Combined rankine and vapor compression cycles
Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.
2005-04-19
An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.
Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.
Electric and hybrid vehicle environmental control subsystem study
NASA Technical Reports Server (NTRS)
Heitner, K. L.
1980-01-01
An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.
Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy
Hu, Bing; Bu, Xianbiao; Ma, Weibin
2014-01-01
To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735
Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2000-01-01
This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.
NASA Astrophysics Data System (ADS)
Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.
2005-09-01
This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.
What Drives Metal-Surface Step Bunching in Graphene Chemical Vapor Deposition?
NASA Astrophysics Data System (ADS)
Yi, Ding; Luo, Da; Wang, Zhu-Jun; Dong, Jichen; Zhang, Xu; Willinger, Marc-Georg; Ruoff, Rodney S.; Ding, Feng
2018-06-01
Compressive strain relaxation of a chemical vapor deposition (CVD) grown graphene overlayer has been considered to be the main driving force behind metal surface step bunching (SB) in CVD graphene growth. Here, by combining theoretical studies with experimental observations, we prove that the SB can occur even in the absence of a compressive strain, is enabled by the rapid diffusion of metal adatoms beneath the graphene and is driven by the release of the bending energy of the graphene overlayer in the vicinity of steps. Based on this new understanding, we explain a number of experimental observations such as the temperature dependence of SB, and how SB depends on the thickness of the graphene film. This study also shows that SB is a general phenomenon that can occur in all substrates covered by films of two-dimensional (2D) materials.
Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis
Lawrence D. Garrett
1977-01-01
A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID
2009-09-29
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.
Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Improved waste water vapor compression distillation technology. [for Spacelab
NASA Technical Reports Server (NTRS)
Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.
1977-01-01
The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.
Vapor Compression Cycle Design Program (CYCLE_D)
National Institute of Standards and Technology Data Gateway
SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase) The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.
Membrane augmented distillation to separate solvents from water
Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.
2012-09-11
Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.
Fan, Senqing; Xiao, Zeyi; Li, Minghai
2016-07-01
An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Apparatus for the liquefaction of natural gas and methods relating to same
Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-09-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sihombing, H. V.
2018-03-01
Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
NASA Astrophysics Data System (ADS)
Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan
2016-04-01
An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water vapor field is determined by comparing slant integrated wet delays computed from the estimated wet refractivities with real GNSS wet delay estimates. This comparison is performed along different elevation and azimuth angles.
Compression Dynamics of an Indirect Drive Fast Ignition Target
NASA Astrophysics Data System (ADS)
Stephens, R. B.; Hatchett, S. A.; Turner, R. E.; Tanaka, K. A.; Kodama, R.; Soures, J.
2002-11-01
We have compared the compression of an indirectly driven cone-in-shell target, a type proposed for the fast ignition concept, with models. The experimental parameters -500 μm diameter plastic shell with 60 μm thick wall were a 1/5 scale realization of a fast ignition target designed for NIF (absorbing 180 kJ for compression and ˜30 kJ for ignition, and yielding ˜30 MJ) [1]. The implosion was backlit with 6.4 keV x-rays, and observed with a framing camera which captured the implosion from ˜2.6 to 3.3 ns after the onset. The collapsing structure was very similar to model predictions except that non-thermal m-band emissions from the hohlraum penetrated the shell and vaporized gold off the reentrant cone. This could be eliminated by changing the hohlraum composition. [1] S. Hatchett, et al., 5th Wkshp on Fast Ignition of Fusion Targets (Satellite Wkshp, 28th EPS Conf. on Contr. Fusion and Plasma Phys.), Madeira, Portugal (2001).
Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines
Flowers, Daniel L.
2005-08-02
A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.
Vapor compression distiller and membrane technology for water revitalization
NASA Technical Reports Server (NTRS)
Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.
1987-01-01
Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.
Vapor compression distiller and membrane technology for water revitalization.
Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K
1987-01-01
Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.
NASA Astrophysics Data System (ADS)
Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao
An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the vapor compression cycle, the performance of the cycle can be greatly improved. Until now, the performance of the vapor compression cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the vapor compression cycle with the ejector and investigates the performance of that cycle by the simulation. Working fluids are ammonia and CO2. As a result, in case of the ejector efficiency 90%, COP of the vapor compression cycle using ammonia with the ejector is 5% higher than that of the conventional cycle and COP using CO2 with the ejector is 22% higher than that of the conventional cycle.
Onset of turbulence in accelerated high-Reynolds-number flow
NASA Astrophysics Data System (ADS)
Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.
2003-05-01
A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types of acceleration driven instability experiments: (1) classical, relatively low speed, constant acceleration RTI experiments; (2) shock tube, shockwave driven RMI flow mixing experiments; (3) laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last named experiments are of special interest as they provide scaleable flow conditions simulating those of astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.
Preliminary design package for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.
Preprototype Vapor Compression Distillation Subsystem development
NASA Technical Reports Server (NTRS)
Thompson, C. D.; Ellis, G. S.; Schubert, F. H.
1981-01-01
Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.
Evaluation and selection of refrigeration systems for lunar surface and space applications
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Blount, T. D.; Williams, J. L.
1971-01-01
Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).
Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2007-01-01
A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.
Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group
2011-08-01
Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group Parmesh Verma and Tom Radcliff, United Technologies Research Center UNCLASSIFIED... Ejector Cycle Presentation to IAPG Mechanical Working Group 5a. CONTRACT NUMBER W909MY-10-C-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...hybrid vapor compression ejector heat pump cycle developed under an American Recovery and Reinvestment Act funded contract is provided. 15. SUBJECT
Retrofit device and method to improve humidity control of vapor compression cooling systems
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2016-08-16
A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.
NASA Astrophysics Data System (ADS)
Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang
2014-01-01
In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.
THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES
The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...
Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.
Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert
2002-11-20
Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.
NASA Astrophysics Data System (ADS)
Pang, Shengyong; Shao, Xinyu; Li, Wen; Chen, Xin; Gong, Shuili
2016-07-01
The compressible metallic vapor plume or plasma plume behaviors in the keyhole during deep penetration laser welding have significant effects on the joint quality. However, these behaviors and their responses to process parameter variations have not been well understood. In this paper, we first systematically study the dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during fiber laser welding of 304 stainless steels based on a multiple timescale multiphase model. The time-dependent temperature, pressure, velocity and Mach number distributions of vapor plume under different process parameters are theoretically predicted. It is found that the distributions of the main physical characteristics of vapor plume such as pressure, velocity as well as Mach number in keyhole are usually highly uneven and highly time dependent. The peak difference of the velocity, pressure, temperature and Mach number of the vapor plume in a keyhole could be greater than 200 m/s, 20 kPa, 1000 K and 0.6 Mach, respectively. The vapor plume characteristics in a transient keyhole can experience significant changes within several hundreds of nanoseconds. The formation mechanisms of these dynamic characteristics are mainly due to the mesoscale keyhole hump (sized in several tens of microns) dynamics. It is also demonstrated that it is possible to suppress the oscillations of compressible vapor plume in the keyhole by improving the keyhole stability through decreasing the heat input. However, stabilizing the keyhole could only weaken, but not eliminate, the observed highly uneven and transient characteristics. This finding may pose new challenges for accurate experimental measurements of vapor plume induced by laser welding.
COMPARISON OF CFC-114 AND HFC-236EA PERFORMANCE IN SHIPBOARD VAPOR COMPRESSION SYSTEMS
The report gives results of a comparison of the performance of two refrigerants - 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and 1,2-dichloro-tetrafluoroethane (CFC-114) - in shipboard vapor compression refrigeration systems. (NOTE: In compliance with the Montreal Protocol and Dep...
Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defibaugh, D.R.; Morrison, G.
1996-05-01
The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less
Bond topography and nanostructure of hydrogenated fullerene-like carbon films: A comparative study
NASA Astrophysics Data System (ADS)
Wang, Yongfu; Gao, Kaixiong; Shi, Jing; Zhang, Junyan
2016-09-01
Fullerene-like nanostructural hydrogenated amorphous carbon (FL-C:H) films were prepared by dc- and pulse- plasma enhanced chemical vapor deposition technique (PECVD). Both the films exhibit relatively stresses (0.63 GPa) in spite of their FL features and nanostructural bonding configurations, especially the pentagonal carbon rings. The creation of pentagonal rings is not fully driven by thermodynamics, but is closely related to compressive stress determined by the ion bombardment at the discharged state of the pulse- and dc- discharged plasmas methods. The dc method leads to FL's basal planes which contain less cross-linkages, and causes amorphous strongly hydrogenated structures.
NASA Astrophysics Data System (ADS)
Ahmad, I.; Temple, M. P.; Kallis, A.; Wojdak, M.; Oton, C. J.; Barbier, D.; Saleh, H.; Kenyon, A. J.; Loh, W. H.
2008-12-01
Erbium-doped silicon-rich silicon oxide films deposited by plasma enhanced chemical vapor deposition suffer from compressive stress as deposited, which converts to a large tensile stress on annealing due to the release of hydrogen. Although the cracking that results from this stress can be avoided by patterning the films into ridges, significant stress remains along the ridge axis. Measurements of erbium photoluminescence sensitized by silicon nanoclusters in stressed and relaxed films suggest an important role for internal film stresses in promoting the phase separation of excess silicon into nanoclusters, which has previously been thought of as a thermally driven process.
A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar
2014-01-01
Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.« less
The design and development of a vapor compression refrigerator/freezer for spacelab
NASA Technical Reports Server (NTRS)
Hye, A.
1983-01-01
A computer simulation was performed to determine the design criteria for a spacelab refrigerator/freezer using the test results of a vapor compression refrigerator/freezer which flew on STS-4 without problem. It has been established to have a vapor Reynolds number over 3000 at a vapor quality of 0.2 to maintain annular boiling in the evaporator and for the condenser to have a vapor Reynolds number over 15000 at its inlet to maintain annular condensation. These two constraints will virtually eliminate the effect of gravity on the performance of the refrigerator/freezer. These results are being used to build a refrigerator/freezer which will fly in Spacelab-4 scheduled for launch in December 1985.
Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2001-01-01
Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.
Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor
NASA Astrophysics Data System (ADS)
Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard
2017-08-01
Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2015-12-08
A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...
BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...
The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...
BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...
Ignition process in Diesel engines
NASA Technical Reports Server (NTRS)
Wentzel, W
1936-01-01
This report analyzes the heating and vaporization process of fuel droplets in a compression-ignition engine on the basis of the theory of similitude - according to which, the period for heating and complete vaporization of the average size fuel drop is only a fraction of the actually observed ignition lag. The result is that ignition takes place in the fuel vapor air mixture rather than on the surface of the drop. The theoretical result is in accord with the experimental observations by Rothrock and Waldron. The combustion shock occurring at lower terminal compression temperature, especially in the combustion of coal-tar oil, is attributable to a simultaneous igniting of a larger fuel-vapor volume formed prior to ignition.
Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process
The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...
Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1933-01-01
The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.
Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)
NASA Technical Reports Server (NTRS)
Hutchens, Cindy; Graves, Rex
2004-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.
A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...
Heat pump evaluation for Space Station ATCS evolution
NASA Technical Reports Server (NTRS)
Ames, Brian E.; Petete, Patricia A.
1991-01-01
A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.
NASA Technical Reports Server (NTRS)
Reveley, W. F.; Nuccio, P. P.
1975-01-01
Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Qu, Ming; Sun, Xiao-Guang
Separate sensible and latent cooling systems offer superior energy efficiency performance compared to conventional vapor compression air conditioning systems. In this paper we describe an innovative non-vapor compression system that uses electrochemical compressor (ECC) to pump hydrogen between 2-metal hydride reservoirs to provide the sensible cooling effect. The heat rejected during this process is used to regenerate the ionic liquid (IL) used for desiccant dehumidification. The overall system design is illustrated. The Xergy version 4C electrochemical compressor, while not designed as a high pressure system, develops in excess of 2 MPa (300 psia) and pressure ratios > 30. The projectedmore » base efficiency improvement of the electrochemical compressor is expected to be ~ 20% with higher efficiency when in low capacity mode due to being throttleable to lower capacity with improved efficiency. The IL was tailored to maximize the absorption/desorption rate of water vapor at moderate regeneration temperature. This IL, namely, [EMIm].OAc, is a hydrophilic IL with a working concentration range of 28.98% when operating between 25 75 C. The ECC metal hydride system is expected to show superior performance to typical vapor compression systems. As such, the combined efficiency gains from the use of ECC and separate and sensible cooling would offer significant potential savings to existing vapor compression cooling technology. A high efficiency Window Air Conditioner system is described based on this novel configuration. The system s schematic is provided. Models compared well with actual operating data obtained by running the prototype system. Finally, a model of an LiCl desiccant system in conjunction with the ECC-based metal hydride heat exchangers is provided.« less
1981-12-01
obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of...Thermometer T W OF Temperature Web Bulb Sling Psychrometer % Relative Humidity Psychrometric chart mm Hg Vapor Pressure Vapor Pressure chart - Correction...results obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam
Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.
NASA Technical Reports Server (NTRS)
Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)
2001-01-01
A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.
46 CFR 153.934 - Entry into spaces containing cargo vapor.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...
46 CFR 153.934 - Entry into spaces containing cargo vapor.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...
46 CFR 153.934 - Entry into spaces containing cargo vapor.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...
46 CFR 153.934 - Entry into spaces containing cargo vapor.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...
46 CFR 153.934 - Entry into spaces containing cargo vapor.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...
Vapor-Compression Heat Pumps for Operation Aboard Spacecraft
NASA Technical Reports Server (NTRS)
Ruemmele, Warren; Ungar, Eugene; Cornwell, John
2006-01-01
Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.
NASA Astrophysics Data System (ADS)
Faghri, Amir; Chen, Ming-Ming
1989-10-01
The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.
Development of a refrigeration system for lunar surface and spacecraft applications
NASA Technical Reports Server (NTRS)
Copeland, R. J.
1976-01-01
An evaluation of refrigeration devices suitable for potential lunar surface and spacecraft applications was performed. The following conclusions were reached: (1) the vapor compression system is the best overall refrigeration system for lunar surface and spacecraft applications and the single phase radiator system is generally preferred for earth orbit applications, (2) the vapor compression cycle may have some application for simultaneous heating and cooling, (3) a Stirling cycle refrigerator was selected for the manned cabin of the space shuttle, and (4) significant increases in payload heat rejection can be obtained by a kit vapor compression refrigerator added to the shuttle R-21 loop. The following recommendations were made: (1) a Stirling cycle refrigerator may be used for food freezer and biomedical sample storage, (2) the best system for a food freezer/experiments compartment for an earth orbit space station has not been determined, (3) a deployed radiator system can be designed for large heat loads in earth orbit.
The development of a performance-enhancing additive for vapor-compression heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.
1997-12-31
This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-21 Compressed gas. This term includes any... by the Reid method covered by the American Society for Testing Materials Method of Test for Vapor...
Investigation of lunar base thermal control system options
NASA Technical Reports Server (NTRS)
Ewart, Michael K.
1993-01-01
Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.
Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Boyda, R. B.
1995-01-01
This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.
Nanoencapsulated aerogels produced by monomer vapor deposition and polymerization
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2011-01-01
Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating. In an embodiment, the polymer coated aerogel is comprised of a porosity and has a compressive modulus greater than the compressive modulus of the aerogel substrate.
Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments
NASA Astrophysics Data System (ADS)
Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun
2018-02-01
Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.
NASA Astrophysics Data System (ADS)
Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui
2007-11-01
Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.
Ejector gas cooling. Phase 1. Final report, 1 April 1987-30 April 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCracken, C.D.; Silvetti, B.M.; Hrbek, R.
1988-11-01
Closed-circuit ejector cooling systems have never in the past achieved acceptable operating efficiencies in their vapor-compression cycle using standard refrigerants. Despite their long history, relative simplicity, quietness, rugged design, low maintenance and low cost, they could not compete with electric-motor-driven compressors. Phase I is an assessment of two immiscible fluids in an ejector cooling system with different latent heat capacity and molecular weights intended to require less heat in the boiler producing the propellant and taking more heat out in the evaporator cooling fluid. Actual tests corrected to standard conditions and neglecting thermal losses showed 0.5 closed-cycle thermal COP (excludingmore » stack losses), higher than ever previously achieved but below original expectations. Computer programs developed indicate higher COP values are attainable along with competitive first costs.« less
Adsorption Refrigeration System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kai; Vineyard, Edward Allan
Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less
Vapor Compression Distillation Flight Experiment
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.
2002-01-01
One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.
Optical gain in an optically driven three-level ? system in atomic Rb vapor
NASA Astrophysics Data System (ADS)
Ballmann, C. W.; Yakovlev, V. V.
2018-06-01
In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.
Heat Pipe Vapor Dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Issacci, Farrokh
1990-01-01
The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2014 CFR
2014-10-01
... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with...
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2013 CFR
2013-10-01
... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with...
46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2012 CFR
2012-10-01
... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with...
49 CFR 178.348-4 - Pressure relief.
Code of Federal Regulations, 2010 CFR
2010-10-01
... = The latent heat of vaporization of the lading—calories per gram (BTU/lb); Z = The compressibility... maximum loading and unloading rates must be included on the metal specification plate. (3) Cargo tanks... = A constant derived from (K), the ratio of specific heats of the vapor. If (K) is unknown, let C...
Combined refrigeration system with a liquid pre-cooling heat exchanger
Gaul, Christopher J.
2003-07-01
A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Ramachandran, N.
2003-01-01
The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions.
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.
Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf
2016-01-01
Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.
Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis
Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf
2016-01-01
Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis. PMID:26784441
A numerical analysis of high-temperature heat pipe startup from the frozen state
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
Continuum and rarefied vapor flows co-exist along the heat pipe length for most of the startup period. A two-region model is proposed in which the vapor flow in the continuum region is modeled by the compressible Navier-Stokes equations, and the vapor flow in the rarefied region is simulated by a self-diffusion model. The two vapor regions are linked with appropriate boundary conditions, and heat pipe wail, wick, and vapor flow are solved as a conjugate problem. The numerical solutions for the entire heat pipe startup process from the frozen state are compared with the corresponding experimental data with good agreement.
Influence of the Fluid on the Parameters and Limits of Bubble Detonation
NASA Astrophysics Data System (ADS)
Pinaev, A. V.; Prokhorov, E. S.
2017-12-01
The compression and inflammation of reactive gas bubbles in bubble detonation waves have been studied, and the considerable influence of the fluid (liquid or vapor) on the detonation parameters has been found. It has been shown numerically that the final values of the pressure and temperature significantly decrease if the temperature dependence of the adiabatic index is taken into account at the compression stage. The parameters of reactive gas combustion products in the bubble have been calculated in terms of an equilibrium model, and the influence of the fluid that remains in the bubble in the form of microdroplets and vapor on these parameters has been investigated.
NASA Technical Reports Server (NTRS)
Johnson, K. L.; Reysa, R. P.; Fricks, D. H.
1981-01-01
Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.
Rotary Vapor Compression Cycle Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kariya, Arthur; Staats, Wayne; Koplow, Jeffrey P.
While there are several heat pump technologies such thermoelectric, adsorption and magnetocaloric cycles, the oldest and most widely used is the vapor compression cycle (VCC). Currently, thermoelectric cycles have not yet achieved efficiencies nor cooling capacities comparable to VCCs. Adsorption cycles offer the benefit of using low-quality heat as the energy input, but are significantly more complex and expensive and are therefore limited to certain niche applications. Magnetocaloric cycles are still in the research phase. Consequently, improvements made for VCCs will likely have the most immediate and encompassing impact. The objective of this work is to develop an alternative VCCmore » topology to reduce the above inefficiencies.« less
Development of a preprototype vapor compression distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Johnson, K. L.
1978-01-01
The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Oxygen. 50-204.67..., Vapors, Fumes, Dusts, and Mists § 50-204.67 Oxygen. The in-plant transfer, handling, storage, and utilization of oxygen as a liquid or a compressed gas shall be in accordance with Compressed Gas Association...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Oxygen. 50-204.67..., Vapors, Fumes, Dusts, and Mists § 50-204.67 Oxygen. The in-plant transfer, handling, storage, and utilization of oxygen as a liquid or a compressed gas shall be in accordance with Compressed Gas Association...
Vaporization and Zonal Mixing in Performance Modeling of Advanced LOX-Methane Rockets
NASA Technical Reports Server (NTRS)
Williams, George J., Jr.; Stiegemeier, Benjamin R.
2013-01-01
Initial modeling of LOX-Methane reaction control (RCE) 100 lbf thrusters and larger, 5500 lbf thrusters with the TDK/VIPER code has shown good agreement with sea-level and altitude test data. However, the vaporization and zonal mixing upstream of the compressible flow stage of the models leveraged empirical trends to match the sea-level data. This was necessary in part because the codes are designed primarily to handle the compressible part of the flow (i.e. contraction through expansion) and in part because there was limited data on the thrusters themselves on which to base a rigorous model. A more rigorous model has been developed which includes detailed vaporization trends based on element type and geometry, radial variations in mixture ratio within each of the "zones" associated with elements and not just between zones of different element types, and, to the extent possible, updated kinetic rates. The Spray Combustion Analysis Program (SCAP) was leveraged to support assumptions in the vaporization trends. Data of both thrusters is revisited and the model maintains a good predictive capability while addressing some of the major limitations of the previous version.
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
Blast waves from violent explosive activity at Yasur Volcano, Vanuatu
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.
2013-11-01
and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
Impact-driven supply of sodium and potassium to the atmosphere of Mercury
NASA Technical Reports Server (NTRS)
Morgan, T. H.; Zook, H. A.; Potter, A. E.
1988-01-01
The Mercury atmosphere is supplied with sodium atoms from both impacting meteoroids and the impacted regolith; the production of vaporized sodium due to such impact varies with the instantaneous distance of Mercury from the sun, in a way that differs from the distance-dependence of those source-and-sink processes driven by solar radiation. Such impact-driven vaporization will yield the Na/K ratio noted in the Mercury atmosphere only if both the meteoroids and the regolith of the planet are deficient in K relative to other solar system objects sampled, other than comets.
Unmanned. Evaluation of Bauer High Pressure Breathing Air P-5 Purification System
1991-08-01
suspended in the compressed air . The molecular sieve is made to adsorb oil and water vapors. The second cylinder uses cartridge No. 058825 and is a...during compressor start up. This provides for optimum filtering, moisture separation and prevents compressed air return from the charged air storage...reciprocating, air -cooled unit. The compressor is rated to deliver 20 cfm of free air compressed to 5000 psig. - .. .. . .. ’,= .• .. . .. . -. . I
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Oxygen. 50-204.67 Section..., Vapors, Fumes, Dusts, and Mists § 50-204.67 Oxygen. The in-plant transfer, handling, storage, and utilization of oxygen as a liquid or a compressed gas shall be in accordance with Compressed Gas Association...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Oxygen. 50-204.67 Section..., Vapors, Fumes, Dusts, and Mists § 50-204.67 Oxygen. The in-plant transfer, handling, storage, and utilization of oxygen as a liquid or a compressed gas shall be in accordance with Compressed Gas Association...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Oxygen. 50-204.67 Section..., Vapors, Fumes, Dusts, and Mists § 50-204.67 Oxygen. The in-plant transfer, handling, storage, and utilization of oxygen as a liquid or a compressed gas shall be in accordance with Compressed Gas Association...
NASA Astrophysics Data System (ADS)
Gu, Rui
Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.
Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant
Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN
2006-02-07
A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.
Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.; Long, David A.
1999-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (155). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.
Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems
Du, Zhimin; Domanski, Piotr A.; Payne, W. Vance
2016-01-01
The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms. PMID:26929732
Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.
Du, Zhimin; Domanski, Piotr A; Payne, W Vance
2016-04-05
The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.
Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression
NASA Astrophysics Data System (ADS)
Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen
2016-10-01
Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a
Interaction of laser beams with magnetized substance in a strong magnetic field
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.
2018-03-01
Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.
A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury
Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.
2011-01-01
Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431
A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W
2011-01-01
Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.
Thermally generated magnetic fields in laser-driven compressions and explosions
NASA Technical Reports Server (NTRS)
Tidman, D. A.
1975-01-01
The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.
Vapor pressures, compressibilities, expansivities, and molar volumes of the liquid phase have been measured between room temperature and the critical temperature for a series of fluorinated ethers: CF3OCF2OCF3, CF3OCF2CF2H, c-CF2CF2CF2O, CF3OCF2H, and CF3OCH3. Vapor-phase non-ide...
Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, Daniel H.,
2008-09-01
Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3
Repetition rates in heavy ion beam driven fusion reactors
NASA Astrophysics Data System (ADS)
Peterson, Robert R.
1986-01-01
The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.
Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.
Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick
2012-06-01
Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
Process for recovering organic vapors from air
Baker, Richard W.
1985-01-01
A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanski, P.A.
1995-03-01
The report presents a theoretical analysis of three vapor compression cycles which are derived from the Rankine cycle by incorporating a liquid-line/suction-line heat exchanger, economizer, or ejector. These addendums to the basic cycle reduce throttling losses using different principles, and they require different mechanical hardware of different complexity and cost. The theoretical merits of the three modified cycles were evaluated in relation to the reversed Carnot and Rankine cycle. Thirty-eight fluids were included in the study using the Carnahan-Starling-DeSantis equation of state. In general, the benefit of these addendums increases with the amount of the throttling losses realized by themore » refrigerant in the Rankine cycle.« less
Dynamic compression and volatile release of carbonates
NASA Technical Reports Server (NTRS)
Tyburczy, J. A.; Ahrens, T. J.
1984-01-01
Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.
Large eddy simulations of time-dependent and buoyancy-driven channel flows
NASA Technical Reports Server (NTRS)
Cabot, William H.
1993-01-01
The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.
NASA Technical Reports Server (NTRS)
Benner, Steve M (Inventor); Martins, Mario S. (Inventor)
2000-01-01
A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
2003-01-01
The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Shiroto, T.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Nagatomo, H.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
High average power magnetic modulator for metal vapor lasers
Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.
1994-01-01
A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.
Shock-induced perturbation evolution in planar laser targets
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.
2013-10-01
Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.
NASA Astrophysics Data System (ADS)
Nakata, Kotaro; Hasegawa, Takuma; Oyama, Takahiro; Miyakawa, Kazuya
2018-06-01
Stable isotopes (δ2H and δ18O) of water can help our understanding of origin, mixing and migration of groundwater. In the formation with low permeability, it provides information about migration mechanism of ion such as diffusion and/or advection. Thus it has been realized as very important information to understand the migration of water and ions in it. However, in formation with low permeability it is difficult to obtain the ground water sample as liquid and water in pores needs to be extracted to estimate it. Compressing rock is the most common and widely used method of extracting water in pores. However, changes in δ2H and δ18O may take place during compression because changes in ion concentration have been reported in previous studies. In this study, two natural rocks were compressed, and the changes in the δ2H and δ18O with compression pressure were investigated. Mechanisms for the changes in water isotopes observed during the compression were then discussed. In addition, δ2H and δ18O of water in pores were also evaluated by direct vapor equilibration and laser spectrometry (DVE-LS) and δ2H and δ18O were compared with those obtained by compression. δ2H was found to change during the compression and a part of this change was found to be explained by the effect of water from closed pores extracted by compression. In addition, water isotopes in both open and closed pores were estimated by combining the results of 2 kinds of compression experiments. Water isotopes evaluated by compression that not be affected by water from closed pores showed good agreements with those obtained by DVE-LS indicating compression could show the mixed information of water from open and closed pores, while DVE-LS could show the information only for open pores. Thus, the comparison of water isotopes obtained by compression and DVE-LS could provide the information about water isotopes in closed and open pores.
Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments
NASA Astrophysics Data System (ADS)
Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.
2010-12-01
Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the temperature on the liquid-vapor phase boundary (e.g., [3]) at much higher pressures than previously possible using a 2 stage gas gun [4, 5]. The density on the liquid-vapor phase boundary is constrained by comparing the velocity at the silica-LiF interface to numerical simulations that use equations of state with systematically varied liquid-vapor phase boundaries. We present the results within the context of understanding vaporization during giant impact events. [1] Brannon, R.M. and L.C. Chhabildas (1995) Int. J. Impact Engng. 17, 109-120. [2] Kurosawa, K. and S. Sugita (2010) J. Geophys. Res. in press. [3] Stewart, S.T., A. Seifter, and A.W. Obst (2008) Geophys. Res. Lett., 35, (23). [4] Lyzenga, G.A., T.J. Ahrens, and A.C. Mitchell (1983) J. Geophys. Res. , 88, (NB3), 2431-2444. [5] Boslough, M.B. (1988) J. Geophys. Res., 93, (B6), 6477-6484.
Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang
2018-04-22
Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.
Site dependent factors affecting the economic feasibility of solar powered absorption cooling
NASA Technical Reports Server (NTRS)
Bartlett, J. C.
1978-01-01
A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.
On the possibility of generation of cold and additional electric energy at thermal power stations
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.
2017-06-01
A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.
NASA Technical Reports Server (NTRS)
Kovach, L. S.; Zdankiewicz, E. M.
1987-01-01
Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.
NASA Astrophysics Data System (ADS)
Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.
2008-06-01
The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.
Primeau, John J.
1983-03-01
A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... determined as follows: (1) For high pressure liquefied gases, in no case may the filling ratio of the settled... than the vapor pressure of the liquid at 65 °C. (3) For high pressure liquefied gases or gas mixtures... compressed gases in UN pressure receptacles. 173.304b Section 173.304b Transportation Other Regulations...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...
2017-03-16
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less
NASA Astrophysics Data System (ADS)
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-03-01
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-03-16
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-01-01
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067
Development of a hybrid chemical/mechanical heat pump
NASA Technical Reports Server (NTRS)
Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.
1991-01-01
The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.
Phase change water processing for Space Station
NASA Technical Reports Server (NTRS)
Zdankiewicz, E. M.; Price, D. F.
1985-01-01
The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less
High-Pressure Oxygen Generation for Outpost EVA Study
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.
2009-01-01
The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.
NASA Technical Reports Server (NTRS)
Erickson, Lisa R.; Ungar, Eugene K.
2013-01-01
Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.
Jet Simulation in a Diesel Engine
NASA Astrophysics Data System (ADS)
Xu, Zhiliang
2005-03-01
We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. To resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. To simulate the spray formation, we model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. The formation of the cavitation is represented by the dynamic creation of vapor bubbles. On the liquid/vapor interface, a phase transition problem is solved numerically. The phase transition is governed by the compressible Euler equations with heat diffusion. Our solution is a new description for the Riemann problem associated with a phase transition in a fully compressible fluid.
Magnetized Plasma Compression for Fusion Energy
NASA Astrophysics Data System (ADS)
Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David
2013-10-01
Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.
Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets
Weingart, Richard C.
1989-01-01
A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.
Shock melting and vaporization of metals.
NASA Technical Reports Server (NTRS)
Ahrens, T. J.
1972-01-01
The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.
Non-Ballistic Vapor-Driven Ejecta
NASA Technical Reports Server (NTRS)
Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.
Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R
2009-04-01
A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.
Processing Research on Chemically Vapor Deposited Silicon Nitride.
1979-12-01
34 sea urchins ") predominated, suggesting that formation was primarily from the vapor phase with little of the nodular growths seen at only slightly...Specimen HW-4-200-10 .................................. 3-38 3-17 Fracture Stress: Grain Size Correlation 3-39 3-18 SEM Fractographs of Flexure...4-202-10 ........ 3-42 3-21 SEM Fractographs of Flexure Specimen HW-4-200-4 ......... 3-43 3-22 SEM Fractographs of Compression Side of Flexure
Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change
NASA Astrophysics Data System (ADS)
Kanatani, Kentaro; Oron, Alexander
2011-03-01
We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.
46 CFR 153.354 - Venting system inlet.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.354 Venting system inlet. A venting system must terminate in the vapor space above the cargo...
46 CFR 153.358 - Venting system flow capacity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo... vapor space and the atmosphere does not exceed 28 kPa gauge (approx. 4 psig), or, for independent tanks...
46 CFR 153.354 - Venting system inlet.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.354 Venting system inlet. A venting system must terminate in the vapor space above the cargo...
46 CFR 153.254 - Cargo tank access.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...
46 CFR 153.254 - Cargo tank access.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...
46 CFR 153.354 - Venting system inlet.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.354 Venting system inlet. A venting system must terminate in the vapor space above the cargo...
46 CFR 153.254 - Cargo tank access.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...
46 CFR 153.358 - Venting system flow capacity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo... vapor space and the atmosphere does not exceed 28 kPa gauge (approx. 4 psig), or, for independent tanks...
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... in § 35.01-1 of this chapter; or (2) The vapor space in the pump well is filled with water. ...
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... in § 35.01-1 of this chapter; or (2) The vapor space in the pump well is filled with water. ...
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... in § 35.01-1 of this chapter; or (2) The vapor space in the pump well is filled with water. ...
46 CFR 153.254 - Cargo tank access.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...
46 CFR 153.358 - Venting system flow capacity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo... vapor space and the atmosphere does not exceed 28 kPa gauge (approx. 4 psig), or, for independent tanks...
46 CFR 153.354 - Venting system inlet.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.354 Venting system inlet. A venting system must terminate in the vapor space above the cargo...
46 CFR 153.354 - Venting system inlet.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.354 Venting system inlet. A venting system must terminate in the vapor space above the cargo...
46 CFR 153.358 - Venting system flow capacity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo... vapor space and the atmosphere does not exceed 28 kPa gauge (approx. 4 psig), or, for independent tanks...
Vapor compression distillation module
NASA Technical Reports Server (NTRS)
Nuccio, P. P.
1975-01-01
A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.
ERIC Educational Resources Information Center
Gibson, A. F.
1980-01-01
Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)
Portable radiography system using a relativistic electron beam
Hoeberling, Robert F.
1990-01-01
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.
Portable radiography system using a relativistic electron beam
Hoeberling, R.F.
1987-09-22
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-08-02
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-01-01
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, J.W.K.
1987-10-14
Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.
NASA Technical Reports Server (NTRS)
Chen, Ming-Ming; Faghri, Amir
1990-01-01
A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.
Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.; Stiel, L.I.
1980-09-30
1,2-dichloro-1,1-difluoroethane is useful as a power fluid with particular suitability for moderate scale Rankine cycle applications based on systems with moderate temperature heat sources. The fluid is utilized in a Rankine cycle application by vaporizing the fluid by passing the same in heat exchange relationship with a heat source and utilizing the kinetic energy of the resulting expanding vapors to perform work. In this manner heat energy is converted to mechanical energy. The fluid is particularly advantageous in a dual cycle system consisting of a Rankine power cycle combined with a vapor compression cooling or heating cycle.
Vapor Flow Patterns During a Start-Up Transient in Heat Pipes
NASA Technical Reports Server (NTRS)
Issacci, F.; Ghoniem, N, M.; Catton, I.
1996-01-01
The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.
NASA Technical Reports Server (NTRS)
Erickson, Lisa R.; Ungar, Eugene K.
2012-01-01
Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.
Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.
1992-01-01
Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.
Cooled-Spool Piston Compressor
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1994-01-01
Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.
Pulse Power Applications of Flux Compression Generators
1981-06-01
Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.
Compensating effect of the coherent synchrotron radiation in bunch compressors
NASA Astrophysics Data System (ADS)
Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.
2013-06-01
Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
Performance of a hybrid chemical/mechanical heat pump
NASA Technical Reports Server (NTRS)
Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.
1990-01-01
The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.
None
2018-06-13
Hydrofluorocarbons are the most common refrigerants found in vapor compression systems that heat and cool our homes. They are also thousands of times more potent than carbon dioxide. Learn about the Energy Department's efforts to help phase down these fluorinated gases.
ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS
The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-11-28
Hydrofluorocarbons are the most common refrigerants found in vapor compression systems that heat and cool our homes. They are also thousands of times more potent than carbon dioxide. Learn about the Energy Department's efforts to help phase down these fluorinated gases.
DOT National Transportation Integrated Search
2006-06-01
Five contracts from the Central Artery/Tunnel (CA/T) project in Boston, MA, were reviewed to document issues related to design and construction of driven pile foundations. Given the soft and compressible marine clays in the Boston area, driven pile f...
NASA Astrophysics Data System (ADS)
Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.
2005-04-01
Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.
Extended duration orbiter study: CO2 removal and water recovery
NASA Technical Reports Server (NTRS)
Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.
1979-01-01
Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.
On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers
NASA Technical Reports Server (NTRS)
Pletcher, R. H.; Chen, K.-H.
1993-01-01
The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.
NASA Technical Reports Server (NTRS)
Hung, R. J.
1995-01-01
A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.
Preliminary characterization of an expanding flow of siloxane vapor MDM
NASA Astrophysics Data System (ADS)
Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.
2017-03-01
The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases state-of-the-art thermodynamic models were applied.
Alcohol cold starting - A theoretical study
NASA Technical Reports Server (NTRS)
Browning, L. H.
1983-01-01
Two theoretical computer models have been developed to study cold starting problems with alcohol fuels. The first model, a droplet fall-out and sling-out model, shows that droplets must be smaller than 50 microns to enter the cylinder under cranking conditions without being slung-out in the intake manifold. The second model, which examines the fate of droplets during the compression process, shows that the heat of compression can be used to vaporize small droplets (less than 50 microns) producing flammable mixtures below freezing ambient temperatures. While droplet size has the greater effect on startability, a very high compression ratio can also aid cold starting.
Techniques for optically compressing light intensity ranges
Rushford, Michael C.
1989-01-01
A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.
Techniques for optically compressing light intensity ranges
Rushford, M.C.
1989-03-28
A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.
NASA Astrophysics Data System (ADS)
Kluge, Thomas
2015-11-01
Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.
Effect of heating parameters on sintering behaviors and properties of mullite whisker frameworks
NASA Astrophysics Data System (ADS)
Zhang, Y. M.; Zeng, D. J.; Wang, B.; Yang, J. F.
2018-04-01
Mullite whisker frameworks were fabricated by vapor-solid reaction with SiO2, Al2O3 and AlF3 powders as the whisker forming agent at high temperatures. The effects of heating temperature and soaking time on the weight loss, liner shrinkage, porosity, microstructure and compressive strength were investigated. The results showed that with the increasing of the sintering temperature and soaking time, the weight loss and liner shrinkage of the samples increased and the porosities decreased due to the accelerated vapor-solid reaction, resulting in strong bonding and grain growth of the mullite frameworks. The compressive strength of the samples increased with increasing the sintering temperature from 1500 to 1650 °C, and decreased with the soaking time extended to more than 5 h for 1500 °C and 2 h for 1650 °C. A maximum compressive strength of 142 MPa at a porosity of 62.3% was obtained for the mullite whisker framework heated at 1500 °C for 5 h. The enhanced strength was attributed to the strong bonding strength and fine mullite grains resulting from a relative lower heating temperature and a modest soaking time.
Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General
2016-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
Method and apparatus for operating a self-starting air heating system
Heinrich, Charles E.
1983-12-06
A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.
Method of dehydrating natural gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, R. E.
1985-01-01
A method for dehydration of natural gas is provided wherein well head gas is supplied to a three-phase inlet separator, the vapor mixture of natural gas and water removed from that inlet separator means is supplied to a turboexpander, and the resulting refrigerated mixture of natural gas and condensed water vapor is supplied to a multi-phase outlet separator. The turboexpander may have integral means for subsequent compression of the refrigerated mixture and may be coupled through reduction gears to a means for generating electricity. A portion of the refrigerated mixture may be connected to a heat exchanger for cooling themore » well head natural gas prior to entry into the inlet separator. The flow of refrigerated mixture to this heat exchanger may be controlled by a temperature sensitive valve downstream of the heat exchanger. Methanol may be injected into the vapor mixture prior to entry into the turboexpander. The flow of methanol into the vapor mixture may be controlled by a valve sensitive to the flow rate of the vapor mixture and the water vapor content of the refrigerated mixture. Natural gas vapor from the outlet separator may be recirculated through the turboexpander if the output water vapor content of the natural gas vapor stream is too high.« less
Development and validation of a turbulent-mix model for variable-density and compressible flows.
Banerjee, Arindam; Gore, Robert A; Andrews, Malcolm J
2010-10-01
The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows.
Kim, Sungsoo; Cho, Kilwon; Curry, Joan E
2005-08-30
The surface forces apparatus technique and the Johnson-Kendall-Roberts theory were used to study the elastic properties of an n-octadecyltriethoxysilane self-assembled monolayer (OTE-SAM) on both untreated and plasma-treated mica. Our aim was to measure the thickness compressibilities of OTE monolayers on untreated and plasma-treated mica and to estimate their surface densities and phase-states from the film compressibility. The compressibility moduli of OTE are (0.96 +/- 0.02) x 10(8) N/m(2) on untreated mica and (1.24 +/- 0.06) x 10(8) N/m(2) on plasma-treated mica. This work suggests that the OTE phase-state is pseudocrystalline. In addition, the results from the compressibility measurements in water vapor suggest that the OTE-SAM on both untreated and plasma-treated mica is not homogeneous but rather contains both crystalline polymerized OTE domains and somewhat hydrophilic gaseous regions.
NASA Astrophysics Data System (ADS)
Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.
2017-06-01
Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.
Crystal Growth of ZnSe by Physical Vapor Transport: A Modeling Study
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Su, Ching-Hua
1998-01-01
Crystal growth from the vapor phase has various advantages over melt growth. The main advantage is from a lower processing temperature which makes the process more amenable in instances where the melting temperature of the crystal is high. Other benefits stem from the inherent purification mechanism in the process due to differences in the vapor pressures of the native elements and impurities, and the enhanced interfacial morphological stability during the growth process. Further, the implementation of Physical Vapor Transport (PVT) growth in closed ampoules affords experimental simplicity with minimal needs for complex process control which makes it an ideal candidate for space investigations in systems where gravity tends to have undesirable effects on the growth process. Bulk growth of wide band gap II-VI semiconductors by physical vapor transport has been developed and refined over the past several years at NASA MSFC. Results from a modeling study of PVT crystal growth of ZnSe arc reported in this paper. The PVI process is numerically investigated using both two-dimensional and fully three-dimensional formulation of the governing equations and associated boundary conditions. Both the incompressible Boussinesq approximation and the compressible model are tested to determine the influence of gravity on the process and to discern the differences between the two approaches. The influence of a residual gas is included in the models. The preliminary results show that both the incompressible and compressible approximations provide comparable results and the presence of a residual gas tends to measurably reduce the mass flux in the system. Detailed flow, thermal and concentration profiles will be provided in the final manuscript along with computed heat and mass transfer rates. Comparisons with the 1-D model will also be provided.
The Exploration Water Recovery System
NASA Technical Reports Server (NTRS)
ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.
2006-01-01
The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.
Method and apparatus for extracting water from air
Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.
2002-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
Mechanical testing of advanced coating system, volume 1
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Nagy, A.; Popelar, C. F.
1990-01-01
The Electron Beam Physical Vapor Deposition (EBPVD) coating material has a highly columnar microstructure, and as a result it was expected to have very low tensile strength. To be able to fabricate the required compression and tensile specimens, a substrate was required to provide structural integrity for the specimens. Substrate and coating dimensions were adjusted to provide sufficient sensitivity to resolve the projected loads carried by the EBPVD coating. The use of two distinctively different strain transducer systems, for tension and compression loadings, mandated two vastly different specimen geometries. Compression specimen and tensile specimen geometries are given. Both compression and tensile test setups are described. Data reduction mathematical models are given and discussed in detail as is the interpretation of the results. Creep test data is also given and discussed.
Evaluation of BAUER High Pressure Breathing Air P-2 Purification System
1991-08-01
and is a coalescing type separator that removes oil and water vapors suspended in the compressed air . The molecular sieve is made to adsorb oil and...filtering, moisture separation, and prevents compressed air return from the charged air storage flasks to the compressor during unit shutdown. A manual...1111111111111 1111 IE IH fil91i C NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 10-91 EVALUATION OF BAUER HIGH PRESSURE BREATHING AIR P-2 PURIFICATION SYSTEM GEORGE D
Role of physical properties of liquids in cavitation erosion
NASA Technical Reports Server (NTRS)
Thiruvengadam, A.
1974-01-01
The dependence of erosion rates on the ambient temperature of water is discussed. The assumption that the gas inside the bubble is compressed adiabatically during collapse gives better agreement with experiments than the assumption that the gas is isothermally compressed. Acoustic impedance is an important liquid parameter that governs the erosion intensity in vibratory devices. The investigation reveals that the major physical properties of liquids governing the intensity of erosion include density, sound speed, surface tension, vapor pressure, gas content, and nuclei distribution.
Compression stripping of flue gas with energy recovery
Ochs, Thomas L.; O'Connor, William K.
2005-05-31
A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.
Compression Stripping of Flue Gas with Energy Recovery
Ochs, Thomas L.; O'Connor, William K.
2005-05-31
A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...
2015-08-27
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
NASA Astrophysics Data System (ADS)
Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.
2012-04-01
We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.
Vapor crystal growth technology development: Application to cadmium telluride
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Banish, Michael; Duval, Walter M. B.
1991-01-01
Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation.
The Fusion Gain Analysis of the Inductively Driven Liner Compression Based Fusion
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John
2016-10-01
An analytical analysis of the fusion gain expected in the inductively driven liner compression (IDLC) based fusion is conducted to identify the fusion gain scaling at various operating conditions. The fusion based on the IDLC is a magneto-inertial fusion concept, where a Field-Reversed Configuration (FRC) plasmoid is compressed via the inductively-driven metal liner to drive the FRC to fusion conditions. In the past, an approximate scaling law for the expected fusion gain for the IDLC based fusion was obtained under the key assumptions of (1) D-T fuel at 5-40 keV, (2) adiabatic scaling laws for the FRC dynamics, (3) FRC energy dominated by the pressure balance with the edge magnetic field at the peak compression, and (4) the liner dwell time being liner final diameter divided by the peak liner velocity. In this study, various assumptions made in the previous derivation is relaxed to study the change in the fusion gain scaling from the previous result of G ml1 / 2 El11 / 8 , where ml is the liner mass and El is the peak liner kinetic energy. The implication from the modified fusion gain scaling on the performance of the IDLC fusion reactor system is also explored.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Hainley, Donald C.
1989-01-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
An improved algorithm for the modeling of vapor flow in heat pipes
NASA Astrophysics Data System (ADS)
Tower, Leonard K.; Hainley, Donald C.
1989-12-01
A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.
Laser shock compression experiments on precompressed water in ``SG-II'' laser facility
NASA Astrophysics Data System (ADS)
Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu
2017-06-01
Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.
Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma
NASA Astrophysics Data System (ADS)
Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo
2011-04-01
We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.
Coulomb-Driven Relativistic Electron Beam Compression
NASA Astrophysics Data System (ADS)
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-01
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Coulomb-Driven Relativistic Electron Beam Compression.
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-26
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Chemical agent simulant release from clothing following vapor exposure.
Feldman, Robert J
2010-02-01
Most ambulatory victims of a terrorist chemical attack will have exposure to vapor only. The study objective was to measure the duration of chemical vapor release from various types of clothing. A chemical agent was simulated using methyl salicylate (MeS), which has similar physical properties to sulfur mustard and was the agent used in the U.S. Army's Man-In-Simulant Test (MIST). Vapor concentration was measured with a Smiths Detection Advanced Portable Detector (APD)-2000 unit. The clothing items were exposed to vapor for 1 hour in a sealed cabinet; vapor concentration was measured at the start and end of each exposure. Clothing was then removed and assessed every 5 minutes with the APD-2000, using a uniform sweep pattern, until readings remained 0. Concentration and duration of vapor release from clothing varied with clothing composition and construction. Lightweight cotton shirts and jeans had the least trapped vapor; down outerwear, the most. Vapor concentration near the clothing often increased for several minutes after the clothing was removed from the contaminated environment. Compression of thick outerwear released additional vapor. Mean times to reach 0 ranged from 7 minutes for jeans to 42 minutes for down jackets. This simulation model of chemical vapor release demonstrates persistent presence of simulant vapor over time. This implies that chemical vapor may be released from the victims' clothing after they are evacuated from the site of exposure, resulting in additional exposure of victims and emergency responders. Insulated outerwear can release additional vapor when handled. If a patient has just moved to a vapor screening point, immediate assessment before additional vapor can be released from the clothing can lead to a false-negative assessment of contamination.
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...
2016-04-01
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less
Foam relaxation in fractures and narrow channels
NASA Astrophysics Data System (ADS)
Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.
2017-11-01
Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less
Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J
2017-06-22
The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.
The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less
Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...
2017-06-22
The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less
Carlstrom, Jr., Charles M.
2001-01-01
An end plate assembly is disclosed for use in a fuel cell assembly in which the end plate assembly includes a housing having a cavity, and a bladder receivable in the cavity and engageable with the fuel cell stack. The bladder includes a two-phase fluid having a liquid portion and a vapor portion. Desirably, the two-phase fluid has a vapor pressure between about 100 psi and about 600 psi at a temperature between about 70 degrees C. to about 110 degrees C.
Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition.
Kodama, R; Norreys, P A; Mima, K; Dangor, A E; Evans, R G; Fujita, H; Kitagawa, Y; Krushelnick, K; Miyakoshi, T; Miyanaga, N; Norimatsu, T; Rose, S J; Shozaki, T; Shigemori, K; Sunahara, A; Tampo, M; Tanaka, K A; Toyama, Y; Yamanaka, T; Zepf, M
2001-08-23
Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Unique intermetallic compounds prepared by shock wave synthesis
NASA Technical Reports Server (NTRS)
Otto, G.; Reece, O. Y.; Roy, U.
1971-01-01
Technique compresses fine ground metallic powder mixture beyond crystal fusion point. Absence of vapor pressure voids and elimination of incongruous effects permit application of technique to large scale fabrication of intermetallic compounds with specific characteristics, e.g., semiconduction, superconduction, or magnetic properties.
THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS
The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Code of Federal Regulations, 2014 CFR
2014-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...
Modeling pressure-driven assembly of polymer coated nanoparticles
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Fan, Hongyou
2017-06-01
High-pressure experiments have successfully produced a variety of gold nanostructures by compressing polymer coated spherical nanoparticles. We apply atomistic simulation to understand the role of the soft polymer response in determining the pressure-driven assembly of gold nanostructures. Quasi-isentropic experiments have shown that 1D, 2D and 3D nanostructures can be formed and recovered from dynamic compression of fcc superlattices of alkanethiol-coated gold nanocrystals on Sandia's Veloce pulsed power accelerator. Molecular modeling has shown that the dimensionality of the final structures depends on the orientation of the superlattice and the uniaxial loading. We describe the role of coating ligand length and grafting density, on ligand migration and deformation processes during pressure-driven coalescence of the cores into permanent nanowires, nanosheets and 3D structures. The role of uniaxial vs isotropic pressure and the effects of compression along various superlattice orientations will be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.S.; Lee, H.
1999-07-01
The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorptionmore » chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.« less
Transform coding for space applications
NASA Technical Reports Server (NTRS)
Glover, Daniel
1993-01-01
Data compression coding requirements for aerospace applications differ somewhat from the compression requirements for entertainment systems. On the one hand, entertainment applications are bit rate driven with the goal of getting the best quality possible with a given bandwidth. Science applications are quality driven with the goal of getting the lowest bit rate for a given level of reconstruction quality. In the past, the required quality level has been nothing less than perfect allowing only the use of lossless compression methods (if that). With the advent of better, faster, cheaper missions, an opportunity has arisen for lossy data compression methods to find a use in science applications as requirements for perfect quality reconstruction runs into cost constraints. This paper presents a review of the data compression problem from the space application perspective. Transform coding techniques are described and some simple, integer transforms are presented. The application of these transforms to space-based data compression problems is discussed. Integer transforms have an advantage over conventional transforms in computational complexity. Space applications are different from broadcast or entertainment in that it is desirable to have a simple encoder (in space) and tolerate a more complicated decoder (on the ground) rather than vice versa. Energy compaction with new transforms are compared with the Walsh-Hadamard (WHT), Discrete Cosine (DCT), and Integer Cosine (ICT) transforms.
Raman, Abhinav S; Li, Huiyong; Chiew, Y C
2018-01-07
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.
NASA Astrophysics Data System (ADS)
Raman, Abhinav S.; Li, Huiyong; Chiew, Y. C.
2018-01-01
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
Method and apparatus for extracting water from air
Spletzer, Barry L.
2001-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency power source. If this compressor supplies other auxiliaries, there must be a non-return valve at...
NIR-Driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets
NASA Technical Reports Server (NTRS)
Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.
2017-01-01
H2O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H2O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H2O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H2O signatures may be strengthened by a factor of a few, loosening the observational demands for a H2O detection.
Computational Simulation of a Water-Cooled Heat Pump
NASA Technical Reports Server (NTRS)
Bozarth, Duane
2008-01-01
A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).
Wetting of a partially immersed compliant rod
NASA Astrophysics Data System (ADS)
Hui, Chung-Yuen; Jagota, Anand
2016-11-01
The force on a solid rod partially immersed in a liquid is commonly used to determine the liquid-vapor surface tension by equating the measured force required to remove the rod from the liquid to the vertical component of the liquid-vapor surface tension. Here, we study how this process is affected when the rod is compliant. For equilibrium, we enforce force and configurational energy balance, including contributions from elastic energy. We show that, in general, the contact angle does not equal that given by Young's equation. If surface stresses are tensile, the strain in the immersed part of the rod is found to be compressive and to depend only on the solid-liquid surface stress. The strain in the dry part of the rod can be either tensile or compressive, depending on a combination of parameters that we identify. We also provide results for compliant plates partially immersed in a liquid under plane strain and plane stress. Our results can be used to extract solid surface stresses from such experiments.
Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram
2013-01-01
The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less
Performance of journal bearings with semi-compressible fluids
NASA Technical Reports Server (NTRS)
Carpino, M.; Peng, J.-P.
1991-01-01
Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
Pressure Profiles in a Loop Heat Pipe Under Gravity Influence
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Pressure Profiles in a Loop Heat Pipe under Gravity Influence
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah
2001-01-01
Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.
Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA
2012-07-10
A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.
Martian rampart crater ejecta - Experiments and analysis of melt-water interaction
NASA Technical Reports Server (NTRS)
Wohletz, K. H.; Sheridan, M. F.
1983-01-01
The possible effects of explosive water vaporization on ejecta emplacement after impact into a wet target are described. A general model is formulated from analysis of Viking imagery of Mars and experimental vapor explosions as well as consideration of fluidized particulate transport and lobate volcanic deposits. The discussed model contends that as target water content increases, the effects of vapor expansion due to impact increasingly modify the ballistic flow field during crater excavation. This modification results in transport by gravity-driven surface flowage, and is similar to that of atmospheric drag effects on ejecta modelled by Schultz and Gault (1979).
Effect of ball milling on structures and properties of dispersed-type dental amalgam.
Chern Lin, Jiin-Huey; Chen, Fred Ying-Yi; Chiang, Hui-Ju; Ju, Chien-Ping
2011-04-01
The purpose of the present study was to investigate the effect of ball milling on the initial mercury vapor release rate and mechanical properties such as compressive strength, diametral tensile strength and creep value, of the dispersed-type dental amalgam, and comparison was made with respect to two commercial amalgam alloys. Ball milling was employed to modify the configuration of the originally spherical-shaped Ag-Cu-Pd dispersant alloy particles. Improvement in mechanical properties while maintaining a low early-stage mercury vapor release rate of the amalgam is attempted. The experimental results show that the amalgam (AmB10) which was made from Ag-Cu-Pd dispersant alloy particles that were ball-milled for 10 min and heat-treated at 300 °C for 2 days exhibited a low initial mercury vapor release rate of 69 pg/mm(2)/s, which was comparable with that of commercial amalgam alloy Tytin (68 pg/mm(2)/s), and was lower than that of Dispersalloy (73 pg/mm(2)/s). As for mechanical properties, amalgam AmB10 exhibited the highest 1h compressive strength (228 MPa), which was higher than that of commercial amalgam alloy Dispersalloy by 72%; while its 24h diametral tensile strength was also the highest (177 MPa), and was higher than that of Dispersalloy by 55%. Furthermore, the creep value of the amalgams made from Ag-Cu-Pd alloy particles with 10 min ball-milling and heat treatment at 300 °C for 2 days was measured to be 0.12%, which was about 20% that of Dispersalloy. It is found that ball milling of the dispersant Ag-Cu-Pd alloy particles for 10 min was able to modify the configuration of the alloy particles into irregular-shapes. Subsequently, heat treatment at 300 °C significantly lowered the initial mercury vapor release rate, increased its 1h compressive strength and 1h diametral tensile strength, and lowered its creep value. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-1 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
46 CFR 154.1720 - Indirect refrigeration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...
46 CFR 151.40-11 - Refrigeration systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...
U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia
Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less
U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia
Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,820 clean survey responses were obtained from four distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 2.9(–2.5,+4.5) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less
Gehrig, Nicolas; Dragotti, Pier Luigi
2009-03-01
In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.
2012-07-01
vap erant vapor is or by a J-tub essure side of using similar pressure incre ump in order o the diesel-e per heat excha recovered at to the exhaus...top of the a tering the com at exchanger. g of the conve id flow. A nit essure pulsati tor where the ed in the cool erature level. ger where wa
Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube
NASA Astrophysics Data System (ADS)
Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru
Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.
Condensation of vapor bubble in subcooled pool
NASA Astrophysics Data System (ADS)
Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.
2017-02-01
We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.
Interacting vegetative and thermal contributions to water movement in desert soil
Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.
2011-01-01
Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.
NASA Technical Reports Server (NTRS)
Deckman, G.; Rousseau, J. (Editor)
1973-01-01
The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.
NASA Astrophysics Data System (ADS)
Li, Ying; Yu, Xiaodong; Tan, Chengwen; Wang, Fuchi; Ma, Honglei; Yue, Jintao
2017-05-01
Porous tungsten (W) is used in aeronautic and aerospace engineering, power electronics field and metallurgical industry. In this study, porous W with 98wt% W was prepared on a carbon foam substrate by atmospheric-pressure chemical vapor deposition (CVD) with tungsten fluoride (WF6) as the precursor. The porous W with 78.1346% porosity displayed a pure α-W phase and the uniform surface. The mode pore diameter of porous W is 208.0 µm. In a compression test, the fracture strength of porous W is 20.3 MPa.
2012-06-01
driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration
The Breathing Snowpack: Pressure-induced Vapor Flux of Temperate Snow
NASA Astrophysics Data System (ADS)
Drake, S. A.; Selker, J. S.; Higgins, C. W.
2017-12-01
As surface air pressure increases, hydrostatic compression of the air column forces atmospheric air into snowpack pore space. Likewise, as surface air pressure decreases, the atmospheric air column decompresses and saturated air exits the snow. Alternating influx and efflux of air can be thought of as a "breathing" process that produces an upward vapor flux when air above the snow is not saturated. The impact of pressure-induced vapor exchange is assumed to be small and is thus ignored in model parameterizations of surface processes over snow. Rationale for disregarding this process is that large amplitude pressure changes as caused by synoptic weather patterns are too infrequent to credibly impact vapor flux. The amplitude of high frequency pressure changes is assumed to be too small to affect vapor flux, however, the basis for this hypothesis relies on pressure measurements collected over an agricultural field (rather than snow). Resolution of the impact of pressure changes on vapor flux over seasonal cycles depends on an accurate representation of the magnitude of pressure changes caused by changes in wind as a function of the frequency of pressure changes. High precision in situ pressure measurements in a temperature snowpack allowed us to compute the spectra of pressure changes vs. wind forcing. Using a simplified model for vapor exchange we then computed the frequency of pressure changes that maximize vapor exchange. We examine and evaluate the seasonal impact of pressure-induced vapor exchange relative to other snow ablation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.
2014-11-15
In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of themore » x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.« less
Development of a broadband reflectivity diagnostic for laser driven shock compression experiments
Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...
2015-04-16
Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
Filling-driven Mott transition in SU(N ) Hubbard models
NASA Astrophysics Data System (ADS)
Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas
2018-04-01
We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.
Remotely controllable mixing system
NASA Technical Reports Server (NTRS)
Belew, R. R. (Inventor)
1986-01-01
This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2014 CFR
2014-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2013 CFR
2013-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
46 CFR 154.1735 - Methyl acetylene-propadiene mixture.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...
Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface.
Meng, Fanchen; Hao, Wei; Yu, Shengtao; Feng, Rui; Liu, Yanming; Yu, Fan; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2017-09-13
This paper explores a new propulsion mechanism that is based on the ejection of hot vapor jet to propel the motor at the liquid/air interface. For conventional photothermal motors, which mostly are driven by Marangoni effect, it is challenging to propel those motors at the surfaces of liquids with low surface tension due to the reduced Marangoni effect. With this new vapor-enabled propulsion mechanism, the motors can move rapidly at the liquid/air interface of liquids with a broad range of surface tensions. A design that can accumulate the hot vapor is further demonstrated to enhance both the propulsion force as well as the applicable range of liquids for such motors. This new propulsion mechanism will help open up new opportunities for the photothermal motors with desired motion controls at a wide range of liquid/air interfaces where hot vapor can be generated.
Investigation Of Vapor Explosion Mechanisms Using High Speed Photography
NASA Astrophysics Data System (ADS)
Armstrong, Donn R.; Anderson, Richard P.
1983-03-01
The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.
Conceptual design of a thermal control system for an inflatable lunar habitat module
NASA Technical Reports Server (NTRS)
Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph
1991-01-01
NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-02-26
A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.
Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube
gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.
NASA Astrophysics Data System (ADS)
Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.
2017-08-01
High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.
Fuel Areal-Density Measurements in Laser-Driven Magnetized Inertial Fusion from Secondary Neutrons
NASA Astrophysics Data System (ADS)
Davies, J. R.; Barnak, D. H.; Betti, R.; Glebov, V. Yu.; Knauer, J. P.; Peebles, J. L.
2017-10-01
Laser-driven magnetized liner inertial fusion is being developed on the OMEGA laser to provide the first data at a significantly smaller scale than the Z pulsed-power machine in order to test scaling and to provide more shots with better diagnostic access than Z. In OMEGA experiments, a 0.6-mm-outer-diam plastic cylinder filled with 11 atm of D2 is placed in an axial magnetic field of 10 T, the D2 is preheated by a single beam along the axis, and then the cylinder is compressed by 40 beams. Secondary DT neutron yields provide a measurement of the areal density of the compressed D2 because the compressed fuel is much smaller than the mean free path and the Larmor radius of the T produced in D-D fusion. Measured secondary yields confirm theoretical predictions that preheating and magnetization reduce fuel compression. Higher fuel compression is found to consistently lead to lower neutron yields, which is not predicted by simulations. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568 and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Weiss, Volker C.; Leroy, Frédéric
2016-06-01
More than two decades ago, the elusiveness of a liquid-vapor equilibrium and a corresponding critical point in simulations of the supposedly simple model of dipolar hard spheres came as a surprise to many liquid matter theorists. van Leeuwen and Smit [Phys. Rev. Lett. 71, 3991 (1993)] showed that a minimum of attractive dispersion interactions among the dipolar particles may be needed to observe regular fluid behavior. Here, we adopt their approach and use an only slightly modified model, in which the original point dipole is replaced by a dipole moment produced by charges that are separated in space, to study the influence of dispersion interactions of variable strength on the coexistence and interfacial properties of a polar fluid. The thermophysical properties are discussed in terms of Guggenheim's corresponding-states approach. In this way, the coexistence curve, the critical compressibility factor, the surface tension, Guggenheim's ratio, and modifications of Guldberg's and Trouton's rules (related to the vapor pressure and the enthalpy of vaporization) are analyzed. As the importance of dispersion is decreased, a crossover from simple-fluid behavior to that characteristic of strongly dipolar systems takes place; for some properties, this transition is monotonic, but for others it occurs non-monotonically. For strongly dipolar systems, the reduced surface tension is very low, whereas Guggenheim's ratio and Guldberg's ratio are found to be high. The critical compressibility factor is smaller, and the coexistence curve is wider and more skewed than for simple fluids. For very weak dispersion, liquid-vapor equilibrium is still observable, but the interfacial tension is extremely low and may, eventually, vanish marking the end of the existence of a liquid phase. We discuss the implications of our findings for real fluids, in particular, for hydrogen fluoride.
Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles
NASA Astrophysics Data System (ADS)
Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho
2017-08-01
The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1992-01-01
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.
The effect of pressure on Cu-btc: framework compression vs. guest inclusion.
Graham, Alexander J; Tan, Jin-Chong; Allan, David R; Moggach, Stephen A
2012-02-01
Here we present detailed structural data on the effect of high pressure on Cu-btc. Application of pressure causes solvent to be squeezed into the pores until a phase transition occurs, driven by the sudden compression and expansion of equatorial and axial Cu-O bonds. This journal is © The Royal Society of Chemistry 2012
Towards multicaloric effect with ferroelectrics
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Guangzu; Li, Qi; Bellaiche, Laurent; Scott, James F.; Dkhil, Brahim; Wang, Qing
2016-12-01
Utilizing thermal changes in solid-state materials strategically offers caloric-based alternatives to replace current vapor-compression technology. To make full use of multiple forms of the entropy and achieve higher efficiency for designs of cooling devices, the multicaloric effect appears as a cutting-edge concept encouraging researchers to search for multicaloric materials with outstanding caloric properties. Here we report the multicaloric effect in BaTi O3 single crystals driven simultaneously by mechanical and electric fields and described via a thermodynamic phenomenological model. It is found that the multicaloric behavior is mainly dominated by the mechanical field rather than the electric field, since the paraelectric-to-ferroelectric transition is more sensitive to mechanical field than to electric field. The use of uniaxial stress competes favorably with pressure due to its much higher caloric strength and negligible elastic thermal change. It is revealed that multicaloric response can be significantly larger than just the sum of mechanocaloric and electrocaloric effects in temperature regions far above the Curie temperature but cannot exceed this limit near the Curie temperature. Our results also show the advantage of the multicaloric effect over the mechanically mediated electrocaloric effect or electrically mediated mechanocaloric effect. Our findings therefore highlight the importance of ferroelectric materials to develop multicaloric cooling.
The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys
NASA Astrophysics Data System (ADS)
Zhou, Min; Li, Yushuang; Zhang, Chen; Li, Shaojie; Wu, Erfu; Li, Wei; Li, Laifeng
2018-04-01
Solid-state cooling technologies are considered as possible alternatives for vapor compression cooling systems. The elastocaloric cooling (whose caloric effects are driven by uniaxial stress) technology, as an efficient and clean solid-state cooling technology, is receiving a great deal of attention very recently. Herein, a NiTi-based elastocaloric bulk material was reported. A large coefficient-of-performance of the material (COPmater) of 4.5 was obtained, which was even higher than that of other NiTi bulk materials. The temperature changes (ΔT) increased with increasing applied strain (ɛ), and reached 18 K upon loading and -11 K upon unloading when the ɛ value increased to 4%. The high temperature changes were attributed to the large stress-induced entropy changes (the maximum ΔS σ value was 37 J kg-1 K-1). The temperature changes decreased with loading-unloading tensile cycles, and stabilized at 6.5 K upon loading and -6 K upon unloading after tens of mechanical cycles. The Ni50.8Ti49.2 shape memory alloy showed great promise for application in solid-state refrigeration (or as heat pumps).
Vane, Leland M.
2017-01-01
BACKGROUND When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. RESULTS This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. CONCLUSION Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used. PMID:29225395
Simulation and Experimental Study of Metal Organic Frameworks Used in Adsorption Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenks, Jeromy J.; Motkuri, Radha K.; TeGrotenhuis, Ward
2016-10-11
Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years in energy storage and gas separation, yet there have been few reports for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems and is an excellent alternative in industrial environments where waste heat is available. We explored the use of MOFs that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. Computational fluid dynamics combined with a system level lumped-parameter model have beenmore » used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Recent computational studies of an adsorption chiller based on MOFs suggests that a thermally-driven coefficient of performance greater than one may be possible, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Presented herein are computational and experimental results for hydrophyilic and fluorophilic MOFs.« less
Vane, Leland M
2017-03-08
When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.
Recirculating rotary gas compressor
Weinbrecht, John F.
1992-01-01
A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.
Recirculating rotary gas compressor
Weinbrecht, J.F.
1992-02-25
A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.
Salt power - Is Neptune's ole salt a tiger in the tank
NASA Astrophysics Data System (ADS)
Wick, G. S.
1980-02-01
Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
Soft beams: When capillarity induces axial compression
NASA Astrophysics Data System (ADS)
Neukirch, S.; Antkowiak, A.; Marigo, J.-J.
2014-01-01
We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.
Soft beams: when capillarity induces axial compression.
Neukirch, S; Antkowiak, A; Marigo, J-J
2014-01-01
We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.
NASA Astrophysics Data System (ADS)
Federrath, C.; Roman-Duval, J.; Klessen, R. S.; Schmidt, W.; Mac Low, M.-M.
2010-03-01
Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood. Aims: To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations. Methods: We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed. Results: Using Fourier spectra and Δ-variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal forcing on that scale. However, Δ-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC displays clear signatures of compressive forcing. Conclusions: The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores. A movie is only available in electronic form at http://www.aanda.org
PVIScreen extends the concepts of a prior model (BioVapor), which accounted for oxygen-driven biodegradation of multiple constituents of petroleum in the soil above the water table. Typically, the model is run 1000 times using various factors.
USDA-ARS?s Scientific Manuscript database
The common method to apply pre-plant soil fumigants is through pressurizing the pesticides with compressed nitrogen gas. However, it is believed that fumigants with relatively low vapor pressure, such as dimethyl disulfide or DMDS, can be better dispersed in soil when applied using CO2 gas. A labor...
DOT National Transportation Integrated Search
2009-09-01
A tubular plug-flow reactor under low Reynolds Numbers Re flow regimes, along with a 127 um diameter coiled platinum (Pt) wire, were used to study catalytic surface reactions of nonflammable, fuel-lean mixtures of propane, oxygen, and water vapor dil...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...
Grant.Wheeler@nrel.gov | 303-275-4577 In November 2016, Grant joined NREL and works in the Commercial Buildings Research Group. His expertise is in commercial product development, as well as the vapor-compression cycle focused on developing residential HVAC systems for commercial sale. While at Texas A&M for his
A simple, accurate, field-portable mixing ratio generator and Rayleigh distillation device
USDA-ARS?s Scientific Manuscript database
Routine field calibration of water vapor analyzers has always been a challenging problem for those making long-term flux measurements at remote sites. Automated sampling of standard gases from compressed tanks, the method of choice for CO2 calibration, cannot be used for H2O. Calibrations are typica...
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... air-enriched mixture within the flammability range of the lading in the vapor space of the tank. (4... the following conditions: (i) For compressed gases and certain refrigerated liquids that are not cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the...
A Low Mach Number Model for Moist Atmospheric Flows
Duarte, Max; Almgren, Ann S.; Bell, John B.
2015-04-01
A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here in this paper, latentmore » heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. Finally, the authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.« less
NASA Technical Reports Server (NTRS)
Wieland, P.; Hutchens, C.; Long, D.; Salyer, B.
1998-01-01
Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPA'S, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.97 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.
NASA Technical Reports Server (NTRS)
Wieland, Paul O.
1998-01-01
Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.
A Low Mach Number Model for Moist Atmospheric Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, Max; Almgren, Ann S.; Bell, John B.
A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here in this paper, latentmore » heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. Finally, the authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.« less
NASA Astrophysics Data System (ADS)
Ghaebi, Hadi; Abbaspour, Ghader
2018-05-01
In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.
NASA Astrophysics Data System (ADS)
Gill, Jatinder; Singh, Jagdev
2018-07-01
In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.
NASA Technical Reports Server (NTRS)
Huff, Tim
1993-01-01
Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Ramachandran, N.
2013-01-01
Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.
Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
Gaul, Christopher J.
2001-01-01
The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.
NASA Astrophysics Data System (ADS)
Molaeimanesh, G. R.; Nazemian, M.
2017-08-01
Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.
Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John
2006-01-01
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas
2014-03-21
Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).
Heating-induced glass-glass and glass-liquid transformations in computer simulations of water
NASA Astrophysics Data System (ADS)
Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas
2014-03-01
Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).
New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials
NASA Astrophysics Data System (ADS)
Kocher, Gabriel; Provatas, Nikolas
2015-04-01
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Laser driven supersonic flow over a compressible foam surface on the Nike lasera)
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.
2010-05-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
In situ X-Ray Diffraction of Shock-Compressed Fused Silica
NASA Astrophysics Data System (ADS)
Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.
2018-03-01
Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.
Ultradispersive adaptive prism based on a coherently prepared atomic medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sautenkov, Vladimir A.; P. N. Lebedev Institute of Physics, Moscow 119991; Li Hebin
2010-06-15
We have experimentally demonstrated an ultra-dispersive optical prism made from a coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is 6 orders of magnitude higher than that of a prism made of optical glass; such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kilohertz. The prism operates near the resonant frequency of atomic vapor and its dispersion is optically controlled by a coherent driving field.
Linking Europa’s Plume Activity to Tides, Tectonics, and Liquid Water
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa R.; Hurford, Terry; Roth, Lorenz; Retherford, Kurt
2014-11-01
Much of the geologic activity preserved on Europa’s icy surface has been attributed to tidal deformation, mainly due to Europa’s eccentric orbit. Although the surface is geologically young, evidence of ongoing tidally-driven processes has been lacking. However, a recent observation of water vapor near Europa’s south pole suggests that it may be geologically active. Non-detections in previous and follow-up observations indicate a temporal variation in plume visibility and suggests a relationship to Europa’s tidal cycle. Similarly, the Cassini spacecraft has observed plumes emanating from the south pole of Saturn’s moon, Enceladus, and variability in the intensity of eruptions has been linked to its tidal cycle. The inference that a similar mechanism controls plumes at both Europa and Enceladus motivates further analysis of Europa’s plume behavior and the relationship between plumes, tides, and liquid water on these two satellites.We determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa’s orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. In contrast, the addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of the model faults are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across model faults suggests that the plumes would be best observed earlier in Europa’s orbit. Our results indicate that Europa’s plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
2015-12-10
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures
NASA Astrophysics Data System (ADS)
Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh
2017-06-01
Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Hernández-Meléndez, O; Peydecastaing, J; Bárzana, E; Vaca-Garcia, C; Hernández-Luna, M; Borredon, M E
2009-01-01
The graft polymerization reaction between ethylene carbonate (EC) and scots pine sawdust (SPS) or peat moss (PM) offers a solvent-free approach to the simple and inexpensive aliphatic derivatization of these lignocellulosic fibers. This reaction was studied with liquid or vapor EC phases in three different reactor configurations: batch stirred (BSR), semi-continuous stirred (SSR) and continuous tubular in the gas phase (CVTR). The use of a vapor phase allowed a satisfactory grafting yield and minimal production of non-grafted polyol by-products. The crosslinking agent 4,4'-methylenebis(phenylisocyanate) (MDI) achieved superior characteristics to form shaped tablets resistant to water disaggregation, a high water retention capacity and high compression strength, characteristics that conventional organic supports like PM or PM-polyurethane foam mixtures used in biofiltration of waste gases do not completely possess.
Lubrication System Failure Baseline Testing on an Aerospace Quality Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Morales, Wilfredo
2000-01-01
Aerospace drive systems are required to survive a loss-of-lubrication test for qualification. In many cases emergency lubrication systems need to be designed and utilized to permit the drive system to pass this difficult requirement. The weight of emergency systems can adversely affect the mission capabilities of the aircraft. The possibility to reduce the emergency system weight through the use of mist lubrication will be described. Mist lubrication involves the delivery of a minute amount of an organic liquid as a vapor or fine mist in flowing compressed air to rubbing surfaces. At the rubbing surface, the vapor or mist reacts to form a solid lubricating film. The aim of this study was to establish a baseline for gear behavior under oil depleted conditions. A reactive vapor-mist lubrication method is described and proposed as a candidate emergency lubrication system.
Polishuk, Ilya
2013-03-14
This study is the first comparative investigation of predicting the isochoric and the isobaric heat capacities, the isothermal and the isentropic compressibilities, the isobaric thermal expansibilities, the thermal pressure coefficients, and the sound velocities of ionic liquids by statistical associating fluid theory (SAFT) equation of state (EoS) models and cubic-plus-association (CPA). It is demonstrated that, taking into account the high uncertainty of the literature data (excluding sound velocities), the generalized for heavy compounds version of SAFT+Cubic (GSAFT+Cubic) appears as a robust estimator of the auxiliary thermodynamic properties under consideration. In the case of the ionic liquids the performance of PC-SAFT seems to be less accurate in comparison to ordinary compounds. In particular, PC-SAFT substantially overestimates heat capacities and underestimates the temperature and pressure dependencies of sound velocities and compressibilities. An undesired phenomenon of predicting high fictitious critical temperatures of ionic liquids by PC-SAFT should be noticed as well. CPA is the less accurate estimator of the liquid phase properties, but it is advantageous in modeling vapor pressures and vaporization enthalpies of ionic liquids. At the same time, the preliminary results indicate that the inaccuracies in predicting the deep vacuum vapor pressures of ionic liquids do not influence modeling of phase equilibria in their mixtures at much higher pressures.
Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow.
Seki, Kazuyoshi; Ueda, Ken; Okumura, Yu-ichi; Tabe, Yuka
2011-07-20
Free-standing films composed of several layers of chiral smectic liquid crystals (SmC*) exhibited unidirectional director precession under various vapor transfers across the films. When the transferred vapors were general organic solvents, the precession speed linearly depended on the momentum of the transmembrane vapors, where the proportional constant was independent of the kind of vapor. In contrast, the same SmC* films under water transfer exhibited precession in the opposite direction. As a possible reason for the rotational inversion, we suggest the competition of two origins for the torques, one of which is microscopic and the other macroscopic. Next, we tried to move an external object by making use of the liquid crystal (LC) motion. When a solid or a liquid particle was set on a film under vapor transfer, the particle was rotated in the same direction as the LC molecules. Using home-made laser tweezers, we measured the force transmitted from the film to the particle, which we found to be several pN.
DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept
NASA Astrophysics Data System (ADS)
Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert
2016-10-01
The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.
NASA Astrophysics Data System (ADS)
Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.
2018-05-01
The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaul, Chris; Sheppy, Michael
This study describes the test results of a Refrigerant Pump System integrated into a commercial supermarket direct expansion (DX) vapor compression refrigeration system. The Liquid Refrigerant Pump System retrofit (patent-pending; application number 13/964,198) was introduced to NREL in August 2014 by CTA Architects Engineers.
Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun
2015-08-11
A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.
Fast and predictable video compression in software design and implementation of an H.261 codec
NASA Astrophysics Data System (ADS)
Geske, Dagmar; Hess, Robert
1998-09-01
The use of software codecs for video compression becomes commonplace in several videoconferencing applications. In order to reduce conflicts with other applications used at the same time, mechanisms for resource reservation on endsystems need to determine an upper bound for computing time used by the codec. This leads to the demand for predictable execution times of compression/decompression. Since compression schemes as H.261 inherently depend on the motion contained in the video, an adaptive admission control is required. This paper presents a data driven approach based on dynamical reduction of the number of processed macroblocks in peak situations. Besides the absolute speed is a point of interest. The question, whether and how software compression of high quality video is feasible on today's desktop computers, is examined.
NASA Technical Reports Server (NTRS)
Meneghini, R.; Liao, L.; Tian, L.
2005-01-01
The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that are related primarily to the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.
NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.
H{sub 2}O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H{sub 2}O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H{sub 2}O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapormore » mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H{sub 2}O signatures may be strengthened by a factor of a few, loosening the observational demands for a H{sub 2}O detection.« less
Design, fabrication and testing of a dual catalyst ammonia removal system for a urine VCD unit
NASA Technical Reports Server (NTRS)
Budinikas, P.
1980-01-01
A three-man capacity catalytic system for the recovery of water from urine was designed, constructed, and tested, it was designed to operate with feed streams containing high concentrations of urine vapor and only 5 to 7% of oxygen for the oxidation of ammonia and volatile organic vapor.It can operate either in a flow-through or a recycle mode and is capable of accepting the urine vapor produced by a vapor compression distillation evaporator. Testing consisted of short preliminary and optimization test, an endurance test of 74 hours continuous operation, and recycle tests using both air and oxygen. The system was designed for a urine processing rate of 0.86 liters/hr; however, it was tested at rates up to 1.2 liter/hr. Untreated urine evaporated by an electrically heated evaporator was used. The quality of the recovered water meets the U.S. Drinking Water Standards, with the exception of a low pH. Accumulation of solids in the urine sludge is reduced to approximately 65% of the anticipated value.
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...
2017-02-13
Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.
Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong
Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable statesmore » in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.« less
Low-voltage Driven Graphene Foam Thermoacoustic Speaker.
Fei, Wenwen; Zhou, Jianxin; Guo, Wanlin
2015-05-20
A low-voltage driven thermoacoustic speaker is fabricated based on three-dimensional graphene foams synthesized by a nickel-template assisted chemical vapor deposition method. The corresponding thermoacoustic performances are found to be related to its microstructure. Graphene foams exhibit low heat-leakage to substrates and feasible tunability in structures and thermoacoustic performances, having great promise for applications in flexible or ultrasonic acoustic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decontamination of Water Containing Radiological Warfare Agents
1975-03-01
debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion
Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion
NASA Astrophysics Data System (ADS)
Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.
2005-10-01
This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter ˜100nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high (˜108K and ˜10g/cm3, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.
Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.
2012-12-15
An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less
Segmentation-driven compound document coding based on H.264/AVC-INTRA.
Zaghetto, Alexandre; de Queiroz, Ricardo L
2007-07-01
In this paper, we explore H.264/AVC operating in intraframe mode to compress a mixed image, i.e., composed of text, graphics, and pictures. Even though mixed contents (compound) documents usually require the use of multiple compressors, we apply a single compressor for both text and pictures. For that, distortion is taken into account differently between text and picture regions. Our approach is to use a segmentation-driven adaptation strategy to change the H.264/AVC quantization parameter on a macroblock by macroblock basis, i.e., we deviate bits from pictorial regions to text in order to keep text edges sharp. We show results of a segmentation driven quantizer adaptation method applied to compress documents. Our reconstructed images have better text sharpness compared to straight unadapted coding, at negligible visual losses on pictorial regions. Our results also highlight the fact that H.264/AVC-INTRA outperforms coders such as JPEG-2000 as a single coder for compound images.
Patterson, Bradley M; Davis, Greg B
2009-02-01
Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway.
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek, Anupam; Daehn, Glenn S; Taber, Geoffrey A
2015-05-05
A method for forming a piece of a sheet metal is performed by positioning a consumable body, made of metal, proximate to the piece of the sheet metal. The consumable body is rapidly vaporized, and the gas pressure generated thereby is directed into the piece of the sheet metal. This results in acceleration of the piece of sheet metal, and it is collided into a stationary body at a velocity, generally in excess of 200 m/s. Depending upon the type of stationary body, the piece of sheet metal is deformed into a predetermined shape or is welded onto the stationarymore » body. The vaporization is accomplished by passing a high current of electricity into the consumable body. The effect of the vaporized metal may be augmented by additional components in the consumable body.« less
Modélisation et simulation numérique du changement de phase liquide vapeur en cavité
NASA Astrophysics Data System (ADS)
Daru, Virginie; Duluc, Marie-Christine; Le Maître, Olivier; Juric, Damir; Le Quéré, Patrick
2006-01-01
A model for the simulation of boiling flow with phase change in a closed cavity is presented. A front-tracking method is used to deal with the liquid-vapor interface. The liquid phase is incompressible while the vapor phase is weakly compressible and obeys to the perfect gas law. This model can deal with large density ratio ( ρ/ρ≃1000) flows while accounting for the saturation curve. Computations are performed on a 1D validation case, idealizing a pressure cooker. Results are compared with a low Mach number approximation. To cite this article: V. Daru et al., C. R. Mecanique 334 (2006).
Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa
NASA Astrophysics Data System (ADS)
Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.
2014-05-01
In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
van Tulder, R; Roth, D; Krammel, M; Laggner, R; Heidinger, B; Kienbacher, C; Novosad, H; Chwojka, C; Havel, C; Sterz, F; Schreiber, W; Herkner, H
2014-01-01
Compression depth is frequently suboptimal in cardiopulmonary resuscitation (CPR). We investigated effects of intensified wording and/or repetitive target depth instructions on compression depth in telephone-assisted, protocol driven, bystander CPR on a simulation manikin. Thirty-two volunteers performed 10 min of compression only-CPR in a prospective, investigator-blinded, 4-armed, factorial setting. Participants were randomized either to standard wording ("push down firmly 5 cm"), intensified wording ("it is very important to push down 5 cm every time") or standard or intensified wording repeated every 20s. Three dispatchers were randomized to give these instructions. Primary outcome was relative compression depth (absolute compression depth minus leaning depth). Secondary outcomes were absolute distance, hands-off times as well as BORG-scale and nine-hole peg test (NHPT), pulse rate and blood pressure to reflect physical exertion. We applied a random effects linear regression model. Relative compression depth was 35 ± 10 mm (standard) versus 31 ± 11 mm (intensified wording) versus 25 ± 8 mm (repeated standard) and 31 ± 14 mm (repeated intensified wording). Adjusted for design, body mass index and female sex, intensified wording and repetition led to decreased compression depth of 13 (95%CI -25 to -1) mm (p=0.04) and 9 (95%CI -21 to 3) mm (p=0.13), respectively. Secondary outcomes regarding intensified wording showed significant differences for absolute distance (43 ± 2 versus 20 (95%CI 3-37) mm; p=0.01) and hands-off times (60 ± 40 versus 157 (95%CI 63-251) s; p=0.04). In protocol driven, telephone-assisted, bystander CPR, intensified wording and/or repetitive target depth instruction will not improve compression depth compared to the standard instruction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ali, S. J.; Kraus, R. G.; Fratanduono, D. E.; ...
2017-05-18
Here, we developed an iterative forward analysis (IFA) technique with the ability to use hydrocode simulations as a fitting function for analysis of dynamic compression experiments. The IFA method optimizes over parameterized quantities in the hydrocode simulations, breaking the degeneracy of contributions to the measured material response. Velocity profiles from synthetic data generated using a hydrocode simulation are analyzed as a first-order validation of the technique. We also analyze multiple magnetically driven ramp compression experiments on copper and compare with more conventional techniques. Excellent agreement is obtained in both cases.
NASA Astrophysics Data System (ADS)
Yoshizawa, Akira
1991-12-01
A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.
Schwartz, Andrew H; Shinn-Cunningham, Barbara G
2013-04-01
Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.
Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing
2014-01-01
In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
The economics of solar powered absorption cooling
NASA Technical Reports Server (NTRS)
Bartlett, J. C.
1978-01-01
Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
46 CFR 188.10-21 - Compressed gas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F.; or regardless of the pressure at 70 °F., having an absolute pressure exceeding 104 p.s.i. at 130 °F.; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F. as determined...
Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater
NASA Technical Reports Server (NTRS)
Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.
1979-01-01
A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.
Capillary Pumped Heat Transfer (CHT) Experiment
NASA Technical Reports Server (NTRS)
Hallinan, Kevin P.; Allen, J. S.
1998-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.
Diagnostic quality driven physiological data collection for personal healthcare.
Jea, David; Balani, Rahul; Hsu, Ju-Lan; Cho, Dae-Ki; Gerla, Mario; Srivastava, Mani B
2008-01-01
We believe that each individual is unique, and that it is necessary for diagnosis purpose to have a distinctive combination of signals and data features that fits the personal health status. It is essential to develop mechanisms for reducing the amount of data that needs to be transferred (to mitigate the troublesome periodically recharging of a device) while maintaining diagnostic accuracy. Thus, the system should not uniformly compress the collected physiological data, but compress data in a personalized fashion that preserves the 'important' signal features for each individual such that it is enough to make the diagnosis with a required high confidence level. We present a diagnostic quality driven mechanism for remote ECG monitoring, which enables a notation of priorities encoded into the wave segments. The priority is specified by the diagnosis engine or medical experts and is dynamic and individual dependent. The system pre-processes the collected physiological information according to the assigned priority before delivering to the backend server. We demonstrate that the proposed approach provides accurate inference results while effectively compressing the data.
Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu
2015-05-20
High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.
The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1991-01-01
The hydrologic response of groundwater to the thermal evolution of the early martian crust is considered. When a temperature gradient is present in a moist porous medium, it gives rise to a vapor-pressure gradient that drives the diffusion of water vapor from regions of high to low temperature. By this process, a geothermal gradient as small as 15 K/km could drive the vertical transport of 1 km of water to the freezing front at the base of the martian crysophere every 10 exp 6-10 exp 7 years, or the equivalent of about 100-1000 km of water over the course of martian geologic history. Models of the thermal history of Mars suggest that this thermally-driven vapor flux may have been as much as 3-5 times greater in the past. The magnitude of this transport suggests that the process of geothermally-induced vapor diffusion may have played a critical role in the initial emplacement of ground ice and the subsequent geomorphic and geochemical evolution of the martian crust.
NASA Astrophysics Data System (ADS)
Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.
2016-12-01
The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, R. W.; Dolan, D. H.; Dalton, D. G.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; ...
2016-01-07
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
NASA Astrophysics Data System (ADS)
Largent, Billy T.
The state of matter at extremely high pressures and densities is of fundamental interest to many branches of research, including planetary science, material science, condensed matter physics, and plasma physics. Matter with pressures, or energy densities, above 1 megabar (100 gigapascal) are defined as High Energy Density (HED) plasmas. They are directly relevant to the interiors of planets such as Earth and Jupiter and to the dense fuels in Inertial Confinement Fusion (ICF) experiments. To create HEDP conditions in laboratories, a sample may be compressed by a smoothly varying pressure ramp with minimal temperature increase, following the isentropic thermodynamic process. Isentropic compression of aluminum targets has been done using magnetic pressure produced by megaampere, pulsed power currents having 100 ns rise times. In this research project, magnetically driven, cylindrical isentropic compression has been numerically studied. In cylindrical geometry, material compression and pressure become higher than in planar geometry due to geometrical effects. Based on a semi-analytical model for the Magnetized Liner Inertial Fusion (MagLIF) concept, a code called "SA" was written to design cylindrical compression experiments on the 1.0 MA Zebra pulsed power generator at the Nevada Terawatt Facility (NTF). To test the physics models in the code, temporal progresses of rod compression and pressure were calculated with SA and compared with 1-D magnetohydrodynamic (MHD) codes. The MHD codes incorporated SESAME tables, for equation of state and resistivity, or the classical Spitzer model. A series of simulations were also run to find optimum rod diameters for 1.0 MA and 1.8 MA Zebra current pulses. For a 1.0 MA current peak and 95 ns rise time, a maximum compression of 2.35 ( 6.3 g/cm3) and a pressure of 900 GPa within a 100 mum radius were found for an initial diameter of 1.05 mm. For 1.8 MA peak simulations with the same rise time, the initial diameter of 1.3 mm was optimal with 3.32 ( 9.0 g/cm 3) compression.
Fluid driven torsional dipole seismic source
Hardee, Harry C.
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
Effects of capillary heterogeneity on vapor-liquid counterflow in porous media
NASA Astrophysics Data System (ADS)
Stubos, A. K.; Satik, C.; Yortsos, Y. C.
1992-06-01
Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.
Star-shaped oscillations of Leidenfrost drops
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.
2017-03-01
We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Leung, Chung Ming; Or, Siu Wing; Ho, S L
2013-12-01
A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.
A Water Recovery System Evolved for Exploration
NASA Technical Reports Server (NTRS)
ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.
2006-01-01
A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.
Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Smith, Amanda D.; Majumdar, Alok K.
2017-01-01
This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.
Thermal Technology Development Activities at the Goddard Space Flight Center - 2001
NASA Technical Reports Server (NTRS)
Butler, Dan
2002-01-01
This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.
NASA Technical Reports Server (NTRS)
Ealker, David H.; Deming, Glenn
1991-01-01
Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.
Improvements to the ejector expansion refrigeration cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menegay, P.; Kornhauser, A.A.
1996-12-31
The ejector expansion refrigeration cycle (EERC) is a variant of the standard vapor compression cycle in which an ejector is used to recover part of the work that would otherwise be lost in the expansion valve. In initial testing EERC performance was poor, mainly due to thermodynamic non-equilibrium conditions in the ejector motive nozzle. Modifications were made to correct this problem, and significant performance improvements were found.
Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor
Tkaczyk, John Eric; Lay, Kenneth Wilbur; He, Qing
1997-01-01
A method is disclosed for fabricating a polycrystalline <223> thallium-containing superconductor having high critical current at elevated temperatures and in the presence of a magnetic field. A powder precursor containing compounds other than thallium is compressed on a substrate. Thallium is incorporated in the densified powder precursor at a high temperature in the presence of a partial pressure of a thallium-containing vapor.
Technology Evaluation for an Advanced Individual Protection System (AIPS)
1992-12-01
this analysis are: time of operation, duration of thermal management, power consumed during operation, cooling/heating benefit , time between recharge...BRDEC) TOPICS: o individual power * batteries/engines/fuel cel!s POC: Wes Goodwin (NRDEC) TOPICS: * microclimate cooling e vapor compression cycles e...individual power 2.3 LITERATURE SEARCHES The literature searches began by reviewing Battelle in-house sources for useful reports. This included a
Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth
NASA Astrophysics Data System (ADS)
Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori
2017-07-01
The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.
NASA Astrophysics Data System (ADS)
Thurn, Jeremy; Cook, Robert F.
2002-02-01
The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.
Large eddy simulation of hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Bhatt, Mrugank; Mahesh, Krishnan
2017-11-01
Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.
Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2001-01-01
The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.
High precision Hugoniot measurements on statically pre-compressed fluid helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
High precision Hugoniot measurements on statically pre-compressed fluid helium
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...
2016-09-27
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
3D Printed Silicones with Shape Memory
Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.; ...
2017-07-05
Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less
3D Printed Silicones with Shape Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.
Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
Velocity measurement using frequency domain interferometer and chirped pulse laser
NASA Astrophysics Data System (ADS)
Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.
2017-02-01
An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.
2017-12-01
Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.
Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi
2013-01-01
A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.
Cross‐Saharan transport of water vapor via recycled cold pool outflows from moist convection
Trzeciak, Tomasz M.; Garcia‐Carreras, Luis
2017-01-01
Abstract Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere. PMID:28344367
Comments on the Operation of Capillary Pumped Loop Devices in Low Gravity
NASA Technical Reports Server (NTRS)
Hallinan, K. P.; Allen, J. S.
1999-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Energetics of small molecule and water complexation in hydrophobic calixarene cavities.
Notestein, Justin M; Katz, Alexander; Iglesia, Enrique
2006-04-25
Calixarenes grafted on silica are energetically uniform hosts that bind aromatic guests with 1:1 stoichiometry, as shown by binding energies that depend upon the calixarene upper rim composition but not on their grafted surface density (0.02-0.23 nm(-2)). These materials are unique in maintaining a hydrophilic silica surface, as probed by H2O physisorption measurements, while possessing a high density of hydrophobic binding sites that are orthogonal to the silica surface below them. The covalently enforced cone-shaped cavities and complete accessibility of these rigidly grafted calixarenes allow the first unambiguous measurements of the thermodynamics of guest interaction with the same calixarene cavities in aqueous solution and vapor phase. Similar to adsorption into nonpolar protein cavities, adsorption into these hydrophobic cavities from aqueous solution is enthalpy-driven, which is in contrast to entropy-driven adsorption into water-soluble hydrophobic hosts such as beta cyclodextrin. The adsorption thermodynamics of several substituted aromatics from vapor and liquid are compared by (i) describing guest chemical potentials relative to pure guest, which removes differences among guests because of aqueous solvation and van der Waals contacts in the pure condensed phase, and (ii) passivating residual guest binding sites on exposed silica, titrated by water during adsorption from aqueous solution, using inorganic salts before vapor adsorption. Adsorption isotherms depend only upon the saturation vapor pressure of each guest, indicating that guest binding from aqueous or vapor media is controlled by van der Waals contacts with hydrophobic calixarene cavities acting as covalently assembled condensation nuclei, without apparent contributions from CH-pi or other directional interactions. These data also provide the first direct quantification of free energies for interactions of water with the calixarene cavity interior. The calixarene-water interface is stabilized by approximately 20 kJ/mol relative to the water-vapor interface, indicating that water significantly competes with the aromatic guests for adsorption at these ostensibly hydrophobic cavities. This result is useful for understanding models of water interactions with other concave hydrophobic surfaces, including those commonly observed within proteins.
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy
2009-01-01
Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.
Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures
NASA Astrophysics Data System (ADS)
Fomin, P. A.
2018-03-01
The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.
NASA Astrophysics Data System (ADS)
Kivisalu, Michael Toomas
Space-based (satellite, scientific probe, space station, etc.) and millimeter -- to -- micro-scale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degredation of performance of shear/pressure driven condensers and boilers due to non-desireable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally.. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.
Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General
2017-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.
A Case Study of a Low Powervapour Compression Refrigeration System
NASA Astrophysics Data System (ADS)
Abinav, R.; Nambiar, G. K.; Sahu, Debjyoti
2016-09-01
Reported in this paper is a case study on a normal vapor compression refrigeration system which is expected to be run by photovoltaic panels to utilize minimum grid power. A small 120 W refrigerator is fabricated out of commercially available components and run by an inverter and battery connected to solar photovoltaic panel as well as grid. Temperature at several points was measured and the performance was evaluated. The Coefficient of performance (COP) to run such refrigerator is estimated after numerical simulation of major components namely, evaporator, condenser and a capillary tube. The simulation was done to obtain an effective cooling temperature and the results were compared with measured temperatures. Calculation proves to be in conformity with the actual model.
Characteristics of InN epilayers grown with H2-assistance
NASA Astrophysics Data System (ADS)
Zhou, Jin; Li, Jinchai; Lu, Shiqiang; Kang, Junyong; Lin, Wei
2017-11-01
A series of InN films were grown on GaN-on-sapphire template with H2 pulse flow by metal organic vapor phase epitaxy. The scanning electron microscopy and atomic force microscopy observations demonstrate that the smooth surface has been achieved. The X-ray diffraction and Raman spectra measurements indicate that InN layers experience stronger accommodated compressive stress, resulting in a larger fraction of (002) oriented InN grains. On the basics of the first-principles calculations, these features can be understand as competition between N-penetrating effect with the assistance of the H atom and the etching effect of H2. Finally, the absorption spectra in conjunction with simulated results reveal that the band gap energy predominantly increase with increasing compressive strain.
Numerical analysis of laser-driven reservoir dynamics for shockless loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Mu; Zhang Hongping; Sun Chengwei
2011-05-01
Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth inmore » the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of the sample surface. However, this diffusion heat wave propagates much more slowly than the stress wave, and has minimal effect on the shockless compression progress at a deeper position.« less
The Freon loop double containment design for Spacelab refrigerator/freezer to protect environment
NASA Technical Reports Server (NTRS)
Hye, A.
1985-01-01
General Electric is building a vapor compression refrigerator/freezer for NASA-Johnson Space Center for the Spacelab mission SLS-1 for life sciences experiments. Freon R502 is used as refrigerant. As R502 is considered toxic, the whole Freon loop is enclosed in a second containment to avoid exposure to crewmen. A detailed description of the design and construction of the safety enclosure is presented.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or equal to 95 percent of the liquid phase at 50 °C. In addition, the UN pressure receptacle may not be liquid full at 60 °C. The test pressure of the pressure receptacle must be equal to or greater than the vapor pressure of the liquid at 65 °C. (3) For high pressure liquefied gases or gas mixtures...
Code of Federal Regulations, 2013 CFR
2013-10-01
... or equal to 95 percent of the liquid phase at 50 °C. In addition, the UN pressure receptacle may not be liquid full at 60 °C. The test pressure of the pressure receptacle must be equal to or greater than the vapor pressure of the liquid at 65 °C. (3) For high pressure liquefied gases or gas mixtures...
Code of Federal Regulations, 2012 CFR
2012-10-01
... or equal to 95 percent of the liquid phase at 50 °C. In addition, the UN pressure receptacle may not be liquid full at 60 °C. The test pressure of the pressure receptacle must be equal to or greater than the vapor pressure of the liquid at 65 °C. (3) For high pressure liquefied gases or gas mixtures...
Code of Federal Regulations, 2014 CFR
2014-10-01
... or equal to 95 percent of the liquid phase at 50 °C. In addition, the UN pressure receptacle may not be liquid full at 60 °C. The test pressure of the pressure receptacle must be equal to or greater than the vapor pressure of the liquid at 65 °C. (3) For high pressure liquefied gases or gas mixtures...
Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor
Tkaczyk, J.E.; Lay, K.W.; He, Q.
1997-07-08
A method is disclosed for fabricating a polycrystalline <223> thallium-containing superconductor having high critical current at elevated temperatures and in the presence of a magnetic field. A powder precursor containing compounds other than thallium is compressed on a substrate. Thallium is incorporated in the densified powder precursor at a high temperature in the presence of a partial pressure of a thallium-containing vapor. 2 figs.
Development of a self contained heat rejection module, phase 2 and 3
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1976-01-01
The fabrication and testing of a prototype deployable radiator system is described. Vapor compression with a conventional aircraft compressor yielded a net heat rejection effect at high environments while returning low temperature (10 F and 35 F) conditioned fluid to the payload thermal control system. The system is compatible with shuttle orbiter payloads, free flying experiment modules launched from the shuttle, or by another launch vehicle.
Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun
2015-03-17
A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2001-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.
Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K
2018-06-06
We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.
Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor
NASA Astrophysics Data System (ADS)
Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.
2018-06-01
We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.
NASA Astrophysics Data System (ADS)
Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.
2017-03-01
The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.
Laser-driven shock compression of gold foam in the terapascal pressure range
NASA Astrophysics Data System (ADS)
Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo
2018-06-01
Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.
Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.
Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D
2012-09-04
In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.
NASA Astrophysics Data System (ADS)
Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.
2013-11-01
This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.
Laser-driven magnetic-flux compression in high-energy-density plasmas.
Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R
2009-11-20
The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
Progress In Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George;
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).
NASA Technical Reports Server (NTRS)
Houseman, John (Inventor); Voecks, Gerald E. (Inventor)
1986-01-01
A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.
Impact-generated magnetic fields on the Moon : a magnetohydrodynamic numerical investigation
NASA Astrophysics Data System (ADS)
Oran, Rona; Shprits, Yuri; Weiss, Benjamin; Gombosi, Tamas
2015-04-01
Natural remanent magnetization has been identified in lunar rocks, the lunar crust, and a diversity of meteorites. Much of this magnetization is thought to have been produced by cooling a core dynamo mag-netic field. However, the identification of lunar crustal magnetic anomalies at the antipodes of four of the five youngest large (>600 km diameter) impact basins has motivated the alternative hypothesis that the lunar crust could have been magnetized by the impacts. In particular, it has been proposed that highly conducting ionized vapor produced by a basin-forming impact interacts with the ambient solar wind plasma surrounding the Moon to amplify the ambient solar wind magnetic field or any core dynamo field. In this picture, as the ionized vapor cloud expands around the Moon, it pushes and compresses the solar wind plasma into a small region at the antipodal point. The conservation of magnetic flux then leads to an enhanced magnetic field in the compressed plasma. This field can then be recorded as shock remanent magnetization by crustal materials at the antipodal point following the impact of converging basin ejecta. A key requirement for the impact-generated fields hypothesis is that the compressed field be suffi-ciently strong to explain the lunar paleointensities (at least tens of μT) and maintained at the antipodal point for a sufficiently long time (several hours) for the ejecta to arrive and impact the surface. Previous simulations of the expansion of the vapor cloud found that the enhanced field will be strong enough (per-haps reaching hundreds of μT) and will remain at the antipodal site for a sufficiently long time (>1 day) for the arrival of incoming ejecta. However, these studies did not include an explicit calculation of the interaction of the magnetized solar wind plasma with the vapor cloud. Rather, the cloud evolution under the lunar gravity was simulated in the purely hydrodynamic regime. The vapor cloud structure at certain times was used to derive a simplified picture of what the effects would be on an ambient magnetized plasma using general magnetohydrodynamic (MHD) arguments. The solar wind drag acting on the cloud, as well as MHD effects such as field lines stretching and magnetic reconnection were not taken into ac-count. With the advances made in computational MHD models in recent years, we can now revisit these ear-lier important models. Our goal is to perform the first MHD simulations of an impact-generated vapor cloud expanding in the solar wind around the Moon, using BATSRUS, a 3D highly-parallelized versatile MHD code developed at the University of Michigan, in order to self-consistently test the previous estima-tions of the strength and duration of the magnetic field enhancement at the antipodal points. We will con-sider different MHD processes, such as: 1) the finite resistivity of the lunar mantle 2) magnetic diffusion between the solar wind and the initially non-magnetized cloud, 3) magnetic reconnection at the antipode, and 4) viscous drag and the transport of magnetic flux due to solar wind motion, and 4) MHD instabili-ties. This will allow us to systematically examine whether impact-generated fields can indeed be respon-sible for the formation of crustal field enhancements on the Moon.
Direct numerical simulation of turbulence in injection-driven plane channel flows
NASA Astrophysics Data System (ADS)
Venugopal, Prem; Moser, Robert D.; Najjar, Fady M.
2008-10-01
Compressible turbulent flow in a periodic plane channel with mass injecting walls is studied as a simplified model for core flow in a solid-propellant rocket motor with homogeneous propellant and other injection-driven internal flows. In this model problem, the streamwise direction was asymptotically homogenized by assuming that at large distances from the closed end, both the mean and rms of turbulent fluctuations evolve slowly in the streamwise direction when compared to the turbulent fluctuations themselves. The Navier-Stokes equations were then modified to account for this slow growth. A direct numerical simulation of the homogenized compressible injection-driven turbulent flow was then conducted for conditions occurring at a streamwise location situated 40 channel half-widths from the closed off end and at an injection Reynolds number of approximately 190. The turbulence in this model flow was found to be only weakly compressible, although significant compressibility existed in the mean flow. As in nontranspired channels, turbulence resulted in increased near-wall shear for the mean streamwise velocity. When normalized by the average rate of turbulence production, the magnitudes of near-wall velocity fluctuations were similar to those in the log region of nontranspired wall-bounded turbulence. However, the sharp peak in streamwise velocity fluctuations observed in nontranspired channels was absent. While streaks and inclined vortices were observed in the near-wall region, their structure was very similar to those observed in the log region of nontranspired channels. These differences are attributed to the absence of a viscous sublayer in the transpired case which in turn is the result of the fact that the no-slip condition for the transpired case is an inviscid boundary condition. That is, unlike nontranspired walls, with transpiration, zero tangential velocity boundary conditions can be imposed at the wall for the Euler (inviscid) equations. The results of this study have important implications on the ability of turbulence models to predict this flow.
Performance of pile supported sign structures : final report.
DOT National Transportation Integrated Search
2015-01-01
Foundations for sign structures are subjected primarily to overturning loads, but published methods for designing driven pile groups only address groups subjected either to compression or uplift, not both simultaneously. A lateral load test of two fo...
Two-Photon Raman Gain in a Laser Driven Potassium Vapor
1996-02-01
between light and matter becomes highly nonlinear and the light and matter strongly couple, the systems become much more difficult to understand both...theoretically and experimentally. One example of a strongly coupled, highly nonlinear system is the two-photon laser that is based on the two-photon
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Cost Modeling and Design of Field-Reversed Configuration Fusion Power Plants
NASA Astrophysics Data System (ADS)
Kirtley, David; Slough, John; Helion Team
2017-10-01
The Inductively Driven Liner (IDL) fusion concept uses the magnetically driven implosion of thin (0.5-1 mm) Aluminum hoops to magnetically compress a merged Field-Reversed Configuration (FRC) plasma to fusion conditions. Both the driver and the target have been studied experimentally and theoretically by researchers at Helion Energy, MSNW, and the University of Washington, demonstrating compression fields greater than 100 T and suitable fusion targets. In the presented study, a notional power plant facility using this approach will be described. In addition, a full cost study based on the LLNL Z-IFE and HYLIFE-II studies, the ARIES Tokamak concept, and RAND power plant studies will be described. Finally, the expected capital costs, development requirements, and LCOE for 50 and 500 MW power plants will be given. This analysis includes core FRC plant scaling, metallic liner recycling, radiation shielding, operations, and facilities capital requirements.
Datta, S.; Do, L.V.; Young, T.M.
2004-01-01
A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.
Semi-analytic model of plasma-jet-driven magneto-inertial fusion
Langendorf, Samuel J.; Hsu, Scott C.
2017-03-01
A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less
Linking Europa's plume activity to tides, tectonics, and liquid water
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt
2015-06-01
Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across the fractures suggests that the plumes would be best observed earlier in the orbit (true anomaly ∼120°). Our results indicate that Europa's plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.
Rujivipat, Soravoot; Bodmeier, Roland
2012-05-01
Enteric polymers such as cellulose esters (cellulose acetate phthalate, hydroxypropylmethylcellulose acetate succinate) and methacrylic acid-acrylate copolymers (Eudragit® L100-55 and S100) are quite brittle in the dry state and thus not suitable as pellet coatings for compression into tablets. The objective of this study was to investigate the role of humidity treatment for moisture plasticization in order to successfully compress the enterically coated pellets. The mechanical properties of Eudragit® L100-55 improved dramatically, while the properties of the other enteric polymers showed only minor changes after storage at higher humidity. The significant increase in flexibility of the Eudragit® L film was caused by hydration/plasticization; its elongation value changed from approx. 3% in the dry state to approx. 140% at the higher storage humidity. Storage at 84% relative humidity resulted in comparable release profiles of compressed and uncompressed pellets. The glass transition temperature of Eudragit® L films decreased below the compression temperature (room temperature) at storage humidities between 75% and 84%. The glass transition relative humidity leading to a change from the glassy to the rubbery state was determined by dynamic vapor sorption (DVS) to be 76.8%. Moisture resulted in superior plasticization for Eudragit® L than the conventional plasticizer triethyl citrate. The improved compressibility of high humidity treated Eudragit® L-coated pellets was also shown with single pellet compression data as indicated by an increased crushing force and deformation. In conclusion, moisture plasticization was a highly effective tool to enable the successful compression of pellets coated with the brittle enteric polymer Eudragit® L. Copyright © 2012 Elsevier B.V. All rights reserved.
A warming tropical central Pacific dries the lower stratosphere
NASA Astrophysics Data System (ADS)
Ding, Qinghua; Fu, Qiang
2018-04-01
The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.
Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon
2008-01-01
For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.
NASA Astrophysics Data System (ADS)
Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul
2012-03-01
The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.
A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.
2015-09-01
Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less
Spin quenching assisted by a strongly anisotropic compression behavior in MnP
NASA Astrophysics Data System (ADS)
Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang
2018-02-01
We studied the crystal structure and spin state of MnP under high pressure with synchrotron x-ray diffraction and x-ray emission spectroscopy (XES). MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. XES reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ˜8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.
Spin quenching assisted by a strongly anisotropic compression behavior in MnP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wang, Di; Wang, Yonggang
We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancymore » of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.« less