of their fittest neighbors. However, whenever we study social systems, the evolution of a population might be affected also by social behaviors as conformism, stubbornness, altruism, and selfishness. Although the term evolution can assume different meanings depending on the considered domain, here it corresponds to the set of processes that lead a system towards an equilibrium or a steady state. We map fitness to the agents' payoff so that richer agents are those most imitated by fitness-driven agents, while conformity-driven agents tend to imitate the strategy assumed by the majority of their neighbors. Numerical simulations aim to identify the nature of the transition, on varying the amount of the relative density of conformity-driven agents in the population, and to study the nature of related equilibria. Remarkably, we find that conformism generally fosters ordered cooperative phases and may also lead to bistable behaviors.

  18. Reentrant superconductivity driven by quantum tricritical fluctuations in URhGe: evidence from ^{59}Co NMR in URh_{0.9}Co_{0.1}Ge.

    PubMed

    Tokunaga, Y; Aoki, D; Mayaffre, H; Krämer, S; Julien, M-H; Berthier, C; Horvatić, M; Sakai, H; Kambe, S; Araki, S

    2015-05-29

    Our measurements of the ^{59}Co NMR spin-spin relaxation in URh_{0.9}Co_{0.1}Ge reveal a divergence of electronic spin fluctuations in the vicinity of the field-induced quantum critical point at H_{R}≈13  T, around which reentrant superconductivity (RSC) occurs in the ferromagnetic heavy fermion compound URhGe. We map out the strength of spin fluctuations in the (H_{b},H_{c}) plane of magnetic field components and show that critical fluctuations develop in the same limited region near the field H_{R} as that where RSC is observed. This strongly suggests these quantum fluctuations as the pairing glue responsible for the RSC. The fluctuations observed are characteristic of a tricritical point, followed by a phase bifurcation toward quantum critical end points.

  19. Resistive phase transition of the superconducting Si(111)-([InlineEquation not available: see fulltext.])-In surface

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi; Mishra, Puneet; Nakayama, Tomonobu

    2013-04-01

    Recently, superconductivity was found on semiconductor surface reconstructions induced by metal adatoms, promising a new field of research where superconductors can be studied from the atomic level. Here we measure the electron transport properties of the Si(111)-([InlineEquation not available: see fulltext.])-In surface near the resistive phase transition and analyze the data in terms of theories of two-dimensional (2D) superconductors. In the normal state, the sheet resistances (2D resistivities) R □ of the samples decrease significantly between 20 and 5 K, suggesting the importance of the electron-electron scattering in electron transport phenomena. The decrease in R □ is progressively accelerated just above the transition temperature ( T c ) due to the direct (Aslamazov-Larkin term) and the indirect (Maki-Thompson term) superconducting fluctuation effects. A minute but finite resistance tail is found below T c down to the lowest temperature of 1.8 K, which may be ascribed to a dissipation due to free vortex flow. The present study lays the ground for a future research aiming to find new superconductors in this class of materials.

  20. Structural and magnetic phase transitions near optimal superconductivity in BaFe2(As1-xPx)2

    DOE PAGES

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; ...

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As1-xPx)2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (Ts) and paramagnetic to antiferromagnetic (AF, TN) transitions in BaFe2(As1-xPx)2 are always coupled and approach to TN ≈ Ts ≥ Tc (≈ 29 K) for x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggestmore » that AF order in BaFe2(As1-xPx)2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  1. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  2. Synthesis of Y1Ba2Cu3O(sub x) superconducting powders by intermediate phase reaction

    NASA Technical Reports Server (NTRS)

    Moore, C.; Fernandez, J. F.; Recio, P.; Duran, P.

    1990-01-01

    One of the more striking problems for the synthesis of the Y1Ba2Cu3Ox compound is the high-temperature decomposition of the BaCO3. This compound is present as raw material or as an intermediate compound in chemical processes such as amorphous citrate, coprecipitation oxalate, sol-gel process, acetate pyrolisis, etc. This fact makes difficult the total formation reaction of the Y1Ba2Cu3Ox phase and leads to the presence of undesirable phases such as the BaCuO2 phase, the 'green phase', Y2BaCuO5 and others. Here, a new procedure to overcome this difficulty is studied. The barium cation is previously combined with yttrium and/or copper to form intermediate compounds which can react between them to give Y1Ba2Cu3Ox. BaY2O4 and BaCu2O3 react according to the equation BaY2O4+3BaCu2O3 yields 2Y1Ba2Cu3Ox. BaY2O4 is a stable compound of the Y2O3-BaO system; BaCu2O3 is an intimate mixture of BaCuO2 and uncombined CuO. The reaction kinetics of these phases have been established between 860 and 920 C. The phase evolution has been determined. The crystal structure of the Y1Ba2Cu3Ox obtained powder was studied. According to the results obtained from the kinetics study the Y1Ba2Cu3Ox the synthesis was performed at temperatures of 910 to 920 C for short treatment times (1 to 2 hours). Pure Y1Ba2Cu3Ox was prepared, which develops orthorombic type I structure despite of the cooling cycle. Superconducting transition took place at 91 K. The sintering behavior and the superconducting properties of sintered samples were studied. Density, microstructure and electrical conductivity were measured. Sintering densities higher than 95 percent D(sub th) were attained at temperatures below 940 C. Relatively fine grained microstructure was observed, and little or no-liquid phase was detected.

  3. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Castro-Palacio, J. C.

    2013-07-01

    Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.

  4. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions.

    PubMed

    Velazquez, L; Castro-Palacio, J C

    2013-07-01

    Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.

  5. Photon Driven Transformation of Cesium Lead Halide Perovskites from Few-Monolayer Nanoplatelets to Bulk Phase.

    PubMed

    Wang, Yue; Li, Xiaoming; Sreejith, Sivaramapanicker; Cao, Fei; Wang, Zeng; Stuparu, Mihaiela Corina; Zeng, Haibo; Sun, Handong

    2016-12-01

    Influence of light exposure on cesium lead halide nanostructures has been explored. A discovery of photon driven transformation (PDT) in 2D CsPbBr3 nanoplatelets is reported, in which the quantum-confined few-monolayer nanoplatelets will convert to bulk phase under very low irradiation intensity (≈20 mW cm(-2) ). Benefiting from the remarkable emission color change during PDT, the multicolor luminescence photopatterns and facile information photo-encoding are established.

  6. Communication: phase space approach to laser-driven electronic wavepacket propagation.

    PubMed

    Takemoto, Norio; Shimshovitz, Asaf; Tannor, David J

    2012-07-07

    We propose a phase space method to propagate a quantum wavepacket driven by a strong external field. The method employs the periodic von Neumann basis with biorthogonal exchange recently introduced for the calculation of the energy eigenstates of time-independent quantum systems [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. (in press) [e-print arXiv:1201.2299v1

  7. Communication: Phase space approach to laser-driven electronic wavepacket propagation

    NASA Astrophysics Data System (ADS)

    Takemoto, Norio; Shimshovitz, Asaf; Tannor, David J.

    2012-07-01

    We propose a phase space method to propagate a quantum wavepacket driven by a strong external field. The method employs the periodic von Neumann basis with biorthogonal exchange recently introduced for the calculation of the energy eigenstates of time-independent quantum systems [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. (in press) [e-print arXiv:1201.2299v1

  8. Electrically Driven Single Phase Thermal Management: STP-H5 EHD Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    The Electrically Driven Single Phase Thermal Management: STP-H5 iEHDS Experiment is a technology demonstration of prototype proof of concept hardware to establish the feasilibilty and long term operation of this hardware. This is a structural thermal plate that will operate continuous as part of the STP-H5 ISEM experiment for up to 18 months. This presentation discusses the design, fabrication and environmental operational paramertes of the experiment hardware.

  9. Infrared study of the superconducting phase transition in YBa 2Cu 3O 7- x

    NASA Astrophysics Data System (ADS)

    van der Marel, D.; Habermeier, H.-U.; Heitmann, D.; König, W.; Wittlin, A.

    1991-05-01

    We observe a critical behaviour near Tc in the infrared reflectivity of c-axis oriented Y 1Ba 2Cu 3O 7- x films prepared with pulsed in situ laser deposition. From an analysis of the temperature dependence of the spectra, which were measured with intervals of 5 K in a large temperature range around Tc we obtain (1) the temperature dependence of the superfluid fraction, and (2) the temperature dependence of the absorption edge at 400 cm -1. We show that the superfluid fraction follows closely a 1-( {T}/{T c}) 4 law. We show furthermore that the height of the absorption edge closely follows the behaviour of the superfluid fraction, whereas the energetic position of the edge is practically constant up to Tc. This behaviour can be understood in a semi-empirical way using a modified Goiter-Casimir two-fluid model using the concepts of a temperature independent gap and a temperature dependent density of the superconducting fraction. Above Tc we observe a dip in the self-energy of the dielectric function at the position of the absorption edge existing in the superconducting state.

  10. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  11. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming

  12. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    SciTech Connect

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  13. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    PubMed

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  14. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5

    PubMed Central

    Eremeev, S. V.; Rusinov, I. P.; Echenique, P. M.; Chulkov, E. V.

    2016-01-01

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential. PMID:27958321

  15. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Rusinov, I. P.; Echenique, P. M.; Chulkov, E. V.

    2016-12-01

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  16. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  17. GENERAL: A Possible Population-Driven Phase Transition in Cicada Chorus

    NASA Astrophysics Data System (ADS)

    Gu, Si-Yuan; Jin, Yu-Liang; Zhao, Xiao-Xue; Huang, Ji-Ping

    2009-06-01

    We investigate the collective synchronization of cicada chirping. Using both experimental and phenomenological numerical techniques, here we show that the onset of a periodic two-state acoustic synchronous behavior in cicada chorus depends on a critical size of population Nc = 21, above which a typical chorus state appears periodically with a 30 second-silence state in between, and further clarify its possibility concerning a new class of phase transition, which is unusually driven by population. This work has relevance to acoustic synchronization and to general physics of phase transition.

  18. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  19. Hydrogen bond symmetrization and superconducting phase of HBr and HCl under high pressure: An ab initio study.

    PubMed

    Duan, Defang; Tian, Fubo; He, Zhi; Meng, Xing; Wang, Liancheng; Chen, Changbo; Zhao, Xiusong; Liu, Bingbing; Cui, Tian

    2010-08-21

    Ab initio calculations are performed to probe the hydrogen bonding, structural, and superconducting behaviors of HBr and HCl under high pressure. The calculated results show that the hydrogen bond symmetrization (Cmc2(1)-->Cmcm transition) of HBr and HCl occurs at 25 and 40 GPa, respectively, which can be attributed to the symmetry stretching A(1) mode softening. After hydrogen bond symmetrization, a pressure-induced soft transverse acoustic phonon mode of Cmcm phase is identified and a unique metallic phase with monoclinic structure of P2(1)/m (4 molecules/cell) for both compounds is revealed by ab initio phonon calculations. This phase preserves the symmetric hydrogen bond and is stable in the pressure range from 134 to 196 GPa for HBr and above 233 GPa for HCl, while HBr is predicted to decompose into Br(2)+H(2) above 196 GPa. Perturbative linear-response calculations predict that the phase P2(1)/m is a superconductor with T(c) of 27-34 K for HBr at 160 GPa and 9-14 K for HCl at 280 GPa.

  20. What Controls the Phase Diagram and Superconductivity in Ru-Substituted BaFe2As2?

    SciTech Connect

    Dhaka, R. S.; Liu, Chang; Fernandes, R.M.; Jiang, Riu; Strehlow, C.P.; Kondo, Takeshi; Thaler, A.; Schmalian, Joerg; Bud-ko, S.J.; Canfield, P.C.; Kaminski, A.

    2011-12-23

    We use high resolution angle-resolved photoemission to study the electronic structure of the iron based high-temperature superconductors Ba(Fe{sub 1-x}Ru{sub x}){sub 2}As{sub 2} as a function of Ru concentration. We find that substitution of Ru for Fe is isoelectronic, i.e., it does not change the value of the chemical potential. More interestingly, there are no measured, significant changes in the shape of the Fermi surface or in the Fermi velocity over a wide range of substitution levels (0 < x < 0.55). Given that the suppression of the antiferromagnetic and structural phase is associated with the emergence of the superconducting state, Ru substitution must achieve this via a mechanism that does not involve changes of the Fermi surface. We speculate that this mechanism relies on magnetic dilution which leads to the reduction of the effective Stoner enhancement.

  1. Evidence of a structural phase transition in superconducting SmFeAsO1-xFx from 19F NMR

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, K.; Mazumdar, C.; Poddar, A.; Ghoshray, A.; Berardan, D.; Dragoe, N.

    2013-01-01

    We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin-lattice rate (1/T1) and spin-spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

  2. Thermally activated phase slips from metastable states in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Lollo, Anthony; Harris, Jack

    In equilibrium, a flux-biased superconducting ring at low temperature can occupy any of several metastable states. The particular state that the ring occupies depends on the history of the applied flux, as different states are separated from each other by flux-dependent energy barriers. There is a critical value of the applied flux at which a given barrier goes to zero, the state becomes unstable, and the system transition into another state. In recent experiments performed on arrays of rings we showed that this transition occurs close to the critical flux predicted by Ginzburg-Landau theory. Here, we will describe experiments in which we have extended these measurements to an individual ring in order to study the thermal activation of the ring over a barrier that has been tuned close to zero. We measure the statistics of transitions as function of temperature and ramp rate.

  3. Origin of Pressure-induced Superconducting Phase in KxFe2−ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    PubMed Central

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun’ichiro

    2016-01-01

    Pressure dependence of the electronic and crystal structures of KxFe2−ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase. PMID:27499373

  4. Electronically driven instabilities and superconductivity in the layered La(2-x)Ba(x)CuO4 perovskites

    NASA Astrophysics Data System (ADS)

    Yu, Jaejun; Freeman, A. J.; Xu, J.-H.

    1987-03-01

    Body-centered tetragonal La2CuO4 is shown to have its electronic structure and properties dominated by the layered in-plane Cu-3d - O-2p interactions. A strong Fermi-surface instability along the 110 line with the absolute value of q = 2kF leads, via a soft-phonon mode, to the observed orthorhombic phase and accounts for its semiconducting properties. The addition of divalent metals (i.e., Ba or Sr) suppresses the instability and stabilizes the tetragonal phase where the same soft-phonon branch apparently contributes to a large electron-phonon interaction and a high Tc.

  5. Evidence for competing magnetic and superconducting phases in superconducting Eu 1-x Sr x Fe 2-y Co y As 2 single crystals.

    PubMed

    He, Y; Wu, T; Wu, G; Zheng, Q J; Liu, Y Z; Chen, H; Ying, J J; Liu, R H; Wang, X F; Xie, Y L; Yan, Y J; Dong, J K; Li, S Y; Chen, X H

    2010-06-16

    In single crystals of Eu(1-x)Sr(x)Fe(2-y)Co(y)As(2), Co doping suppresses spin-density wave (SDW) ordering and induces a superconducting transition. A resistivity reentrance due to the antiferromagnetic ordering of Eu(2+) spins is observed, indicating the competition between antiferromagnetism (AFM) and superconductivity (SC). It is striking that the resistivity reentrance can be completely suppressed by a small magnetic field due to a field-induced metamagnetic transition from AFM to ferromagnetism (FM). The resistivity reentrance can also be suppressed by the substitution of Eu(2+) ions with nonmagnetic Ba(2+)/Sr(2+) to completely destroy the AFM ordering. These results indicate that the AFM order appears destructive to SC, while FM can coexist with the superconductivity. Further we find that magnon excitation exists in AFM ordering and can be suppressed by an applied field. Coexistence of SC from the FeAs layer and the inner field produced by the ferromagnetic Eu(2+) layer suggest a possible p-wave component in the superconducting order parameter.

  6. Analysis of the effects of asymmetric faults in three-phase superconducting inductive fault current limiters

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Pina, J. M.; Vilhena, N.; Arsénio, P.; Pronto, A. G.; Martins, J.

    2014-05-01

    Inductive fault current limiters of magnetic shielding type can be described in terms of the excursion in the plane defined by flux linked with primary and line current, and this methodology has been previously applied to single-phase devices. Practical applications, however, require three-phase limiters, which, for the sake of compactness, may be built by three legged cores, instead of three single phase units. This has the advantage of using well established methods of power transformers industry, but the performance of the devices depends on the type of fault, e.g. phase to ground or phase to phase. For instance, in a three legged core, a phase to ground fault affects healthy phases, and these are the most frequent faults in distribution grids, where such systems are envisaged. The effects of asymmetric faults are analysed in this paper, by means of measured excursions in the linked flux-current plane.

  7. Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa

    NASA Astrophysics Data System (ADS)

    Guigue, Bastien; Marizy, Adrien; Loubeyre, Paul

    2017-01-01

    The H3S compound was reproducibly synthesized by laser heating hydrogen-embedded solid sulfur samples at various pressures above 75 GPa in a diamond anvil cell. X-ray diffraction studies were conducted up to 160 GPa and the crystal structure has been identified with space group C c c m . The stability of this sole orthorhombic H3S phase up to 160 GPa contradicts ab initio calculations that predict the stability of a sequence of two metallic superconductive structures above 110 GPa, with R 3 m and I m 3 ¯m symmetries. This work also has strong implications for the current understanding of the 200 K superconductivity phenomenon in H2S since it seems to rule out the hypothesis of the decomposition of H2S into sulfur and superconducting H3S .

  8. Structural and magnetic phase diagram of CeFeAsO(1- x)F(x) and its relation to high-temperature superconductivity.

    PubMed

    Zhao, Jun; Huang, Q; de la Cruz, Clarina; Li, Shiliang; Lynn, J W; Chen, Y; Green, M A; Chen, G F; Li, G; Li, Z; Luo, J L; Wang, N L; Dai, Pengcheng

    2008-12-01

    Recently, high-transition-temperature (high-Tc) superconductivity was discovered in the iron pnictide RFeAsO(1-x)F(x) (R, rare-earth metal) family of materials. We use neutron scattering to study the structural and magnetic phase transitions in CeFeAsO(1-x)F(x) as the system is tuned from a semimetal to a high-Tc superconductor through fluorine (F) doping, x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a collinear antiferromagnetic order with decreasing temperature. With increasing fluorine doping, the structural phase transition decreases gradually and vanishes within the superconductivity dome near x=0.10, whereas the antiferromagnetic order is suppressed before the appearance of superconductivity for x>0.06, resulting in an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO(1-x)F(x) with other Fe-based superconductors suggests that the structural perfection of the Fe-As tetrahedron is important for the high-Tc superconductivity in these Fe pnictides.

  9. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  10. Understanding the reentrant superconducting phase diagram of the iron pnictide Ca4Al2O6Fe2(As1-xPx)2: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Usui, Hidetomo; Suzuki, Katsuhiro; Kuroki, Kazuhiko; Takeshita, Nao; Shirage, Parasharam Maruti; Eisaki, Hiroshi; Iyo, Akira

    2013-05-01

    Recently, a very rich phase diagram has been obtained for an iron-based superconductor Ca4Al2O6Fe2(As1-xPx)2. It has been revealed that nodeless (x˜0) and nodal (x=1) superconductivity are separated by an antiferromagnetic phase. Here we study the origin of this peculiar phase diagram using a five orbital model constructed from first-principles band calculation, and applying the fluctuation exchange approximation assuming spin-fluctuation-mediated pairing. At x=1, there are three hole Fermi surfaces, but the most inner one around the wave vector (0,0) has strong dX2-Y2 orbital character, unlike in LaFeAsO, where the most inner Fermi surface has dXZ/YZ character. Since the Fermi surfaces around (0,0), (π,0), and (π,π) all have dX2-Y2 orbital character, the repulsive pairing interaction mediated by the spin fluctuations gives rise to a frustration in momentum space, thereby degrading superconductivity despite the bond angle being close to the regular tetrahedron angle. As x decreases and the bond angle is reduced, the inner hole Fermi surface disappears, but the frustration effect still remains because the top of the band with dX2-Y2 character lies close to the Fermi level. On the other hand, the loss of the Fermi surface itself gives rise to a very good nesting of the Fermi surface because the number of electron and hole Fermi surfaces are now the same. The pairing interaction frustration and the good nesting combined favors antiferromagnetism over superconductivity. Finally for x close to 0, the band sinks far below the Fermi level, reducing the frustration effect, so that superconductivity is enhanced. There, the Fermi surface nesting is also lost to some extent, once again favoring superconductivity over antiferromagnetism. To see whether the present theoretical scenario is consistent with the actual nature of the competition between superconductivity and antiferromagnetism, we also perform hydrostatic pressure experiment for Ca4Al2O6Fe2(As1-xPx)2. In the

  11. Ab initio studies on phase transition, thermoelastic, superconducting and thermodynamic properties of the compressed cubic phase of AlH3

    NASA Astrophysics Data System (ADS)

    Wei, Yong-Kai; Ge, Ni-Na; Chen, Xiang-Rong; Ji, Guang-Fu; Cai, Ling-Cang; Gu, Zhuo-Wei

    2014-03-01

    The phase transition, thermoelastic, lattice dynamic, and thermodynamic properties of the cubic metallic phase AlH3 were obtained within the density-function perturbation theory. The calculated elastic modulus and phonon dispersion curves under various pressures at 0 K indicate the cubic phase is both mechanically and dynamically stable above 73 GPa. The superconducting transition temperature Tc was calculated using the Allen-Dynes modification of the McMillan formula based on BCS theory. The calculations show that Tc for the cubic phase AlH3 is 8.5 K (μ*=0.1) at the onset of this phase (73 GPa), while decreases to 5.7 K at 80 GPa and almost disappears at 110 GPa, consisting with experimental phenomenon that there was no superconducting transition observed down to 4 K over a wide pressure range 110-164 GPa. It is found that the soft phonon mode for branch 1, namely, the lowest acoustic mode, plays a crucial role in elevating the total EPC parameter λ of cubic AlH3. And the evolution of Tc with pressure follows the corresponding change of this soft mode, i.e. this mode is responsible for the disappearance of Tc in experiments. Meanwhile, the softening of this lowest acoustic mode originates from the electronic momentum transfer from M to R point. This phenomenon provides an important insight into why drastic changes in the diffraction pattern were observed in the pressure range of 63-73 GPa in Goncharenko's experiments. Specifically, once finite electronic temperature effects are included, we find that dynamical instabilities can be removed in the phonon dispersion for P ≥63 GPa, rendering the metastability of this phase in the range of 63-73 GPa, and Tc (15.4 K) becomes remarkably high under the lowest possible pressure (63 GPa) compared with that of under 73 GPa (8.5 K). Our calculations open the possibility that finite temperature may allow cubic AlH3 to be dynamically stabilized even for pressures below 73 GPa. It is reasonable to deduced that if special

  12. Double phase slips and bound defect pairs in parametrically driven waves

    SciTech Connect

    Riecke, H.; Granzow, G.D.

    1997-12-31

    Spatio-temporal chaos in parametrically driven waves is investigated in one and two dimensions using numerical simulations of Ginzburg-Landau equations. A regime is identified in which in one dimension the dynamics are due to double phase slips. In very small systems they are found to arise through a Hopf bifurcation off a mixed mode. In large systems they can lead to a state of localized spatio-temporal chaos, which can be understood within the framework of phase dynamics. In two dimensions the double phase slips are replaced by bound defect pairs. Our simulations indicate the possibility of an unbinding transition of these pairs, which is associated with a transition from ordered to disordered defect chaos.

  13. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count.

    PubMed

    Parker, Dinah R; Smith, Matthew J P; Lancaster, Tom; Steele, Andrew J; Franke, Isabel; Baker, Peter J; Pratt, Francis L; Pitcher, Michael J; Blundell, Stephen J; Clarke, Simon J

    2010-02-05

    Using a combination of neutron, muon, and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. The electron count is the dominant factor, since Ni doping has double the effect of Co doping for the same doping level. We follow the structural, magnetic, and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.

  14. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    NASA Astrophysics Data System (ADS)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  15. Absence of an interaction driven Chern insulating phase on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Motruk, Johannes; Grushin, Adolfo G.; Pollmann, Frank

    2015-03-01

    Mean field calculations in the literature have suggested the existence of an interaction-induced Chern insulator (CI) phase in a tight-binding model of spinless fermions on a honeycomb lattice with nearest- and next-nearest-neighbor interactions. The CI phase is an example of a state that breaks time-reversal symmetry spontaneously and possesses a quantized Hall conductance. However, it has been proven elusive in exact diagonalization (ED) studies of this system. Since ED is limited to small system sizes, the fate of this phase in the thermodynamic limit still remains unclear. Using the infinite density matrix renormalization group (iDMRG) algorithm we reach system sizes exceeding those accessible in ED calculations while keeping track of quantum fluctuations neglected in mean field studies. We map out the phase diagram as a function of both nearest- and next-nearest-neighbor interaction strengths for an infinite cylinder geometry and find different charge-ordered phases but no sign of the interaction driven Chern insulator phase.

  16. Dynamic Phases in Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays.

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1997-03-01

    In an extensive series of simulations of driven vortices interacting with periodic pinning arrays, an extremely rich variety of novel plastic flow phases, very distinct from those observed in random arrays, are found as a function of applied driving force. We show that signatures of the transitions between these different dynamical phases appear as pronounced jumps and dips in the I-V curves, coinciding with marked changes in the microscopic structure and flow behavior of the vortex lattice. When the number of vortices is greater than the number of pinning sites, we observe up to six distinct dynamical phases, including a pinned phase, a flow of interstitial vortices between pinned vortices, a disordered flow, a 1D flow along the pinning rows, and a homogeneous flow. By varying a wide range of microscopic pinning parameters, including pinning strength, size, density, and degree of ordering, as well as varying temperature and commensurability, we obtain a series of dynamic phase diagrams. A short video will also be presented to highlight these different dynamic phases.

  17. Effect of Pressure on Magneto-Transport Properties in the Superconducting and Normal Phases of the Metallic Double Chain Compound Pr2Ba4Cu7O15-δ

    NASA Astrophysics Data System (ADS)

    Kuwabara, Masayoshi; Matsukawa, Michiaki; Sugawara, Keisuke; Taniguchi, Haruka; Matsushita, Akiyuki; Hagiwara, Makoto; Sano, Kazuhiro; Ōno, Yoshiaki; Sasaki, Takahiko

    2016-12-01

    To examine the electronic phase diagram of superconducting CuO double chains, we report the effect of external pressure on the magneto-transport properties in superconducting and non-superconducting polycrystalline samples of Pr2Ba4Cu7O15-δ at low temperatures (1.8-40 K) under various magnetic fields (up to 14 T). In the as-sintered non-superconducting sample, the magneto-resistance (MR) follows a power law of H3/2 at low temperatures, which is in no agreement with the H2 dependence of MR in the PrBa2Cu4O8 system. The negative pressure dependence of the superconducting phase is qualitatively consistent with a theoretical prediction on the basis of the Tomonaga-Luttinger liquid theory. The 48-h-reduced superconducting sample at ambient pressure exhibits no clear increase in MR for T > Tc,on = 26.5 K. In contrast, with the application of pressure to the superconducting sample, the MR effects reappear and are also well fitted by H3/2. The model of slightly warped Fermi surfaces explains not only the MR effect of the non-superconducting sample, but is also related to the reasons for the pressure-induced MR phenomena of the superconducting sample.

  18. Magnetic phase transformations and superconductivity in Dy0.8Y0.2Rh4B4

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. M.; Zaleskiĭ, A.; Khlybov, E. P.; Rybal'Chenko, L. F.; Khristenko, E. V.; Ishchenko, L. A.; Terekhov, A. V.; Kostyleva, I. E.; Lachenkov, S. A.

    2008-11-01

    The results of experimental studies of the magnetic and the superconducting properties of the compound Dy0.8Y0.2Rh4B4 with tetragonal body-centered crystal structure of the perovskite type (LuRu4B4) are presented. It is shown that the compound undergoes a paramagnet-ferrimagnet phase transition at the Curie temperature TC≈30.5K and its magnetic compensation temperature Tcomp≈17K. According to resistance measurements, the compound becomes a ferrimagnetic superconductor at Tconset≈5.9K which undergoes a ferrimagnet-antiferromagnet phase transition at TN≈2.7K while still remaining a superconductor. The specific heat exhibits a sharp maximum at this temperature. Point-contact Andreev reflection spectroscopy is used to measure the temperature and field dependences of the order parameter Δ(T ,H) and the temperature dependence of the upper critical field Hc2(T ). The dependences obtained differ radically from those generally accepted for conventional superconductors. The results obtained are discussed in connection with the possibility of triplet pairing in Dy0.8Y0.2Rh4B4.

  19. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  20. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.

    PubMed

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey

    2015-05-19

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.

  1. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.

  2. Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft

    PubMed Central

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-01-01

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%. PMID:23966195

  3. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  4. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    PubMed

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-08-21

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  5. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  6. Dynamic Off-Equilibrium Transition in Systems Slowly Driven across Thermal First-Order Phase Transitions

    NASA Astrophysics Data System (ADS)

    Pelissetto, Andrea; Vicari, Ettore

    2017-01-01

    We study the off-equilibrium behavior of systems with short-range interactions, slowly driven across a thermal first-order transition, where the equilibrium dynamics is exponentially slow. We consider a dynamics that starts in the high-T phase at time t =ti<0 and ends at t =tf>0 in the low-T phase, with a time-dependent temperature T (t )/Tc≈1 -t /ts, where ts is the protocol time scale. A general off-equilibrium scaling (OS) behavior emerges in the limit of large ts. We check it at the first-order transition of the two-dimensional q -state Potts model with q =20 and 10. The numerical results show evidence of a dynamic transition, where the OS functions show a spinodal-like singularity. Therefore, the general mean-field picture valid for systems with long-range interactions is qualitatively recovered, provided the time dependence is appropriately (logarithmically) rescaled.

  7. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  8. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  9. Real-time observation of fluctuations at the driven-dissipative Dicke phase transition

    PubMed Central

    Brennecke, Ferdinand; Mottl, Rafael; Baumann, Kristian; Landig, Renate; Donner, Tobias; Esslinger, Tilman

    2013-01-01

    We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose–Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition, and observe a behavior that deviates significantly from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including dissipation via both the cavity field and the atomic field. Using a dissipation channel to nondestructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems. PMID:23818599

  10. Phase Formation and Superconductivity of Fe-TUBE Encapsulated and Vacuum-Annealed MgB2

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Awana, V. P. S.; Shahabuddin, Md.; Husain, M.; Saxena, R. B.; Nigam, Rashmi; Ansari, M. A.; Gupta, Anurag; Narayan, Himanshu; Halder, S. K.; Kishan, H.

    We report optimization of the synthesis parameters viz. heating temperature (TH), and hold time (thold) for vacuum-annealed (10-5 Torr) and LN2 (liquid nitrogen) quenched MgB2 compound. These are single-phase compounds crystallizing in the hexagonal structure (space group P6/mmm) at room temperature. Our XRD results indicated that for phase-pure MgB2, the TH for 10-5 Torr annealed and LN2-quenched samples is 750°C. The right stoichiometry i.e., MgB2 of the compound corresponding to 10-5 Torr and TH of 750°C is found for the hold time (thold) of 2.30 hours. With varying thold from 1-4 hours at fixed TH (750°C) and vacuum (10-5 Torr), the c-lattice parameter decreases first and later increases with thold (hours) before a near saturation, while the a-lattice parameter first increases and later decreases beyond a thold of 2.30 hours. The c/a ratio versus thold plot showed an inverted bell-shaped curve, touching the lowest value of 1.141, which is the reported value for perfect stoichiometry of MgB2. The optimized stoichimetric MgB2 compound exhibited superconductivity at 39.2 K with a transition width of 0.6 K. In conclusion, the synthesis parameters for phase pure stoichimetric vacuum-annealed MgB2 compound are optimized and are compared with widely-reported Ta tube encapsulated samples.

  11. Phase purity and superconductivity of ruthenocuprates RuySr2Gd1.5Ce0.5Cu2O10-δ

    NASA Astrophysics Data System (ADS)

    Hata, Y.; Uragami, Y.; Yasuoka, H.

    2008-12-01

    RuySr2Gd1.5Ce0.5Cu2O10-δ (y = 0.9, 0.95, 1.0, 1.05 and 1.1) were synthesized by a solid-state reaction. The phase purity of the specimens was examined by X-ray powder diffraction and their superconductivity was confirmed by resistivity measurements. All the specimens exhibited superconductivity and contained small amounts of impurity phases of SrRuO3 , Sr2RuGdO3 and RuSr2GdCu2O8 . Ru1.1Sr2Gd1.5Ce0.5Cu2O10-δ contained the least amount of impurities and had the highest superconducting transition temperature. Two magnetic transitions were observed at 128 and 88.5 K in both the dc magnetization measurements and the ac susceptibility measurements. It is concluded that the former transition originates from the weak ferromagnetic transition of RuSr2GdCu2O8 and the latter transition corresponds to the weak ferromagnetic transition of Ru ions in Ru1.1Sr2Gd1.5Ce0.5Cu2O10-δ . The isothermal magnetization curve was derived from fundamental and higher-harmonic complex susceptibility measurements. The magnetization curve consists of a hysteresisless diamagnetism component and a component that is typical for magnetization of the mixed state in a type-II superconductor. The former is due to intragrain superconductivity and the latter is due to intergrain superconductivity. The intergrain critical current density at 5 K is estimated to be 0.75A /cm2 and it is several orders of magnitude lower than that of the ceramic YBa2Cu3O7-δ .

  12. Dynamically driven phase transformations in heterogeneous materials. I. Theory and microstructure considerations

    NASA Astrophysics Data System (ADS)

    Clements, B. E.; Plohr, JeeYeon N.; Addessio, F. L.

    2006-12-01

    A theoretical model recently developed for heterogeneous materials undergoing dynamically driven thermodynamic phase transitions [F. L. Addessio et al. J. Appl. Phys. 97, 083509 (2005)] has been extended to allow for complex material microstructures. The model is applied to silicon carbide—titanium (SiC-Ti) unidirectional metal matrix composites where the aligned SiC fibers are filler and Ti is the matrix. Ti is known to undergo a low pressure and temperature solid-solid first-order phase transition. The microstructural analysis uses the generalized method of cells, which partitions a representative volume element into subcells containing the SiC fibers and the Ti matrix. The thermomechanical analysis has been reformulated from the previous work. In the reformulation it is found that thermodynamic quantities are naturally expressed as mass fraction averages over the two coexisting phases while the mechanical quantities are expressed naturally as volume averages. Consequently, the thermomechanical reformulation merges the mass averages typically found in thermodynamics with the volume averages used for mechanical properties of composites. Simulations have been pursued to study the complex interplay between loading, microstructure, and the thermomechanical response of the system as it undergoes the solid-solid Ti phase transformation. This is done for several different representative volume elements. For different orientations of loads relative to the fiber axes, the effect of local microstructure on the macroscopic stress-strain and thermodynamic response of the SiC-Ti composite is investigated.

  13. Nonlinear driven response of a phase-field crystal in a periodic pinning potential.

    PubMed

    Achim, C V; Ramos, J A P; Karttunen, M; Elder, K R; Granato, E; Ala-Nissila, T; Ying, S C

    2009-01-01

    We study numerically the phase diagram and the response under a driving force of the phase field crystal model for pinned lattice systems introduced recently for both one- and two-dimensional systems. The model describes the lattice system as a continuous density field in the presence of a periodic pinning potential, allowing for both elastic and plastic deformations of the lattice. We first present results for phase diagrams of the model in the absence of a driving force. The nonlinear response to a driving force on an initially pinned commensurate phase is then studied via overdamped dynamic equations of motion for different values of mismatch and pinning strengths. For large pinning strength the driven depinning transitions are continuous, and the sliding velocity varies with the force from the threshold with power-law exponents in agreement with analytical predictions. Transverse depinning transitions in the moving state are also found in two dimensions. Surprisingly, for sufficiently weak pinning potential we find a discontinuous depinning transition with hysteresis even in one dimension under overdamped dynamics. We also characterize structural changes of the system in some detail close to the depinning transition.

  14. A sparsity-driven approach for joint SAR imaging and phase error correction.

    PubMed

    Önhon, N Özben; Cetin, Müjdat

    2012-04-01

    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data, which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm, where each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements that it provides over existing techniques for model error compensation in SAR.

  15. Phase separation and superconductivity in K1-xFe2-ySe2 single crystals under different thermal treatments

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Ding, Xiaxin; Tao, Jian; Yang, Huan

    2013-03-01

    Single crystals with the starting composition of K0.8Fe2Se2 have been thermally treated in three different ways: slow furnace cooling (SFC) from 1020 °C, retreated for 2 hours at 250 °C (S250) and 350 °C (S350:) and followed by quenching. The DC magnetization measurements on them exhibit very different behavior: the SFC samples show a tiny diamagnetic signal, while the sample S350 shows a quite large Meissner shielding volume with the S250 in the middle. The resistive measurements on the sample S350 show zero resistance below 31 K with a sharp transition; while those from the sample SFC or S250 show much larger residual resistance together with a much wider transition. By using the SEM, we have successfully identified that, in SFC, the superconducting areas have relatively larger sizes (about one micrometer) and are widely separated; the superconducting area change into many thin but well connected networks in the sample S350, which construct a 3D spider-web. This explains both the magnetic shielding and the resistive transitions in the three samples. In addition, the superconducting area has a composition of about K0.64Fe1.8Se2. We suggest that the thermodynamically stable phase for the superconducting state has probably one vacancy in every 10 Fe-sites.

  16. Monte Carlo study of an unconventional superconducting phase in iridium oxide J(eff)=1/2 Mott insulators induced by carrier doping.

    PubMed

    Watanabe, Hiroshi; Shirakawa, Tomonori; Yunoki, Seiji

    2013-01-11

    Based on a microscopic theoretical study, we show that novel superconductivity is induced by carrier doping in layered perovskite Ir oxides where a strong spin-orbit coupling causes an effective total angular momentum J(eff)=1/2 Mott insulator. Using a variational Monte Carlo method, we find an unconventional superconducting state in the ground state phase diagram of a t(2g) three-orbital Hubbard model on the square lattice. This superconducting state is characterized by a d(x(2)-y(2))-wave "pseudospin singlet" formed by the J(eff)=1/2 Kramers doublet, which thus contains interorbital as well as both singlet and triplet components of t(2g) electrons. The superconducting state is found stable only by electron doping, but not by hole doping, for the case of carrier doped Sr2IrO4. We also study an effective single-orbital Hubbard model to discuss the similarities to high-T(c) cuprate superconductors and the multiorbital effects.

  17. Probe-type of superconductivity by impurity in materials with short coherence length: the s-wave and η-wave phases study

    NASA Astrophysics Data System (ADS)

    Ptok, Andrzej; Jerzy Kapcia, Konrad

    2015-04-01

    The effects of a single non-magnetic impurity on superconducting states in the Penson-Kolb-Hubbard model have been analyzed. The investigations have been performed within the Hartree-Fock mean field approximation in two steps: (i) the homogeneous system is analysed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes equations (with the exact diagonalization and the kernel polynomial method). We analysed both signs of the pair hopping, which correspond to s-wave and η-wave superconductivity. Our results show that an enhancement of the local superconducting gap at the impurity-site occurs for both cases. We obtained that Cooper pairs are scattered (at the impurity site) into the states which are from the neighborhoods of the states, which are commensurate ones with the crystal lattice. Additionally, in the η-phase there are peaks in the local-energy gap (in momentum space), which are connected with long-range oscillations in the spatial distribution of the energy gap, superconducting order parameter (SOP), as well as effective pairing potential. Our results can be contrasted with the experiment and predicts how to experimentally differentiate these two different symmetries of SOP by the scanning tunneling microscopy technique.

  18. Microscopic analysis of the superconducting quantum critical point: Finite-temperature crossovers in transport near a pair-breaking quantum phase transition

    NASA Astrophysics Data System (ADS)

    Shah, Nayana; Lopatin, Andrei

    2007-09-01

    A microscopic analysis of the superconducting quantum critical point realized via a pair-breaking quantum phase transition is presented. Finite-temperature crossovers are derived for the electrical conductivity, which is a key probe of superconducting fluctuations. By using the diagrammatic formalism for disordered systems, we are able to incorporate the interplay between fluctuating Cooper pairs and electrons, that is outside the scope of a time-dependent Ginzburg-Landau or effective bosonic action formalism. It is essential to go beyond the standard approximation in order to capture the zero-temperature correction which results purely from the (dynamic) quantum fluctuations and dictates the behavior of the conductivity in an entire low-temperature quantum regime. All dynamic contributions are of the same order and conspire to add up to a negative total, thereby inhibiting the conductivity as a result of superconducting fluctuations. On the contrary, the classical and the intermediate regimes are dominated by the positive bosonic channel. Our theory is applicable in one, two, and three dimensions and is relevant for experiments on superconducting nanowires, doubly connected cylinders, thin films, and bulk in the presence of magnetic impurities, magnetic field, or other pair breakers. A window of nonmonotonic behavior is predicted to exist as either the temperature or the pair-breaking parameter is swept.

  19. Spin Texture and Spin Dynamics in Superconducting Cuprates Near the Phase Transition Revealed by the Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kochelaev, B. I.

    2016-12-01

    A short review of experimental results and theoretical models of the spin texture and spin dynamics in superconducting cuprates near the phase transition developed on the basis of the EPR measurements is given. Distortions of the long-range antiferromagnetic order in the YBa_2Cu_3O_{6+y} were investigated for y=0.1-0.4 using Yb^{3+} ions as the EPR probe. In weakly doped samples with y=0.1, a strong anisotropy of the EPR linewidth is revealed which was related to the indirect spin-spin interaction between the ytterbium ions via antiferromagnetic spin-waves. In the case of the doping level y=0.2-0.3, the EPR signal consists of narrow and broad lines, which were attributed to formation of charged domain walls. A theoretical analysis is well consistent with experimental results for the case of coplanar elliptical domain walls. A discussion of possible reasons for the observed unusual planar oxygen isotope effect on a critical temperature T_c related to charge heterogeneity in underdoped cuprates is given.

  20. Phase diagram and superconducting gap structure of the iron-pnictide superconductor (Ba,K) Fe 2 As 2

    NASA Astrophysics Data System (ADS)

    Luo, Xigang

    2011-03-01

    Measurements of the Nernst and Seebeck coefficients were used to delineate the T-x phase diagram of the iron-pnictide superconductor Ba 1-x Kx Fe 2 As 2 . The sensitivity of these two coefficients to the reconstruction of the Fermi surface caused by the onset of antiferromagnetic order below a temperature TN allowed us to track TN precisely as a function of concentration x, even when the electrical resistivity, for example, shows no anomaly at the magnetic transition. In the region of concentrations where superconductivity appears out of an antiferromagnetic normal state (T T N) , weinvestigatetheevolutionofthesuperconductinggapstructureofBa 1-x K x Fe 2 As 2 bymeasuringthethermalconductivityintheT = 0 limit . Thisisasensitiveanddirectionalprobeofnodalquasiparticles . Astheconcentrationxisreduced , wefindasuddenchangeinthegapstructurefromafullgapwithoutnodestoagapwithnodes . Weascribethischangetotheonsetofantiferromagnetismbelowacriticaldopingx N insidethesuperconductingphase , whoseeffectismostlikelytoalterboththeFermisurfaceandtheangulardependenceofthegap . WecomparetheseresultswithourearlierstudyonBa (Fe 1-x Co x)2 As 2 [1,2]. This work was performed in collaboration with H. Shakeripour, J. Chang, F. Laliberte, J.-Ph. Reid, N. Doiron-Leyraud, L. Taillefer, M.A. Tanatar, R. Prozorov, H. Q. Luo, Z. S. Wang, H.-H. Wen.

  1. Final Report - Development of a Multi-Spoke Superconducting Cavity for Nuclear Physics, Light Sources, and Driven Systems Applications (ODU Contribution)

    SciTech Connect

    Delayen, Jean

    2014-11-14

    This report summarizes the work done by Old Dominion University, in collaboration with the Thomas Jefferson National Accelerator Facility toward the development of high-velocity superconducting spoke cavities.

  2. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Hu, Jiangping; Yuan, Jing

    2016-10-01

    Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1 g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high- T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high- T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high- T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high- T c superconductivity.

  3. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    NASA Astrophysics Data System (ADS)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  4. Symmetry breaking, phase separation and anomalous fluctuations in driven granular gas

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Pöschel, Thorsten; Sasorov, Pavel V.; Schwager, Thomas

    2003-03-01

    What is the role of noise, caused by the discrete nature of particles, in granular dynamics? We address this question by considering a simple driven granular system: an ensemble of nearly elastically colliding hard spheres in a rectangular box, driven by a rapidly vibrating side wall at zero gravity. The elementary state of this system is a strip of enhanced particle density away from the driving wall. Granular hydrodynamics (GHD) predicts a symmetry breaking instability of this state, when the aspect ratio of the confining box exceeds a threshold value, while the average density of the gas is within a ``spinodal interval". At large aspect ratios this instability leads to phase separation similar to that in van der Waals gas. In the present work (see cond-mat/0208286) we focus on the system behavior around the threshold of the symmetry-breaking instability. We put GHD into a quantitative test by performing extensive event-driven molecular dynamic simulations in 2D. Please watch the movies of the simulations at http://summa.physik.hu-berlin.de/ kies/HD/. We found that the supercritical bifurcation curve, predicted by GHD, agrees with the simulations well below and well above the instability threshold. In a wide region of aspect ratios around the threshold the system is dominated by fluctuations. We checked that the fluctuation strength goes down when the number of particles increases. However, fluctuations remain strong (and the critical region wide) even for as many as 4 ot 10^4 particles. We conclude by suggesting that fluctuations may put a severe limitation on the validity of continuum theories of granular flow in systems with a moderately large number of particles.

  5. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  6. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  7. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  8. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  9. BCS theory of driven superconductivity

    NASA Astrophysics Data System (ADS)

    Komnik, Andreas; Thorwart, Michael

    2016-11-01

    We study the impact of a time-dependent external driving of the lattice phonons in a minimal model of a BCS superconductor. Upon evaluating the driving-induced vertex corrections of the phonon-mediated electron-electron interaction, we show that parametric phonon driving can be used to elevate the critical temperature Tc, while a dipolar phonon drive has no effect. We provide simple analytic expressions for the enhancement factor of Tc. Furthermore, a mean-field analysis of a nonlinear phonon-phonon interaction also shows that phonon anharmonicities further amplify Tc. Our results hold universally for the large class of normal BCS superconductors.

  10. Dynamically driven phase transformations in heterogeneous materials. II. Applications including damage

    NASA Astrophysics Data System (ADS)

    Plohr, JeeYeon N.; Clements, B. E.; Addessio, F. L.

    2006-12-01

    A model, developed for heterogeneous materials undergoing dynamically driven phase transformations in its constituents, has been extended to include the evolution of damage. Damage is described by two mechanisms: interfacial debonding between the constituents and brittle failure micro-crack growth within the constituents. The analysis is applied to silicon carbide-titanium (SiC-Ti) unidirectional metal matrix composites that undergo the following phenomena: Ti has a yield stress of approximately 0.5 GPa and above a pressure of about 2 GPa undergoes a solid-solid phase transformation. The inelastic work from plastic dissipation contributes to the temperature and pressure rise in the Ti. SiC behaves elastically below a critical stress, above which it is damaged by microcrack growth. Finally, under tensile loading, the interface between Ti and SiC debonds according to an interfacial decohesion law. Each process is first examined independently in order to understand how its characteristic behavior is manifested in the stress-strain response of the composite. The complex interplay between loading states, viscoplasticity, damage, and solid-solid phase transformations is then studied at both the micromechanics and macromechanics levels.

  11. Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2013-11-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  12. Inelastic neutron scattering study of a nonmagnetic collapsed tetragonal phase in nonsuperconducting CaFe2As2: evidence of the impact of spin fluctuations on superconductivity in the iron-arsenide compounds.

    PubMed

    Soh, J H; Tucker, G S; Pratt, D K; Abernathy, D L; Stone, M B; Ran, S; Bud'ko, S L; Canfield, P C; Kreyssig, A; McQueeney, R J; Goldman, A I

    2013-11-27

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  13. Chemical reactivity on gas-phase metal clusters driven by blackbody infrared radiation.

    PubMed

    Parry, Imogen S; Kartouzian, Aras; Hamilton, Suzanne M; Balaj, O Petru; Beyer, Martin K; Mackenzie, Stuart R

    2015-01-19

    We report the observation of chemical reactions in gas-phase Rh(n)(N2O)m(+) complexes driven by absorption of blackbody radiation. The experiments are performed under collision-free conditions in a Fourier transform ion cyclotron resonance mass spectrometer. Mid-infrared absorption by the molecularly adsorbed N2O moieties promotes a small fraction of the cluster distribution sufficiently to drive the N2O decomposition reaction, leading to the production of cluster oxides and the release of molecular nitrogen. N2O decomposition competes with molecular desorption and the branching ratios for the two processes show marked size effects, reflecting variations in the relative barriers. The rate of decay is shown to scale approximately linearly with the number of infrared chromophores. The experimental findings are interpreted in terms of calculated infrared absorption rates assuming a sudden-death limit.

  14. Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities

    NASA Astrophysics Data System (ADS)

    Rodriguez, S. R. K.; Amo, A.; Sagnes, I.; Le Gratiet, L.; Galopin, E.; Lemaître, A.; Bloch, J.

    2016-06-01

    The Bose-Hubbard model (BHM) describes bosons hopping across sites and interacting on-site. Inspired by the success of BHM simulators with atoms in optical lattices, proposals for implementing the BHM with photons in coupled nonlinear cavities have recently emerged. Two coupled semiconductor microcavities constitute a model system where the hopping, interaction and decay of exciton polaritons--mixed light-matter quasiparticles--can be engineered in combination with site-selective coherent driving to implement the driven-dissipative two-site optical BHM. Here we explore the interplay of interference and nonlinearity in this system, in a regime where three distinct density profiles can be observed under identical driving conditions. We demonstrate how the phase acquired by polaritons hopping between cavities can be controlled through polariton-polariton interactions. Our results open new perspectives for synthesizing density-dependent gauge fields using polaritons in two-dimensional multicavity systems.

  15. Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities

    PubMed Central

    Rodriguez, S. R. K.; Amo, A.; Sagnes, I.; Le Gratiet, L.; Galopin, E.; Lemaître, A.; Bloch, J.

    2016-01-01

    The Bose-Hubbard model (BHM) describes bosons hopping across sites and interacting on-site. Inspired by the success of BHM simulators with atoms in optical lattices, proposals for implementing the BHM with photons in coupled nonlinear cavities have recently emerged. Two coupled semiconductor microcavities constitute a model system where the hopping, interaction and decay of exciton polaritons—mixed light-matter quasiparticles—can be engineered in combination with site-selective coherent driving to implement the driven-dissipative two-site optical BHM. Here we explore the interplay of interference and nonlinearity in this system, in a regime where three distinct density profiles can be observed under identical driving conditions. We demonstrate how the phase acquired by polaritons hopping between cavities can be controlled through polariton-polariton interactions. Our results open new perspectives for synthesizing density-dependent gauge fields using polaritons in two-dimensional multicavity systems. PMID:27307038

  16. Bose-Hubbard model: Relation between driven-dissipative steady states and equilibrium quantum phases

    NASA Astrophysics Data System (ADS)

    Le Boité, Alexandre; Orso, Giuliano; Ciuti, Cristiano

    2014-12-01

    We present analytical solutions for the mean-field master equation of the driven-dissipative Bose-Hubbard model for cavity photons, in the limit of both weak pumping and weak dissipation. Instead of pure Mott-insulator states, we find statistical mixtures with the same second-order coherence g(2 )(0 ) as a Fock state with n photons, but a mean photon number of n /2 . These mixed states occur when n pump photons have the same energy as n interacting photons inside the nonlinear cavity and survive up to a critical tunneling coupling strength, above which a crossover to a classical coherent state takes place. We also explain the origin of both antibunching and superbunching predicted by P-representation mean-field theory at higher pumping and dissipation. In particular, we show that the strongly correlated region of the associated phase diagram cannot be described within the semiclassical Gross-Pitaevskii approach.

  17. Nonequilibrium phase transition in an exactly solvable driven Ising model with friction.

    PubMed

    Hucht, Alfred

    2009-12-01

    A driven Ising model with friction due to magnetic correlations was proposed by Kadau [Phys. Rev. Lett. 101, 137205 (2008)]. The nonequilibrium phase transition present in this system is investigated in detail using analytical methods as well as Monte Carlo simulations. In the limit of high driving velocities v the model shows mean-field behavior due to dimensional reduction and can be solved exactly for various geometries. The simulations are performed with three different single spin-flip rates: the common Metropolis and Glauber rates as well as a multiplicative rate. Due to the nonequilibrium nature of the model all rates lead to different critical temperatures at v>0, while the exact solution matches the multiplicative rate. Finally, the crossover from Ising to mean-field behavior as function of velocity and system size is analyzed in one and two dimensions.

  18. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  19. Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state

    NASA Astrophysics Data System (ADS)

    Sen, Arnab; Nandy, Sourav; Sengupta, K.

    2016-12-01

    We study a class of periodically driven d -dimensional integrable models and show that after n drive cycles with frequency ω , pure states with non-area-law entanglement entropy Sn(l ) ˜lα (n ,ω ) are generated, where l is the linear dimension of the subsystem, and d -1 ≤α (n ,ω )≤d . The exponent α (n ,ω ) eventually approaches d (volume law) for large enough l when n →∞ . We identify and analyze the crossover phenomenon from an area (S ˜ld -1 for d ≥1 ) to a volume (S ˜ld ) law and provide a criterion for their occurrence which constitutes a generalization of Hastings's theorem to driven integrable systems in one dimension. We also find that Sn generically decays to S∞ as (ω/n ) (d +2 )/2 for fast and (ω/n ) d /2 for slow periodic drives; these two dynamical phases are separated by a topological transition in the eigenspectrum of the Floquet Hamiltonian. This dynamical transition manifests itself in the temporal behavior of all local correlation functions and does not require a critical point crossing during the drive. We find that these dynamical phases show a rich re-entrant behavior as a function of ω for d =1 models and also discuss the dynamical transition for d >1 models. Finally, we study entanglement properties of the steady state and show that singular features (cusps and kinks in d =1 ) appear in S∞ as a function of ω whenever there is a crossing of the Floquet bands. We discuss experiments which can test our theory.

  20. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7K under pressure

    NASA Astrophysics Data System (ADS)

    Medvedev, S.; McQueen, T. M.; Troyan, I. A.; Palasyuk, T.; Eremets, M. I.; Cava, R. J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G.; Felser, C.

    2009-08-01

    The discovery of new high-temperature superconductors based on FeAs has led to a new `gold rush' in high-TC superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach TC values up to 55K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of β-Fe1.01Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7K under an applied pressure of 8.9GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as TC rises, owing to a collapse of the separation between the Fe2Se2 layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7GPa and completed at 38GPa), Fe1.01Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

  1. Superconducting phase fluctuations in SmFeAsO0.8F0.2 from diamagnetism at a low magnetic field above Tc

    NASA Astrophysics Data System (ADS)

    Prando, G.; Lascialfari, A.; Rigamonti, A.; Romanó, L.; Sanna, S.; Putti, M.; Tropeano, M.

    2011-08-01

    Superconducting fluctuations (SFs) in SmFeAsO0.8F0.2 (characterized by superconducting transition temperature Tc≃52.3 K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic response above Tc to magnetic fields up to 1 T is similar to that previously reported for underdoped cuprate superconductors and justified in terms of metastable superconducting islands of nonzero order parameter lacking long-range coherence because of strong phase fluctuations. In the high-field regime (H≳1.5 T) scaling arguments predicted on the basis of the Ginzburg-Landau theory for conventional SFs are confirmed, at variance with what is observed in the low-field regime. This fact shows that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SFs of novel character and the conventional SFs. High magnetic fields (1.5 T ≲H≪Hc2) are found to suppress the former while leaving unaltered the latter.

  2. Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure.

    PubMed

    Medvedev, S; McQueen, T M; Troyan, I A; Palasyuk, T; Eremets, M I; Cava, R J; Naghavi, S; Casper, F; Ksenofontov, V; Wortmann, G; Felser, C

    2009-08-01

    The discovery of new high-temperature superconductors based on FeAs has led to a new 'gold rush' in high-T(C) superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach T(C) values up to 55 K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of beta-Fe(1.01)Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as T(C) rises, owing to a collapse of the separation between the Fe(2)Se(2) layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7 GPa and completed at 38 GPa), Fe(1.01)Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

  3. Fermion Parity Flips and Majorana Defects in Superconducting Fractional Topological Phases

    NASA Astrophysics Data System (ADS)

    Khan, Mayukh; Teo, Jeffrey; Hughes, Taylor; Vishveshwara, Smitha

    We consider layered heterojunctions of s-wave superconductors and Abelian topologically ordered (TO) phases. We derive the emergent theories for a wide variety of fractional quantum Hall states promoted by a ℤ2 gauge theory. The theory always carries an anyonic symmetry (AS) which effects a fermion parity flip. The associated twist defects, which flip the parities of some types of orbiting quasiparticles, trap ordinary zero energy Majorana bound states (MBS), and can bind fractional charge. For example, an h / 2 e flux vortex of the superconductor that circulates around the MBS undergoes a fermion parity flip and is accompanied by a level crossing in the vortex energy spectrum. We show numerical evidence of the level crossing in the simplest examples: a Chern insulator and a normal insulator/topological insulator/superconductor junction. Finally, we briefly describe the resulting twist liquid theory after gauging the AS where the twist defects become deconfined anyonic excitations.

  4. Field driven ferromagnetic phase evolution originating from the domain boundaries in antiferromagnetically coupled perpendicular anitsotropy films

    SciTech Connect

    Jones, Juanita; Hauet, Thomas; Gunther, Christian; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-05-01

    Strong perpendicular anisotropy systems consisting of Co/Pt multilayer stacks that are antiferromagnetically coupled via thin Ru or NiO layers have been used as model systems to study the competition between local interlayer exchange and long-range dipolar interactions [1,2]. Magnetic Force Microscopy (MFM) studies of such systems reveal complex magnetic configurations with a mix of antiferromagnetic (AF) and ferromagnetic (FM) phases. However, MFM allows detecting surface stray fields only and can interact strongly with the magnetic structure of the sample, thus altering the original domain configuration of interest [3,4]. In the current study they combine magnetometry and state-of-the-art soft X-ray transmission microscopy (MXTM) to investigate the external field driven FM phase evolution originating from the domain boundaries in such antiferromagnetically coupled perpendicular anisotropy films. MXTM allows directly imaging the perpendicular component of the magnetization in an external field at sub 100 nm spatial resolution without disturbing the magnetic state of the sample [5,6]. Here they compare the domain evolution for two similar [Co(4{angstrom})/Pt(7{angstrom})]x-1/{l_brace}Co(4{angstrom})/Ru(9{angstrom})/[Co(4{angstrom})/Pt(7{angstrom})]x-1{r_brace}16 samples with slightly different Co/Pt stack thickness, i.e. slightly different strength of internal dipolar fields. After demagnetization they obtain AF domains with either sharp AF domain walls for the thinner multilayer stacks or 'tiger-tail' domain walls (one dimensional FM phase) for the thicker stacks. When increasing the external field strength the sharp domain walls in the tinner stack sample transform into the one-dimensional FM phase, which then serves as nucleation site for further FM stripe domains that spread out into all directions to drive the system towards saturation. Energy calculations reveal the subtle difference between the two samples and help to understand the observed transition, when

  5. Thermal analysis, phase equilibria, and superconducting properties in magnesium boride and carbon doped magnesium boride

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, Scot David

    In this work, the low temperature synthesis of MgB2 from Mg/B and MgH2/B powder mixtures was studied using Differential Scanning Calorimetry (DSC). For the Mg/B powder mixture, two exothermic reaction events were observed and the first reaction event was initiated by the decomposition of Mg(OH)2 on the surface of the magnesium powder. For the MgH 2/B powder mixture, there was an endothermic event at ˜375 °C (the decomposition of MgH2 into H2 and Mg) and an exothermic event ˜600 °C (the reaction of Mg and B). The Kissinger analysis method was used to estimate the apparent activation energy of the Mg and B reaction using DSC data with different furnace ramp rates. The limitations of MgB2 low temperature synthesis led to the development of a high pressure induction furnace that was constructed using a pressure vessel and an induction heating power supply. The purpose was to not only synthesize more homogeneous MgB2 samples, but also to determine whether MgB2 melts congruently or incongruently. A custom implementation of the Smith Thermal Analysis method was developed and tested on aluminum and AlB2, the closest analogue to MgB2. Measurements on MgB2 powder and a high purity Mg/B elemental mixture confirmed that MgB2 melts incongruently and decomposes into a liquid and MgB4 at ˜1445 °C at 10 MPa via peritectic decomposition. Another measurement using a Mg/B elemental mixture with impure boron suggested that ˜0.7 wt% carbon impurity in the boron raised the incongruent melting temperature to ˜1490-1500 °C. Lastly, the solubility limit for carbon in MgB2 was studied by making samples from B4C and Mg at 1530 °C, 1600 °C and 1700 °C in the high pressure furnace. All three samples had three phases: Mg, MgB2C2, and carbon doped MgB2. The MgB 2C2 and carbon doped MgB2 grain size increased with temperature and the 1700 °C sample had needle-like grains for both phases. The presence of the ternary phase, MgB2C2, suggested that the maximum doping limit for carbon in

  6. Bona fide interaction-driven topological phase transition in correlated SPT states

    NASA Astrophysics Data System (ADS)

    Meng, Zi Yang; He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Lu, Zhong-Yi

    It is expected the interplay between non-trivial band topology and strong electron correlation will lead to very rich physics. Thus a controlled study of the competition between topology and correlation is of great interest. Here, employing large-scale quantum Monte Carlo simulations, we provide a concrete example of the Kane-Mele-Hubbard model on an AA stacking bilayer honeycomb lattice with inter-layer antiferromagnetic interaction. Our simulation identified several different phases: a quantum spin-Hall insulator (QSH), a xy-plane antiferromagnetic Mott insulator (xy-AFM) and an inter-layer dimer-singlet insulator (dimer-singlet). Most importantly, a bona fide topological phase transition between the QSH and the dimer-singlet insulators, purely driven by the inter-layer antiferromagnetic interaction is found. At the transition, the spin and charge gap of the system close while the single-particle excitations remain gapped, which means that this transition has no mean field analogue and it can be viewed as a transition between bosonic SPT states. At one special point, this transition is described by a (2+1)d O(4) nonlinear sigma model with exact SO(4) symmetry, and a topological term at theta=p. Relevance of this work towards more general interacting SPT states is discussed.

  7. Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states

    NASA Astrophysics Data System (ADS)

    He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    2016-03-01

    It is expected that the interplay between nontrivial band topology and strong electron correlation will lead to very rich physics. Thus a controlled study of the competition between topology and correlation is of great interest. Here, employing large-scale quantum Monte Carlo simulations, we provide a concrete example of the Kane-Mele-Hubbard model on an AA-stacking bilayer honeycomb lattice with interlayer antiferromagnetic interaction. Our simulation identified several different phases: a quantum spin Hall insulator (QSH), an x y -plane antiferromagnetic Mott insulator, and an interlayer dimer-singlet insulator. Most importantly, a bona fide topological phase transition between the QSH and the dimer-singlet insulators, purely driven by the interlayer antiferromagnetic interaction, is found. At the transition, the spin and charge gap of the system close while the single-particle excitations remain gapped, which means that this transition has no mean-field analog and it can be viewed as a transition between bosonic symmetry-protected topological (SPT) states. At one special point, this transition is described by a (2 +1 )d O (4 ) nonlinear sigma model with exact S O (4 ) symmetry and a topological term at exactly Θ =π . The relevance of this work towards more general interacting SPT states is discussed.

  8. Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Peng, Yanli; Zhang, Ya; Lapenta, Giovanni

    2016-12-01

    We have simulated tokamak breakdown phase driven by pure Ohmic heating with implicit particle in cell/Monte Carlo collision (PIC/MCC) method. We have found two modes can be differentiated. When performing breakdown at low initial gas pressure, we find that it works at lower density and current, but higher temperature, and requires lower heating power, compared to when having a high initial pressure. Further, two stages can be distinguished during the avalanche process. One is the fast avalanche stage, in which the plasma is heated by induced toroidal electric field. The other is the slow avalanche stage, which begins when the plasma density reaches 1015 m-3. It has been shown that ions are mainly heated by ambipolar field and become stochastic in the velocity distribution. However, when the induced electric field is low, there exists a transition phase between the two stages. Our model simulates the breakdown and early hydrogen burn-through under ideal conditions during tokamak start-up. It adopted fewer assumptions, and can give an idealized range of operative parameters for Ohmic start-up. Qualitatively, the results agree well with certain experimental observations.

  9. Observation of double resistance anomalies and excessive resistance in mesoscopic superconducting Au0.7In0.3 rings with phase separation

    NASA Astrophysics Data System (ADS)

    Wang, H.; Rosario, M. M.; Russell, H. L.; Liu, Y.

    2007-02-01

    We have measured mesoscopic superconducting Au0.7In0.3 rings prepared by e -beam lithography and sequential deposition of Au and In at room temperature followed by a standard lift-off procedure. The majority of the samples are found to exhibit highly unusual double resistance anomalies, two resistance peaks with the peak resistances larger than the normal-state resistance, near the onset of superconductivity in the R(T) (resistance vs temperature) curves, and an h/2e resistance oscillation with a very small amplitude. A magnetic field applied perpendicular to the ring plane appears to suppress the low-temperature peak easily, but only broadens the high-temperature peak. In the intermediate-field range, the high-temperature resistance peak becomes flat down to the lowest temperature, resulting apparently in a magnetic-field-induced metallic state with its resistance higher than the normal-state resistance, referred to here as excessive resistance. The dynamical resistance vs bias current measurements carried out in samples showing double resistance anomalies suggest that there are two critical currents in these samples. We attribute the double resistance anomalies and the two critical currents to the presence of two superconducting phases originating from the phase separation of Au0.7In0.3 in which In-rich grains of AuIn precipitate in a uniform In-dilute matrix of Au0.9In0.1 . The local superconducting transition temperature of the In-rich grains is higher than that of the In-dilute matrix. The double resistance anomalies are not found in a sample showing the conventional h/2e Little-Parks (LP) resistance oscillation, which we believe is due to the absence of the phase separation in this particular sample. Finally, we argue that the h/2e resistance oscillation observed in samples showing double resistance anomalies is not the LP but rather the Altshuler-Aronov-Spivak resistance oscillation of normal electrons enhanced by superconductivity.

  10. Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal KxFe2-ySe2

    SciTech Connect

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; Marshman, Jeff; Pedersen, Pal; McLaughlin, Richard; Lograsso, Thomas A.

    2016-02-11

    Here, we report how the superconducting phase forms in pseudo-single-crystal KxFe2-ySe2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition. It should be emphasized that the phase separation in pseudo-single-crystal KxFe2-ySe2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.

  11. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    PubMed

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  12. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  13. Spectroscopic Fingerprint of Phase-Incoherent Superconductivity in the Underdoped Bi2Sr2CaCu2O8+δ

    SciTech Connect

    Lee, J.; Davis, J.; Fujita, K.; Schmidt, A.R.; Kim, C.K.; Eisaki, H.; Uchida, S.

    2009-08-28

    A possible explanation for the existence of the cuprate 'pseudogap' state is that it is a d-wave superconductor without quantum phase rigidity. Transport and thermodynamic studies provide compelling evidence that supports this proposal, but few spectroscopic explorations of it have been made. One spectroscopic signature of d-wave superconductivity is the particle-hole symmetric 'octet' of dispersive Bogoliubov quasiparticle interference modulations. Here we report on this octet's evolution from low temperatures to well into the underdoped pseudogap regime. No pronounced changes occur in the octet phenomenology at the superconductor's critical temperature T{sub c}, and it survives up to at least temperature T {approx} 1.5 T{sub c}. In this pseudogap regime, we observe the detailed phenomenology that was theoretically predicted for quasiparticle interference in a phase-incoherent d-wave superconductor. Thus, our results not only provide spectroscopic evidence to confirm and extend the transport and thermodynamics studies, but they also open the way for spectroscopic explorations of phase fluctuation rates, their effects on the Fermi arc, and the fundamental source of the phase fluctuations that suppress superconductivity in underdoped cuprates.

  14. Cooper-pair insulator phase in superconducting amorphous Bi films induced by nanometer-scale thickness variations

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Nguyen, H. Q.; Rudisaile, E.; Stewart, M. D., Jr.; Shainline, J.; Xu, J. M.; Valles, J. M., Jr.

    2011-08-01

    Ultrathin films near the quantum insulator-superconductor transition (IST) can exhibit Cooper-pair transport in their insulating state. This Cooper-pair insulator (CPI) state is achieved in amorphous Bi films evaporated onto substrates with a topography varying on lengths slightly greater than the superconducting coherence length. We present evidence that this topography induces film thickness and corresponding superconducting coupling constant variations that promote Cooper-pair island formation. Analyses of many thickness-tuned ISTs show that weak links between superconducting islands dominate the transport. In particular, the IST occurs when the link resistance approaches the resistance quantum for pairs. These results support conjectures that the CPI is an inhomogeneous state of matter.

  15. Superconductivity versus structural phase transition in the closely related Bi2Rh3.5S2 and Bi2Rh3S2

    DOE PAGES

    Kaluarachchi, Udhara S.; Xie, Weiwei; Lin, Qisheng; ...

    2015-05-19

    Single crystals of Bi2Rh3S2 and Bi2Rh3.5S2 were synthesized by solution growth, and the crystal structures and thermodynamic and transport properties of both compounds were studied. In the case of Bi2Rh3S2, a structural first-order transition at around 165 K is identified by single-crystal diffraction experiments, with clear signatures visible in resistivity, magnetization, and specific heat data. No superconducting transition for Bi2Rh3S2 was observed down to 0.5 K. In contrast, no structural phase transition at high temperature was observed for Bi2Rh3.5S2; however, bulk superconductivity with a critical temperature, Tc ≈ 1.7 K, was observed. The Sommerfeld coefficient γ and the Debye temperaturemore » (ΘD) were found to be 9.41 mJ mol–1K–2 and 209 K, respectively, for Bi2Rh3S2, and 22 mJ mol–1K–2 and 196 K, respectively, for Bi2Rh3.5S2. As a result, the study of the specific heat in the superconducting state of Bi2Rh3.5S2 suggests that Bi2Rh3.5S2 is a weakly coupled, BCS superconductor.« less

  16. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.

    1987-01-01

    A stable and reproducible superconductivity transition between 80 and 93 K has been achieved and maintained in a Y-Ba-Cu-O compound system at ambient pressure in a simple liquid-nitrogen Dewar. An upper critical field Hc2(0) estimate of between 80 and 180 T is obtained, and the paramagnetic limiting field at 0 K for a sample with a T(c) of about 90 K is 165 T. It is suggested that the lattice parameters, the valence ratio, and the sample treatments all play a role in achieving superconductivity above 77 K.

  17. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    NASA Astrophysics Data System (ADS)

    Smith, Elliott; Schnepp, Zoe; Wimbush, Stuart C.; Hall, Simon R.

    2008-11-01

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  18. Topological Superconductivity in Dirac Semimetals.

    PubMed

    Kobayashi, Shingo; Sato, Masatoshi

    2015-10-30

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. Exotic s-wave superconductivity in alkali-doped fullerides.

    PubMed

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-20

    Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.

  2. Exotic s-wave superconductivity in alkali-doped fullerides

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-01

    Alkali-doped fullerides ({{A}3}{{\\text{C}}60} with A  =  K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature ({{T}\\text{c}} ) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-{{T}\\text{c}} superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund’s coupling within the {{\\text{C}}60} molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-{{T}\\text{c}} superconductivity.

  3. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  4. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  5. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  6. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2016-12-28

    Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.

  7. Fractional quantum Hall bilayers at half filling: Tunneling-driven non-Abelian phase

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Liu, Zhao; Haldane, F. D. M.; Sheng, D. N.

    2016-12-01

    Multicomponent quantum Hall systems with internal degrees of freedom provide a fertile ground for the emergence of exotic quantum liquids. Here, we investigate the possibility of non-Abelian topological order in the half-filled fractional quantum Hall (FQH) bilayer system driven by the tunneling effect between two layers. By means of the state-of-the-art density-matrix renormalization group, we unveil "fingerprint" evidence of the non-Abelian Moore-Read Pfaffian state emerging in the intermediate-tunneling regime, including the ground-state degeneracy on the torus geometry and the topological entanglement spectroscopy (entanglement spectrum and topological entanglement entropy) on the spherical geometry, respectively. Remarkably, the phase transition from the previously identified Abelian (331) Halperin state to the non-Abelian Moore-Read Pfaffian state is determined to be continuous, which is signaled by the continuous evolution of the universal part of the entanglement spectrum, and discontinuities in the excitation gap and the derivative of the ground-state energy. Our results not only provide a "proof-of-principle" demonstration of realizing a non-Abelian state through coupling different degrees of freedom, but also open up a possibility in FQH bilayer systems for detecting different chiral p -wave pairing states.

  8. Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems

    NASA Astrophysics Data System (ADS)

    Buchhold, Michael; Everest, Benjamin; Marcuzzi, Matteo; Lesanovsky, Igor; Diehl, Sebastian

    2017-01-01

    Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class.

  9. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  10. Status of superconducting power transformer development

    SciTech Connect

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P.

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  11. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    SciTech Connect

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Czito, Brian G.; Bashir, Mustafa R.

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved

  12. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  13. Interplay between density and superconducting quantum critical fluctuations.

    PubMed

    Caprara, S; Bergeal, N; Lesueur, J; Grilli, M

    2015-10-28

    We consider the case of a density-driven metal-superconductor transition in the proximity of an electronic phase separation. In particular, we investigate the interplay between superconducting fluctuations and density fluctuations, which become quantum critical when the electronic phase separation vanishes at zero temperature into a quantum critical point. In this situation, the critical dynamical density fluctuations strongly affect the dynamics of the Cooper-pair fluctuations, which acquire a more singular character with a z  =  3 dynamical critical index. This gives rise to a scenario that possibly rules the disappearance of superconductivity when the electron density is reduced by electrostatic gating at the LaAlO3/SrTiO3 interface.

  14. Cooperative coupling of static magnetism and bulk superconductivity in the stripe phase of La2 -xBaxCuO4 : Pressure- and doping-dependent studies

    NASA Astrophysics Data System (ADS)

    Guguchia, Z.; Khasanov, R.; Shengelaya, A.; Pomjakushina, E.; Billinge, S. J. L.; Amato, A.; Morenzoni, E.; Keller, H.

    2016-12-01

    Static spin-stripe order and superconductivity were systematically studied in La2 -xBaxCuO4 (0.11 ≤x ≤0.17 ) at ambient pressure by means of magnetization and μ SR experiments. We find that all the investigated La2 -xBaxCuO4 samples exhibit static spin-stripe order and that the quasi-two-dimensional superconducting (SC) transition temperature Tc 1 and the static spin-stripe order temperature Tso have very similar values throughout the phase diagram. Moreover, the magnetic and the SC properties of the x =0.155 (LBCO-0.155) and x =0.17 (LBCO-0.17) samples were studied under hydrostatic pressure. As a remarkable result, in these bulk cuprate superconductors, the three-dimensional SC transition temperature Tc and Tso nearly coincide [Tc(p ) ≃Tso(p ) ] at all pressure investigated (0 ≤p ≤2.3 GPa). We also observed a pressure induced transition from long-range spin stripe order to a disordered magnetic state at p≃1.6 GPa in LBCO-0.155, coexisting with a SC state with substantial superfluid density. In LBCO-0.17, a disordered magnetic state is present at all p . The present results indicate that static magnetic order and SC pairing correlations develop in a cooperative fashion in La2 -xBaxCuO4 , and provide a new route of understanding the complex interplay between static magnetism and superconductivity in the stripe phase of cuprates.

  15. Self-Assembly of Nanostructured, Complex, Multi-cation Films via Spontaneous Phase Separation and Strain-driven Ordering

    SciTech Connect

    Goyal, Amit; Wee, Sung Hun; Stocks, George Malcolm; Zuev, Yuri L; More, Karren Leslie; Meng, Jianyong; Zhong, Jianxin

    2013-01-01

    Spontaneous self-assembly of a multi-cation nanophase in another multi-cation matrix phase is a promising bottom-up approach to fabricate novel, nanocomposite structures for a range of applications. In an effort to understand the mechanisms for such self-assembly, we report on complimentary experimental and theoretical studies to first understand and then control or guide the self-assembly of insulating BaZrO3 (BZO) nanodots within REBa2Cu3O7- (RE=rare earth elements including Y, REBCO) superconducting films. It was determined that the strain field developed around BZO nanodots embedded in REBCO matrix is a key driving force dictating the self-assembly of BZO nanodots along REBCO c-axis. The size selection and spatial ordering of BZO self-assembly were simulated using thermodynamic and kinetic models. The BZO self-assembly was controllable by tuning the interphase strain field. REBCO superconducting films with BZO defects arrays self-assembled to align in both vertical (REBCO c-axis) and horizontal (REBCO ab-planes) directions, resulted in the maximized pinning and Jc performance for all field angles with smaller angular Jc anisotropy. The work has broad implications for fabrication of controlled self-assembled nanostructures for a range of applications via strain-tuning.

  16. Enhancing bulk superconductivity by engineering granular materials

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  17. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  18. Phase Transformations in the High-Tc Superconducting Compounds, Ba2RCu3O7-δ (R = Nd, Sm, Gd, Y, Ho, and Er).

    PubMed

    Wong-Ng, W; Cook, L P; Su, H B; Vaudin, M D; Chiang, C K; Welch, D R; Fuller, E R; Yang, Z; Bennett, L H

    2006-01-01

    The phase transformation between the orthorhombic and tetragonal structures of six high-T c superconductors, Ba2RCu3O7- δ , where R = Nd, Sm, Gd, Y, Ho, and Er, and δ = 0 to 1, has been investigated using techniques of x-ray diffraction, differential thermal analysis/thermogravimetric analysis (DTA/TGA) and electron diffraction. The transformation from the oxygen-rich orthorhombic phase to the oxygen-deficient tetragonal phase involves two orthorhombic phases. A superlattice cell caused by oxygen ordering, with a' = 2a, was observed for materials with smaller ionic radius (Y, Ho, and Er). For the larger lanthanide samples (Nd, Sm, and Gd), the a' = 2a type superlattice cell was not observed. The structural phase transition temperatures, oxygen stoichiometry and characteristics of the T c plateaus appear to correlate with the ionic radius, which varies based on the number of f electrons. Lanthanide elements with a smaller ionic radius stabilize the orthorhombic phase to higher temperatures and lower oxygen content. Also, the superconducting temperature is less sensitive to the oxygen content for materials with smaller ionic radius. The trend of dependence of the phase transformation temperature on ionic radius across the lanthanide series can be explained using a quasi-chemical approximation (QCA) whereby the strain effect plays an important role on the order-disorder transition due to the effect of oxygen content on the CuO chain sites.

  19. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  20. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    NASA Astrophysics Data System (ADS)

    Malik, Bilal A.; Malik, Manzoor A.; Asokan, K.

    2016-04-01

    We report the superconducting state properties of YBa2Cu3O7 (YBCO) on introduction of BaZrO3 (BZO) as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt%) composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  1. Itinerant ferromagnetism and p +i p' superconductivity in doped bilayer silicene

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Da; Yang, Fan; Yao, Yugui

    2015-09-01

    We study the electronic instabilities of doped bilayer silicene using the random phase approximation. In contrast to the singlet d +i d' superconductivity at the low doping region, we find that the system is an itinerant ferromagnet in the narrow doping regions around the Van Hove singularities, and a triplet p +i p' superconductor in the vicinity of these regions. Adding a weak Kane-Mele spin-orbit coupling to the system further singles out the time-reversal invariant equal-spin helical p +i p' pairing as the leading instability. The triplet pairing identified here is driven by the ferromagnetic fluctuations, which become strong and enhance the superconducting critical temperature remarkably near the phase boundaries between ferromagnetism and superconductivity.

  2. Combinatorial optimization using dynamical phase transitions in driven-dissipative systems

    NASA Astrophysics Data System (ADS)

    Leleu, Timothée; Yamamoto, Yoshihisa; Utsunomiya, Shoko; Aihara, Kazuyuki

    2017-02-01

    The dynamics of driven-dissipative systems is shown to be well-fitted for achieving efficient combinatorial optimization. The proposed method can be applied to solve any combinatorial optimization problem that is equivalent to minimizing an Ising Hamiltonian. Moreover, the dynamics considered can be implemented using various physical systems as it is based on generic dynamics—the normal form of the supercritical pitchfork bifurcation. The computational principle of the proposed method relies on an hybrid analog-digital representation of the binary Ising spins by considering the gradient descent of a Lyapunov function that is the sum of an analog Ising Hamiltonian and archetypal single or double-well potentials. By gradually changing the shape of the latter potentials from a single to double well shape, it can be shown that the first nonzero steady states to become stable are associated with global minima of the Ising Hamiltonian, under the approximation that all analog spins have the same amplitude. In the more general case, the heterogeneity in amplitude between analog spins induces the stabilization of local minima, which reduces the quality of solutions to combinatorial optimization problems. However, we show that the heterogeneity in amplitude can be reduced by setting the parameters of the driving signal near a regime, called the dynamic phase transition, where the analog spins' DC components map more accurately the global minima of the Ising Hamiltonian which, in turn, increases the quality of solutions found. Last, we discuss the possibility of a physical implementation of the proposed method using networks of degenerate optical parametric oscillators.

  3. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  4. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  5. Interplay between superconductivity and magnetism in iron-based superconductors

    SciTech Connect

    Chubukov, Andrey V

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  6. An organizing principle for two-dimensional strongly correlated superconductivity

    NASA Astrophysics Data System (ADS)

    Fratino, L.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2016-03-01

    Superconductivity in the cuprates exhibits many unusual features. We study the two-dimensional Hubbard model with plaquette dynamical mean-field theory to address these unusual features and relate them to other normal-state phenomena, such as the pseudogap. Previous studies with this method found that upon doping the Mott insulator at low temperature a pseudogap phase appears. The low-temperature transition between that phase and the correlated metal at higher doping is first-order. A series of crossovers emerge along the Widom line extension of that first-order transition in the supercritical region. Here we show that the highly asymmetric dome of the dynamical mean-field superconducting transition temperature , the maximum of the condensation energy as a function of doping, the correlation between maximum and normal-state scattering rate, the change from potential-energy driven to kinetic-energy driven pairing mechanisms can all be understood as remnants of the normal state first-order transition and its associated crossovers that also act as an organizing principle for the superconducting state.

  7. An organizing principle for two-dimensional strongly correlated superconductivity

    PubMed Central

    Fratino, L.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2016-01-01

    Superconductivity in the cuprates exhibits many unusual features. We study the two-dimensional Hubbard model with plaquette dynamical mean-field theory to address these unusual features and relate them to other normal-state phenomena, such as the pseudogap. Previous studies with this method found that upon doping the Mott insulator at low temperature a pseudogap phase appears. The low-temperature transition between that phase and the correlated metal at higher doping is first-order. A series of crossovers emerge along the Widom line extension of that first-order transition in the supercritical region. Here we show that the highly asymmetric dome of the dynamical mean-field superconducting transition temperature , the maximum of the condensation energy as a function of doping, the correlation between maximum and normal-state scattering rate, the change from potential-energy driven to kinetic-energy driven pairing mechanisms can all be understood as remnants of the normal state first-order transition and its associated crossovers that also act as an organizing principle for the superconducting state. PMID:26964524

  8. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  9. Superconducting Metastable Compounds.

    PubMed

    Luo, H L; Merriam, M F; Hamilton, D C

    1964-08-07

    A number of metastable phases, germanides and tellurides of gold and silver, have been prepared, analyzed by x-ray diffraction, and investigated for superconductivity. The new superconductors and their transition temperatures are AgTe(3) (2.6 degrees K), Ag(4)Ge (0.85 degrees K), Au(3)Te(5) (1.62 degrees K), and Au(1-x)Ge(x) (0.99 degrees K-1.63 degrees K) where (0.27 superconduct above 0.32 degrees K.

  10. Steady-state phases and tunneling-induced instabilities in the driven dissipative Bose-Hubbard model.

    PubMed

    Le Boité, Alexandre; Orso, Giuliano; Ciuti, Cristiano

    2013-06-07

    We determine the steady-state phases of a driven-dissipative Bose-Hubbard model, describing, e.g., an array of coherently pumped nonlinear cavities with a finite photon lifetime. Within a mean-field master equation approach using exact quantum solutions for the one-site problem, we show that the system exhibits a tunneling-induced transition between monostable and bistable phases. We characterize the corresponding quantum correlations, highlighting the essential differences with respect to the equilibrium case. We also find collective excitations with a flat energy-momentum dispersion over the entire Brillouin zone that trigger modulational instabilities at specific wave vectors.

  11. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  12. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  13. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  14. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  15. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    PubMed

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  16. Multi-phase hybrid simulation of energetic particle driven magnetohydrodynamic instabilities in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Todo, Y.

    2016-11-01

    Magnetohydrodynamic (MHD) instabilities driven by energetic particles in tokamak plasmas and the energetic particle distribution formed with the instabilities, neutral beam injection, and collisions are investigated with hybrid simulations for energetic particles and an MHD fluid. The multi-phase simulation, which is a combination of classical simulation and hybrid simulation, is applied to examine the distribution formation process in the collisional slowing-down time scale of energetic ions for various beam deposition power ({P}{NBI}) and slowing-down time ({τ }{{s}}). The physical parameters other than {P}{NBI} and {τ }{{s}} are similar to those of a Tokamak Fusion Test Reactor (TFTR) experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874). For {P}{NBI} = 10 MW and {τ }{{s}} = 100 ms, which is similar to the TFTR experiment, the bursts of toroidal Alfvén eigenmodes take place with a time interval 2 ms, which is close to that observed in the experiment. The maximum radial velocity amplitude (v r) of the dominant TAE at the bursts in the simulation is {v}{{r}}/{v}{{A}}∼ 3× {10}-3 where v A is the Alfvén velocity at the plasma center. For {P}{NBI} = 5 MW and {τ }{{s}} = 20 ms, the amplitude of the dominant TAE is kept at a constant level {v}{{r}}/{v}{{A}}∼ 4× {10}-4. The intermittency of TAE rises with increasing {P}{NBI} and increasing {τ }{{s}} (= decreasing collision frequency). With increasing volume-averaged classical energetic ion pressure, which is well proportional to {P}{NBI}{τ }{{s}}, the energetic ion confinement degrades monotonically due to the transport by the instabilities. The volume-averaged energetic ion pressure depends only on the volume-averaged classical energetic ion pressure, not independently on {P}{NBI} or {τ }{{s}}. The energetic ion pressure profile resiliency, where the increase in energetic ion pressure profile is saturated, is found for the cases with the highest {P}{NBI}{τ }{{s}} where the TAE bursts take place.

  17. Predicted Suppression of the Superconducting Transition of New High-Pressure Yttrium Phases with Increasing Pressure from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Hu, Qing-Miao; Yang, Rui

    2012-10-01

    Structure searches for new high-pressure phases of Y metal have been performed by using evolutionary algorithms in conjunction with a first-principles, pseudopotential plane-wave method based on density functional theory. The oF16-Fddd and hP3-P3121 phases are predicted to be energetically favorable at pressures over 97 GPa. These two phases are shown to be dynamically stable by computing their phonon dispersions. We thus propose that oF16-Fddd and hP3-P3121 are the most probable crystal structures Y may take in the 97-206 GPa range. The superconducting critical temperatures (Tc) of the new phases are estimated using the Allen-Dynes formula. The Tc is predicted to decrease with increasing pressure over about 100 GPa, in sharp contrast to its observed monotonic increase under lower pressure. The electronic origins of the stabilities of the proposed high-pressure phases have also been investigated.

  18. Phase diagram and superconductivity at 58.1 K in α-FeAs-free SmFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Fujioka, M.; Denholme, S. J.; Ozaki, T.; Okazaki, H.; Deguchi, K.; Demura, S.; Hara, H.; Watanabe, T.; Takeya, H.; Yamaguchi, T.; Kumakura, H.; Takano, Y.

    2013-08-01

    The phase diagram of SmFeAsO1-xFx in terms of x is exhibited in this study. Specimens of SmFeAsO1-xFx from x = 0 to x = 0.3 were prepared by low-temperature sintering with slow cooling. The low-temperature sintering suppresses the formation of the amorphous FeAs, which is inevitably produced as an impurity when using high-temperature sintering. Moreover, slow cooling is effective in obtaining a high fluorine concentration. The compositional change from feedstock composition is quite small after this synthesis. We can reproducibly observe a record superconducting transition for an iron-based superconductor at 58.1 K. This achievement of a high superconducting transition is due to the success in substituting a large amount of fluorine. A shrinking of the a lattice parameter caused by fluorine substitution is observed and the substitutional rate of fluorine changes at x = 0.16.

  19. Influence of simultaneous doping of Sb and Pb on phase formation, superconducting and microstructural characteristics of HgBa 2Ca 2Cu 3O 8+ δ

    NASA Astrophysics Data System (ADS)

    Giri, Rajiv; Tiwari, R. S.; Srivastava, O. N.

    2007-01-01

    We report systematic studies of structural, microstructural and transport properties of (Hg 0.80Sb 0.2- xPb x)Ba 2Ca 2Cu 3O 8+ δ (where x = 0.0, 0.05, 0.1, 0.15, 0.2) compounds. Bulk polycrystalline samples have been prepared by two-step solid-state reaction route at ambient pressure. It has been observed that simultaneous substitution of Sb and Pb at Hg site in oxygen deficient HgO δ layer of HgBa 2Ca 2Cu 3O 8+ δ cuprate high- Tc superconductor leads to the formation of Hg-1223 as the dominant phase. Microstructural investigations of the as grown samples employing scanning electron microscopy reveal single crystal like large grains embodying spiral like features. Superconducting properties particularly transport current density ( Jct) have been found to be sensitive to these microstructural features. As for example (Hg 0.80Sb 0.05Pb 0.15)Ba 2Ca 2Cu 3O 8+ δ compound which exhibits single crystal like large grains (∼50 μm) and appears to result through spiral growth mechanism, shows highest Jct (∼1.85 × 10 3 A/cm 2) at 77 K. A possible mechanism for the generation of spiral like features and correlation between microstructural features and superconducting properties have been put forward.

  20. Characterization of the phase composition, crystal structure and superconducting properties of Fe1.02SeyTe1-y-xSx

    NASA Astrophysics Data System (ADS)

    Abouhaswa, A. S.; Merentsov, A. I.; Baranov, N. V.

    2016-08-01

    Two series of the Fe1.02Se0.5Te0.5-xSx (I) and Fe1.02Se0.4Te0.6-xSx (II) samples with the sulfur for tellurium substitution and with the invariable Se concentrations have been synthesized and studied by means of X-ray diffraction, scanning electron microscopy, electrical resistivity and magnetic susceptibility measurements. The superconducting PbO-type phase is found to persists in the first series up to x = 0.4 and in the second one up to x = 0.5. Despite the lower ionic radius of sulfur in comparison with tellurium the replacement of tellurium by sulfur does not lead to contraction of the unit cell volume of the superconducting phase in both I and II series with ternary mixture of chalcogens. Variations of the lattice parameters caused by the S for Te substitution in the Fe1.02Se0.5Te0.5-xSx and Fe1.02Se0.4Te0.6-xSx samples are found to be less pronounced than that reported for the Fe1.02Te0.5Se0.5-xSx system and are accompanied by lowering of the critical temperature. The behavior of the lattice parameters and critical temperature of Fe(S,Se,Te) materials with the ternary mixture of chalcogens at substitutions is ascribed to the changes in the volume fraction and chemical compositions of the coexisting tetragonal and hexagonal phases.

  1. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-03-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.

  2. Vortex-glass transformation within the surface superconducting state of β-phase Mo1-x Re x alloys

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Chattopadhyay, M. K.; Sharath Chandra, L. S.; Rawat, R.; Roy, S. B.

    2017-02-01

    We have performed an experimental study on the temperature dependence of electrical resistivity ρ(T) and heat capacity C(T) of the Mo{}1-xRe x (x=0.20,0.25) alloy superconductors in different magnetic fields. In the presence of applied magnetic field, the electrical resistivity of these alloys goes to zero at a temperature well above the bulk superconducting transition temperature obtained with the help of heat capacity measurements in the same magnetic field. Our study indicates the presence of a surface superconducting state in these alloys, where the flux lines are pinned in the surface sheath of the superconductor. The configuration of the flux lines (two-dimensional pancake-like) in the surface sheath is understood in the realm of the flux-spot model. Experimental evidence in support of the surface mixed-state state or ‘Kulik vortex-state’ and the occurrence of a vortex-liquid to vortex-glass transition is presented.

  3. Publisher's Note: High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressure [Phys. Rev. B 91 , 060508(R) (2015)

    DOE PAGES

    Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...

    2015-03-09

    Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe2As2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature Tc finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum Tc and reversal of pressure dependence at this pressure. Upon applying higher pressures, this Tc is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phase transition into a collapsed tetragonalmore » phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe2As2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-Tc superconductivity in iron pnictide superconductors.« less

  4. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    NASA Astrophysics Data System (ADS)

    Acharyya, Muktish; Halder, Ajay

    2017-03-01

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases.

  5. A fully superconducting bearing system for flywheel applications

    NASA Astrophysics Data System (ADS)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  6. Spherical neutron polarimetry of the magnetic structure in HoNi{sub 2}B{sub 2}C: Interplay between magnetic phases and superconductivity

    SciTech Connect

    Schneider, M.; Zaharko, O.; Gasser, U.; Kreyssig, A.; Brown, P. J.; Canfield, P. C.

    2006-09-01

    Spherical neutron polarimetry has been used to answer open questions about different magnetic phases in HoNi{sub 2}B{sub 2}C, which are important in their interplay with superconductivity. We established that the incommensurate a{sup *} structure of k{sub 3}=(0.585 0 0) at 5.4 K in a zero magnetic field is a transverse-amplitude modulated wave with the magnetic moment along the b direction of the tetragonal structure. The depolarization of a neutron beam scattered from the k{sub 2}=(0 0 0.915) reflections reveals a multidomain state but does not allow an unambiguous determination of the spin configuration. Based on present knowledge of borocarbides and other rare-earth systems we give preference to a long-range incommensurate helical structure as the origin of the k{sub 2}=(0 0 0.915) reflections.

  7. Anisotropic phase diagram and superconducting fluctuations of single-crystalline SmFeAsO0.85F0.15

    NASA Astrophysics Data System (ADS)

    Welp, U.; Chaparro, C.; Koshelev, A. E.; Kwok, W. K.; Rydh, A.; Zhigadlo, N. D.; Karpinski, J.; Weyeneth, S.

    2011-03-01

    We report on the specific-heat determination of the anisotropic phase diagram of single crystals of optimally doped SmFeAsO1-xFx. In zero field, we find a clear cusplike anomaly in C/T with ΔC/Tc=24 mJ/mol K2 at Tc=49.5 K. In magnetic fields along the c axis, pronounced superconducting fluctuations induce broadening and suppression of the specific-heat anomaly which can be described using three-dimensional lowest-Landau-level scaling with an upper critical field slope of -3.5 T/K and an anisotropy of Γ =8. The small value of ΔC/Tc yields a Sommerfeld coefficient γ ˜ 8 mJ/mol K2, indicating that SmFeAsO1-xFx is characterized by a modest density of states and strong coupling.

  8. Superconductivity in Weyl semimetal candidate MoTe2.

    PubMed

    Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2016-03-14

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

  9. Superconductivity in Weyl semimetal candidate MoTe2

    PubMed Central

    Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450

  10. Chromatographic evaluation of reversed-phase/anion-exchange/cation-exchange trimodal stationary phases prepared by electrostatically driven self-assembly process.

    PubMed

    Liu, Xiaodong; Pohl, Christopher; Woodruff, Andrew; Chen, Jinhua

    2011-06-03

    This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas.

  11. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    PubMed Central

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; Gao, Peng; Ding, Qi; Yu, Young-Sang; Wang, Feng; Cabana, Jordi; Wang, Jun; Jin, Song

    2015-01-01

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge and charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. These mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries. PMID:25892338

  12. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    SciTech Connect

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; Gao, Peng; Ding, Qi; Yu, Young-Sang; Wang, Feng; Cabana, Jordi; Wang, Jun; Jin, Song

    2015-04-20

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge and charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.

  13. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging.

    PubMed

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; Gao, Peng; Ding, Qi; Yu, Young-Sang; Wang, Feng; Cabana, Jordi; Wang, Jun; Jin, Song

    2015-04-20

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge and charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. These mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.

  14. Phase Diagram Calculation of Gas Mixtures for Refrigeration; Reflection & Transmission Coefficients and the Effective Mass: Superconducting Proximity I-V Measurements.

    NASA Astrophysics Data System (ADS)

    Friedmann, Gideon

    The efficiency of Joule-Thomson refrigerators greatly improves with the addition of hydrocarbons to nitrogen as coolant, and is highly dependent on the mixture composition. To optimize it, we calculated the mixture phase diagram using the Peng-Robinson equation of state. A program was developed to solve numerically a set of coupled non-linear equations for the equilibrium of the vapor and liquid phases of each mixture component. The program is highly efficient, quite stable, and reliable. Gases can be easily added to the program's database. We found that the cooling efficiency of the mixtures has a sharp ridge in composition space, and explain this. To better understand tunneling spectra of the high T_{rm c} cuprate superconductors, we analyzed the one-dimensional behavior of the wavefunction of a free particle striking a crystal interface. We describe the free particle using a wavepacket of plane waves, and the crystal using the Kronig-Penney model. We find that when the wavepacket is spread over many unit cells, it behaves like a free particle wavepacket striking a small potential step. The reflection and transmission coefficients are derived and one finds that they do not contain the particle's effective mass. We determine that the boundary conditions used in a standard effective mass approach must be modified to make it work. We conclude that one should not use the effective mass approximation in treating high T_{rm c} superconductor interfaces. We measured the dynamic resistance of a superconducting -normal metal-normal metal (SNN') geometry and observed that N', a superconductor at low enough temperatures, displays superconducting properties above its critical temperature. They disappear well below the critical temperature of S. We present a simple model of the proximity effect, which is self-consistent at any temperature and good for arbitrary thicknesses of N. The model shows how the superconducting gap decays with the distance from S. We observe that the

  15. Theory on Superconducting Transition from Pseudogap State

    NASA Astrophysics Data System (ADS)

    Yanase, Youichi; Jujo, Takanobu; Yamada, Kosaku

    2000-11-01

    The anomalous properties of High-T c cuprates are investigated both in the normal state and in the superconducting state. In particular, we pay attention to the pseudogap in the normal state and the phase transition from the pseudogap state to the superconducting state. The pseudogap phenomena observed in cuprates are naturally understood as a precursor of the strong coupling superconductivity. We have previously shown by using the self-consistent T-matrix calculation that the pseudogap is a result of the strong superconducting fluctuations which are accompanied by the strong coupling superconductivity in quasi-two dimensional systems [J. Phys. Soc. Jpn. 68 (1999) 2999]. We extend the scenario to the superconducting state. The close relation between the pseudogap state and the superconducting state is pointed out. Once the superconducting phase transition occurs, the superconducting order parameter rapidly grows rather than the result of BCS theory. With the rapid growth of the order parameter, the gap structure becomes sharp, while it is remarkably broad in the pseudogap state. The characteristic energy scale of the gap does not change. These results well explain the phase transition observed in the spectroscopic measurements. Further, we calculate the magnetic and transport properties which show the pseudogap phenomena. The comprehensive understanding of the NMR, the neutron scattering, the optical conductivity and the London penetration depth is obtained both in the pseudogap state and in the superconducting state.

  16. Search for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  17. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  18. Search for superconductivity in micrometeorites.

    PubMed

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  19. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  20. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  1. Unconventional superconductivity in heavy-fermion compounds

    NASA Astrophysics Data System (ADS)

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-07-01

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  2. Theoretical modeling of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.

  3. Possible interaction driven topological phases in (111) bilayers of LaNiO3

    SciTech Connect

    Yang, Kai-Yu; Zhu, Wenguang; Xiao, Di; Okamoto, Satoshi; Wang, Ziqiang; Ran, Ying

    2011-01-01

    We use the variational mean-field approach to systematically study the phase diagram of a bilayer heterostructure of the correlated transition metal oxide LaNiO3, grown along the (111) direction. The Ni3+ ions with d7 (or e1g) configuration form a buckled honeycomb lattice. We show that as a function of the strength of the on-site interactions, various topological phases emerge. In the presence of a reasonable size of the Hund s coupling, as the correlation is tuned from intermediate to strong, the following sequence of phases is found: (1) a Dirac half-semimetal phase, (2) a quantum anomalous Hall insulator (QAHI) phase with Chern number one, and (3) a ferromagnetic nematic phase breaking the lattice point group symmetry. The spin-orbit couplings and magnetism are both dynamically generated in the QAHI phase.

  4. Self-scanned single-frequency operation of a fiber laser driven by a self-induced phase grating

    NASA Astrophysics Data System (ADS)

    Lobach, I. A.; Kablukov, S. I.; Podivilov, E. V.; Babin, S. A.

    2014-04-01

    The selector-free single-frequency operation of an Yb-doped fiber laser with scanning in the range of ˜20 nm is demonstrated. The frequency and intensity evolution is shown to be driven by a self-induced phase grating in the active fiber defined by gain saturation in a standing-wave. A theory has been developed that describes well the main features of the experiment and provides possibilities for optimization of laser parameters. Perspectives for utilizing the self-scanned laser in fundamental studies and practical applications are discussed.

  5. Structural Evolution and Phase Stability of Hume-Rothery Phase in a Mechanically Driven Nanostructured Ag-15 at. pct Sn Alloy

    NASA Astrophysics Data System (ADS)

    Chithra, S.; Malviya, K. D.; Chattopadhyay, K.

    2013-10-01

    The paper reports phase evolution in mechanically driven Ag-15 at. pct Sn alloy powder starting with elemental powders in order to establish the feasibility of designing nanocomposites of a Ag-Sn solid solution. This alloy lies in the phase field of the hexagonal ζ-phase which is a well-known Hume-Rothery electron compound with an electron-to-atom ratio of about 1.45 and hexagonal crystal structure (a = 0.2966 nm, c = 0.4782 nm). Through a systematic use of X-ray diffraction and transmission electron microscopy, the results establish the formation of the ζ-phase which co-exists with the Ag solid solution during the initial phase of milling. Mechanical milling for long duration (55 hours) destabilizes the ζ-phase. A complete solid solution of Ag with a grain size of ~8 nm could be achieved after 60 hours of milling. Additional milling can induce decomposition of the solid solution that results in a reappearance of ζ-phase. We present a detailed thermodynamic calculation which indicates that complete Ag solid solution of the present alloy composition would be possible if the crystallites size can be reduced below a certain critical size. In particular, we show that both Ag and ζ-phase grain sizes need to be taken into account for determining the metastable equilibrium and the phase change that has been experimentally observed. Finally, we argue that recrystallization processes set a limit to the achievable size of the nanoparticles with metastable Ag solid solution.

  6. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na(1-x)FeAs.

    PubMed

    Liu, Qingqing; Yu, Xiaohui; Wang, Xiancheng; Deng, Zheng; Lv, Yuxi; Zhu, Jinlong; Zhang, Sijia; Liu, Haozhe; Yang, Wenge; Wang, Lin; Mao, Hokwang; Shen, Guoyin; Lu, Zhong-Yi; Ren, Yang; Chen, Zhiqiang; Lin, Zhijun; Zhao, Yusheng; Jin, Changqing

    2011-05-25

    The effect of pressure on the crystalline structure and superconducting transition temperature (T(c)) of the 111-type Na(1-x)FeAs system using in situ high-pressure synchrotron X-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs(4) tetrahedron as a function of pressure based on Rietveld refinements on the powder X-ray diffraction patterns was obtained. The nonmonotonic T(c)(P) behavior of Na(1-x)FeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle of As-Fe-As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of T(c) for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.

  7. Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations

    NASA Astrophysics Data System (ADS)

    Kalagov, G. A.; Kompaniets, M. V.; Nalimov, M. Yu.

    2014-11-01

    We use quantum-field renormalization group methods to study the phase transition in an equilibrium system of nonrelativistic Fermi particles with the "density-density" interaction in the formalism of temperature Green's functions. We especially attend to the case of particles with spins greater than 1/2 or fermionic fields with additional indices for some reason. In the vicinity of the phase transition point, we reduce this model to a ϕ 4 -type theory with a matrix complex skew-symmetric field. We define a family of instantons of this model and investigate the asymptotic behavior of quantum field expansions in this model. We calculate the β-functions of the renormalization group equation through the third order in the ( 4 ∈)-scheme. In the physical space dimensions D = 2, 3, we resum solutions of the renormalization group equation on trajectories of invariant charges. Our results confirm the previously proposed suggestion that in the system under consideration, there is a first-order phase transition into a superconducting state that occurs at a higher temperature than the classical theory predicts.

  8. Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide

    PubMed Central

    2013-01-01

    Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709

  9. Reentrant Superconductivity Driven by Quantum Tricritical Fluctuations in URhGe: Evidence from Co 59 NMR in URh0.9Co0.1Ge

    NASA Astrophysics Data System (ADS)

    Tokunaga, Y.; Aoki, D.; Mayaffre, H.; Krämer, S.; Julien, M.-H.; Berthier, C.; Horvatić, M.; Sakai, H.; Kambe, S.; Araki, S.

    2015-05-01

    Our measurements of the Co 59 NMR spin-spin relaxation in URh0.9Co0.1Ge reveal a divergence of electronic spin fluctuations in the vicinity of the field-induced quantum critical point at HR≈13 T , around which reentrant superconductivity (RSC) occurs in the ferromagnetic heavy fermion compound URhGe. We map out the strength of spin fluctuations in the (Hb,Hc ) plane of magnetic field components and show that critical fluctuations develop in the same limited region near the field HR as that where RSC is observed. This strongly suggests these quantum fluctuations as the pairing glue responsible for the RSC. The fluctuations observed are characteristic of a tricritical point, followed by a phase bifurcation toward quantum critical end points.

  10. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  11. Superconducting-semiconducting nanowire hybrid microwave circuits

    NASA Astrophysics Data System (ADS)

    de Lange, G.; van Heck, B.; Bruno, A.; van Woerkom, D.; Geresdi, A.; Plissard, S. R.; Bakkers, E. P. A. M.; Akhmerov, A. R.; Dicarlo, L.

    2015-03-01

    Hybrid superconducting-semiconducting circuits offer a versatile platform for studying quantum effects in mesoscopic solid-state systems. We report the realization of hybrid artificial atoms based on Indium-Arsenide nanowire Josephson elements in a circuit quantum electrodynamics architecture. Transmon-like single-junction devices have gate-tunable transition frequencies. Split-junction devices behave as transmons near zero applied flux and as flux qubits near half flux quantum, wherein states with oppositely flowing persistent current can be driven by microwaves. This flux-qubit like behaviour results from non-sinusoidal current-phase relations in the nanowire Josephson elements. These hybrid microwave circuits are made entirely of magnetic-field compatible materials, offering new opportunities for hybrid experiments combining microwave circuits with polarized spin ensembles and Majorana bound states. We acknowledge funding from Microsoft Research and the Dutch Organization for Fundamental Research on Matter (FOM).

  12. Experimental study of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    A concept for a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor has recently been described, along with a theoretical model for simulating its operation and performance (Zhang, in preparation, 2003). This paper describes experiments that have been carried out to systematically validate the model, and to characterize the performance of the cryocooler in several key areas. These include: oscillatory flow within the cooler, correlation between the compression piston and the free displacer, the impact of the cold-tip temperature and phase-adjusting clearance gaps on cooler performance. The minimum cold-tip temperature is used as primary gauge of refrigeration performance. Real-time measurements of gas pressures in different chambers, displacements of the compression piston and the free displacer have been performed to reveal the internal physical processes. The experimental results are found to be in good agreement with the simulated ones.

  13. Synthesis of diamond-like phase from graphite by ultrafast laser driven dynamical compression

    PubMed Central

    Maia, Francisco C. B.; Samad, Ricardo E.; Bettini, Jefferson; Freitas, Raul O.; Vieira Junior, Nilson D.; Souza-Neto, Narcizo M.

    2015-01-01

    Rapid variations of the environmental energy caused by ultrashort laser pulses have induced phase transitions in carbon allotropes, therefore bringing the promise of revealing new carbon phases. Here, by exposing polycrystalline graphite to 25 fs laser pulses at 4 J/cm2 fluence under standard air atmosphere, we demonstrated the synthesis of translucent micrometer-sized structures carrying diamond-like and onion-like carbon phases. Texturized domains of the diamond phase were also identified. Concerning different synthesized carbon forms, pulse superposition and singularities of the thermodynamical process, we pinpoint the synthesis mechanism by the laser-induced subsequent products energetically evolving to attain the diamond-like phase. PMID:26149413

  14. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  15. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  16. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  17. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices.

    PubMed

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  18. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force.

    PubMed

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  19. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  20. Pressure-driven phase transition mechanisms revealed by quantum chemistry: l-serine polymorphs.

    PubMed

    Rychkov, Denis A; Stare, Jernej; Boldyreva, Elena V

    2017-03-01

    The present study delivers a computational approach for the understanding of the mechanism of phase transitions between polymorphs of small organic molecules. By using state of the art periodic DFT calculations augmented with dispersion corrections and an external stress tensor together with gas-phase cluster calculations, we thoroughly explained the reversible phase transitions of three polymorphs of the model system, namely crystalline l-serine in the pressure range up to 8 GPa. This study has shown that at the macroscopic level the main driving force of the phase transitions is the decrease in the volume of the crystal unit cell, which contributes to the enthalpy difference between the two forms, but not to the difference in their internal crystal energies. At the microscopic level we suggest that hydrogen bond overstrain leads to a martensitic-like, cooperative, displacive phase transition with substantial experimental hysteresis, while no such overstrain was found for the "normal type", atom per atom, reconstructive phase transition. The predicted pressures for the phase transitions deducted by the minimum enthalpy criterion are in reasonable agreement with the observed ones. By delivering unambiguous explanations not provided by previous studies and probably not accessible to experiment, this work demonstrates the predictive and explanatory power of quantum chemistry, confirming its indispensable role in structural studies.

  1. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  2. Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator

    SciTech Connect

    Pukhov, A.; Kumar, N.; Tueckmantel, T.; Upadhyay, A.; Lotov, K.; Muggli, P.; Khudik, V.; Siemon, C.; Shvets, G.

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  3. Different pathways of phase transition in a V-Si system driven by mechanical alloying

    SciTech Connect

    Liu, L.; Lu, L.; Lai, M.O.; Magini, M.; Fei, G.T.; Zhang, L.D.

    1998-04-01

    Solid state reactions induced by mechanical alloying of an elemental powder mixture of V and Si with a composition of V{sub 75}Si{sub 25} were investigated using X-ray diffraction and scanning and transmission electron microscopy. It was found that the phase transitions in this system are closely related to the milling intensity. High-energy milling mainly causes the formation of intermetallic compounds, whereas low-energy milling leads to amorphization. The thermodynamics and kinetics related to the different pathways of V-Si phase transition are briefly discussed in this paper. The effect of air contamination on phase transition is also addressed.

  4. Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator.

    PubMed

    Pukhov, A; Kumar, N; Tückmantel, T; Upadhyay, A; Lotov, K; Muggli, P; Khudik, V; Siemon, C; Shvets, G

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  5. Randomness-driven Quantum Phase Transition in Bond-alternating Haldane Chain

    NASA Astrophysics Data System (ADS)

    Arakawa, Takayuki; Todo, Synge; Takayama, Hajime

    2005-04-01

    The effect of bond randomness on the spin-gapped ground state of the spin-1 bond-alternating antiferromagnetic Heisenberg chain is discussed. By using the loop cluster quantum Monte Carlo method, we investigate the stability of topological order in terms of the recently proposed twist order parameter [M. Nakamura and S. Todo: Phys. Rev. Lett. 89 (2002) 077204]. It is observed that the dimer phases as well as the Haldane phase of the spin-1 Heisenberg chain are robust against a weak randomness, though the valence-bond-solid-like topological order in the latter phase is destroyed by introducing a disorder stronger than the critical value.

  6. Pressure-induced phase transitions and correlation between structure and superconductivity in iron-based superconductor Ce(O(0.84)F(0.16))FeAs.

    PubMed

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing

    2013-07-15

    High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.

  7. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.

    PubMed

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-04

    Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

  8. THz-driven zero-slippage IFEL scheme for phase space manipulation

    NASA Astrophysics Data System (ADS)

    Curry, E.; Fabbri, S.; Musumeci, P.; Gover, A.

    2016-11-01

    We describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With a 10 {MV} {{{m}}}-1 THz peak field, our simulation model predicts compression of a 6 {MeV} 100 {fs} electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter. Work supported by DOE grant DE-SC0009914 and NSF grant PHY-1415583.

  9. Data-driven risk identification in phase III clinical trials using central statistical monitoring.

    PubMed

    Timmermans, Catherine; Venet, David; Burzykowski, Tomasz

    2016-02-01

    Our interest lies in quality control for clinical trials, in the context of risk-based monitoring (RBM). We specifically study the use of central statistical monitoring (CSM) to support RBM. Under an RBM paradigm, we claim that CSM has a key role to play in identifying the "risks to the most critical data elements and processes" that will drive targeted oversight. In order to support this claim, we first see how to characterize the risks that may affect clinical trials. We then discuss how CSM can be understood as a tool for providing a set of data-driven key risk indicators (KRIs), which help to organize adaptive targeted monitoring. Several case studies are provided where issues in a clinical trial have been identified thanks to targeted investigation after the identification of a risk using CSM. Using CSM to build data-driven KRIs helps to identify different kinds of issues in clinical trials. This ability is directly linked with the exhaustiveness of the CSM approach and its flexibility in the definition of the risks that are searched for when identifying the KRIs. In practice, a CSM assessment of the clinical database seems essential to ensure data quality. The atypical data patterns found in some centers and variables are seen as KRIs under a RBM approach. Targeted monitoring or data management queries can be used to confirm whether the KRIs point to an actual issue or not.

  10. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  11. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    SciTech Connect

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  12. Phase Transitions in Quasi-one-dimensional Selenide BaNbSe 3and Superconductivity in BaNb 2Se 5

    NASA Astrophysics Data System (ADS)

    Ohtani, T.; Honji, S.; Takano, M.

    1997-08-01

    Samples with various compositions around BaNbSe3were prepared. X-ray analysis revealed that the compound is stable at the composition of BaNb0.80Se3, which formally requires Nb5+ions (d0). The single-phase region extends to the composition BaNb0.95Se3. A semiconductor-to-metal transition was observed at ∼140 K in BaNb0.95Se3. Seebeck measurements showed that the dominant carriers were electrons, which are considered to originate from Nb4+ions (d1) coexisting with Nb5+ions. On the basis of detailed phase study, the transition was revealed to be intrinsic to BaNb0.95Se3with a very slight Ba deficiency. BaNb0.95Se3with a slight Ba excess shows a semiconductor-to-semiconductor transition at 200-300 K. Seebeck measurements showed that the dominant carriers are electrons above the transition and are holes below the transition. A new compound, BaNb2Se5with a BaTa2S5-type structure, was found to show superconductivity at 2.5 K.

  13. ALLOYING-DRIVEN PHASE STABILITY IN GROUP-VB TRANSITION METALS UNDER COMPRESSION

    SciTech Connect

    Landa, A; Soderlind, P

    2011-04-11

    The change in phase stability of Group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse acoustic phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular Group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series.

  14. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.

    PubMed Central

    Feigenson, G W; Buboltz, J T

    2001-01-01

    A ternary phase diagram is proposed for the hydrated lamellar lipid mixture dipalmitoylphosphatidylcholine/dilauroylphosphatidylcholine/cholesterol (DPPC/DLPC/cholesterol) at room temperature. The entire composition space has been thoroughly mapped by complementary experimental techniques, revealing interesting phase behavior that has not been previously described. Confocal fluorescence microscopy shows a regime of coexisting DPPC-rich ordered and DLPC-rich fluid lamellar phases, having an upper boundary at apparently constant cholesterol mole fraction chi(chol) approximately 0.16. Fluorescence resonance energy transfer experiments confirm the identification and extent of this two-phase regime and, furthermore, reveal a 1-phase regime between chi(chol) approximately 0.16 and 0.25, consisting of ordered and fluid nanoscopic domains. Dipyrene-PC excimer/monomer measurements confirm the new regime between chi(chol) approximately 0.16 and 0.25 and also show that rigidly ordered phases seem to disappear around chi(chol) approximately 0.25. This study should be considered as a step toward a more complete understanding of lateral heterogeneity within biomembranes. Cholesterol may play a role in domain separation on the nanometer scale. PMID:11371452

  15. Species-driven phases and increasing structure in early-successional plant communities.

    PubMed

    Zaplata, Markus K; Winter, Susanne; Fischer, Anton; Kollmann, Johannes; Ulrich, Werner

    2013-01-01

    Successional phases describe changes in ecological communities that proceed in steps rather than continuously. Despite their importance for the understanding of ecosystem development, there still exists no reliable definition of phases and no quantitative measure of phase transitions. In order to obtain these data, we investigated primary succession in an artificial catchment (6 ha) in eastern Germany over a period of 6 years. The data set consists of records of plant species and their cover values, and initial substrate properties, both from plots in a regular grid (20 m × 20 m) suitable for spatial data analysis. Community assembly was studied by analyses of species co-occurrence and nestedness. Additionally, we correlated lognormal and log series distributions of species abundance to each community. We here introduce a new general method for detection of successional phases based on the degree of transient spatial homogeneity in the study system. Spatially coherent vegetation patterns revealed nonoverlapping partitions within this sequence of primary succession and were characterized as two distinct ecological phases. Patterns of species co-occurrence were increasingly less random, and hence the importance of demographic stochasticity and neutral community assembly decreased during the study period. Our findings highlight the spatial dimension of successional phases and quantify the degree of change between these steps. They are an element for advancing a more reliable terminology of ecological successions.

  16. Effect of field driven phase transformations on the loss tangent of relaxor ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.; Liu, Tieqi; Lynch, Christopher S.

    2013-02-01

    The effect of a bias stress induced phase transformation on the large field dielectric loss in [001] cut and poled single crystal stack actuators of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT, x = 32) was experimentally characterized. Dielectric loss was observed to increase with compressive preload and electric field amplitude. The dielectric loss was determined by measuring the area within electric displacement vs. electric field hysteresis loops and the measured area was expressed in terms of an effective loss tangent. This approach matches the measured area within the hysteresis loop to an equivalent area ellipse in which the electric displacement lags the electric field by an amount, delta, under sinusoidal loading. The results collapse the measured loss as a function of bias stress and electric field amplitude reasonably close to a single curve. The measured dielectric loss behavior was attributed to the compressive stress preload driving a partial phase transformation from rhombohedral to orthorhombic and the electric field driving the reverse phase transformation from the stress induced orthorhombic phase to the zero stress rhombohedral phase. When the compressive bias stress partially or fully drives this phase transformation, the dielectric loss under unipolar electric field loading increases. This work is focused on quasi-static measurements. The large field dielectric loss is anticipated to be a function of frequency and temperature.

  17. Adsorption-Driven Catalytic and Photocatalytic Activity of Phase Tuned In2S3 Nanocrystals Synthesized via Ionic Liquids.

    PubMed

    Sharma, Rahul Kumar; Chouryal, Yogendra Nath; Chaudhari, Sushmita; Saravanakumar, Jeganathan; Dey, Suhash Ranjan; Ghosh, Pushpal

    2017-03-14

    Phase tuned quantum confined In2S3 nanocrystals are accessible solvothermally using task-specific ionic liquids (ILs) as structure directing agents. Selective tuning of size, shape, morphology and, most importantly, crystal phase of In2S3 is achieved by changing the alkyl side chain length, the H-bonding and aromatic -stacking ability of the 1-alkyl-3- methylimidazolium bromide ILs, [Cnmim]Br (n=2,4,6,8 and 10). It is observed that crystallite size is significantly less when ILs are used compared to the synthesis without ILs keeping the other reaction parameters same. At 150oC, when no IL is used, pure tetragonal form of -In2S3 appears however in presence of [Cnmim]Br [n=2,4], at the same reaction condition, a pure cubic phase crystallizes. However in case of methylimidazolium bromides with longer pendant alkyl chains such as hexyl (C6), octyl (C8) or decyl (C10), nanoparticles of the tetragonal polymorph form. Likewise, judicious choice of reaction temperature and precursors has a profound effect to obtain phase pure and morphology controlled nanocrystals. Furthermore, the adsorption driven catalytic and photocatalytic activity of as-prepared nanosized indium sulphide is confirmed by studying the degradation of crystal violet (CV) dye in presence of dark and visible light. Maximum 94.8 % catalytic efficiency is obtained for the In2S3 nanocrystals using tetramethylammonium bromide (TMAB) ionic liquid.

  18. Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS.

    PubMed

    Sorimoto, Keisuke; Tanizawa, Ken; Uetsuka, Hisato; Kawashima, Hitoshi; Mori, Masahiko; Hasama, Toshifumi; Ishikawa, Hiroshi; Tsuda, Hiroyuki

    2013-07-15

    A novel liquid crystal on silicon (LCOS)-based wavelength selective switch (WSS) is proposed, fabricated, and demonstrated. It employs a multilayered arrayed waveguide grating (AWG) as a wavelength multiplex/demultiplexer. The LCOS deflects spectrally decomposed beams channel by channel and switches them to desired waveguide layers of the multilayered AWG. In order to obtain the multilayered AWG with high yield, phase errors of the AWG is externally compensated for by an additional phase modulation with the LCOS. This additional phase modulation is applied to the equivalent image of the facet of the AWG, which is projected by a relay lens. In our previously-reported WSS configuration, somewhat large footprint and increased cost were the drawbacks, since two LCOSs were required: one LCOS was driven for the inter-port switching operation, and the other was for the phase-error compensation. In the newly proposed configuration, on the other hand, both switching and compensation operations are performed using a single LCOS. This reduction of the component count is realized by introducing the folded configuration with a reflector. The volume of the WSS optics is 80 × 100 × 60 mm3, which is approximately 40% smaller than the previous configuration. The polarization-dependent loss and inter-channel crosstalk are less than 1.5 dB and -21.0 dB, respectively. An error-free transmission of 40-Gbit/s NRZ-OOK signal through the WSS is successfully demonstrated.

  19. Quantum spin correlations through the superconducting-to-normal phase transition in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta.

    PubMed

    Wilson, Stephen D; Li, Shiliang; Zhao, Jun; Mu, Gang; Wen, Hai-Hu; Lynn, Jeffrey W; Freeman, Paul G; Regnault, Louis-Pierre; Habicht, Klaus; Dai, Pengcheng

    2007-09-25

    The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of high-transition-temperature (high T(c)) copper oxide superconductors, but their possible role in the electron pairing of superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-T(c) superconductors is a well defined magnetic resonance whose energy (E(R)) tracks T(c) (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-T(c) superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) (T(c) = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.

  20. Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.

    2016-02-01

    We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.

  1. Kohn anomaly in phonon driven superconductors

    NASA Astrophysics Data System (ADS)

    Das, M. P.; Chaudhury, R.

    2014-08-01

    Anomalies often occur in the physical world. Sometimes quite unexpectedly anomalies may give rise to new insight to an unrecognized phenomenon. In this paper we shall discuss about Kohn anomaly in a conventional phonon-driven superconductor by using a microscopic approach. Recently Aynajian et al.'s experiment showed a striking feature; the energy of phonon at a particular wave-vector is almost exactly equal to twice the energy of the superconducting gap. Although the phonon mechanism of superconductivity is well known for many conventional superconductors, as has been noted by Scalapino, the new experimental results reveal a genuine puzzle. In our recent work we have presented a detailed theoretical analysis with the help of microscopic calculations to unravel this mystery. We probe this aspect of phonon behaviour from the properties of electronic polarizability function in the superconducting phase of a Fermi liquid metal, leading to the appearance of a Kohn singularity. We show the crossover to the standard Kohn anomaly of the normal phase for temperatures above the transition temperature. Our analysis provides a nearly complete explanation of this new experimentally discovered phenomenon. This report is a shorter version of our recent work in JPCM.

  2. Temperature Driven Structural Phase Transition in Tetragonal-Like BiFeO3

    SciTech Connect

    Siemons, Wolter; Biegalski, Michael D; Nam, Joong Hee; Christen, Hans M

    2011-01-01

    Highly strained BiFeO{sub 3} exhibits a 'tetragonal-like, monoclinic' crystal structure found only in epitaxial films (with an out-of-plane lattice parameter exceeding the in-plane value by >20%). Previous work has shown that this phase is properly described as an MC monoclinic structure at room temperature [with a (010)pc symmetry plane, which contains the ferroelectric polarization]. Here, we show detailed temperature-dependent X-ray diffraction data that reveal a structural phase transition at {approx}100 C to a high-temperature M{sub A} phase ['tetragonal-like' but with a ({bar 1}10){sub pc} symmetry plane]. These results indicate that the ferroelectric properties and domain structures of the strained BiFeO{sub 3} are strongly temperature dependent.

  3. Flux-driven quantum phase transitions in two-leg Kitaev ladder topological superconductor systems

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Shao, L. B.; Pan, Y. M.; Shen, R.; Sheng, L.; Xing, D. Y.

    2016-12-01

    We investigate a two-leg ladder topological superconductor system consisting of two parallel Kitaev chains with interchain coupling. It is found that either uniform or staggered fluxes threading through the ladder holes may change the ladder system from the BDI class in the Altland-Zirnbauer (AZ) classification to the D class. After explicitly calculating the topological Z and/or Z2 indices and from the evolution of Majorana zero energy states (MZES), we obtain the flux-dependent phase diagrams, and find that quantum phase transitions between topologically distinct phases characterized by different number of MZES may happen by simply tuning the flux, which could be realized experimentally in ultracold systems.

  4. Phase Transition of Bosons Driven by a Staggered Gauge Field in AN Optical Lattice

    NASA Astrophysics Data System (ADS)

    Cha, Min-Chul

    2013-06-01

    We have studied the ground state properties of hard-core bosons in a two-leg optical ladder in the presence of uniform and staggered frustrations due to an artificial gauge field. By calculating the ground state via the Lanczos method, we find first-order phase transitions tuned by the staggered gauge field between the Meissner and the vortex states. The momentum distributions show that the Meissner state has edge and staggered currents, while the vortex states have vortex-solid or vortex-glass phases in the presence of a staggered field.

  5. Density functional study of the phase diagram and pressure-induced superconductivity in p: implication for spintronics.

    PubMed

    Ostanin, S; Trubitsin, V; Staunton, J B; Savrasov, S Y

    2003-08-22

    The high-pressure phase diagram of P is studied using density functional total energy, linear response lattice dynamics and model Debye-Grüneisen theories. The volume dependent electron-phonon coupling lambda approximately 0.7-0.9 is extracted for the bcc structure and found to increase with increasing volume. We propose that this phase might be realized in epitaxial thin films using templates such as V(100), Fe(100), or Cr(100) relevant to spintronics applications.

  6. Ductile superconducting copper-base alloys.

    PubMed

    Tsuei, C C

    1973-04-06

    A new class of ductile superconductors has been prepared by casting and appropriate heat treatments. These alloys superconduct between 4 degrees and 18 degrees K and contain at least 90 atom percent copper and a superconducting phase such as Nb(3)Sn or niobium. They can be processed into wires by conventional metallurgical techniques.

  7. Global and local superconductivity in boron-doped granular diamond.

    PubMed

    Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-04-02

    Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

  8. An ultrasonic motor driven by the phase-velocity difference between two traveling waves.

    PubMed

    Bai, Dongzhe; Ishii, Takaaki; Nakamura, Kentaro; Ueha, Sadayuki; Yonezawa, Toshiaki; Takahashi, Tomokazu

    2004-06-01

    This paper presents a new ultrasonic motor in which the rotor rotation speed is locked by the phase-velocity difference between the two traveling waves propagating on the stator and the rotor. First, the unique construction to excite two traveling waves both in the stator and the rotor is described. Then, the operation principle of the present motor is revealed by our careful experiments. Dynamics of the two traveling waves are measured by an in-plane laser Doppler vibrometer under various conditions, as well as the motor performances. Our experiments show that the rotation speed of the motor is equal to the phase-velocity difference between the two traveling waves on the contact surfaces of rotor and stator. It is confirmed that the rotor rotates so as to cancel the phase-velocity difference between the traveling vibrations along the circumferences of the rotor and stator. If the load does not exceed the maximum torque that is determined by the vibration amplitude, the rotation speed is subject only to the phase-velocity difference.

  9. Interaction driven quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, Jedediah; Natu, Stefan; Cole, William; Rizzi, Matteo; Spielman, Ian

    2016-05-01

    We study the interplay of spin orbit coupling and strong correlations present for ultra cold spin-1 bosons on a square optical lattice. In addition to the conventional spinful Mott and superfluid phases contained in the spin-1 Bose-Hubbard model, we find new lattice symmetry breaking phases. For weak interactions, the interplay between the lattice momentum and the spin-orbit wave-vector induces a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone. This state is characterized by spin density wave order, which arises from the spin-1 nature of the system. Interactions suppress this spin density wave order, and for sufficiently strong interactions the system becomes a Mott insulator. Inside the Mott lobes with an odd-integer filling we derive the effective low energy magnetic Hamiltonian. Focusing on the quasi-one-dimensional limit we solve the strongly coupled magnetic model in three ways: in its classical limit, with a spin-wave analysis, and using the density matrix renormalization group.

  10. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  11. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  12. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  13. Laboratory studies of humidity-driven phase transitions of perchlorate/chloride mixtures: Relevance to aqueous phases on Mars

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Tolbert, M. A.

    2012-12-01

    Perchlorate salts, known to exist on Mars, can readily absorb water vapor and deliquesce into aqueous solution. We have previously studied pure perchlorate and found that the deliquescence relative humidity (DRH) is <60% regardless of cation, hydration state or temperature (223 to 273 K). We have also shown that efflorescence (recrystallization) of perchlorate solutions is kinetically hindered, allowing supersaturation to occur at RH values below the DRH. In addition to perchlorate, Phoenix instruments found chloride, sulfate, carbonate, magnesium, sodium, potassium and calcium in the Martian regolith. The vertical and spatial distributions of these ions are unknown, but all were present in a single 1 g sample. It is therefore likely that these ions coexist with perchlorate. Many salts likely present in the regolith are less deliquescent than perchlorates, and it is important to understand how these additional species will affect perchlorate deliquescence. Here we study deliquescence (solid to aqueous transition) and efflorescence (aqueous to solid transition) of 3 perchlorate/chloride systems: KClO4/KCl at 253 K and NaClO4/NaCl and Mg(ClO4)2/MgCl2 at 243 and 253 K. A Raman microscope and environmental cell were used to monitor phase transitions of internally mixed perchlorate/chloride particles. The eutonic RH, where an aqueous phase first forms, is 30% RH for Mg(ClO4)2/MgCl2, 38% RH for NaClO4/NaCl and 82% RH for KClO4/KCl mixtures regardless of initial composition. We observed complete deliquescence of all salt mixtures at RH values below the DRH of the least deliquescent pure salt. When humidity is lowered, efflorescence of all solutions occurred below the DRH suggesting supersaturated solutions can exist. The low eutonic RH values of the sodium and magnesium perchlorate/chloride mixtures are significant for Mars, as these humidities can be reached at the Martian surface. It is likely that some salts in the regolith may exist as stable or metastable solutions

  14. Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials.

    PubMed

    Mok, Yeongbong; Nakayama, Daichi; Noh, Minwoo; Jang, Sangmok; Kim, Taeho; Lee, Yan

    2013-11-28

    Abrupt changes in effective concentration and osmotic pressure of lower critical solution temperature (LCST) mixtures facilitate the design of a continuous desalination method driven by a mild temperature gradient. We propose a prototype desalination system by circulating LCST mixtures between low and high temperature (low T and high T) units. Water molecules could be drawn from a high-salt solution to the LCST mixture through a semipermeable membrane at a temperature lower than the phase transition temperature, at which the effective osmotic pressure of the LCST mixture is higher than the high-salt solution. After transfer of water to the high T unit where the LCST mixture is phase-separated, the water-rich phase could release the drawn water into a well-diluted solution through the second membrane due to the significant decrease in effective concentration. The solute-rich phase could be recovered in the low T unit via a circulation process. The molar mass, phase transition temperature, and aqueous solubility of the LCST solute could be tuneable for the circulatory osmotic desalination system in which drawing, transfer, release of water, and the separation and recovery of the solutes could proceed simultaneously. Development of a practical desalination system that draws water molecules directly from seawater and produces low-salt water with high purity by mild temperature gradients, possibly induced by sunlight or waste heat, could be attainable by a careful design of the molecular structure and combination of the circulatory desalination systems based on low- and high-molar-mass LCST draw solutes.

  15. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    DOE PAGES

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...

    2015-04-20

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less

  16. Mn substitution-driven structural and magnetic phase evolution in Bi1-xSmxFeO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Khomchenko, V. A.; Troyanchuk, I. O.; Kovetskaya, M. I.; Paixão, J. A.

    2012-01-01

    X-ray diffraction and magnetization measurements of the Bi0.9Sm0.1Fe1-yMnyO3 and Bi0.86Sm0.14 Fe1-zMnzO3 (y ≤ 0.4, z ≤ 0.3) series were carried out in order to follow the effect of Mn doping on the room temperature crystal structure and magnetic properties of Sm-substituted BiFeO3. Initially polar rhombohedral Bi0.9Sm0.1FeO3 compound (space group R3c) was shown to undergo the Mn-substitution driven structural transformation into the orthorhombic Pnam phase at y ˜ 0.2. Further increasing of the Mn content stabilizes the modified structural phase demonstrating the features of incommensurability. In the Bi0.86Sm0.14Fe1-zMnzO3 series, the initially dominant antipolar orthorhombic Pnam phase transforms toward the nonpolar Pnma structure (z ˜ 0.3). Changes of the main magnetic state (from mixed antiferromagnetic/weak ferromagnetic to weak ferromagnetic) were found to correlate with the rhombohedral-to-orthorhombic transition; however, within the compositional range of the orthorhombically distorted compounds, the room temperature spontaneous magnetization rapidly decreases with increasing Mn content.

  17. Parametric investigation of a thermally driven QCD Deconfining Phase Transition in a finite volume at zero chemical potential

    NASA Astrophysics Data System (ADS)

    Bensalem, S.; Ait El Djoudi, A.

    2016-10-01

    This work deals with a statistical description of a thermally driven deconfining phase transition (DPT) from a hadronic gas consisting of massless pions to a color-singlet Quark- Gluon Plasma (QGP), in a finite volume. The thermodynamical approach, within a coexistence model is used to investigate the Quantum Chromo-Dynamics DPT occurring between the two phases, at vanishing chemical potential. Considering the color singletness condition for the QGP phase, with massless up and down quarks, the exact total partition function of the studied system is obtained and then employed to calculate mean values of physical quantities, well characterizing the system near the transition. The finite-size effects on the DPT have been investigated through the study of the thermal behavior of the order parameter, the susceptibility and the second cumulant of the probability density. The similarity between the susceptibility and the second cumulant representing the variance is probed for the studied DPT and a parameterization of the variance is proposed for the first time.

  18. Coupling mechanisms in inductive discharges with RF substrate bias driven at consecutive harmonics with adjustable relative phase

    NASA Astrophysics Data System (ADS)

    Steinberger, Thomas; Berger, Birk; Schulze, Julian; Schuengel, Edmund; Koepke, Mark

    2016-09-01

    Hybrid combinations of inductive and capacitive RF discharges are commonly used for plasma etching because the inductive coupling ensures a high plasma density, while the capacitive coupling allows the control of the ion bombardment energy at the substrate. We experimentally study the coupling mechanisms between the two driving-voltage sources in such a plasma driven inductively at 13.56 MHz and capacitively at 27.12 MHz in argon and neon at low pressure. We find that the resulting DC self-bias can be controlled via the Electrical Asymmetry Effect by adjusting the relative phase between the two driving harmonics in the E-mode. Langmuir probe measurements and Phase Resolved Optical Emission Spectroscopy (PROES) reveal that the addition of the applied RF-bias in the plasma acts as a catalyst for the transition between E- and H-mode. PROES measurements generally show that the electron power absorption dynamics are affected by the relative phase between the two driving voltage waveforms and by the ratio of the inductive to the capacitive driving powers. Finally, the ion flux-energy distribution function is measured at the RF-powered electrode and found also to be affected by coupling effects.

  19. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    SciTech Connect

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin; Highfield, James; Pehkonen, Simo O.; Pichat, Pierre; Chen, Zhong

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of

  20. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  1. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces.

    PubMed

    Nikolov, Alex; Zhang, Hua

    2015-07-01

    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications.

  2. Ion Beam Driven Shock Device Using Accelerated High Density Plasmoid by Phased Z-Pinch

    NASA Astrophysics Data System (ADS)

    Horioka, Kazuhiko; Aizawa, Tatsuhiko; Tsuchida, Minoru

    1997-07-01

    Different from three methods to generate high shock pressure by acceleration of high density plasma or particles (intense ion beams, plasma gun and rail gun) having their intrinsic deficiencies, new frontier is proposed to propel the shock physics and chemistry by using the high density plasma. In the present paper, new scheduled Z-pinch method is developed as a new device to generate high shock pressure. In the present method, plasma density can be compressed to the order of 10^18 to 10^19 cm-3, and high density plasma can be accelerated by zippering together with axial shock pressure, resulting in high-velocity launching of flyer. In the present paper, systematic experimental works are performed to demonstrate that high energy plasma flow can be electro-magnetically driven by the scheduled capillary Z-pinch, and to characterize the ion velocity and its current density. The estimated value of ion speed from the plasma-measurement reaches to 7 x 10^7 cm/s corresponding to 70 to 100 KeV for Ar. Copper flyer can be shot with the velocity range from 1km/s to 3km/s in the standard condition.

  3. Joule-heat-driven high-efficiency electronic-phase switching in freestanding VO2/TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Higuchi, Yoshiyuki; Kanki, Teruo; Tanaka, Hidekazu

    2017-03-01

    In this study, we demonstrated that an insulator-to-metal transition is driven by a low electric power using freestanding structures with two different sizes. The critical power (P C) required to induce the insulator-to-metal transition was measured with clamped and freestanding nanowires. The required P C for 400-nm-wide freestanding nanowires was 483 nW at a temperature 2 K lower than the temperature of the insulator-to-metal transition. This P C value is approximately 1 order of magnitude smaller than that for freestanding microwires with a width of 1 µm. The thermal dissipation model explains the changes in P C. These results provide guidelines for achieving significant reductions in P C in two-terminal VO2 phase-switching devices.

  4. Liquid Crystal Phase Transition driven three-dimensional Quantum Dot Organization

    NASA Astrophysics Data System (ADS)

    Rodarte, Andrea L.; Pandolfi, R. J.; Ghosh, S.; Hirst, L. S.

    2013-03-01

    We use a nematic liquid crystal (LC) to create organized assemblies of CdSe/ZnS core/shell quantum dots (QDs). At the isotropic-nematic LC phase transition, ordered domains of nematic LC expel the majority of dispersed QDs into the isotropic domains. The final LC phase produces a series of three dimensional columnar QD assemblies that are situated at defect points in the LC volume. Within each assembly the QD emission is spectrally-red-shifted due to resonant energy transfer. We use this spectral shift as a measure of the inter-dot separation and find that the QDs are packed uniformly in these assemblies over distances of microns between the glass plates of a standard LC cell. In addition, because the QD clusters form at defects, we can deterministically control the location of the assemblies by seeding the LC cell with defect nucleation points. Funding provided by NSF, UC MERI and UC MEXUS.

  5. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    PubMed Central

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows. PMID:27033314

  6. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2.

    PubMed

    Pfleiderer, C; Uhlarz, M; Hayden, S M; Vollmer, R; v Löhneysen, H; Bernhoeft, N R; Lonzarich, G G

    2001-07-05

    It has generally been believed that, within the context of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, the conduction electrons in a metal cannot be both ferromagnetically ordered and superconducting. Even when the superconductivity has been interpreted as arising from magnetic mediation of the paired electrons, it was thought that the superconducting state occurs in the paramagnetic phase. Here we report the observation of superconductivity in the ferromagnetically ordered phase of the d-electron compound ZrZn2. The specific heat anomaly associated with the superconducting transition in this material appears to be absent, and the superconducting state is very sensitive to defects, occurring only in very pure samples. Under hydrostatic pressure superconductivity and ferromagnetism disappear at the same pressure, so the ferromagnetic state appears to be a prerequisite for superconductivity. When combined with the recent observation of superconductivity in UGe2 (ref. 4), our results suggest that metallic ferromagnets may universally become superconducting when the magnetization is small.

  7. Amplitude and phase effects in Josephson qubits driven by a biharmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Satanin, A. M.; Denisenko, M. V.; Gelman, A. I.; Nori, Franco

    2014-09-01

    We investigate the amplitude and phase effects of qubit dynamics and excited-state population under the influence of a biharmonic control field. It is demonstrated that the biharmonic driving field can have a significant effect on the behavior of quasienergy level crossing as well as on multiphoton transitions. Also, the interference pattern for the populations of qubit excited states is sensitive to the signal parameters. We discuss the possibility of using these effects for manipulating qubit states and calibrating nanosecond pulses.

  8. Charge-Density Wave Driven Phase Transitions in Single-Layer MoS2

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Johannes, Michelle D.; Hennig, Richard G.

    2014-03-01

    Phase transitions in single-layer MoS2 are frequently observed in experiments. We reveal that charge doping can induce the phase transition of single-layer MoS2 from the 2 H to the 1 T structure. Further, the 1 T structure undergoes a second phase transition due to the occurrence of a charge-density wave (CDW). By comparing the energies of several possible resulting CDW structures, we find that the √{ 3} a × a orthorhombic structure is the most stable one, consistent with experimental observations. Moreover, we discover that the band structure of the √{ 3} a × a structure possesses a Dirac cone, which is split by spin-orbit interactions into a bandgap of 50 meV. We show that the underlying CDW transition mechanism is not electronic, but can be controlled by charge doping nonetheless. Finally, we calculate the interface energy and band offsets of a lateral heterostructure formed by the 2 H and √{ 3} a × a structures.

  9. Disorder-driven topological phase transition in Bi2Se3 films

    DOE PAGES

    Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam; ...

    2016-10-03

    Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi2Se3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that there is amore » change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less

  10. Disorder-driven topological phase transition in B i2S e3 films

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam; Moon, Jisoo; Zhang, Wenhan; Li, Haoxiang; Zhou, Xiaoqing; Han, Myung-Geun; Wu, Liang; Emge, Thomas; Lee, Hang-Dong; Xu, Can; Rhee, Seuk Joo; Gustafsson, Torgny; Armitage, N. Peter; Zhu, Yimei; Dessau, Daniel S.; Wu, Weida; Oh, Seongshik

    2016-10-01

    Topological insulators (TI) are a phase of matter that host unusual metallic surface states. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI B i2S e3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that there is a change in the material's topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically protected surface states and should prompt new studies as to the fundamental nature of topological phase of matter in the presence of disorder.

  11. Hybridization and Field Driven Phase Transitions in Hexagonally Warped Topological Insulators

    NASA Astrophysics Data System (ADS)

    Menon, Anirudha; Chowdhury, Debashree; Basu, Banasri

    2016-09-01

    In this paper, we discuss the role of material parameters and external field effects on a thin film topological insulator(TI) in the context of quantum phase transition (QPT). First, we consider an in-plane tilted magnetic field and determine the band structure of the surface states as a function of the tilt angle. We show that the presence of either a hybridization term or hexagonal warping or a combination of both leads to a semi-metal to insulator phase transition which is facilitated by their 𝒫𝒯 symmetry breaking character. We then note that while the introduction of an electric field does not allow for this QPT since it does not break 𝒫𝒯 symmetry, it can be used in conjunction with a tunneling element to reach a phase transition efficiently. The corresponding critical point is then nontrivially dependent on the electric field, which is pointed out here. Then, we demonstrate that including a hexagonal warping term leads to an immediate 𝒫𝒯 symmetry violating QPT.

  12. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  13. Structural phase transitions and superconductivity in Fe(1+delta)Se0.57Te0.43 at ambient and elevated pressures.

    PubMed

    Gresty, Nathalie C; Takabayashi, Yasuhiro; Ganin, Alexey Y; McDonald, Martin T; Claridge, John B; Giap, Duong; Mizuguchi, Yoshikazu; Takano, Yoshihiko; Kagayama, Tomoko; Ohishi, Yasuo; Takata, Masaki; Rosseinsky, Matthew J; Margadonna, Serena; Prassides, Kosmas

    2009-11-25

    The ternary iron chalcogenide, Fe(1.03)Se(0.57)Te(0.43) is a member of the recently discovered family of Fe-based superconductors with an ambient pressure T(c) of 13.9 K and a simple structure comprising layers of edge-sharing distorted Fe(Se/Te)(4) tetrahedra separated by a van der Waals gap. Here we study the relationship between its structural and electronic responses to the application of pressure. T(c) depends sensitively on applied pressure attaining a broad maximum of 23.3 K at approximately 3 GPa. Further compression to 12 GPa leads to a metallic but nonsuperconducting ground state. High-resolution synchrotron X-ray diffraction shows that the superconducting phase is metrically orthorhombic at ambient pressure but pressurization to approximately 3 GPa leads to a structural transformation to a more distorted structure with monoclinic symmetry. The exact coincidence of the crystal symmetry crossover pressure with that at which T(c) is maximum reveals an intimate link between crystal and electronic structures of the iron chalcogenide superconductors.

  14. The particle-particle random phase approximation and beyond - insight from the superconductive Gorkov perspective and implications of an efficient truncation scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Du; Yang, Weitao; Weitao Yang Group Team

    As an excited-state electronic structure method, the particle-particle random phase approximation (ppRPA) satisfactorily resolves many challenges for the time-dependent density functional theory (TDDFT)/particle-hole (ph) RPA, e.g. absence of double excitations, diradicals, singlet-to-triplet instability, etc. Given that the ppRPA equation has been derived from the pairing potential linear response, we derive it using the propagator approach using the superconductive Gorkov formalism. Systematic higher-order contributions are added to the ppRPA, yielding the pp Bethe-Salpeter equation (BSE). This development can be combined with our recently proposed truncation scheme, which makes typical ppRPA calculations up to 100 times faster than the Davidson's algorithm. Since the electron correlation is important in yielding good excitation energies for the ppRPA (the superiority of DFT reference states over Hartree-Fock ones, esp. for large systems), combining the two developments allows us to add the electron correlation into the ppRPA calculation at a modest formal scaling of O(N4), pushing the excitation energy calculations towards both larger systems and higher accuracy.

  15. Electron-Phonon Anomaly Related to Charge Stripes: Static Stripe Phase Versus Optimally Doped Superconducting La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Reznik, D.; Pintschovius, L.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.

    2007-05-01

    Inelastic neutron scattering was used to study the Cu-O bond-stretching vibrations in optimally doped La1.85Sr0.15CuO4 (Tc = 35 K) and in two other cuprates showing static stripe order at low temperatures, i.e. La1.48Nd0.4Sr0.12CuO4 and La1.875Ba0.125CuO4. All three compounds exhibit a very similar phonon anomaly, which is not predicted by conventional band theory. It is argued that the phonon anomaly reflects a coupling to charge inhomogeneities in the form of stripes, which remain dynamic in superconducting La1.85Sr0.15CuO4 down to the lowest temperatures. These results show that the phonon effect indicating stripe formation is not restricted to a narrow region of the phase diagram around the so-called 1/8 anomaly but occurs in optimally doped samples as well.

  16. Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks

    NASA Astrophysics Data System (ADS)

    Trezza, M.; Cirillo, C.; Sabatino, P.; Carapella, G.; Prischepa, S. L.; Attanasio, C.

    2013-12-01

    We report on the transport properties of an array of N ˜30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H, which can be both consistently described by quantum tunneling of phase slips.

  17. Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks

    SciTech Connect

    Trezza, M.; Cirillo, C.; Sabatino, P.; Carapella, G.; Attanasio, C.; Prischepa, S. L.

    2013-12-16

    We report on the transport properties of an array of N∼30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H, which can be both consistently described by quantum tunneling of phase slips.

  18. One-step resonant controlled-phase gate on distant transmon qutrits in different 1D superconducting resonators

    PubMed Central

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo; Lu Long, Gui

    2015-01-01

    We propose a scheme to construct the controlled-phase (c-phase) gate on distant transmon qutrits hosted in different resonators inter-coupled by a connected transmon qutrit. Different from previous works for entanglement generation and information transfer on two distant qubits in a dispersive regime in the similar systems, our gate is constructed in the resonant regime with one step. The numerical simulation shows that the fidelity of our c-phase gate is 99.5% within 86.3 ns. As an interesting application of our c-phase gate, we propose an effective scheme to complete a conventional square lattice of two-dimensional surface code layout for fault-tolerant quantum computing on the distant transmon qutrits. The four-step coupling between the nearest distant transmon qutrits, small coupling strengths of the distant transmon qutrits, and the non-population on the connection transmon qutrit can reduce the interactions among different parts of the layout effectively, which makes the layout be integrated with a large scale in an easier way. PMID:26486426

  19. Direct Spectroscopic Evidence for Phase Competition between the Pseudogap and Superconductivity in Bi2Sr2CaCu2O8+δ

    SciTech Connect

    Hashimoto, Makoto; Nowadnick, Elizabeth A.; He, Rui-Hua; Vishik, Inna M.; Moritz, Brian; He, Yu; Tanaka, Kiyohisa; Moore, Robert G.; Lu, Donghui; Yoshida, Yoshiyuki; Ishikado, Motoyuki; Sasagawa, Takao; Fujita, Kazuhiro; Ishida, Shigeyuku; Uchida, Shinichi; Eisaki, Hiroshi; Hussain, Zahid; Devereaux, Thomas P.; Shen, Zhi-Xun

    2014-11-02

    In the high-temperature (Tc) cuprate superconductors, increasing evidence suggests that the pseudogap, existing below the pseudogap temperature T*, has a distinct broken electronic symmetry from that of superconductivity. Particularly, recent scattering experiments on the underdoped cuprates have suggested that a charge ordering competes with superconductivity. However, no direct link of this physics and the important low-energy excitations has been identified. We report an antagonistic singularity at Tc in the spectral weight of Bi2Sr2CaCu2O8+δ as a compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with a theoretical calculation confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. Our observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two intertwined phases and the complex phase diagram near the pseudogap critical point.

  20. Terahertz detection of magnetic field-driven topological phase transition in HgTe-based transistors

    SciTech Connect

    Kadykov, A. M.; Teppe, F. Consejo, C.; Ruffenach, S.; Marcinkiewicz, M.; Desrat, W.; Dyakonova, N.; Knap, W.; Viti, L.; Vitiello, M. S.; Krishtopenko, S. S.; Morozov, S. V.; Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-10-12

    We report on terahertz photoconductivity under magnetic field up to 16 T of field effect transistor based on HgTe quantum well (QW) with an inverted band structure. We observe pronounced cyclotron resonance and Shubnikov-de Haas-like oscillations, indicating a high mobility electron gas in the transistor channel. We discover that nonlinearity of the transistor channel allows for observation of characteristic features in photoconductivity at critical magnetic field corresponding to the phase transition between topological quantum spin Hall and trivial quantum Hall states in HgTe QW. Our results pave the way towards terahertz topological field effect transistors.