Nuclear reactor composite fuel assembly
Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.
1980-01-01
A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.
Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling
NASA Technical Reports Server (NTRS)
Whitmarsh, C. L., Jr.
1973-01-01
An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.
Preliminary neutronic analysis of a cavity test reactor
NASA Technical Reports Server (NTRS)
Whitmarsh, C. L., Jr.
1973-01-01
A reference configuration was calculated for a cavity test reactor to be used for testing the gascore nuclear rocket concept. A thermal flux of 4.1 x 10 to the 14th power neutrons per square centimeter per second in the cavity was provided by a driver fuel loading of 6.4 kg of enriched uranium in MTR fuel elements. The reactor was moderated and cooled by heavy water and reflected with 25.4 cm of beryllium. Power generation of 41.3 MW in the driver fuel is rejected to a heat sink. Design effort was directed toward minimization of driver power while maintaining 2.7 MW in the cavity during a test run. Ancillary data on material reactivity worths, reactivity coefficients, flux spectra, and power distributions are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magoulas, V. E.
Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, D.F.; Primeau, M.F.; Buchanan, C.
1997-08-01
Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less
NASA Technical Reports Server (NTRS)
Hyland, R. E.
1971-01-01
The mini-cavity reactor is a rocket engine concept which combines the high specific impulse from a central gaseous fueled cavity (0.6 m diam) and NERVA type fuel elements in a driver region that is external to a moderator-reflector zone to produce a compact light weight reactor. The overall dimension including a pressure vessel that is located outside of the spherical reactor is approximately 1.21 m in diameter. Specific impulses up to 2000 sec are obtainable for 220 to 890 N of thrust with pressures less than 1000 atm. Powerplant weights including a radiator for disposing of the power in the driver region are between 4600 and 32,000 kg - less than payloads of the shuttle. This reactor could also be used as a test reactor for gas-core, MHD, breeding and materials research.
Helleu, Quentin; Gérard, Pierre R.; Montchamp-Moreau, Catherine
2015-01-01
Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548
Arend, Matthias G; Franke, Thomas
2017-03-01
The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO 2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.
Helleu, Quentin; Gérard, Pierre R; Montchamp-Moreau, Catherine
2014-12-18
Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Frey, H Christopher; Kuo, Po-Yao; Villa, Charles
2009-09-01
Idling long-haul freight tucks may consume nearly one billion gallons of diesel fuel per year in the U.S. There is a need for real-world data by which to quantify avoided fuel use and emissions attributable to idle reduction techniques of auxiliary power units (APUs) and shore-power (SP). Field data were obtained from 20 APU-equipped and SP-compatible trucks observed during 2.8 million miles of travel in 42 states. Base engine fuel use and emission rates varied depending on ambient temperature. APU and SP energy use and emission rates varied depending on electrical load. APUs reduced idling fuel use and CO2 emissions for single and team drivers by 22 and 5% annually, respectively. SP offers greater reductions in energy use of 48% for single drivers, as well as in emissions, except for SO2. APUs were cost-effective for single drivers with a large number of APU usage hours per year, but not for team drivers or for single drivers with low APU utilization rates. The findings support more accurate assessments of avoided fuel use and emissions, and recommendations to encourage greater APU utilization by single drivers and to further develop infrastructure for SP.
Alternative Fuel Vehicles: What Do the Drivers Say?
); dedicated compressed natural gas (CNG) models; CNG after-market conversions; flexible-fuel methanol models ; flexible-fuel ethanol models, and gasoline models. Overall, drivers reported positive experiences, with primary concerns being lack of range (particularly for the CNG models) and lack of convenient fueling
Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Earleywine, M.; Sparks, W.
2012-06-01
Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less
Look-ahead driver feedback and powertrain management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Rajeev
2014-12-31
Commercial medium and heavy vehicles, though only a small portion of total vehicle population, play a significant role in energy consumption. In 2012, these vehicles accounted for about 5775.5 trillion btu of energy consumption and 408.8 million tons of CO2 emissions annually, which is a quarter of the total energy burden of highway transportation in the United States [1]. This number is expected to surpass passenger car fuel use within the next few decades. In the meantime, most commercial vehicle fleets are running at a very low profit margin. It is a well known fact that fuel economy can varymore » significantly between drivers, even when they operate the same vehicle on the same route. According to the US Environmental Protection Agency (EPA) and Natural Resource Canada (NRCan), there is up to 35% fuel economy difference between drivers within the same commercial fleet [2] [3], [4]. Similar results were obtained from a Field Operation Test conducted by Eaton Corporation [5]. During this test as much as 30% fuel economy difference was observed among pick-up-and-delivery drivers and 11% difference was observed among line-haul drivers. The driver variability can be attributed to the fact that different drivers react differently to driving conditions such as road grade, traffic, speed limits, etc. For instance, analysis of over 600k miles of naturalistic heavy duty truck driving data [5] indicates that an experienced driver anticipates a downhill and eases up on the throttle to save fuel while an inexperienced driver lacks this judgment.« less
Driver Aid and Education Test Project. Final Report.
ERIC Educational Resources Information Center
Shadis, W.; Soucek, S. J.
A driver education project tested the hypothesis that measurable improvements in fleet fuel economy can be achieved by driver awareness training in fuel-efficient driving techniques and by a manifold vacuum gauge, used individually or in combination with each other. From April 1976 through December 1977 data were collected in the Las Vegas,…
Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, R.; Nangle, J.; Boeckman, G.
2014-05-01
Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewablemore » Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.« less
AGR-3/4 Irradiation Test Predictions using PARFUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerjanc, William Frances; Collin, Blaise Paul
2016-03-01
PARFUME, a fuel performance modeling code used for high temperature gas reactors, was used to model the AGR-3/4 irradiation test using as-run physics and thermal hydraulics data. The AGR-3/4 test is the combined third and fourth planned irradiations of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The AGR-3/4 test train consists of twelve separate and independently controlled and monitored capsules. Each capsule contains four compacts filled with both uranium oxycarbide (UCO) unaltered “driver” fuel particles and UCO designed-to-fail (DTF) fuel particles. The DTF fraction was specified to be 1×10-2. This report documents the calculations performed to predictmore » failure probability of TRISO-coated fuel particles during the AGR-3/4 experiment. In addition, this report documents the calculated source term from both the driver fuel and DTF particles. The calculations include the modeling of the AGR-3/4 irradiation that occurred from December 2011 to April 2014 in the Advanced Test Reactor (ATR) over a total of ten ATR cycles including seven normal cycles, one low power cycle, one unplanned outage cycle, and one Power Axial Locator Mechanism cycle. Results show that failure probabilities are predicted to be low, resulting in zero fuel particle failures per capsule. The primary fuel particle failure mechanism occurred as a result of localized stresses induced by the calculated IPyC cracking. Assuming 1,872 driver fuel particles per compact, failure probability calculated by PARFUME leads to no predicted particle failure in the AGR-3/4 driver fuel. In addition, the release fraction of fission products Ag, Cs, and Sr were calculated to vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 7 reaching up to 56% for the driver fuel and 100% for the DTF fuel. The release fraction of the other two fission products, Cs and Sr, are much smaller and in most cases less than 1% for the driver fuel. The notable exception occurs in Capsule 7 where the release fraction for Cs and Sr reach up to 0.73% and 2.4%, respectively, for the driver fuel. For the DTF fuel in Capsule 7, the release fraction for Cs and Sr are estimated to be 100% and 5%, respectively.« less
Driver exposure to combustion particles in the U.S. Trucking industry.
Davis, M E; Smith, T J; Laden, F; Hart, J E; Blicharz, A P; Reaser, P; Garshick, E
2007-11-01
A large study of combustion particle exposures for drivers of diesel-powered trucks was conducted in collaboration with an epidemiologic study of lung cancer outcomes for workers in the trucking industry. Three components of diesel exhaust combustion particles (PM(2.5), elemental carbon, and organic carbon) were measured inside the driver cabs of diesel-powered trucks from 36 different trucking terminals across the United States between 2001 and 2005. In-cab particle exposures for drivers assigned to both short and long distance trips were observed, as well as information on the smoking status of the driver, truck characteristics such as age and model, and weather conditions during the sampling session. This article summarizes these findings and describes the relationship between exhaust particles and various determinants of exposure. The results suggest that in-cab particle exposures are positively related to smoking, ambient particle concentrations, truck age, and open windows, with other significant modifying factors such as weather. This study represents the largest and most comprehensive exposure assessment of drivers in the trucking industry, encompassing a 4-year period of observations on diesel and exhaust particle exposures nationwide. The results are relevant not only to the occupational group of truck drivers being examined but also to the general population that live, commute, or work within proximity to diesel-fueled traffic or trucking terminals.
How to Cut Costs by Saving School Bus Fuel.
ERIC Educational Resources Information Center
Seiff, Hank
A program started in Washington County, Maryland in 1980 has been successful in saving school bus fuel and bringing down transportation costs incurred by its fleet of 200 buses. Driver training and motivation, as well as a partial transfer to diesel buses, are at the heart of the program. The drivers are taught five fuel saving techniques: cut…
Survey of driver aid devices for improved fuel economy.
DOT National Transportation Integrated Search
1976-11-30
This report presents a brief summarization of available information pertaining to devices offered to aid the driver in improving his driving habits in order to reduce fuel consumption. Principal emphasis is placed on characterizing the available devi...
DOT National Transportation Integrated Search
2011-08-01
"This report presents information about the effects of decisions that a driver can make to : influence on-road fuel economy of light-duty vehicles. These include strategic decisions : (vehicle selection and maintenance), tactical decisions (route sel...
Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.
2011-11-01
Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less
Microfabricated Ion Beam Drivers for Magnetized Target Fusion
NASA Astrophysics Data System (ADS)
Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas
2015-11-01
Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.
ERIC Educational Resources Information Center
American Automobile Association, Falls Church, VA. Traffic Engineering and Safety Dept.
The argument that driver education should be dropped because driver education cars use gas is shortsighted. High school driver education is an excellent vehicle for teaching concepts of energy conservation. A small investment in fuel now can result in major savings of gasoline over a student's lifetime. In addition good driver education courses…
ERIC Educational Resources Information Center
Clark, Todd; Jones, Rick
2004-01-01
While the political climate seems favorable for the development of fuel-cell vehicles for personal transportation, the market's demand may not be so favorable. Nonetheless, middle level students will be the next generation of drivers and voters, and they need to be able to make informed decisions regarding the nation's energy and transportation…
Haptic seat for fuel economy feedback
Bobbitt, III, John Thomas
2016-08-30
A process of providing driver fuel economy feedback is disclosed in which vehicle sensors provide for haptic feedback on fuel usage. Such sensors may include one or more of a speed sensors, global position satellite units, vehicle pitch/roll angle sensors, suspension displacement sensors, longitudinal accelerometer sensors, throttle position in sensors, steering angle sensors, break pressure sensors, and lateral accelerometer sensors. Sensors used singlely or collectively can provide enhanced feedback as to various environmental conditions and operating conditions such that a more accurate assessment of fuel economy information can be provided to the driver.
Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chow, S.
1976-01-01
A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. Neutronic feasibility of dual mode operation and smaller reactor sizes than those previously investigated are shown to be possible. A heat transfer analysis of one such reactor shows that the dual-mode concept is applicable when power generation mode thermal power levels are within the same order of magnitude as direct thrust mode thermal power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yunfei; Wood, Eric; Burton, Evan
A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but alsomore » (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers in this study did not result in a significant discrepancy between fuel economy simulations based on synthetic and empirical data; a finding with implications on the potential energy efficiency gains of automated vehicle technology.« less
Alternative Fuels Data Center: Fuel Prices
Report provides regional alternative and conventional fuel prices for biodiesel, compressed natural gas petroleum fuels (gasoline and diesel fuel) is the primary driver of liquid fuel prices. This is because the liquid fuels are used in non-dedicated vehicles and can be substituted out by petroleum fuels if their
NASA Astrophysics Data System (ADS)
Feng, Yuanyuan; Roleda, Michael Y.; Armstrong, Evelyn; Law, Cliff S.; Boyd, Philip W.; Hurd, Catriona L.
2018-01-01
A series of semi-continuous incubation experiments were conducted with the coccolithophore Emiliania huxleyi strain NIWA1108 (Southern Ocean isolate) to examine the effects of five environmental drivers (nitrate and phosphate concentrations, irradiance, temperature, and partial pressure of CO2 (pCO2)) on both the physiological rates and elemental composition of the coccolithophore. Here, we report the alteration of the elemental composition of E. huxleyi in response to the changes in these environmental drivers. A series of dose-response curves for the cellular elemental composition of E. huxleyi were fitted for each of the five drivers across an environmentally representative gradient. The importance of each driver in regulating the elemental composition of E. huxleyi was ranked using a semi-quantitative approach. The percentage variations in elemental composition arising from the change in each driver between present-day and model-projected conditions for the year 2100 were calculated. Temperature was the most important driver controlling both cellular particulate organic and inorganic carbon content, whereas nutrient concentrations were the most important regulator of cellular particulate nitrogen and phosphorus of E. huxleyi. In contrast, elevated pCO2 had the greatest influence on cellular particulate inorganic carbon to organic carbon ratio, resulting in a decrease in the ratio. Our results indicate that the different environmental drivers play specific roles in regulating the elemental composition of E. huxleyi with wide-reaching implications for coccolithophore-related marine biogeochemical cycles, as a consequence of the regulation of E. huxleyi physiological processes.
NASA Astrophysics Data System (ADS)
Meyer, Patrick E.
Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be moderately inequitable. However, the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use solar-electrolysis-based FCVs can be extremely inequitable. Further, it is found that the method of production and delivery of hydrogen (i.e. centralized production or refueling station-based production) can have an impact on the equity of energy and environmental costs. The implications of these results are interesting, in that wealthy people purchase FCVs that have high upfront costs and very low societal energy and environmental costs. Simultaneously, however, low-income people purchase CGVs that have low upfront costs and very high societal energy and environmental costs. In this situation, due to the high-polluting nature of CGV technology in relation to FCV technology, CGV drivers account for more than their equitable share of energy and environmental costs. Scenarios are conducted which explore modifications of assumptions, such as the price of oil, price of natural gas, cost to offset emissions, consumer purchase price of FCVs, and the level of taxation on the cost streams. Among other findings, it is found that altering the purchase price of an FCV has the greatest impact on social equity whereas altering the cost to offset fuel-cycle emissions has the least impact, indicating that policy mechanisms aimed at incentivizing FCVs may have a more positive impact on social equity than policies aimed at mitigating emissions. Based on the results of the scenario analysis, policy recommendations are formulated which seek to maximize social equity in populations in which not all drivers use the same vehicular technology. The policies, if implemented as a single portfolio, would assist a systematic deviation away from the fossil fuel energy economy while ensuring that social equity is preserved to the greatest degree possible. (Abstract shortened by UMI.)
Predicting Individual Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhenhong; Greene, David L
2011-01-01
To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using amore » large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.« less
Dogan, Ebru; Steg, Linda; Delhomme, Patricia
2011-09-01
Due to the innate complexity of the task drivers have to manage multiple goals while driving and the importance of certain goals may vary over time leading to priority being given to different goals depending on the circumstances. This study aimed to investigate drivers' behavioral regulation while managing multiple goals during driving. To do so participants drove on urban and rural roads in a driving simulator while trying to manage fuel saving and time saving goals, besides the safety goals that are always present during driving. A between-subjects design was used with one group of drivers managing two goals (safety and fuel saving) and another group managing three goals (safety, fuel saving, and time saving) while driving. Participants were provided continuous feedback on the fuel saving goal via a meter on the dashboard. The results indicate that even when a fuel saving or time saving goal is salient, safety goals are still given highest priority when interactions with other road users take place and when interacting with a traffic light. Additionally, performance on the fuel saving goal diminished for the group that had to manage fuel saving and time saving together. The theoretical implications for a goal hierarchy in driving tasks and practical implications for eco-driving are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stillwater, Tai
A large body of evidence suggests that drivers who receive real-time fuel economy information can increase their vehicle fuel economy by 5%, a process commonly known as ecodriving. However, few studies have directly addressed the human side of the feedback, that is, why drivers would (or would not) be motivated to change their behavior and how to design feedback devices to maximize the motivation to ecodrive. This dissertation approaches the question using a mixed qualitative and quantitative approach to explore driver responses and psychology as well as to quantify the process of behavior change. The first chapter discusses the use of mile-per-gallon fuel economy as a metric for driver feedback and finds that an alternative energy economy metric is superior for real-time feedback. The second chapter reviews behavioral theories and proposes a number of practical solutions for the ecodriving context. In the third chapter the theory of planned behavior is tested against driver responses to an existing feedback system available in the 2008 model Toyota Prius. The fourth chapter presents a novel feedback design based on behavioral theories and drivers' responses to the feedback. Finally, chapter five presents the quantitative results of a natural-driving study of fuel economy feedback. The dissertation findings suggest that behavior theories such as the Theory of Planned Behavior can provide important improvements to existing feedback designs. In addition, a careful analysis of vehicle energy flows indicates that the mile-per-gallon metric is deeply flawed as a real-time feedback metric, and should be replaced. Chapters 2 and 3 conclude that behavior theories have both a theoretical and highly practical role in feedback design, although the driving context requires just as much care in the application. Chapters 4 and 5 find that a theory-inspired interface provides drivers with engaging and motivating feedback, and that integrating personal goal into the feedback is the most motivating theory-based addition. Finally, the behavioral model results in chapter 5 suggest that driver goals not only influence in-vehicle energy use, but are themselves flexible constructs that can be directly influenced by energy feedback.
2010 Fuel Cell Technologies Market Report, June 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer, J.; Wood, E.
2013-05-01
This presentation discusses a method of accounting for realistic levels of driver aggression to higher-level vehicle studies, including the impact of variation in real-world driving characteristics (acceleration and speed) on vehicle energy consumption and different powertrains (e.g., conventionally powered vehicles versus electrified drive vehicles [xEVs]). Aggression variation between drivers can increase fuel consumption by more than 50% or decrease it by more than 20% from average. The normalized fuel consumption deviation from average as a function of population percentile was found to be largely insensitive to powertrain. However, the traits of ideal driving behavior are a function of powertrain. Inmore » conventional vehicles, kinetic losses dominate rolling resistance and aerodynamic losses. In xEVs with regenerative braking, rolling resistance and aerodynamic losses dominate. The relation of fuel consumption predicted from real-world drive data to that predicted by the industry-standard HWFET, UDDS, LA92, and US06 drive cycles was not consistent across powertrains, and varied broadly from the mean, median, and mode of real-world driving. A drive cycle synthesized by NREL's DRIVE tool accurately and consistently reproduces average real-world for multiple powertrains within 1%, and can be used to calculate the fuel consumption effects of varying levels of driver aggression.« less
Alternative Fuels Data Center: How Do Bi-fuel Propane Vehicles Work?
Vehicles Work? Bi-fuel propane vehicles typically use a spark-ignited internal combustion engine. A bi-fuel stored on board and the driver can switch between the fuels. The vehicle is equipped with fuel tanks Propane vehicle image Key Components of a Bi-fuel Propane Vehicle Battery: The battery provides
Li, Yi; Chen, Yuren
2016-12-30
To make driving assistance system more humanized, this study focused on the prediction and assistance of drivers' perception-response time on mountain highway curves. Field tests were conducted to collect real-time driving data and driver vision information. A driver-vision lane model quantified curve elements in drivers' vision. A multinomial log-linear model was established to predict perception-response time with traffic/road environment information, driver-vision lane model, and mechanical status (last second). A corresponding assistance model showed a positive impact on drivers' perception-response times on mountain highway curves. Model results revealed that the driver-vision lane model and visual elements did have important influence on drivers' perception-response time. Compared with roadside passive road safety infrastructure, proper visual geometry design, timely visual guidance, and visual information integrality of a curve are significant factors for drivers' perception-response time.
CONSTRUCTION OF NUCLEAR FUEL ELEMENTS
Weems, S.J.
1963-09-24
>A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)
Fabrication of U-10 wt.%Zr Metallic Fuel Rodlets for Irradiation Test in BOR-60 Fast Reactor
Kim, Ki-Hwan; Kim, Jong-Hwan; Oh, Seok-Jin; ...
2016-01-01
The fabrication technology for metallic fuel has been developed to produce the driver fuel in a PGSFR in Korea since 2007. In order to evaluate the irradiation integrity and validate the in-reactor of the starting metallic fuel with FMS cladding for the loading of the metallic fuel, U-10 wt.%Zr fuel rodlets were fabricated and evaluated for a verification of the starting driver fuel through an irradiation test in the BOR-60 fast reactor. The injection casting method was applied to U-10 wt.%Zr fuel slugs with a diameter of 5.5 mm. Consequently, fuel slugs per melting batch without casting defects were fabricated through the developmentmore » of advanced casting technology and evaluation tests. The optimal GTAW welding conditions were also established through a number of experiments. In addition, a qualification test was carried out to prove the weld quality of the end plug welding of the metallic fuel rodlets. The wire wrapping of metallic fuel rodlets was successfully accomplished for the irradiation test. Thus, PGSFR fuel rodlets have been soundly fabricated for the irradiation test in a BOR-60 fast reactor.« less
Monitoring arrangement for vented nuclear fuel elements
Campana, Robert J.
1981-01-01
In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.
Clean Cities 2016 Vehicle Buyer's Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.
DOT National Transportation Integrated Search
2011-03-01
The fuel tax, which is assessed on the physical amount of fuel purchased by the consumer, is the primary : means of funding roadway development at the state and national level. However, because it is assessed on a : gallon basis, drivers of vehicles ...
Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Vehicles Work?
AddThis.com... How Do Bi-fuel Natural Gas Vehicles Work? A bi-fuel natural gas vehicle can use either gasoline or natural gas in the same internal combustion engine. Both fuels are stored on board and the driver Components of a Bi-fuel Natural Gas Vehicle Battery: The battery provides electricity to start the engine and
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... and Redding (joint FMCSA-2009-0010... application). Rotel Rotel provides motorcoach tours of the... individual, filed a joint application seeking relief for 20 CMV drivers who transport jet fuel in tank CMVs... all public comments received. The Agency concluded in each case that the application for exemption...
Tilt assembly for tracking solar collector assembly
Almy, Charles; Peurach, John; Sandler, Reuben
2012-01-24
A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.
Wyman, W.L.
1961-06-27
The described cylindrical fuel element has longitudinally spaced sets of short longitudinal ribs circumferentially spaced from one another. The ribs support the fuel element in a coolant tube so that there is an annular space for coolant flow between the fuel element and the interior of the coolant tube. If the fuel element grows as a result of reactor operation, the circumferential distribution of the ribs maintains the uniformity of the annular space between the coolant tube and the fuel element, and the collapsibility of the ribs prevents the fuel element from becoming jammed in the coolant tube.
Thermal breeder fuel enrichment zoning
Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.
1992-01-01
A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.
National energy efficient driving system (NEEDS). Volume 2, Driver education program
DOT National Transportation Integrated Search
1981-12-15
Studies were conducted to identify young driver deficiencies in knowledge, attitude, and performance with respect to fuel-efficiency. Five different programs of classroom-only and classroom/in-car instruction were administered experimentally to high ...
Impact of a graduated driver's license law on crashes involving young drivers in New York State.
Cheng, Julius D; Schubmehl, Heidi; Kahn, Steven A; Gestring, Mark L; Sangosanya, Ayodele; Stassen, Nicole A; Bankey, Paul E
2012-08-01
Motor vehicle crashes constitute the greatest risk of injury for young adults. Graduated driver licensing (GDL) laws have been used to reduce the number of injuries and deaths in the young driver population. The New York State GDL law increased supervision of young driver and limited both time-of-day driven and number of passengers. This review examines the impact of a GDL enacted in New York in September 2003. A retrospective review of New York State administrative databases from 2001 to 2009 was performed. During this period, a state-wide GDL requirement was implemented. Database review included all reported crashes to the New York State Department of Motor Vehicles by cause and driver age as well as motor fuel tax receipts by the New York State Comptroller's Office. Motor fuel tax receipts and consumption information were used as a proxy for overall miles driven. Before 2003, drivers younger than 18 years were involved in 90 fatal crashes and 10,406 personal-injury (PI) crashes, constituting 4.49% and 3.38% of all fatal and PI crashes in New York State, respectively. By 2009, the number of fatal and PI crashes involving drivers who are younger than 18 years decreased to 44 (2.87%) and 5,246 (2.24%), respectively. Of note, the number of crashes experienced by the age group 18 years to 20 years during this period also declined, from 192 (9.59% of all fatal crashes) and 25,407 (8.24% of all PI crashes) to 135 (8.81%) and 18,114 (7.73%), respectively. Overall numbers of crashes reported remained relatively stable, between 549,000 in 2001 and 520,000 in 2009. Motor fuel use during this period also declined, but to a lesser degree ($552 million to $516 million or 6.6%). The use of a GDL law in New York State has shown a large decrease in the number of fatalities and PI crashes involving young drivers. The delay in full driver privileges from the GDL did not result in an increase in fatal or PI crashes in the next older age group.
Banks, Victoria A; Stanton, Neville A; Harvey, Catherine
2014-01-01
Although task analysis of pedestrian detection can provide us with useful insights into how a driver may behave in emergency situations, the cognitive elements of driver decision-making are less well understood. To assist in the design of future Advanced Driver Assistance Systems, such as Autonomous Emergency Brake systems, it is essential that the cognitive elements of the driving task are better understood. This paper uses verbal protocol analysis in an exploratory fashion to uncover the thought processes underlying behavioural outcomes represented by hard data collected using the Southampton University Driving Simulator.
DOT National Transportation Integrated Search
2006-11-01
Its widely accepted that smooth roads provide greater driver comfort and satisfaction, decreased vehicle maintenance costs, and better fuel economy. Now thanks to a recently completed study, the affect of pavement smoothness on fuel efficiency has...
A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Schnitzler, Bruce G.
2013-01-01
This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.
Low temperature chemical processing of graphite-clad nuclear fuels
Pierce, Robert A.
2017-10-17
A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.
Alternative Fuels Data Center: Ethanol Benefits and Considerations
emissions. Like any alternative fuel, there are some considerations to account for when contemplating the less energy than a gallon of gasoline, resulting in lower fuel economy when operating your vehicle. The , Indianapolis 500 drivers often fuel their race cars with E98 because of its high octane. There are currently
77 FR 5418 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
... aft fuel system 40 micron fuel filter element with a 10 micron fuel filter element. This proposed AD... fuel filter element, part number (P/N) 52-0505-2 or 52-01064-1. This proposed AD would require replacing each forward and aft fuel system 40 micron fuel filter element with a 10 micron fuel filter...
Analysis Of Technology Options To Reduce The Fuel Consumption Of Idling Trucks
DOT National Transportation Integrated Search
2000-06-01
Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm...
Transportation fuels and vehicles.
DOT National Transportation Integrated Search
1999-06-24
Environmental concerns are currently the primary driver of innovation in the area of Transportation Fuels and Vehicles. Road vehicle emissions are a significant determinant of urban air quality and produce a very substantial quantity of carbon dioxid...
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
Low cost, lightweight fuel cell elements
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor)
2001-01-01
New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
Phosphoric Acid Fuel Cell Technology Status
NASA Technical Reports Server (NTRS)
Simons, S. N.; King, R. B.; Prokopius, P. R.
1981-01-01
A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.
Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel
techniques to save fuel and money. The amount of fuel your vehicle consumes depends heavily on how you drive and money. Vehicles use the most energy when accelerating. Using cruise control on the highway can trips can save you time and money by avoiding unnecessary stopping and starting of your vehicle, which
Method of locating a leaking fuel element in a fast breeder power reactor
Honekamp, John R.; Fryer, Richard M.
1978-01-01
Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.
75 FR 22578 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... DEPARTMENT OF ENERGY Proposed Agency Information Collection AGENCY: U.S. Department of Energy... information under the provisions of the Paperwork Reduction Act of 1995. The In-Vehicle Driver Feedback study... feedback devices can enable drivers to achieve measurable improvements in fuel economy, the information...
Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-04-01
Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.
Welding fixture for nuclear fuel pin cladding assemblies
Oakley, David J.; Feld, Sam H.
1986-01-01
A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.
Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim J; Verma, Rajeev; Norris, Sarah
2014-01-01
In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of manymore » hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.« less
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
CONCENTRIC TUBE FUEL ELEMENT SPRING ALIGNMENT SPACER DEVICE
Weems, S.J.
1963-09-24
A rib construction for a nuclear-fuel element is described, in which one of three peripherally spaced ribs adjacent to each end of the fuel element is mounted on a radially yielding spring that embraces the fuel element. This spring enables the fuel element to have a good fit with a coolant tube and yet to be easily inserted in and withdrawn from the tube. (AEC)
Energy Efficiency Handbook for Driver's Education.
ERIC Educational Resources Information Center
Berlowitz, Dan; And Others
Presented are suggestions to help the automobile driver attain the saving of fuel and money. Discussed are starting and stopping; anticipation of traffic conditions; use of accessories; trip planning; and accomodation of pedestrians and cyclists. Additional topics covered include systematic car maintenance and safety considerations. (RE)
Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-12-01
Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C. E.; Sowa, E. S.; Okrent, D.
1961-08-01
Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)
Alternative Fuels Data Center: School Bus Idle Reduction Strategies
, teachers, parents, and children to learn about air quality and diesel emissions. Recognizes the positive fuel, reduce engine wear and tear, protect the health of drivers and children, and improve air quality
Analysis of cadmium in undissolved anode materials of Mark-IV electro-refiner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Tae-Sic; Fredrickson, G.L.; Vaden, D.
2013-07-01
The Mark-IV electro-refiner (Mk-IV ER) is a unit process in the FCF (Fuel Conditioning Facility), which is primarily assigned to treating the used driver fuels. Mk-IV ER contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolvedmore » anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation. (authors)« less
Driver behavior profiling: An investigation with different smartphone sensors and machine learning
Ferreira, Jair; Carvalho, Eduardo; Ferreira, Bruno V.; de Souza, Cleidson; Suhara, Yoshihiko; Pentland, Alex
2017-01-01
Driver behavior impacts traffic safety, fuel/energy consumption and gas emissions. Driver behavior profiling tries to understand and positively impact driver behavior. Usually driver behavior profiling tasks involve automated collection of driving data and application of computer models to generate a classification that characterizes the driver aggressiveness profile. Different sensors and classification methods have been employed in this task, however, low-cost solutions and high performance are still research targets. This paper presents an investigation with different Android smartphone sensors, and classification algorithms in order to assess which sensor/method assembly enables classification with higher performance. The results show that specific combinations of sensors and intelligent methods allow classification performance improvement. PMID:28394925
Army Alternative Ground Fuels Qualification
2012-05-31
challenge for the Department, and the realities of global oil markets mean a disruption of oil supplies is plausible and increasingly likely in the...fuels at a premium for testing purposes, the Department will acquire such fuels for military operations at prices that are competitive with the market ...representation of TRL tests and evaluations. unclassified 12 Market Connection Manufacturing technology Fuel data, samples Market drivers
DOT National Transportation Integrated Search
2006-04-01
New teenaged drivers have the highest accident rates of any group of drivers. Research is needed to determine how to safely equip novice drivers with the important elements of experience before they encounter a need for it in an actual driving situat...
DOT National Transportation Integrated Search
2006-10-01
New teenaged drivers have the highest accident rates of any group of drivers. Research is needed to : determine how to safely equip novice drivers with the important elements of experience before they encounter : a need for it in an actual driving si...
NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT
Currier, E.L. Jr.; Nicklas, J.H.
1962-08-14
A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)
15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. ...
15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. SHOWS AIR FORCE MAN AT EDGE OF TANK. INEL PHOTO NUMBER 65-6176, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A. L.; Diamond, D.
2013-10-31
The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposedmore » LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.« less
Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.
1958-09-01
This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.
Thomson, Wallace B.
2004-03-16
A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.
Neutronic fuel element fabrication
Korton, George
2004-02-24
This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.
Welding fixture for nuclear fuel pin cladding assemblies
Oakley, D.J.; Feld, S.H.
1984-02-22
A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.
National energy efficient driving system (NEEDS). Volume 3, Home vehicle use study
DOT National Transportation Integrated Search
1981-12-15
Eight vehicles were instrumented to permit travel distance and fuel consumption to be measured. Following the collection of baseline measures, three different systems were provided to feed back distance and fuel information to drivers: manual, a week...
NHTS brief : energy use and fuel efficiency
DOT National Transportation Integrated Search
2008-04-01
A number of factors affect fuel consumption in the U.S., such as total driving population and annual vehicle miles of travel per driver. According the National Household Travel Survey (NHTS) data series, both of these have nearly doubled since 1969.
National energy efficient driving system (NEEDS). Volume 1, Survey of requirements
DOT National Transportation Integrated Search
1981-12-15
This report provides a state-of-the-art summary of the means by which individual drivers can achieve more fuel-efficient vehicle operation. It identifies fuel-efficient driving behaviors, the means of influencing behavior, appropriate audiences for a...
Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.
1972-01-01
An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.
Cawley, William E.; Warnick, Robert F.
1982-01-01
1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.
Variable Delay Element For Jitter Control In High Speed Data Links
Livolsi, Robert R.
2002-06-11
A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isabella J van Rooyen
2012-09-01
Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isabella J van Rooyen
2013-01-01
Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.
Commercial truck platooning - level 2 automation : project summary.
DOT National Transportation Integrated Search
2016-08-31
Besides driver compensation, the largest : operating expense for a line-haul truck is the : cost of fuel. At 65 mph, each truck expends about : 65 percent of its fuel consumption to overcome : the effects of aerodynamic drag. Many of the : large and ...
Fuel pumping system and method
Shafer, Scott F [Morton, IL; Wang, Lifeng ,
2006-12-19
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fuel Pumping System And Method
Shafer, Scott F.; Wang, Lifeng
2005-12-13
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fleet Conversion in Local Government: Determinants of Driver Fuel Choice for Bi-Fuel Vehicles
ERIC Educational Resources Information Center
Johns, Kimberly D.; Khovanova, Kseniya M.; Welch, Eric W.
2009-01-01
This study evaluates the conversion of one local government's fleet from gasoline to bi-fuel E-85, compressed natural gas, and liquid propane gas powered vehicles at the midpoint of a 10-year conversion plan. This study employs a behavioral model based on the theory of reasoned action to explore factors that influence an individual's perceived and…
Alternative Fuels Data Center: Choice Environmental Services Chooses
been a hit with both drivers and maintenance staff. Drivers appreciate the reduction in diesel emissions while running their routes. Lower maintenance costs has also been an extremely pleasant surprise with the CNG trucks and found there is significantly less maintenance required on CNG trucks than on
Sensible Driving Saves More Gas than Drivers Think
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
It’s common knowledge that driving aggressively can dent gas mileage, but it’s difficult to determine exactly how much gas drivers waste. A new study by researchers at the Department of Energy’s Oak Ridge National Laboratory has quantified the impact speeding and slamming on the brakes has on fuel economy and consumption.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-08-02
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-01-01
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, J.W.K.
1987-10-14
Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.
Means for supporting fuel elements in a nuclear reactor
Andrews, Harry N.; Keller, Herbert W.
1980-01-01
A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively
Fuel assembly for nuclear reactors
Creagan, Robert J.; Frisch, Erling
1977-01-01
A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.
FUEL ELEMENT FOR NUCLEAR REACTORS
Dickson, J.J.
1963-09-24
A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)
Attitudes towards and perceptions of eco-driving and the role of feedback systems.
Harvey, Joan; Thorpe, Neil; Fairchild, Richard
2013-01-01
This paper addresses whether eco-driving may be encouraged by providing drivers with feedback, and how eco-driving attitudes fit with other environmental attitudes. Eight focus groups, including fleet drivers, discussed how feedback and other motives might affect driving behaviour. A survey of 350 respondents investigated attitudes towards saving fuel, the role of incentives and use of eco-friendly products. The focus groups' findings show that the environment is a lower priority than comfort and convenience, that feedback might provide a stimulus to eco-driving and that saving money was less important than saving time. The attitude survey showed that price, convenience, attitudes and eco-driving are not conceptually linked together, that convenience is rated as more important than saving money from fuel efficiency and that although the environment is of concern, it is not a high enough priority to increase fuel efficiency. The findings are discussed in relation to the low level of priority given to environmental concerns and the inability of financial incentives presenting significant challenges in terms of changing the subjective norms of the majority of drivers. This paper, using focus groups and a questionnaire, aims to understand how feedback devices, attitudes and motivation can improve eco-driving behaviours. The incentive to save money by better fuel economy was found to be insufficient, and roles for feedback devices and how information is presented are identified.
Research needs for finely resolved fossil carbon emissions
Gurney, K.; Ansley, W.; Mendoza, D.; Petron, G.; Frost, G.; Gregg, J.; Fischer, M.; Pataki, Diane E.; Ackerman, K.; Houweling, S.; Corbin, K.; Andres, R.; Blasing, T.J.
2007-01-01
Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.
An Optimization Framework for Driver Feedback Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Aguilar, Juan P.
2013-01-01
Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e.g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomialmore » metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency.« less
Grooved Fuel Rings for Nuclear Thermal Rocket Engines
NASA Technical Reports Server (NTRS)
Emrich, William
2009-01-01
An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.
Current status of the development of high density LEU fuel for Russian research reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatulin, A.; Dobrikova, I.; Suprun, V.
2008-07-15
One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less
Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element
1990-06-01
long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a
Nuclear fuel elements and method of making same
Schweitzer, Donald G.
1992-01-01
A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.
78 FR 17591 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... aft fuel system 40 micron fuel filter element with a 10 micron nominal (40 micron absolute) fuel filter element. This AD was prompted by a National Transportation Safety Board (NTSB) review of in... helicopters with a fuel system 40 micron fuel filter element, part number (P/N) 52-0505-2 or 52-01064-1. That...
NASA Technical Reports Server (NTRS)
Kinard, William H.; Murray, Robert C.; Walsh, Robert F.
1987-01-01
Space-qualified, precise, large-force, thermally activated driver (TAD) developed for use in space on astro-physics experiment to measure abundance of rare actinide-group elements in cosmic rays. Actinide cosmic rays detected using thermally activated driver as heart of event-thermometer (ET) system. Thermal expansion and contraction of silicone oil activates driver. Potential applications in fluid-control systems where precise valve controls are needed.
NASA Astrophysics Data System (ADS)
Liu, Mingshan; Zhang, Wenbo; Zhou, Yuan; Xun, Yanqin; Wang, Rui
2017-07-01
Since the study of fuel consumptions is of great importance and the related data is accessible, many researches about factors affecting fuel consumptions have appeared.To sum up, the driving style of drivers, automobile emissions and the type of the routes are the mainly three factors.Classification is relatively single.In order to improve the classification accuracy' this text studies that there exist some special roads,when drivers drive through them,their fuel consumptions will be similar because of road qualities.To achieve this goal, the first step is to calculate fuel consumptions per 100km of all city roads.Recognizing and examining special roads based on the ST-Matching algorithm.Third is to analyze road qualities of special roads like the length of roads, the speed of driving, and compare them with other common roads.Then we choose 4 cases to analyze. We find that when driving through special roads, fuel consumptions would be similar because of road qualities.Besides, the average length of special roads is longer than common roads' and the mean velocity, the speed of getting and off special roads are faster than common roads'.The findings in this paper can filter out special road segments as noisy data in the study of relationship between driving styles and fuel consumptions,and it also has very high practical significance on recommending fuel-efficient paths.
NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR
Szilard, L.; Young, G.J.
1958-03-01
This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.
NASA Technical Reports Server (NTRS)
Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)
2003-01-01
A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.
Effects of miles per gallon feedback on fuel efficiency in gas-powered cars.
DOT National Transportation Integrated Search
2009-10-01
This study tested the impact of continuous miles per gallon (MPG) feedback on driving : behavior and fuel efficiency in gas-powered cars. We compared an experimental condition, : where drivers received real-time MPG feedback and a tip sheet, to a con...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montierth, Leland M.
2016-07-19
The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less
Underbelly injury based identification of the driver in a three-rider motorcycle accident.
Liu, Shengxiong; Yin, Zhiyong; Su, Sen; Li, Kui
2016-01-01
This paper presents a three-rider motorcycle accident which took place in a suburb of Chongqing China. In the accident, the motorcycle impacted the terminal of a bridge footpath and led to two riders died and one rider injured. After the accident, one rider received injuries around the groin area including the underbelly area and the perineum area. Another rider suffered from injuries only on the perineum areas. In medico-legal judgments, injuries around the groin area also called groin injuries in victims of motorcycle accidents are usually regarded as "fuel tank injuries" which are commonly found in drivers. But, the injuries around the groin area are sometimes confused with the perineum injuries. Therefore, the perineum injuries are often wrongly reckoned as the "fuel tank injuries" and used to identify the drivers too. Actually, passengers can sometimes suffer from perineum injuries in many head-on impacting motorcycle accidents. It is of vital matters to understand the differences between groin injuries and perineum injuries so that the real driver who should be responsible for the accident can be recognized. In this paper, the three-rider motorcycle accident was presented and the injury information of the three riders was studied in order to distinguish the real driver from the riders. We consider that the groin injury has some differences with the perineum injury and the latter should not always be related to the driver especially in high-speed head-on impacting motorcycle accidents. In addition, the injury on underbelly areas is important to identify the driver. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Modeling The Frontal Collison In Vehicles And Determining The Degree Of Injury On The Driver
NASA Astrophysics Data System (ADS)
Oţăt, Oana Victoria
2015-09-01
The present research study aims at analysing the kinematic and the dynamic behaviour of the vehicle's driver in a frontal collision. Hence, a subsequent objective of the research paper is to establish the degree of injury suffered by the driver. Therefore, in order to achieve the objectives set, first, we had to define the type of the dummy placed in the position of the driver, and then to design the three-element assembly, i.e. the chair-steering wheel-dashboard assembly. Based on this model, the following step focused on the positioning of the dummy, which has also integrated the defining of the contacts between the components of the dummy and the seat elements. Seeking to model such a behaviour that would highly accurately reflect the driver's movements in a frontal collision, passive safety systems have also been defined and simulated, namely the seatbelt and the frontal airbag.
The dynamics and drivers of fuel and fire in the Portuguese public forest.
Fernandes, Paulo M; Loureiro, Carlos; Guiomar, Nuno; Pezzatti, Gianni B; Manso, Filipa T; Lopes, Luís
2014-12-15
The assumption that increased wildfire incidence in the Mediterranean Basin during the last decades is an outcome of changes in land use warrants an objective analysis. In this study we examine how annual area burned (BA) in the Portuguese public forest varied in relation to environmental and human-influenced drivers during the 1943-2011 period. Fire behaviour models were used to describe fuel hazard considering biomass removal, cover type changes, area burned, post-disturbance fuel accumulation, forest age-classes distribution and fuel connectivity. Biomass removal decreased rapidly beyond the 1940s, which, along with afforestation, increased fuel hazard until the 1980s; a subsequent decline was caused by increased fire activity. Change point analysis indicates upward shifts in BA in 1952 and in 1973, both corresponding to six-fold increases. Fire weather (expressed by the 90th percentile of the Canadian FWI during summer) increased over the study period, accounting for 18 and 36% of log(BA) variation before 1974 and after 1973, respectively. Regression modelling indicates that BA responds positively to fire weather, fuel hazard and number of fires in descending order of importance; pre-summer and 2-year lagged precipitation respectively decrease and increase BA, but the effects are minor and non-significant when both variables are included in the model. Land use conflicts (expressed through more fires) played a role, but it was afforestation and agricultural abandonment that supported the fire regime shifts, explaining weather-drought as the current major driver of BA as well. We conclude that bottom-up factors, i.e. human-induced changes in landscape flammability and ignition density, can enhance or override the influence of weather-drought on the fire regime in Mediterranean humid regions. A more relevant role of fuel control in fire management policies and practices is warranted by our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.
FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR
Abbott, W.E.; Balent, R.
1958-09-16
A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-11-07
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-01-01
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
49 CFR 571.126 - Standard No. 126; Electronic stability control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... driver on the previous ignition cycle that is designed for low-speed, off-road driving, or (b) the... is designed for operation at higher speeds on snow-, sand-, or dirt-packed roads and that has the... dealer, fully fueled, with a 73 kg (160 lb) driver. Standard outriggers shall be designed with a maximum...
Sensitivity Analysis of Fuel Centerline Temperatures in SuperCritical Water-cooled Reactors (SCWRs)
NASA Astrophysics Data System (ADS)
Abdalla, Ayman
SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today's conventional NPPs, which have thermal efficiencies between 30 - 35%, SCW NPPs will have thermal efficiencies within a range of 45 - 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a result, the Heat Transfer Coefficient (HTC), bulk-fluid, sheath and fuel centerline temperature profiles were generated along the heated length of 5.772 m for a generic fuel channel. The fuel centerline and sheath temperature profiles have been determined at four Axial Heat Flux Profiles (AHFPs) using an average thermal power per channel of 8.5 MWth. The four examined AHFPs are the uniform, cosine, upstream-skewed and downstream-skewed profiles. Additionally, this study focuses on investigating a possibility of using low, enhanced and high thermal-conductivity fuels. The low thermal-conductivity fuels, which have been examined in this study, are uranium dioxide (UO 2), Mixed Oxide (MOX) and Thoria (ThO2) fuels. The examined enhanced thermal-conductivity fuels are uranium dioxide - silicon carbide (UO2 - SiC) and uranium dioxide - beryllium oxide (UO2 - BeO). Lastly, uranium carbide (UC), uranium dicarbide (UC2) and uranium nitride (UN) are the selected high thermal-conductivity fuels, which have been proposed for use in SCWRs. A comparison has been made between the low, enhanced and high thermal-conductivity fuels in order to identify the fuel centerline temperature behaviour when different nuclear fuels are used. Also, in the process of conducting the sensitivity analysis, the HTC was calculated using the Mokry et al. correlation, which is the most accurate supercritical water heat-transfer correlation so far. The sheath and the fuel centerline temperature profiles were determined for two cases. In Case 1, the HTC was calculated based on the Mokry et al. correlation, while in Case 2, the HTC values calculated for Case 1 were multiplied by a factor of 2. This factor was used in order to identify the amount of decrease in temperatures if the heat transfer is enhanced with appendages. Results of this analysis indicate that the use of the newly developed 54-element fuel bundle along with the proposed fuels is promising when compared with the Variant-20 (43-element) fuel bundle. Overall, the fuel centerline and sheath temperatures were below the industry and design limits when most of the proposed fuels were examined in the 54-element fuel bundle, however, the fuel centerline temperature limit was exceeded while MOX fuel was examined. Keywords: SCWRs, Fuel Centerline Temperature, Sheath Temperature, High Thermal Conductivity Fuels, Low Thermal Conductivity Fuels, HTC.
Supply Chain-Based Solution to Prevent Fuel Tax Evasion: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, Gary J.; Franzese, Oscar; Lascurain, Mary Beth
The primary source of funding for the United States transportation system is derived from motor fuel and other highway use taxes. Loss of revenue attributed to fuel-tax evasion has been assessed to be somewhere between 1 billion and 3 billion per year. Any solution that addresses this problem needs to include not only the tax-collection agencies and auditors, but also the carriers transporting oil products and the carriers customers. This report presents a system developed by the Oak Ridge National Laboratory (ORNL) for the Federal Highway Administration which has the potential to reduce or eliminate many fuel-tax evasion schemes. Themore » solution balances the needs of tax-auditors and those of the fuel-hauling companies and their customers. The system has three main components. The on-board subsystem combined sensors, tracking and communication devices, and software (the on-board Evidential Reasoning System, or obERS) to detect, monitor, and geo-locate the transfer of fuel among different locations. The back office sub-system (boERS) used self-learning algorithms to determine the legitimacy of the fuel loading and offloading (important for tax auditors) and detect potential illicit operations such as fuel theft (important for carriers and their customers, and may justify the deployment costs). The third sub-system, the Fuel Distribution and Auditing System or FDAS, is a centralized database, which together with a user interface allows tax auditors to query the data submitted by the fuel-hauling companies and correlate different parameters to quickly identify any anomalies. Industry partners included Barger Transport of Weber City, Virginia (fleet); Air-Weigh, of Eugene, Oregon (and their wires and harnesses); Liquid Bulk Tank (LBT) of Omaha, Nebraska (three five-compartment trailers); and Innovative Software Engineering (ISE) of Coralville, Iowa(on-board telematics device and back-office system). ORNL conducted a pilot test with the three instrumented vehicles collecting real-world data during an eight-month period (October 2014 to June 2015). The vehicles logged a total of 375,000 miles and transported more than 7.5 million gallons of fuel. The drivers entered information on the telematics device about 77% of the time, with about 15% (10%) of the data showing at least one compartment with loading (offloading) valve activity, but not driver information entry for that compartment. Seven events (or about 0.7% of the trips) were identified by the boERS as having a missing fuel diversion number. The solution developed and tested in the pilot test had federal- and state-level tax auditors as its main audience. Nonetheless, the technology has to be adopted by the fuel carriers and therefore the solution had to address the needs of fuel-hauling companies and their customers (i.e., fuel theft and cocktailing). Sensors in the hatches allowed the obERS recognize when one of those were opened (always a suspicious activity, unless it happens at locations where maintenance is performed on the vehicle). The fuel-theft issue was addressed by a self-learning algorithm deployed on the boERS that continuously processed the data from the field to construct probability distributions of measures such as elapsed time of fuel loading and offloading by driver, vehicle, and compartment, valve actuation sequence, elapsed time between the first two valve actuations (by driver, compartment, and location), and other parameters. Probability thresholds, which can be set up by the carrier, determined how to classify the observed events. The boERS also kept track of valve sequencing at a given location and analyzed these actuations to help identify any suspicious activities. Technical and economic recommendations include: a) simplification of the driver data-entry task; b) reduction of system deployment cost; c) addition of capabilities that make the system more appealing to industry (i.e., identify and avoid fuel misdelivery); and d) incorporation of additional capabilities to the FDAS. Path to commercialization recommendations include: a) identify a company willing to further develop, test, and certify a hardened system with a price point the market will bear; b).transfer ERS to licensee; c) establish a fleet or fleets who want this technology for carrier benefits or trailer manufacturer who wants to offer it as optional technology; and d) identify a location for the deployment of FDAS.« less
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Schnitzler, Bruce G.
2015-01-01
This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
DOT National Transportation Integrated Search
1975-11-01
The effect of speed limit and passenger load on fuel consumption was determined using actual intercity buses with simulated passenger loads over different types of terrain. In addition to road tests, laboratory type measurements were made on four int...
Drop-In Alternative Jet Fuels: Status of DoDs RDT and E, Interagency Initiatives, and Policies
2015-08-25
biodiesel , EVs, natural gas Drivers: Compliance and cost Market penetration: % of fuel use 3 INSTALLATIONS (COMPLIANCE) Military...including pure biodiesel (B100))1 – P‐Series.2 4 Why does DoD Care about “Drop‐in” Alternative Fuels for Operational Platforms? • Fuels for operations make
Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element
1989-05-25
Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are
METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY
Wigner, E.P.; Young, G.J.; Weinberg, A.M.
1961-06-27
A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.
FUEL ELEMENT FOR NUCLEAR REACTORS
Bassett, C.H.
1961-05-16
A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.
Spent nuclear fuel assembly inspection using neutron computed tomography
NASA Astrophysics Data System (ADS)
Pope, Chad Lee
The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.
Gentry, J.R.
1958-09-16
A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.
FUEL ELEMENTS FOR NUCLEAR REACTORS
Blainey, A.; Lloyd, H.
1961-07-11
A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.
Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, Michael P; Jolly, Brian C; Miller, James Henry
ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.
Fuel element concept for long life high power nuclear reactors
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.; Rom, F. E.
1969-01-01
Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.
NEUTRONIC REACTOR FUEL ELEMENT
Shackleford, M.H.
1958-12-16
A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.
35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ...
35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ELEMENT HOLDER, TRIP MECHANISM COVER, AND OTHER DETAILS. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-3. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
O, Canada: NREL Partnership Produces New Take on Alternative Fueling
Fueling Station Locator. The tool, which is part of a significant investment by the Canadian government to to develop a modern, bilingual web tool that makes it easier for drivers of alternative fuel vehicles Locator Tool March 5, 2018 Word of the National Renewable Energy Laboratory's (NREL) deep transportation
Possible consequences of operation with KIVN fuel elements in K Zircaloy process tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.A.
1963-08-06
From considerations of the results of experimental simulations of non-axial placement of fuel elements in process tubes and in-reactor experience, it is concluded that the ultimate outcome of a charging error which results in operation with one or more unsupported fuel elements in a K Zircaloy-2 process tube would be multiple fuel failure and failure of the process tube. The outcome of the accident is determined by the speed with which the fuel failure is detected and the reactor is shut down. The release of fission products would be expected to be no greater than that which has occurred followingmore » severe fuel failure incidents. The highest probability for fission product release occurs during the discharge of failed fuel elements, when a small fraction of the exposed uranium of the fuel element may be oxidized when exposed to air before the element falls into the water-filled discharge chute. The confinement and fog spray facilities were installed to reduce the amount of fission products which might escape from the reactor building after such an event.« less
Rack for storing spent nuclear fuel elements
Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.
1978-06-20
A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.
METHOD OF OPERATING NUCLEAR REACTORS
Untermyer, S.
1958-10-14
A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.
Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein
Sease, J.D.; Harrington, F.E.
1973-12-11
Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)
Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication
NASA Technical Reports Server (NTRS)
Mireles, O. R.; Broadway, J.; Hickman, R.
2014-01-01
Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.
Device and method for redirecting electromagnetic signals
Garcia, Ernest J.
1999-01-01
A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.
Alternative Fuels Data Center: DC Fast Charging at the Workplace:
alleviate charging congestion when there are more PEV drivers than Level 1 or 2 charging at a worksite. DCFC can also be beneficial in emergencies or other situations when PEV drivers do not have time to charge electrical capacity for the DCFC's high power needs. There may also be additional costs to permitting or
Analytics For Distracted Driver Behavior Modeling in Dilemma Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jan-Mou; Malikopoulos, Andreas; Thakur, Gautam
2014-01-01
In this paper, we present the results obtained and insights gained through the analysis of TRB contest data. We used exploratory analysis, regression, and clustering models for gaining insights into the driver behavior in a dilemma zone while driving under distraction. While simple exploratory analysis showed the distinguishing driver behavior patterns among different popu- lation groups in the dilemma zone, regression analysis showed statically signification relationships between groups of variables. In addition to analyzing the contest data, we have also looked into the possible impact of distracted driving on the fuel economy.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Preparation of high temperature gas-cooled reactor fuel element
Bradley, Ronnie A.; Sease, John D.
1976-01-01
This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.
Zocher, Roy W.
1991-01-01
A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konyashov, Vadim V.; Krasnov, Alexander M.
Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. Anmore » approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)« less
Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle
2014 to 2015, the number of tax incentives decreased. Significantly, Georgia repealed its successful tax incentive program. Aside from political and budgetary drivers, the decrease in new tax incentives see their savings more immediately (e.g., rebates, vouchers), rather than waiting until tax season
Interactions among the mountain pine beetle, fires, and fuels
Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz
2014-01-01
Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...
Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob
2018-05-17
Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.
Photographic combustion characterization of LOX/Hydrocarbon type propellants
NASA Technical Reports Server (NTRS)
Judd, D. C.
1980-01-01
One hundred twenty-seven tests were conducted over a chamber pressure range of 125-1500 psia, a fuel temperature range of -245 F to 158 F, and a fuel velocity range of 48-707 ft/sec to demonstrate the advantages and limitations of using high speed photography to identify potential combustion anomalies such as pops, fuel freezing, reactive stream separation and carbon formations. Combustion evaluation criteria were developed to guide selection of the fuels, injector elements, and operating conditions for testing. Separate criteria were developed for fuel and injector element selection and evaluation. The photographic test results indicated conclusively that injector element type and design directly influence carbon formation. Unlike spray fan, impingement elements reduce carbon formation because they induce a relatively rapid near zone fuel vaporization rate. Coherent jet impingement elements, on the other hand, exhibit increased carbon formation.
VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS
Furgerson, W.T.
1963-12-17
A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)
NEUTRONIC REACTOR CHARGING AND DISCHARGING
Zinn, W.H.
1959-07-14
A method and arrangement is presented for removing a fuel element from a neutronic reactor tube through which a liquid coolant is being circulaled. The fuel element is moved into a section of the tube beyond the reactor proper, and then the coolant in the tube between the fuel element and the reactor proper is frozen, so that the fuel element may be removed from the tube without loss of the coolant therein. The method is particularly useful in the case of a liquid metal- cooled reactor.
Fuel handling apparatus for a nuclear reactor
Hawke, Basil C.
1987-01-01
Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.
Drying results of K-Basin fuel element 1990 (Run 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marschman, S.C.; Abrefah, J.; Klinger, G.S.
1998-06-01
The water-filled K-Basins in the Hanford 100-Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtainedmore » from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first of those tests (Run 1), which was conducted on an N-Reactor inner fuel element (1990) that had been stored underwater in the K-West Basin (see Section 2.0). This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The testing was conducted in the Whole Element Furnace Testing System, described in Section 3.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in Section 4.0, and the experimental results provided in Section 5.0. These results are further discussed in Section 6.0.« less
FUEL ELEMENT FOR NEUTRONIC REACTORS
Evans, T.C.; Beasley, E.G.
1961-01-17
A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.
Beam heated linear theta-pinch device for producing hot plasmas
Bohachevsky, Ihor O.
1981-01-01
A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.
Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element
NASA Astrophysics Data System (ADS)
Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad
2016-01-01
In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.
Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my
2016-01-22
In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less
76 FR 61137 - Hours of Service of Drivers: Western Pilot Service Application for Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... the 70th hour of cumulative on-duty time in any 8-day period. FMCSA requests public comment on the... and be ready to mix, load, fuel, and service its aircraft at all times during daylight hours and must... and mental work in a given day. While Western's drivers wait for an aircraft to be dispatched or land...
Heckman, T.P.
1961-05-01
A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)
FUEL ELEMENT FOR NUCLEAR REACTORS
Bassett, C.H.
1961-11-21
A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)
Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, M. A.; DeHart, M. D.; Morrell, S. R.
2015-03-01
Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less
Neutron source, linear-accelerator fuel enricher and regenerator and associated methods
Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert
1982-01-01
A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.
Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A
2017-07-01
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity. © 2017 by the Ecological Society of America.
Collins, Sarah M.; Oliver, Samantha K.; Lapierre, Jean-Francois; Stanley, Emily H.; Jones, John R.; Wagner, Tyler; Soranno, Patricia A.
2017-01-01
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity.
Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle
NASA Astrophysics Data System (ADS)
Amosova, E. V.; Guba, G. G.
2017-11-01
This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.
Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck
. " Chuck Feinberg, Coordinator New Jersey Clean Cities Coalition Long-haul truck drivers throughout ," said Chuck Feinberg of the New Jersey Clean Cities Coalition (NJCCC). The Garden State has two major sites--one in the northern part of the state, at the New Jersey Turnpike's Vince Lombardi Travel
Integrating fuel treatment into ecosystem management: A proposed project planning process
Keith D. Stockmann; Kevin D. Hyde; J. Greg Jones; Dan R. Loeffler; Robin P. Silverstein
2010-01-01
Concern over increased wildland fire threats on public lands throughout the western United States makes fuel reduction activities the primary driver of many management projects. This single-issue focus recalls a management planning process practiced frequently in recent decades - a least-harm approach where the primary objective is first addressed and then plans are...
Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve
reducing fuel use. When rightsizing, fleet managers should evaluate how important each vehicle is to the rentals when needed? Case Study The City of Detroit generated $1 million in revenue working with the Clean should consider soliciting input from drivers when conducting a rightsizing review, as they can be very
Commercial phosphoric acid fuel cell system technology development
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.
1979-01-01
Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.
Weather, fuels, and topography impede wildland fire spread in western US landscapes
Lisa Holsinger; Sean A. Parks; Carol Miller
2016-01-01
As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet...
Technical background of the FireLine Assessment MEthod (FLAME)
Jim Bishop
2007-01-01
The FireLine Assessment MEthod (FLAME) provides a fireline-practical tool for predicting significant changes in fire rate-of-spread (ROS). FLAME addresses the dominant drivers of large, short-term change: effective windspeed, fuel type, and fine-fuel moisture. Primary output is the ROS-ratio, expressing the degree of change in ROS. The application process guides and...
THE MANUFACTURE OF FUEL ELEMENTS OF THE ARGONAUT TYPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kittl, J.; Machado, R.E.; Mazza, J.A.
1958-06-10
The conditions required for the manufacture of the RA-1 Argonant type fuel elements are investigated. The fuel elements are in the form of a plate which is manufactured by the extrusion of a presintered mass of U/sub 3/O/sub 8/ (20% enriched) in an aluminum matrix. Steps in the investigation were obtention and specification of U/sub 3/O/sub 8/ and Al in powder form for testing, filling, and extrusion tests, finishing of the fuel elements, and computation of U/sub 3/O/sub 8/ content. (W.D.M.)
Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element
NASA Technical Reports Server (NTRS)
Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.
2013-01-01
In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis
40 CFR 79.56 - Fuel and fuel additive grouping system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... further testing under the provisions of Tier 3 or to support regulatory decisions affecting that fuel or... elements or classes of compounds other than those permitted in the base fuel for the respective fuel family... all of the following criteria: (1) Contain no elements other than carbon, hydrogen, oxygen, nitrogen...
Alcohol involvement in fatal crashes : comparisons among countries
DOT National Transportation Integrated Search
2001-06-01
This report describes the different definitions of key elements in the measurement of alcohol involvement in crashes in 20 different countries. Specifically, countries differ in their definitions of alcohol involvement (e.g., driver only, driver and ...
49 CFR 391.23 - Investigation and inquiries.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and employment verification information. (2) The data elements as specified in § 390.15(b)(1) of this... before allowing the driver to operate a CMV: (A) The type of operation the driver self-certified that he...
Model based optimization of driver-pickup separation for eddy current measurement of gap
NASA Astrophysics Data System (ADS)
Klein, G.; Morelli, J.; Krause, T. W.
2018-04-01
The fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of a pressure tube (PT) contained within a larger diameter calandria tube (CT). The separation between the tubes, known as the PT-CT gap, ensures PT hydride blisters, which could lead to potential cracking of the PT, do not develop. Therefore, accurate measurements are required to confirm that contact between PT and CT is not imminent. Gap measurement uses an eddy current probe. However this probe is sensitive to lift-off variations, which can adversely affect estimated gap. A validated analytical flat plate model of eddy current response to gap was used to examine the effect of driver-pickup spacing on lift-off and response to gap at a frequency of 4 kHz, which is used for in-reactor measurements. This model was compared against, and shown to have good agreement with, a COMSOL® finite element method (FEM) model. The optimum coil separation, which included the constraint of coil size, was found to be 11 mm, resulting in a phase response between lift-off and response to change in gap of 66°. This work demonstrates the advantages of using analytical models for optimizing coil designs for measurement of parameters that may negatively influence the outcome of an inspection measurement.
HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sell, D. A.; Baily, C. E.; Malewitz, T. J.
2016-09-01
A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less
Fuel assembly for the production of tritium in light water reactors
Cawley, W.E.; Trapp, T.J.
1983-06-10
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
Fuel assembly for the production of tritium in light water reactors
Cawley, William E.; Trapp, Turner J.
1985-01-01
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS
Horn, F.L.
1961-12-12
Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)
Nuclear fuel elements having a composite cladding
Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.
1983-09-20
An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.
Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.
2015-01-01
The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at the time and resulted in NTREES being out of commission for a couple of months while a new stronger coil was procured. The new coil includes several additional pieces of support structure to prevent coil movement in the future. In addition, new insulating test article support components have been fabricated to prevent unexpected arcing to the test articles. Additional activities are also now underway to address ways in which the radial temperature profiles across test articles may be controlled such that they are more prototypical of what they would encounter in an operating nuclear engine. The causes of the temperature distribution problem are twofold. First, the fuel element test article is isolated in NTREES as opposed to being in the midst of many other mostly identical fuel elements in a nuclear engine. As a result, the fuel element heat flux boundary conditions in NTREES are far from adiabatic as would normally be the case in a reactor. Second, induction heating skews the power distribution such that power is preferentially deposited near the outside of the fuel element. Nuclear heating, conversely, deposits its power much more uniformly throughout the fuel element. Current studies are now looking at various schemes to adjust the amount of thermal radiation emitted from the fuel element surface so as to essentially vary the thermal boundary conditions on the test article. It is hoped that by properly adjusting the thermal boundary conditions on the fuel element test article, it may be possible to substantially correct for the inappropriate radial power distributions resulting from the induction heating so as to yield a more nearly correct temperature distribution throughout the fuel element.
iDriving (Intelligent Driving)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas
2012-09-17
iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokhari, Ishtiaq H.
2004-12-15
The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried outmore » at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.« less
METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS
Nicoll, D.
1959-02-24
A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.
49 CFR 381.505 - What are the minimum elements required for a pilot program?
Code of Federal Regulations, 2012 CFR
2012-10-01
... plan that identifies a method of comparing the safety performance for motor carriers, CMVs, and drivers..., CMVs, and drivers that comply with the regulation; (3) A reasonable number of participants necessary to...
49 CFR 381.505 - What are the minimum elements required for a pilot program?
Code of Federal Regulations, 2010 CFR
2010-10-01
... plan that identifies a method of comparing the safety performance for motor carriers, CMVs, and drivers..., CMVs, and drivers that comply with the regulation; (3) A reasonable number of participants necessary to...
49 CFR 381.505 - What are the minimum elements required for a pilot program?
Code of Federal Regulations, 2011 CFR
2011-10-01
... plan that identifies a method of comparing the safety performance for motor carriers, CMVs, and drivers..., CMVs, and drivers that comply with the regulation; (3) A reasonable number of participants necessary to...
49 CFR 381.505 - What are the minimum elements required for a pilot program?
Code of Federal Regulations, 2014 CFR
2014-10-01
... plan that identifies a method of comparing the safety performance for motor carriers, CMVs, and drivers..., CMVs, and drivers that comply with the regulation; (3) A reasonable number of participants necessary to...
49 CFR 381.505 - What are the minimum elements required for a pilot program?
Code of Federal Regulations, 2013 CFR
2013-10-01
... plan that identifies a method of comparing the safety performance for motor carriers, CMVs, and drivers..., CMVs, and drivers that comply with the regulation; (3) A reasonable number of participants necessary to...
Investigation and mitigation of driver confusion at modern roundabouts.
DOT National Transportation Integrated Search
2009-10-01
This research deals with two related issues: investigation and mitigation of roundabout elements that lead to driver : confusion, and development of a flexible criteria matrix by which the Nebraska Department of Roads (NDOR) can : evaluate arterial i...
NASA Astrophysics Data System (ADS)
Amosova, E. V.; Shishkin, A. V.
2017-11-01
This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.
Alt-Energy Grand Prix Inspires an "I Can" Attitude
ERIC Educational Resources Information Center
Tessmer, Al; Trzeciak, Mark
2010-01-01
This article describes how a team comprised largely of high school students builds and races an E85-fueled car and takes first place at the Bowling Green (Ohio) State University (BGSU) Grand Prix. Free and open to the public, the event features student drivers and crews, racing go-karts powered by renewable, ethanol-based E85 fuel. The track is a…
Electrometallurgical treatment demonstration at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K. M.; Benedict, R. W.; Johnson, S. G.
2000-03-20
Electrometallurgical treatment (EMT) was developed by Argonne National Laboratory (ANL) to ready sodium-bonded spent nuclear fuel for geological disposal. A demonstration of this technology was successfully completed in August 1999. EMT was used to condition irradiated EBR-II driver and blanket fuel at ANL-West. The results of this demonstration, including the production of radioactive high-level waste forms, are presented.
Fuel cell elements with improved water handling capacity
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Lee, Albany (Inventor)
2001-01-01
New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.
NASA Astrophysics Data System (ADS)
Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun
2017-04-01
Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.
ERIC Educational Resources Information Center
Lebbon, Angela R.; Austin, John; Van Houten, Ron; Malenfant, Louis E.
2007-01-01
The current analyses of observational data found that oncoming traffic substantially affected driver stopping patterns and turn signal use at the target stop sign. The percentage of legal stops and turn signal use by drivers in the presence and absence of traffic was analyzed using a multi-element design. The results showed that legal stops were…
A Hybrid Converter for Improving Light Load Efficiency
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi
In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...
Metcalf, H.E.
1957-10-01
A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.
Abrupt climate-independent fire regime changes
Pausas, Juli G.; Keeley, Jon E.
2014-01-01
Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.
Business Case Analysis: Reconfiguration of the Frederick Memorial Healthcare System Courier Service
2008-05-13
from each specimen. This figure alone clearly supports the existence of the FMH courier service. The problem , rather, lies in the efficiency and...investigated, to include the Hyundai Accent, Chevrolet Aveo, and the Honda Fit. Each vehicle was evaluated on cost, fuel efficiency, predicted reliability...P175/65R14 Tires Temporary Spare Tire SAFETY Driver Front Airbag and Front Passenger Airbag with Advanced Airbag System 3 Point Driver & Fr Pass
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2017-01-01
To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1974-01-01
An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.
Tag gas capsule with magnetic piercing device
Nelson, Ira V.
1976-06-22
An apparatus for introducing a tag (i.e., identifying) gas into a tubular nuclear fuel element. A sealed capsule containing the tag gas is placed in the plenum in the fuel tube between the fuel and the end cap. A ferromagnetic punch having a penetrating point is slidably mounted in the plenum. By external electro-magnets, the punch may be caused to penetrate a thin rupturable end wall of the capsule and release the tag gas into the fuel element. Preferably the punch is slidably mounted within the capsule, which is in turn loaded as a sealed unit into the fuel element.
Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad
2018-06-14
Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad
Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less
Inert matrix fuel in dispersion type fuel elements
NASA Astrophysics Data System (ADS)
Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.
2006-06-01
The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.
Nuclear reactor fuel element having improved heat transfer
Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.
1982-03-03
A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.
Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1988-01-01
An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.
DOT National Transportation Integrated Search
1995-10-01
This is an annual report containing analyzed statistical data on motor fuel; motor vehicles; driver licensing; highway-user taxation; State highway finance; highway mileage; Federal aid for highways; highway finance data for municipalities, counties,...
49 CFR 350.109 - What are the national program elements?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false What are the national program elements? 350.109... COMMERCIAL MOTOR CARRIER SAFETY ASSISTANCE PROGRAM General § 350.109 What are the national program elements? The national program elements include the following five activities: (a) Driver/vehicle inspections...
49 CFR 350.109 - What are the national program elements?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false What are the national program elements? 350.109... COMMERCIAL MOTOR CARRIER SAFETY ASSISTANCE PROGRAM General § 350.109 What are the national program elements? The national program elements include the following five activities: (a) Driver/vehicle inspections...
49 CFR 350.109 - What are the national program elements?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false What are the national program elements? 350.109... COMMERCIAL MOTOR CARRIER SAFETY ASSISTANCE PROGRAM General § 350.109 What are the national program elements? The national program elements include the following five activities: (a) Driver/vehicle inspections...
49 CFR 350.109 - What are the national program elements?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false What are the national program elements? 350.109... COMMERCIAL MOTOR CARRIER SAFETY ASSISTANCE PROGRAM General § 350.109 What are the national program elements? The national program elements include the following five activities: (a) Driver/vehicle inspections...
49 CFR 350.109 - What are the national program elements?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false What are the national program elements? 350.109... COMMERCIAL MOTOR CARRIER SAFETY ASSISTANCE PROGRAM General § 350.109 What are the national program elements? The national program elements include the following five activities: (a) Driver/vehicle inspections...
Exposure to particles and nitrogen dioxide among taxi, bus and lorry drivers.
Lewné, Marie; Nise, Gun; Lind, Marie-Louise; Gustavsson, Per
2006-03-01
The aims of this study have been to investigate the occurrence of systematic differences in the personal exposure to motor exhaust between different groups of taxi, bus and lorry drivers, and to study if these are influenced by the choice of exposure indicator. We used one indicator of the gaseous phase, nitrogen dioxide (NO(2)), and one of the particle phase (measured by DataRAM), of the exhausts. A total of 121 drivers were included in the study: 39 taxi drivers, 42 bus drivers and 40 lorry drivers. Personal measurements were performed during one working day. Nitrogen dioxide was measured with passive diffusive samplers and particles with Data-RAM, a logging instrument using nephelometric monitoring. The instrument measures particles between 0.1 and 10 microm in size. The average exposure to NO(2) for lorry drivers was 68 microg/m(3); for bus drivers 60 microg/m(3) and for taxi drivers 48 microg/m(3). For particles the exposure was 57 microg/m(3) for lorry drivers, 44 microg/m(3) for bus drivers and 26 microg/m(3) for taxi drivers. The result remained unchanged when exposures were adjusted for variation in urban background levels of NO(2) and particulate matter with an aerodynamic diameter <10 microm (PM(10)). Lorry drivers experienced the highest exposure and taxi drivers the lowest with bus drivers in an intermediate position, regardless of whether NO(2) or particles were used as exposure indicator. The levels of both NO(2) and particles were higher for bus drivers in the city than for them driving in the suburbs. Using diesel or petrol as a fuel for taxis had no influence on the exposure for the drivers, indicating that the taxi drivers' exposure mainly depends on exhaust from surrounding traffic.
Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).
Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J
2016-06-05
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)
Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.
2016-01-01
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509
NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS
Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.
1957-11-12
This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.
MRT fuel element inspection at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.
1997-08-01
To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.
Direct carbon fuel cell and stack designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorte, Raymond J.; Oh, Tae-Sik
Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.
Nuclear breeder reactor fuel element with axial tandem stacking and getter
Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.
1981-01-01
A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.
The valuation of nursing begins with identifying value drivers.
Rutherford, Marcella M
2010-03-01
Adequate investment in a profession links to its ability to define and document its value. This requires identifying those elements or value drivers that demonstrate its worth. To completely identify nursing's value drivers requires meshing the economic, technical, and caring aspects of its profession. Nursing's valuation includes assessing nursing's tangible and intangible assets and documenting these assets. This information communicates nursing's worth and ensures adequate economic investment in its services.
Sen. Roberts, Pat [R-KS
2013-03-07
Senate - 03/07/2013 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Harold S.J. Zald; Andrew N. Gray; Malcolm North; Ruth A. Kern
2008-01-01
Fire is a driver of ecosystem patterns and processes in forests globally, but natural fire regimes have often been altered by decades of active fire management. Following almost a century of fire suppression, many Western U.S. forests have greater fuel levels, higher tree densities, and are now dominated by fire-sensitive, shade-tolerant species. These fuel-loaded...
Sen. Roberts, Pat [R-KS
2011-06-28
Senate - 06/28/2011 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment
NASA Technical Reports Server (NTRS)
Gotsky, Edward R.; Cusick, James P.; Bogart, Donald
1959-01-01
Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.
Starlight: A stationary inertial-confinement-fusion reactor with nonvaporizing walls
NASA Astrophysics Data System (ADS)
Pitts, John H.
1989-09-01
The Starlight concept for an inertial-confinement-fusion (ICF) reactor utilizes a softball-sized solid-lithium x ray and debris shield that surrounds each fuel pellet as it is injected into the reactor. The shield is sacrificial and vaporizes as it absorbs x ray and ion-debris energy emanating from the fusion reactions in the fuel pellets. However, the energy deposition time at the surface if the first wall is lengthened by four orders of magnitude (to greater than 100 microns) which allows the energy to be conducted into the wall fast enough to prevent vaporization. Starlight operates at 5 Hz with 300-MJ-yield fuel pellets. It features a stationary, nonvaporizing first wall that eliminates erosion and shock waves which can destroy the wall; also, it allows arbitrary fuel pellet illumination geometries so that efficient coupling of either laser or heavy ion beam driver energy to the fuel pellet can be achieved. When neutrons penetrate the shield, the wall experiences neutron damage that limits its lifetime. Hence, we must choose wall materials that have ab economic lifetime. We describe the general concept and a specific design for laser drivers using a 6-m-radius, 2 1/4 Cr 1 Mo steel first wall. We include heat transfer calculations used to establish the radius and structural analysis that shows stresses are within allowable limits. A wall lifetime of over six years is predicted.
NEUTRONIC REACTOR FUEL ELEMENT
Picklesimer, M.L.; Thurber, W.C.
1961-01-01
A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.
Flywheel for an electro-mechanical fastener driving tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutcher, J. P.
1985-05-28
An improved flywheel for an electro-mechanical tool, such as a nailer or stapler. The tool is of the type provided with a driver which is frictionally moved through a working stroke by means of an electrically driven flywheel which presses the driver against a support element, such as a counterrotating flywheel, a low inertia roller, or the like. The flywheel is provided with circumferential grooves while maintaining the optimum contact area between the flywheel and the driver. The grooves provide voids along the travelling driver-flywheel contact line into which foreign material on the driver and flywheel flows to prevent build-upmore » of such foreign material at the driver-flywheel contact area sufficient to result in loss of friction therebetween.« less
Toxicity of irradiated advanced heavy water reactor fuels.
Priest, N D; Richardson, R B; Edwards, G W R
2013-02-01
The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.
Bramblett, Richard L.; Preskitt, Charles A.
1987-03-03
Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.
Profilograph specification study.
DOT National Transportation Integrated Search
2010-10-01
Pavement smoothness is probably the single most important indicator of pavement performance according to the traveling public. Rough or uneven pavements adversely affect driver safety, ride quality, fuel efficiency, and vehicle wear and tear. Rough p...
Illinois highway statistics sheet : 1999
DOT National Transportation Integrated Search
2000-01-01
Data available on Population, Licensed Drivers, Vehciles registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...
Illinois highway statistics sheet : 2004
DOT National Transportation Integrated Search
2005-01-01
Data available on Population, Licensed Drivers, Vehciles Registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...
Illinois highway statistics sheet : 2003
DOT National Transportation Integrated Search
2004-01-01
Data available on Population, Licensed Drivers, Vehciles Registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...
Illinois highway statistics sheet : 2002
DOT National Transportation Integrated Search
2003-01-01
Data available on Population, Licensed Drivers, Vehciles Registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
REACTOR FUEL ELEMENTS TESTING CONTAINER
Whitham, G.K.; Smith, R.R.
1963-01-15
This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)
Design optimization of space structures
NASA Technical Reports Server (NTRS)
Felippa, Carlos
1991-01-01
The topology-shape-size optimization of space structures is investigated through Kikuchi's homogenization method. The method starts from a 'design domain block,' which is a region of space into which the structure is to materialize. This domain is initially filled with a finite element mesh, typically regular. Force and displacement boundary conditions corresponding to applied loads and supports are applied at specific points in the domain. An optimal structure is to be 'carved out' of the design under two conditions: (1) a cost function is to be minimized, and (2) equality or inequality constraints are to be satisfied. The 'carving' process is accomplished by letting microstructure holes develop and grow in elements during the optimization process. These holes have a rectangular shape in two dimensions and a cubical shape in three dimensions, and may also rotate with respect to the reference axes. The properties of the perforated element are obtained through an homogenization procedure. Once a hole reaches the volume of the element, that element effectively disappears. The project has two phases. In the first phase the method was implemented as the combination of two computer programs: a finite element module, and an optimization driver. In the second part, focus is on the application of this technique to planetary structures. The finite element part of the method was programmed for the two-dimensional case using four-node quadrilateral elements to cover the design domain. An element homogenization technique different from that of Kikuchi and coworkers was implemented. The optimization driver is based on an augmented Lagrangian optimizer, with the volume constraint treated as a Courant penalty function. The optimizer has to be especially tuned to this type of optimization because the number of design variables can reach into the thousands. The driver is presently under development.
Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry
NASA Astrophysics Data System (ADS)
Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.
2002-03-01
The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.
Bean, R.W.
1963-11-19
A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-12-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.
Reduced size fuel cell for portable applications
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)
2004-01-01
A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.
Coolant mass flow equalizer for nuclear fuel
Betten, Paul R.
1978-01-01
The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.
Wheeler, J.A.
1957-11-01
A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.
Eco-Approach and Departure at Signalized Intersections
DOT National Transportation Integrated Search
2014-11-01
The Eco-Approach and Departure at Signalized Intersections application uses wireless communications to give drivers recommendations that encourage "green" approaches to signalized intersections. The purpose of the application is to increase the fuel ...
DOT National Transportation Integrated Search
1996-11-01
This is an annual report containing analyzed statistical data on motor fuel, motor vehicles, driver licensing, highway-user taxation, State and local highway finance, highway mileage, and Federal-aid for highways, as well as information from the Nati...
DOT National Transportation Integrated Search
2000-01-01
In consultation with the states, FHWA has designed a series of reporting forms to account for motor-fuel consumption; motor-vehicle registrations; driver licensing; motor-carrier taxation; and the source, distribution, and expenditures of funds for h...
Automotive Stirling Engine Mod 1 Design Review, volume 2
NASA Technical Reports Server (NTRS)
1982-01-01
The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.
Improved acoustic levitation apparatus
NASA Technical Reports Server (NTRS)
Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.
1980-01-01
Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.
Automatic Recognition and Understanding of the Driving Environment for Driver Feedback
DOT National Transportation Integrated Search
2018-01-01
A smart driving system must consider two key elements to be able to generate recommendations and make driving decisions that are effective and accurate: The environment of the car and the behavior of the driver. Our long-term goal is to develop techn...
Problem-solving tools for analyzing system problems. The affinity map and the relationship diagram.
Lepley, C J
1998-12-01
The author describes how to use two management tools, an affinity map and a relationship diagram, to define and analyze aspects of a complex problem in a system. The affinity map identifies the key influencing elements of the problem, whereas the relationship diagram helps to identify the area that is the most important element of the issue. Managers can use the tools to draw a map of problem drivers, graphically display the drivers in a diagram, and use the diagram to develop a cause-and-effect relationship.
Improved nuclear fuel assembly grid spacer
Marshall, John; Kaplan, Samuel
1977-01-01
An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.
Thermionic nuclear reactor with internal heat distribution and multiple duct cooling
Fisher, C.R.; Perry, L.W. Jr.
1975-11-01
A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.
Wigner, E.P.; Szilard, L.; Creutz, E.C.
1959-02-01
These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.
2013-05-01
multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have
FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS
Flint, O.
1961-01-10
Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.
Preface to the Issue: Transformations of Biomass and its Derivatives to Fuels and Chemicals
Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin; ...
2016-07-01
The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.
Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, A.E.
1990-10-12
The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results aremore » related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarta, Jose A.; Castiblanco, Luis A
With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energias Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer ofmore » the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.« less
Supermassive Black Hole Fueling and Feedback in Galaxies
NASA Astrophysics Data System (ADS)
Comerford, Julia M.
2018-06-01
Over the last few decades, observations have revealed surprisingly tight correlations between the properties of galaxies and their supermassive black holes. Active galactic nuclei (AGN) have emerged as key drivers of this coevolution of galaxies and supermassive black holes, by two primary mechanisms: AGN fueling and AGN feedback. Supermassive black holes build up mass by accreting gas during AGN fueling, while AGN feedback is a crucial regulator of star formation that controls the mass growth of the galaxies. In this talk, I will present multiwavelength studies of both AGN fueling and feedback. I will discuss results that address AGN fueling in galaxy mergers, the connection between AGN and star formation, and the effect of AGN outflows on their host galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, David Charles; Taylor, Craig Michael; Coons, James Elmer
The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.
NEUTRONIC REACTOR FUEL ELEMENT
Gurinsky, D.H.; Powell, R.W.; Fox, M.
1959-11-24
A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-01-14
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-05-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS
Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.
1963-09-01
A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)
Position verification systems for an automated highway system.
DOT National Transportation Integrated Search
2015-03-01
Automated vehicles promote road safety, fuel efficiency, and reduced travel time by decreasing traffic : congestion and driver workload. In a vehicle platoon (grouping vehicles to increase road capacity by : managing distance between vehicles using e...
DOT National Transportation Integrated Search
1991-10-01
This publication is the 46th of an annual series. It presents the 1990 analyzed statistics of general interest on motor fuel, motor vehicles, driver licensing, highway-user taxation, State highway finance, highway mileage, and Federal aid for highway...
Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers
2012-01-01
Background Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Results Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes), but absent from Hylobatidae (gibbon and siamang). We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla), this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. Conclusions This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion. PMID:22541534
Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers.
Walker, Jerilyn A; Konkel, Miriam K; Ullmer, Brygg; Monceaux, Christopher P; Ryder, Oliver A; Hubley, Robert; Smit, Arian Fa; Batzer, Mark A
2012-04-30
Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes), but absent from Hylobatidae (gibbon and siamang). We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla), this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion.
Fuel shipment experience, fuel movements from the BMI-1 transport cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Thomas L.; Krause, Michael G
1986-07-01
The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including severalmore » factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask.« less
NASA Astrophysics Data System (ADS)
Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng
2018-01-01
The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.
Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel
NASA Astrophysics Data System (ADS)
Lewis, operating defective fuel B. J.; Thompson, W. T.; Akbari, F.; Thompson, D. M.; Thurgood, C.; Higgs, J.
2004-07-01
A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor.
NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM
Moore, W.T.
1958-09-01
This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.
Leverett, M.C.
1958-02-18
This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.
PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE
Plott, R.F.
1958-10-28
A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.
URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME
Handwerk, J.H.; Noland, R.A.; Walker, D.E.
1957-09-10
In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.
Moore, R.V.; Bowen, J.H.; Dent, K.H.
1958-12-01
A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.
Boller, E.R.; Robinson, J.W.
1960-09-13
A fuel element design for a nuclear reactor is presented. The fuel element comprises a cylindrical fuel body having a portion of smaller diameter at each end thereof with an annular flange at the extreme ends of these portions of smaller diameter. An end cap fits over the ends of the fuel body and has an internal annular groove adapted to receive the flange. The fuel body and end caps are disposed in a cup-shaped jacket, a closure disc completing the enclosure of the fuel body, and tht caps are bonded over their entire periphery to the jacket.
U-Mo Plate Blister Anneal Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francine J. Rice; Daniel M. Wachs; Adam B. Robinson
2010-10-01
Blister thresholds in fuel elements have been a longstanding performance parameter for fuel elements of all types. This behavior has yet to be fully defined for the RERTR U-Mo fuel types. Blister anneal studies that began in 2007 have been expanded to include plates from more recent RERTR experiments. Preliminary data presented in this report encompasses the early generations of the U-Mo fuel systems and the most recent but still developing fuel system. Included is an overview of relevant dispersion fuel systems for the purposes of comparison.
Truck Drivers' Use of the Internet: A Mobile Health Lifeline.
Heaton, Karen; Combs, Bryan; Griffin, Russell
2017-06-01
Because of their social isolation, irregular and unpredictable schedules, limited access to health care, and long periods of travel, long-haul truckers may benefit from the use of mobile health applications on Internet-capable devices. The purpose of this study was to determine Internet access and usage among a sample of long-haul truck drivers. In this cross-sectional study, truck drivers completed a pencil and paper survey with questions on demographics, work and health histories, and Internet access and usage for both personal and job reasons. A total of 106 truck drivers were recruited from trucking industry trade shows, by word of mouth, and directly from trucking companies. Overall, the truck drivers' use of the Internet was limited. Their usage for personal and job-related reasons differed. Social connectivity and access to health and wellness information were important during personal usage time. Job-related Internet use was highly practical, and applied to seeking information for directions and maps, fuel stops and pricing, and communicating with employers or transmitting documents. Age and experience were associated with Internet use. Younger, less-experienced drivers used the Internet more than older, experienced drivers. Targeted mobile health messaging may be a useful tool to inform truck drivers of health conditions and plans, and may provide links to primary care providers needing to monitor or notify drivers of diagnostic results or treatment plans.
A small, 1400 deg Kelvin, reactor for Brayton space power systems
NASA Technical Reports Server (NTRS)
Lantz, E.; Mayo, W.
1972-01-01
A preliminary cost estimate for a small reactor in Brayton space power systems with (u-233)n or (pu-239)n as the fuel in the T-111 fuel elements totaled to about four million dollars; considered is a 22.8 in. diameter reactor with 247 fuel elements.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)
2005-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
2003-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
1999-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Local Burn-Up Effects in the NBSR Fuel Element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown N. R.; Hanson A.; Diamond, D.
2013-01-31
This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less
Shock ignition of thermonuclear fuel with high areal density.
Betti, R; Zhou, C D; Anderson, K S; Perkins, L J; Theobald, W; Solodov, A A
2007-04-13
A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy.
NUCLEAR REACTOR COMPENENT CLADDING MATERIAL
Draley, J.E.; Ruther, W.E.
1959-01-27
Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... data includes motor-vehicle registration and fees, motor- fuel use and taxation, driver licensing, and highway taxation and finance. Federal, State, and local governments use the data for transportation policy...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... data includes motor-vehicle registration and fees, motor- fuel use and taxation, driver licensing, and highway taxation and finance. Federal, State, and local governments use the data for transportation policy...
NEUTRONIC REACTOR WITH ACCESSIBLE THIMBLE AND EMERGENCY COOLING FEATURES
McCorkle, W.H.
1960-02-23
BS>A safety system for a water-moderated reactor is described. The invention comprises a reservoir system for spraying the fuel elements within a fuel assembly with coolant and keeping them in a continuous bath even if the coolant moderator is lost from the reactor vessel. A reservoir gravity feeds one or more nozzels positioned within each fuel assembly which continually forces water past the fuel elements.
Drivers and Barriers to Adopting Gamification: Teachers' Perspectives
ERIC Educational Resources Information Center
Sánchez-Mena, Antonio; Martí-Parreño, José
2017-01-01
Gamification is the use of game design elements in non-game contexts and it is gaining momentum in a wide range of areas including education. Despite increasing academic research exploring the use of gamification in education little is known about teachers' main drivers and barriers to using gamification in their courses. Using a phenomenology…
Optical design of MOEMS-based micro-mechatronic modules for applications in spectroscopy
NASA Astrophysics Data System (ADS)
Tortschanoff, A.; Kremer, M.; Sandner, T.; Kenda, A.
2014-05-01
One of the important challenges for widespread application of MOEMS devices is to provide a modular interface for easy handling and accurate driving of the MOEMS elements, in order to enable seamless integration in larger spectroscopic system solutions. In this contribution we present in much detail the optical design of MOEMS driver modules comprising optical position sensing together with driver electronics, which can actively control different electrostatically driven MOEMS. Furthermore we will present concepts for compact spectroscopic devices, based on different MOEMS scanner modules with lD and 2D optical elements.
Fortescue, P.; Zumwalt, L.R.
1961-11-28
A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)
Simnad, M.T.
1961-08-15
A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)
The Guardian: The Source for Antiterrorism Information. Volume 9, Number 1, April 2007
2007-04-01
the fuel in these research reactors is generally not highly radioactive . Unlike the fuel rods in a nuclear power plant, these fuel elements would...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...practices and lessons learned. In addition, we will include Service and issue-specific breakout sessions that will focus on critical AT program elements
Analysis of Risk Compensation Behavior on Night Vision Enhancement System
NASA Astrophysics Data System (ADS)
Hiraoka, Toshihiro; Masui, Junya; Nishikawa, Seimei
Advanced driver assistance systems (ADAS) such as a forward obstacle collision warning system (FOCWS) and a night vision enhancement system (NVES) aim to decrease driver's mental workload and enhance vehicle safety by provision of useful information to support driver's perception process and judgment process. On the other hand, the risk homeostasis theory (RHT) cautions that an enhanced safety and a reduced risk would cause a risk compensation behavior such as increasing the vehicle velocity. Therefore, the present paper performed the driving simulator experiments to discuss dependence on the NVES and emergence of the risk compensation behavior. Moreover, we verified the side-effects of spontaneous behavioral adaptation derived from the presentation of the fuel-consumption meter on the risk compensation behavior.
Hou, Lifang; Zhang, Xiao; Zheng, Yinan; Wang, Sheng; Dou, Chang; Guo, Liqiong; Byun, Hyang-Min; Motta, Valeria; McCracken, John; Díaz, Anaité; Kang, Choong-Min; Koutrakis, Petros; Bertazzi, Pier Alberto; Li, Jingyun; Schwartz, Joel; Baccarelli, Andrea A.
2014-01-01
Exposure to particulate matter (PM) has been associated with lung cancer risk in epidemiology investigations. Elemental components of PM have been suggested to have critical roles in PM toxicity, but the molecular mechanisms underlying their association with cancer risks remain poorly understood. DNA methylation has emerged as a promising biomarker for environmental-related diseases, including lung cancer. In this study, we evaluated the effects of PM elemental components on methylation of three tandem repeats in a highly-exposed population in Beijing, China. The Beijing Truck Driver Air Pollution Study was conducted shortly before the 2008 Beijing Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. On two days separated by 1-2 weeks, we measured blood DNA methylation of SATα, NBL2, D4Z4, and personal exposure to eight elemental components in PM2.5, including aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca) titanium (Ti), iron (Fe), and zinc (Zn). We estimated the associations of individual elemental component with each tandem repeat methylation in generalized estimating equations (GEE) models adjusted for PM2.5 mass and other covariates. Out of the eight examined elements, NBL2 methylation was positively associated with concentrations of Si (0.121, 95%CI: 0.030; 0.212, FDR=0.047) and Ca (0.065, 95%CI: 0.014; 0.115, FDR=0.047) in truck drivers. In office workers, SATα methylation was positively associated with concentrations of S (0.115, 95%CI: 0.034; 0.196, FDR=0.042). PM-associated differences in blood tandem-repeat methylation may help detect biological effects of the exposure and identify individuals who may eventually experience higher lung cancer risk. PMID:24273195
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.
2011-01-01
Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
PATHFINDER ATOMIC POWER PLANT TECHNICAL PROGRESS REPORT FOR JULY 1, 1959- SEPTEMBER 30, 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-10-31
ABS>Fuel Element Research and Development. Dynamic and static corrosion tests on 8001 Al were completed. Annealmmmg of 1100 cladding on 5083 and M400 cladding on X2219 were tested at 500 deg C, and investigation continued on producing X8101 Al alloy cladding in tube plates by extrusion. Boiler fuel element capsule irradiation tests and subassembly tests are described Heat transfer loop studies and fuel fabrication for the critical facility are reported. Boiler fuel element mechanical design and testing progress is desc ribed. and the superheater fuel element temperature evaluating routine is discussed. Low- enrichment superheater fuel element development included design studiesmore » and stainless steel powder and UO/sub 2/ powder fabrication studies Reactor Mechanical Studies. Research is reported on vessel and structure design, fabrication, and testing, recirculation system design, steam separator tests, and control rod studies. Nuclear Analysis. Reactor physics studies are reported on nuclear constants, baffle plate analysis, comparison of core representations, delayed neutron fraction. and shielding analysis of the reactor building. Reactor and system dynamics and critical experiments were also studied. Chemistry. Progress is reported on recombiner. radioactive gas removal and storage, ion exchanger and radiochemical processing. (For preceding period see ACNP-5915.) (T.R.H.)« less
Compact Fuel Element Environment Test
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.
2012-01-01
Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Keiser; J. I. Cole
2007-09-01
Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. Thismore » temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.« less
Finding the Right Filling Station for Alternative Vehicles Now Easier
the guesswork out of finding the fuel needed by the thousands of alternative vehicles on the road vehicles on the road," said Cynthia Riley, AFDC program manager at NREL. "Drivers can now have
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-06-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less
IRRADIATION METHOD AND APPARATUS
Cabell, C.P.
1962-12-18
A method and apparatus are described for changing fuel bodies into a process tube of a reactor. According to this method fresh fuel elements are introduced into one end of the tube forcing used fuel elements out the other end. When sufficient fuel has been discharged, a reel and tape arrangement is employed to pull the column of bodies back into the center of the tube. Due provision is made for providing shielding in the tube. (AEC)
Yttrium and rare earth stabilized fast reactor metal fuel
Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.
1992-01-01
To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.
Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.
2008-07-15
IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicidemore » was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)« less
Axially staggered seed-blanket reactor-fuel-module construction. [LWBR
Cowell, G.K.; DiGuiseppe, C.P.
1982-10-28
A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Anderson, Robert C.; Tedder, Sarah A.; Tacina, Kathleen M.
2015-01-01
This paper presents results obtained during testing in optically-accessible, JP8-fueled, flame tube combustors using swirl-venturi lean direct injection (LDI) research hardware. The baseline LDI geometry has 9 fuel/air mixers arranged in a 3 x 3 array within a square chamber. 2-D results from this 9-element array are compared to results obtained in a cylindrical combustor using a 7-element array and a single element. In each case, the baseline element size remains the same. The effect of air swirler angle, and element arrangement on the presence of a central recirculation zone are presented. Only the highest swirl number air swirler produced a central recirculation zone for the single element swirl-venturi LDI and the 9-element LDI, but that same swirler did not produce a central recirculation zone for the 7-element LDI, possibly because of strong interactions due to element spacing within the array.
Effects of fire suppression under a changing climate in Pacific Northwest mixed-pine forests
NASA Astrophysics Data System (ADS)
Hanan, E. J.; Tague, C.; Bart, R. R.; Kennedy, M. C.; Abatzoglou, J. T.; Kolden, C.; Adam, J. C.
2017-12-01
The frequency of large and severe wildfires has increased over recent decades in many regions across the Western U.S., including the Pacific and Inland Northwest. This increase is likely driven in large part by wildfire suppression, which has promoted fuel accumulation in western landscapes. Recent studies also suggest that anthropogenic climate change intensifies wildfire activity by increasing fuel aridity. However, the contribution of these drivers to observed changes in fire regime is not well quantified at regional scales. Understanding the relative influence of climate and fire suppression is crucial for both projecting the effects of climate change on future fire spread, and for developing site-specific fuel management strategies under a new climate paradigm. To quantify the extent to which fire suppression and climate change have contributed to increases in wildfire activity in the Pacific Northwest, we conduct a modeling experiment using the ecohydrologic model RHESSys and the coupled stochastic fire spread model WMFire. Specifically, we use historical climate inputs from GCMs, combined with fire suppression scenarios to gauge the extent to which these drivers promote the spread of severe wildfires in Johnson Creek, a large (565-km2) mixed-pine dominated subcatchment of the Southfork Salmon River; part of the larger Columbia River Basin. We run 500 model iterations for suppressed, intermediate, and unsuppressed fire management scenarios, both with and without climate change in a factorial design, focusing on fire spread surrounding two extreme fire years in Johnson Creek (1998 and 2007). After deriving fire spread "fingerprints" for each combination of possible drivers, we evaluate the extent to which these fingerprints match observations in the fire record. We expect that climate change plays a role in the spread of large and severe wildfires in Johnson Creek, but the magnitude of this effect is mediated by prior suppression. Preliminary results suggest that management strategies aimed at reducing the extent of contiguous even-aged fuels may help curtail climate-driven increases in wildfire severity in Pacific Northwest watersheds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less
2009-05-27
of old. In general, world energy consumption is discussed in five categories: coal, oil, gas, hydro- electric , and nuclear. The aforementioned...price volatility brought about by demography, geology, and geopolitics. The costs of gas for cars and SUVs, diesel fuel that allow truck drivers...efficient car that was three times more fuel efficient than anything currently in production by 2004.12 Nevertheless, amid a global economic slowdown
PREIRRADIATION MEASUREMENTS OF PIQUA FUEL ELEMENTS NO. P-1111, P-1113, P- 1114, AND P-1120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbell, H.J.
1962-11-01
Results of preirradiation measurements and tests performed during the processing and assembly of the individual fuel cylinders contained in Piqua Fuel Elements No. P-1111, P-1113, P-1114, and P-1120 are presented. A description of the techniques and equipment used in obtaining the data is also included. (auth)
Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitner, A.L.
1998-09-11
Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.
Photographic combustion characterization of LOX/hydrocarbon type propellants
NASA Technical Reports Server (NTRS)
Judd, D. C.
1979-01-01
Single element injectors and two fuels were tested with the aim of photographically characterizing observed combustion phenomena. The three injectors tested were the O-F-O triplet, the transverse like on like (TLOL), and the rectangular unlike doublet (RUD). The fuels tested were RP-1 and propane. The hot firings were conducted in a specifically constructed chamber fitted with quartz windows for photographically viewing the impingement spray field. All LOX/HC testing demonstrated coking with the RP-1 fuel leaving far more soot than the propane fuel. No fuel freezing or popping was experienced under the test conditions evaluated. Carbon particle emission and combustion light brilliance increased with Pc for both fuels although RP-1 was far more energetic in this respect. The RSS phenomena appear to be present in the high Pc tests as evidenced by striations in the spray pattern and by separate fuel rich and oxidizer rich areas. The RUD element was also tested as a fuel rich gas generator element by switching the propellant circuits. Excessive sooting occurred at this low mixture ratio (0.55), precluding photographic data.
NEUTRONIC REACTOR CONTROL ELEMENT
Newson, H.W.
1960-09-13
A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.
Predicting vehicle fuel consumption patterns using floating vehicle data.
Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong
2017-09-01
The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.
ELECTROLYTIC SEPARATION PROCESS AND APPARATUS
McLain, M.E. Jr.; Roberts, M.W.
1962-03-01
A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)
Nuclear breeder reactor fuel element with silicon carbide getter
Christiansen, David W.; Karnesky, Richard A.
1987-01-01
An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.
Propulsion system ignition overpressure for the Space Shuttle
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jones, J. H.; Guest, S. H.; Struck, H. G.; Rheinfurth, M. H.; Verferaime, V. S.
1981-01-01
Liquid and solid rocket motor propulsion systems create an overpressure wave during ignition, caused by the accelerating gas particles pushing against or displacing the air contained in the launch pad or launch facility and by the afterburning of the fuel-rich gases. This wave behaves as a blast or shock wave characterized by a positive triangular-shaped first pulse and a negative half-sine wave second pulse. The pulse travels up the space vehicle and has the potential of either overloading individual elements or exciting overall vehicle dynamics. The latter effect results from the phasing difference of the wave from one side of the vehicle to the other. This overpressure phasing, or delta P environment, because of its frequency content as well as amplitude, becomes a design driver for certain panels (e.g., thermal shields) and payloads for the Space Shuttle. The history of overpressure effects on the Space Shuttle, the basic overpressure phenomenon, Space Shuttle overpressure environment, scale model overpressure testing, and techniques for suppressing the overpressure environments are considered.
DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR
Swanson, J.L.
1961-07-11
The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
Alternative Fuel News, Vol. 4, No. 2
DOT National Transportation Integrated Search
2000-09-01
Drivers across the country are : experiencing first hand our nations dependence on foreign petroleum. As they reach deeper into their pockets at their : trips to the pump, the benefits of AFV use become more apparent and the Clean Cities message g...
Highway taxes and fees : how they are collected and distributed
DOT National Transportation Integrated Search
2001-06-01
This publication presents tabular information on State and Federal laws that provide for the taxation of motor fuels, motor vehicles, motor carriers, and licensed drivers, and the distribution of revenues from these highway taxes and fees. Also inclu...
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2014-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.
Liquid fuel injection elements for rocket engines
NASA Technical Reports Server (NTRS)
Cox, George B., Jr. (Inventor)
1993-01-01
Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.
Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.
1957-10-22
A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
NASA Technical Reports Server (NTRS)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
Improved gas tagging and cover gas combination for nuclear reactor
Gross, K.C.; Laug, M.T.
1983-09-26
The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.
Review of Rover fuel element protective coating development at Los Alamos
NASA Technical Reports Server (NTRS)
Wallace, Terry C.
1991-01-01
The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.
FUEL ELEMENTS FOR NEUTRONIC REACTORS
Foote, F.G.; Jette, E.R.
1963-05-01
A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Method and apparatus for diagnosing breached fuel elements
Gross, K.C.; Lambert, J.D.B.; Nomura, S.
1987-03-02
The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative curve of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element. 8 figs.
JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS
Szilard, L.; Wigner, E.P.; Creutz, E.C.
1959-05-12
Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.
Reporting by Physicians of Impaired Drivers and Potentially Impaired Drivers
Berger, Jeffrey T; Rosner, Fred; Kark, Pieter; Bennett, Allen J
2000-01-01
Physicians routinely care for patients whose ability to operate a motor vehicle is compromised by a physical or cognitive condition. Physician management of this health information has ethical and legal implications. These concerns have been insufficiently addressed by professional organizations and public agencies. The legal status in the United States and Canada of reporting of impaired drivers is reviewed. The American Medical Association's position is detailed. Finally, the Bioethics Committee of the Medical Society of the State of New York proposes elements for an ethically defensible public response to this problem. PMID:11029682
Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
2010-07-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less
Elemental profiles reflect plant adaptations to the environment
USDA-ARS?s Scientific Manuscript database
Elemental concentrations in plants are determined by interactions with the soil. Soil is one of the key environmental influences (along with water, light, gas and other organisms) of plant success and drivers of speciation and adaptation. Environmental conditions influence common measures of adaptat...
Zumwalt, L.R.
1961-08-01
Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)
Status of commercial phosphoric acid fuel cell system development
NASA Technical Reports Server (NTRS)
Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.
1981-01-01
In both the electric utility and onsite integrated energy system applications, reducing cost and increasing reliability are the main technology drivers. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, was materials. The differences in approach among the three major participants (United Technologies Corporation, Westinghouse Electric Corporation/Energy Research Corporation, and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.
NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE
Brooks, H.
1960-04-26
A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.
2017-09-01
Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.
Ion chromatographic determination of sulfur in fuels
NASA Technical Reports Server (NTRS)
Mizisin, C. S.; Kuivinen, D. E.; Otterson, D. A.
1978-01-01
The sulfur content of fuels was determined using an ion chromatograph to measure the sulfate produced by a modified Parr bomb oxidation. Standard Reference Materials from the National Bureau of Standards, of approximately 0.2 + or - 0.004% sulfur, were analyzed resulting in a standard deviation no greater than 0.008. The ion chromatographic method can be applied to conventional fuels as well as shale-oil derived fuels. Other acid forming elements, such as fluorine, chlorine and nitrogen could be determined at the same time, provided that these elements have reached a suitable ionic state during the oxidation of the fuel.
DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1999-04-01
Models for the interaction of uranium silicide dispersion fuels with an aluminum matrix, for the resultant reaction product swelling, and for the calculation of the stress gradient within the fuel particles are described within the context of DART fission-gas-induced swelling models. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by comparing DART calculations with irradiation data for the swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al in variously designed dispersion fuel elements.
Breath measurement instrumentation as alcohol safety interlock systems
DOT National Transportation Integrated Search
1974-09-01
This report describes the results of field tests of in-car instruments which measure alcohol on the driver's breath and prevent him from operating his vehicle if intoxicated. Two types of breath alcohol sensors were used for these tests; a fuel-cell ...
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (2) Chapter 303—National Driver Register. (3) Chapter 305—National Automobile Title Information.... (7) Chapter 327—Odometers. (8) Chapter 329—Automobile Fuel Economy. (9) Chapter 331—Theft Prevention... and maintenance, traffic control devices, identification and surveillance of accident locations, and...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (2) Chapter 303—National Driver Register. (3) Chapter 305—National Automobile Title Information.... (7) Chapter 327—Odometers. (8) Chapter 329—Automobile Fuel Economy. (9) Chapter 331—Theft Prevention... and maintenance, traffic control devices, identification and surveillance of accident locations, and...
Assessment for advanced fuel cycle options in CANDU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morreale, A.C.; Luxat, J.C.; Friedlander, Y.
2013-07-01
The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less
The impact of anthropogenic climate change on wildfire across western US forests
NASA Astrophysics Data System (ADS)
Williams, P.; Abatzoglou, J. T.
2016-12-01
Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.
High-severity fire: evaluating its key drivers and mapping its probability across western US forests
NASA Astrophysics Data System (ADS)
Parks, Sean A.; Holsinger, Lisa M.; Panunto, Matthew H.; Jolly, W. Matt; Dobrowski, Solomon Z.; Dillon, Gregory K.
2018-04-01
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we used boosted regression trees to model high-severity fire as a function of live fuel, topography, climate, and fire weather. We found that live fuel, on average, was the most important factor driving high-severity fire among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19 ecoregions. Fire weather was the second most important factor among ecoregions (average relative influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional maps provide relevant and up-to-date information for scientists and managers who are tasked with managing fuel and wildland fire. Lastly, we provide an example of the predicted likelihood of high-severity fire under moderate and extreme fire weather before and after fuel reduction treatments, thereby demonstrating how our framework and model predictions can potentially serve as a performance metric for land management agencies tasked with reducing hazardous fuel across large landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Tae-Sic; Vaden, DeeEarl; Westphal, Brian Robert
2016-01-01
The Experimental Breeder Reactor II (EBR-II) is a sodium cooled fast reactor developed at Argonne National Laboratory (ANL). The used fuels from the EBR-II are currently being treated in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL). The Mark IV (Mk-IV) electrorefiner (ER) is a unit process in the FCF, which is primarily assigned to treating the used driver fuels. The stainless steel anode baskets hold the chopped spent driver fuel segments. During electrorefining, the anode baskets are immersed into the electrolyte and the used fuel is dissolved electrochemically. Perforated sides and bottoms allow the flow ofmore » the electrolyte into and out of the anode baskets. The steel cathode is also immersed into the electrolyte and collects the reduced products. The active metal contents in the used fuel (e.g., Cs, Sr, lanthanides, Pu, etc.) reacts with uranium cations in the electrolyte and progressively reports to the electrolyte. Noble metals are mostly retained in the cladding hulls. Varying quantities of zirconium are retained in the cladding hulls depending on the operational conditions of the Mk-IV ER. The undissolved anode materials are removed from the anode baskets and stored for subsequent metal waste form processing. These undissolved materials typically include undissolved fuels, stainless steel cladding, and adhering electrolyte. A couple of hulls are retrieved for chemical analysis and used for estimating the composition of the entire undissolved anode materials. The mass balance attempt based on this practice of estimating the undissolved anode materials has been a challenge due to inherently high sampling errors associated with heterogeneous undissolved material compositions. Responding to the prescribed challenge, this report investigates chemical analysis data as a whole and finds noticeable trends in the compositions of undissolved anode material samples with respect to the mass of the whole undissolved anode materials. Based upon this discovery, an empirical model is proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.
The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less
The role of inertial fusion energy in the energy marketplace of the 21st century and beyond
NASA Astrophysics Data System (ADS)
John Perkins, L.
The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.
Driver-Array Based Flat-Panel Loudspeakers: Theoretical Background and Design Guidelines
NASA Astrophysics Data System (ADS)
Anderson, David Allan
This thesis relates to the simulation and design of flat-panel loudspeakers using moving-coil driver elements. A brief history of the industry is given, including a collection of products and patents from 1925 until the present, an overview of research papers, and a discussion of current products available. The mechanics of bending flat panels are developed with respect to localized driving forces, both in the frequency domain and the time domain as an impulse response. These simulations are compared to measurements on prototype panels. Additional resonant elements influence the behavior of the system: an optional ported rear enclosure and the resonant characteristics of the drivers. The governing equations for these systems are derived and solutions are implemented using equivalent mechanical circuits and numerical methods. The idea of using driver arrays to independently actuate modes of the panel is discussed at length with respect to modal addressability, modal spillover, and experimental validation. The numerical approach to determining the optimal driver placement for a given set of modes is derived and experimentally validated. An investigation of the acoustic behavior of flat panel loudspeakers is presented, using mechanical simulation results to predict the acoustic radiation. The simulations are compared to measurements and found to accurately predict important mechanical and acoustical behaviors. It is demonstrated that a driver array, with the proper biasing, is capable of creating a flat panel loudspeaker which acts more like a piston than a "diffuse radiator" flat panel loudspeaker. The techniques of "Modal Crossover Networks" are introduced, which use multi-band filters to bias the driver array differently for different frequency bands, optimized for audio reproduction. The question of how many drivers are necessary for a modal crossover network is addressed and found to be dependent on the estimated quality factor (Q) of the panel material and edge conditions.
Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.
1961-05-01
A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.
Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.
1961-05-01
A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)
Methods for making a porous nuclear fuel element
Youchison, Dennis L; Williams, Brian E; Benander, Robert E
2014-12-30
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Effectiveness of graduated driver licensing in reducing motor vehicle crashes.
Foss, R D; Evenson, K R
1999-01-01
To determine whether graduated driver licensing (GDL) systems and nighttime curfews reduce motor vehicle crashes, fatalities, or injuries among young drivers. We used Cochrane Collaboration search strategies to locate studies of graduated licensing or night driving restrictions. Studies were selected if they examined the effects of either (1) a comprehensive graduated driver licensing system including well-integrated components, or (2) nighttime driving restrictions/curfews that could affect young persons' nighttime driving, on a clearly defined crash or injury outcome. Seven studies met inclusion criteria. Two independent studies of the New Zealand graduated licensing program found a sustained 7%-8% reduction in teen driver crash injuries attributable to the program. No other full graduated licensing system has been evaluated to date. Four studies of either a general curfew or a nighttime driving restriction for teens, a key element of graduated licensing, found substantial crash reductions during restricted hours, with 23%-25% lower crash injury and fatality rates for curfews beginning prior to midnight. One study found no change in late night crashes before and after a 1 a.m.-6 a.m. night driving restriction took effect. The logic and empirical bases for graduated licensing are sound. Moreover, there is evidence that one central element, a restriction on nighttime driving by novices, reduces young driver crashes. However, a definitive conclusion about the effectiveness of GDL systems for reducing motor vehicle crashes or crash-related injuries must await examination of other GDL systems. This should be possible within the next few years, as several states and Canadian provinces have recently enacted GDL programs.
DOT National Transportation Integrated Search
2017-09-01
This research explores the relationship between the cross-sectional design elements and the impact on selected driver attributes such as speed profiles and lateral positioning. In this experiment a traditional collector-type base roadway of 1.5 miles...
Upgraded HFIR Fuel Element Welding System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sease, John D
2010-02-01
The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. Inmore » recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.« less
Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Jack D.; Unal, Cetin; Matthews, Christopher
2016-09-30
Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely drivermore » fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.« less
Ecodriving in hybrid electric vehicles--Exploring challenges for user-energy interaction.
Franke, Thomas; Arend, Matthias Georg; McIlroy, Rich C; Stanton, Neville A
2016-07-01
Hybrid electric vehicles (HEVs) can help to reduce transport emissions; however, user behaviour has a significant effect on the energy savings actually achieved in everyday usage. The present research aimed to advance understanding of HEV drivers' ecodriving strategies, and the challenges for optimal user-energy interaction. We conducted interviews with 39 HEV drivers who achieved above-average fuel efficiencies. Regression analyses showed that technical system knowledge and ecodriving motivation were both important predictors for ecodriving efficiency. Qualitative data analyses showed that drivers used a plethora of ecodriving strategies and had diverse conceptualisations of HEV energy efficiency regarding aspects such as the efficiency of actively utilizing electric energy or the efficiency of different acceleration strategies. Drivers also reported several false beliefs regarding HEV energy efficiency that could impair ecodriving efforts. Results indicate that ecodriving support systems should facilitate anticipatory driving and help users locate and maintain drivetrain states of maximum efficiency. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senor, David J.; Painter, Chad L.; Geelhood, Ken J.
2007-12-01
Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less
Apollo 12 Mission image - Alan Bean unloads ALSEP RTG fuel element
1969-11-19
AS12-46-6790 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, is photographed at quadrant II of the Lunar Module (LM) during the first Apollo 12 extravehicular activity (EVA) on the moon. This picture was taken by astronaut Charles Conrad Jr., commander. Here, Bean is using a fuel transfer tool to remove the fuel element from the fuel cask mounted on the LM's descent stage. The fuel element was then placed in the Radioisotope Thermoelectric Generator (RTG), the power source for the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon by the two astronauts. The RTG is next to Bean's right leg. While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.
Reliability analysis of dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an
2008-03-01
Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.
Method for recovering catalytic elements from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE
2012-06-26
A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
Combined catalysts for the combustion of fuel in gas turbines
Anoshkina, Elvira V.; Laster, Walter R.
2012-11-13
A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
Telematics Options and Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell
This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.
Integrated corridor management and advanced technologies for Florida : [summary].
DOT National Transportation Integrated Search
2012-11-01
The U.S. Department of Transportation (USDOT) has estimated the costs of congestion at $200 billion a year in delayed shipments and wasted fuel and 4 billion hours lost by drivers in traffic. New roads alone cannot solve the problem because travel de...
DOT National Transportation Integrated Search
2012-04-01
Ecodriving, the concept of altering driving behavior and vehicle maintenance practices in existing vehicles, has gained recent prominence as a strategy for drivers to reduce gasoline consumption and greenhouse gas (GHG) emissions. Ecodriving is gaini...
DOT National Transportation Integrated Search
2016-01-01
Driving simulator approach can readily incorporate drivers real driving behaviors, the essential parameter that influences emissions. With regard to this, this research is proposed to test and validate the feasibility and applicability of the driv...
THE FUEL ELEMENT GRAPHITE. Project DRAGON.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, L.W.; Price, M.S.T.
1963-01-15
The main requirements of a fuel element graphite for reactors based on the Dragon concept are low transmission coefficient for fission products, dimensional stability under service conditions, high strength, high thermal conductivity, high purity, and high resistance to oxidation. Since conclusions reached in early 1960, a considerable amount of information has accumulated concerning the likely behaviour of graphites in high temperature reactor systems, particularly data on dimensional stability under irradiation. The influence of this new knowledge on the development of fuel element graphite with the Dragon Project is discussed in detail in the final section of this paper.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
Propellant injection strategy for suppressing acoustic combustion instability
NASA Astrophysics Data System (ADS)
Diao, Qina
Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz which represented a frequency least amplified by any resonance. Effects of each control strategy on flame-acoustic interaction were assessed in terms of modifying the acoustic resonance characteristics subject to white-noise excitation and changes in flame brush thickness under single-frequency excitation. In the methane blending experiments, the methane mole fraction was varied between 0% and 63%. Under white noise excitation, up to 16% shift in a resonant frequency was observed but the acoustic pressure spectra remained qualitatively similar. For the fixed frequency forcing, the spatial extent of flame-acoustic interaction was substantially reduced. In the other experiments, the equivalence ratio of the control injector was varied between zero and infinity, causing up to 40% shift in a resonant frequency as well as changes in the acoustic pressure spectrum. These results open up the possibility of employing flow-based control to prevent combustion instabilities in liquid-fueled rockets.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2014-01-01
Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit corrosion of certain potential NTR fuel forms. Additional diagnostic upgrades included in the present NTREES set up include the addition of a gamma ray spectrometer located near the vent filter to detect uranium fuel particles exiting the fuel element in the propellant exhaust stream to provide additional information any material loss occurring during testing. Other aspects of the upgrade included reworking NTREES to reduce the operational complexity of the system despite the increased complexity of the induction heating system. To this end, many of the controls were consolidated on fewer panels. As part of this upgrade activity, the Safety Assessment (SA) and the Standard Operating Procedures (SOPs) for NTREES were extensively rewritten. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can be accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-02-01
A nuclear reactor core composed of a number of identical elements of solid moderator material fitted together was designed. Each moderator element is apertured to provide channels for fuel and coolant. The elements have an external shape which permits them to be stacked in layers with similar elements, with the surfaces of adjacent elements fitting and in contact with each other. The cross section of the element is of a general hexagonal shape with identations and protrusions, so that the elements can be fitted together. The described core should not be liable to fracture under transverse loading. Specific arrangements ofmore » moderator elements and fuel and coolant apertures are described. (M.P.G.)« less
Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.
As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
FUEL ELEMENT FOR NUCLEAR REACTORS
Bassett, C.H.
1961-05-01
A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.
Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou
2012-01-01
Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.
Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou
2012-01-01
Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowsell, David Leon
This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.
NASA Technical Reports Server (NTRS)
Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.
2018-01-01
Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.
The manufacture of LEU fuel elements at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.
1997-08-01
Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.
Corrosion protected, multi-layer fuel cell interface
Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.
1986-01-01
An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.
B.L. Yashwanth; B. Shotorban; S. Mahalingam; C.W. Lautenberger; David Weise
2016-01-01
The effects of thermal radiation and moisture content on the pyrolysis and gas phase ignition of a solid fuel element containing high moisture content were investigated using the coupled Gpyro3D/FDS models. The solid fuel has dimensions of a typical Arctostaphylos glandulosa leaf which is modeled as thin cellulose subjected to radiative heating on...
NASA Technical Reports Server (NTRS)
Myers, William; Winter, Steve
2006-01-01
The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cycle, download At time of download 3 N/A Safety belt status, driver −1.0 sec N/A Frontal air bag warning lamp, on/off 2 −1.0 sec N/A Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, driver Event N/A...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cycle, download At time of download 3 N/A Safety belt status, driver −1.0 sec N/A Frontal air bag warning lamp, on/off 2 −1.0 sec N/A Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, driver Event N/A...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cycle, download At time of download 3 N/A Safety belt status, driver −1.0 sec N/A Frontal air bag warning lamp, on/off 2 −1.0 sec N/A Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, driver Event N/A...
Zeitz, Kathryn; Haghighi, Pari Delir; Burstein, Frada; Williams, Jeffrey
2013-06-01
The present study was designed to further understand the psychosocial drivers of crowds impacting on the demand for healthcare. This involved analysing different spectator crowds for medical usage at mass gatherings; more specifically, did different football team spectators (of the Australian Football League) generate different medical usage rates. In total, 317 games were analysed from 10 venues over 2 years. Data were analysed by the ANOVA and Pearson correlation tests. RESULTS; Spectators who supported different football teams generated statistically significant differences in patient presentation rates (PPR) (F15, 618=1.998, P=0.014). The present study confirmed previous findings that there is a positive correlation between the crowd size and PPR at mass gatherings but found a negative correlation between density and PPR (r = -0.206, n=317, P<0.0005). The present study has attempted to scientifically explore psychosocial elements of crowd behaviour as a driver of demand for emergency medical care. In measuring demand for emergency medical services there is a need to develop a more sophisticated understanding of a variety of drivers in addition to traditional metrics such as temperature, crowd size and other physical elements. In this study we saw that spectators who supported different football teams generated statistically significant differences in PPR. What is known about this topic? Understanding the drivers of emergency medical care is most important in the mass gathering setting. There has been minimal analysis of psychological 'crowd' variables. What does this paper add? This study explores the psychosocial impact of supporting a different team on the PPR of spectators at Australian Football League matches. The value of collecting and analysing these types of data sets is to support more balanced planning, better decision support and knowledge management, and more effective emergency medical demand management. What are the implications for practitioners? This information further expands the body of evidence being created to understand the drivers of emergency medical demand and usage. In addition, it supports the planning and management of emergency medical and health-related requirements by increasing our understanding of the effect of elements of 'crowd' that impact on medical usage and emergency healthcare.
Chu, J.C.
1958-06-10
A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.
NASA Astrophysics Data System (ADS)
Mahdavi, M.; Khodadadi Azadboni, F.
2012-08-01
This paper examines the burn characteristics for inertial confinement D/3 He fuel pellets with different concentrations of Helium-3. It is shown that the Helium-3 relative density of the fuel mixture plays a significant role in determining the burn characteristics and fuel gain. In spite of the safety of the plasma degeneracy of D/3 He fuel with fraction of y = 0.2 (y: Helium-3 content parameter), ignition of fuel is impossible. In design fuel extra to safety should be considered fractional burn-up and fuel gain. The main contribution of this research is to show that the plasma degeneracy of equimolar mixture of D/3 He fuel lowers the ignition temperature and increases fuel gain. The results indicate that a ≤ 0.3 is difficult to ignite reasonable driver energy. A fuel gain of 378 can be obtained with a D/3 He fuel with fraction of y = 0.33, and areal density (ρ R) of 12 g/cm2. It is found that the fuel gain of an equimolar D/3 He fuel at temperature of 70 keV and ρ R value of 8.5 g/cm2 is 480. This value gain is higher by about 22% than the case of the pellets (y = 0.33).
Steady-State Thermal-Hydraulics Analyses for the Conversion of BR2 to Low Enriched Uranium Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Bergeron, A.; Dionne, B.
The code PLTEMP/ANL version 4.2 was used to perform the steady-state thermal-hydraulic analyses of the BR2 research reactor for conversion from Highly-Enriched to Low Enriched Uranium fuel (HEU and LEU, respectively). Calculations were performed to evaluate different fuel assemblies with respect to the onset of nucleate boiling (ONB), flow instability (FI), critical heat flux (CHF) and fuel temperature at beginning of cycle conditions. The fuel assemblies were characteristic of fresh fuel (0% burnup), highest heat flux (16% burnup), highest power (32% burnup) and highest burnup (46% burnup). Results show that the high heat flux fuel element is limiting for ONB,more » FI, and CHF, for both HEU and LEU fuel, but that the high power fuel element produces similar margin in a few cases. The maximum fuel temperature similarly occurs in both the high heat flux and high power fuel assemblies for both HEU and LEU fuel. A sensitivity study was also performed to evaluate the variation in fuel temperature due to uncertainties in the thermal conductivity degradation associated with burnup.« less
David, Stan A.; Miller, Roger G.; Feng, Zhili
2016-08-31
Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Stan A.; Miller, Roger G.; Feng, Zhili
Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
HEAVY WATER MODERATED NEUTRONIC REACTOR
Szilard, L.
1958-04-29
A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.
2014-01-01
Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.
Energy Efficiency for Automotive Instructors.
ERIC Educational Resources Information Center
Scharmann, Larry, Ed.; Lay, Gary, Ed.
Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains six units on energy efficiency that were designed to be incorporated into an existing program in automobile mechanics. The following topics are examined: drivers and public awareness (relationship between driving and fuel consumption); ignition…
DOT National Transportation Integrated Search
1996-11-01
This is an annual report containing analyzed statistical data on motor fuel, motor vehicles, driver licensing, highway-user taxation, State and local highway finance, highway mileage, and Federal-aid for highways, as well as information from the Nati...
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...
2017-05-16
Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha
Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less
NASA Technical Reports Server (NTRS)
Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.
1974-01-01
The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.
LCRE and SNAP 50-DR-1 programs. Engineering progress report, January 1, 1963--March 31, 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, primary coolant circuit, aaxiliary systems, fuel elements, instrumentation, materials development, and fabrication; and SNAP-50DR-1 specifications, fuel elements, pumps, steam generator, and materials development. (DCC)
34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...
34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
High temperature ceramic composition for hydrogen retention
Webb, R.W.
1974-01-01
A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)
Ohlinger, L.A.; Cooper, C.M.
1958-10-01
Fuel elements for nuclear reactors are described. Eacb fuel element is comprised of a solid cylindrical slug containing fissionable material enclosed within a fluid tight jacket of neutron permeable material such as aluminum. The jacket is provided with a flexible end cap and with a sealing member having a substantially fluid-tight fit within the jacket in tight abutment with the end cap and the end of the slug. A fluid passage is provided between the end of the slug and the cap whereby leakage fiuid is principally directed to the end of the slug. In this manner, any reaction between the fissionable material and fiuid which may take place occurs more rapidly at the end of the slug than along the sides between the slug and the jacket, thereby causing longitudinal expansion of the fuel element prior to radial expansion. The longitudinal expansion can be readily detected and the fuel element removed from the coolant tube before radial expansion causes it to become jammed in the tube.
Chemical Dissolution of Simulant FCA Cladding and Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Pierce, R.; O'Rourke, P.
The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO 3-KF) flowsheets ofmore » H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.« less
Meadowcroft, Ronald Ross; Bain, Alastair Stewart
1977-01-01
A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Fuel cell generator energy dissipator
Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony
2000-01-01
An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel
History of fast reactor fuel development
NASA Astrophysics Data System (ADS)
Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.
1993-09-01
The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.
NASA Astrophysics Data System (ADS)
Zaytsev, D. A.; Repnikov, V. M.; Soldatkin, D. M.; Solntsev, V. A.
2017-11-01
This paper provides the description of temperature cycle testing of U-Zr heterogeneous fuel composition. The composition is essentially a niobium-doped zirconium matrix with metallic uranium filaments evenly distributed over the cross section. The test samples 150 mm long had been fabricated using a fiber-filament technology. The samples were essentially two-bladed spiral mandrel fuel elements parts. In the course of experiments the following temperatures were applied: 350, 675, 780 and 1140 °C with total exposure periods equal to 200, 30, 30 and 6 hours respectively. The fuel element samples underwent post-exposure material science examination including: geometry measurements, metallographic analysis, X-ray phase analysis and electron-microscopic analysis as well as micro-hardness measurement. It has been found that no significant thermal swelling of the samples occurs throughout the whole temperature range from 350 °C up to 1140 °C. The paper presents the structural changes and redistribution of the fuel component over the fuel element cross section with rising temperature.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...
2016-11-17
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR
Hammond, R.P.; Wykoff, W.R.; Busey, H.M.
1960-06-14
A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS
Loeb, E.; Nicklas, J.H.
1959-02-01
A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.
SHAPED FISSIONABLE METAL BODIES
Wigner, E.P.; Williamson, R.R.; Young, G.J.
1958-10-14
A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.
FUEL ELEMENT INTERLOCKING ARRANGEMENT
Fortescue, P.; Nicoll, D.
1963-01-01
This patent relates to a system for mutually interlocking a multiplicity of elongated, parallel, coextensive, upright reactor fuel elements so as to render a laterally selfsupporting bundle, while admitting of concurrent, selective, vertical withdrawal of a sizeable number of elements without any of the remaining elements toppling, Each element is provided with a generally rectangular end cap. When a rank of caps is aligned in square contact, each free edge centrally defines an outwardly profecting dovetail, and extremitally cooperates with its adjacent cap by defining a juxtaposed half of a dovetail- receptive mortise. Successive ranks are staggered to afford mating of their dovetails and mortises. (AEC)
NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION
Kingston, W.E.; Kopelman, B.; Hausner, H.H.
1963-07-01
A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)
METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR
Hauth, J.J.; Anicetti, R.J.
1962-12-01
A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)
FOIL ELEMENT FOR NUCLEAR REACTOR
Noland, R.A.; Walker, D.E.; Spinrad, B.I.
1963-07-16
A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)
Jungers, R H; Lee, R E; von Lehmden, D J
1975-01-01
A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783
Driver Education Curriculum Guide. Energy Conservation.
ERIC Educational Resources Information Center
Governor's Highway Safety Program Office, Columbus, OH.
Designed to provide high school students with information concerning energy-efficient driving, this curriculum guide covers techniques of conserving energy, efficient use of motor vehicles, safe driving techniques, and development of energy-efficient driving habits. The guide consists of six lessons: (1) Fuel Conservation: Why It Is Essential; (2)…
EVALUATION OF FUEL CELL AUXILIARY POWER UNITS FOR HEAVY-DUTY DIESEL TRUCKS
A large number of heavy-duty trucks idle a significant amount. Heavy-duty line-haul truck engines idle about 30-50% of the time the engine is running. Drivers idle engines to power climate control devices (e.g., heaters and air conditioners) and sleeper compartment accessories (e...
Experimental Vehicle Definition and Requirements A vehicle weighing 6,000 pounds or less that is primarily powered by a source other than a combustion engine may be considered an experimental vehicle. A driver may not operate an experimental vehicle unless it is registered as such with the North Dakota
Reciprocating Linear Electric Motor
NASA Technical Reports Server (NTRS)
Goldowsky, M. P.
1984-01-01
Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.
Virtual Rewards for Driving Green
ERIC Educational Resources Information Center
Pritchard, Josh
2010-01-01
Carbon dioxide from automobiles is a major contributor to global climate change. In "Virtual Rewards for Driving Green," Josh Pritchard proposes a computer application that will enable fuel-efficient drivers to earn "green" dollars with which to buy digital merchandise on the Web. Can getting items that exist only in cyberspace actually change a…
Energy Conservation in School Transportation Systems. Energy Conservation Guidelines 4.
ERIC Educational Resources Information Center
Giesguth, John, Ed.; Scheingold, Edward, Ed.
Fourth in a series of four publications on energy conservation, this booklet offers basic guidelines for sound fuel reduction in school transportation. The pamphlet suggests ways to implement energy-saving practices, guidelines for preventive maintenance of school vehicles, a definition of the drivers' and superintendents' roles, school policies…
Breakthroughs Move Researchers One Step Closer to $35 Billion Fuel Savings
representative blendstocks from five chemical families with the greatest promise for reducing energy consumption (Co-Optima) initiative. This national research effort is providing industry with the scientific consumption, improve air quality, and lower drivers' costs. Two new studies reveal how fundamental research
Zero Emission Vehicle (ZEV) Promotion Plan All California state agencies must support and their stakeholders to accomplish the following: Update the 2016 ZEV Action plan, with a focus on low affordable and accessible to all drivers. The ZEV promotion plan additionally directs the state fleet to
William H. McDowell; Daniel Liptzin
2014-01-01
Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...
NASA Astrophysics Data System (ADS)
Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui
2017-07-01
Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10-6 K-1 (α∥) and 6.15 × 10-6 K-1 (α⊥) at the temperature range of 25-700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.
Disproportionality in Power Plants’ Carbon Emissions: A Cross-National Study
Jorgenson, Andrew; Longhofer, Wesley; Grant, Don
2016-01-01
Past research on the disproportionality of pollution suggests a small subset of a sector’s facilities often produces the lion’s share of toxic emissions. Here we extend this idea to the world’s electricity sectors by calculating national-level disproportionality Gini coefficients for plant-level carbon emissions in 161 nations based on data from 19,941 fossil-fuel burning power plants. We also evaluate if disproportionalities in plant-level emissions are associated with increased national carbon emissions from fossil-fuel based electricity production, while accounting for other well-established human drivers of greenhouse gas emissions. Results suggest that one potential pathway to decreasing nations’ greenhouse gas emissions could involve reducing disproportionality among fossil-fuel power plants by targeting those plants in the upper end of the distribution that burn fuels more inefficiently to produce electricity. PMID:27363677
Oppenheimer, E.D.; Weisberg, R.A.
1963-02-26
This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.
2011-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong
2010-04-01
The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.
Axially staggered seed-blanket reactor fuel module construction
Cowell, Gary K.; DiGuiseppe, Carl P.
1985-01-01
A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.
FUEL ELEMENT FOR NUCLEAR REACTORS
Bassett, C.H.
1961-07-11
Nuclear reactor fuel elements of the type in which the flssionsble material is in ceramic form, such as uranium dioxide, are described. The fuel element is comprised of elongated inner and outer concentric spaced tubular members providing an annular space therebetween for receiving the fissionable material, the annular space being closed at both ends and the inner tube being open at both ends. The fuel is in the form of compressed pellets of ceramic fissionsble material having the configuration of split bushings formed with wedge surfaces and arranged in seriated inner and outer concentric groups which are urged against the respective tubes in response to relative axial movement of the pellets in the direction toward each other. The pairs of pellets are axially urged together by a resilient means also enclosed within the annulus. This arrangement-permits relative axial displacement of the pellets during use dial stresses on the inner and outer tube members and yet maintains the fuel pellets in good thermal conductive relationship therewith.
Autothermal reforming catalyst having perovskite structure
Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL
2009-03-24
The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
Code of Federal Regulations, 2014 CFR
2014-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor
NASA Technical Reports Server (NTRS)
Mayo, W.; Lantz, E.
1973-01-01
A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.
A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Varuttamaseni, A.
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portionmore » of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
A reload and startup plan for conversion of the NIST research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. J. Diamond
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reloadmore » portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2017-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratzer, W.K.; Wise, M.J.
1962-12-12
The objective of this production test is to authorize the irradiation of coextruded Zr-2 jacketed thick walled 1.6% enriched tubular elements in KER loops 1 and 2 to evaluate the swelling behavior of fuel elements at high uranium temperatures Coextruded Zr-2 jacketed 1.6% enriched tubular fuel elements 1.79 inch OD, 0.97 inch ID, and 12 inches long will be irradiated KER loops 1 and 2 to exposures no greater than 2500 MWD/T.
Diagnosing oceanic nutrient deficiency
2016-01-01
The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255
Diagnosing oceanic nutrient deficiency
NASA Astrophysics Data System (ADS)
Moore, C. Mark
2016-11-01
The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
Alternative sensor system and MLP neural network for vehicle pedal activity estimation.
Wefky, Ahmed M; Espinosa, Felipe; Jiménez, José A; Santiso, Enrique; Rodríguez, José M; Fernández, Alfredo J
2010-01-01
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Prichard, S.; McKenzie, D.; Kennedy, M. C.; Billmire, M.; Ottmar, R. D.; Kasischke, E. S.
2016-12-01
Quantification of emissions of carbon during combustion relies on knowing three general variables: how much landscape is impacted by fire (burn area), how much carbon is in that landscape (fuel loading), and fuel properties that determine the fraction that is consumed (fuel condition). These variables also determine how much carbon remains at the site in the form of unburned organic material or char, and therefore drive post-fire carbon dynamics and pools. In this presentation we review the importance of understanding fuel type, fuel loading, and fuel condition for quantifying carbon dynamics properly during burning and for measuring and mapping fuels across landscapes, regions, and continents. Variability in fuels has been shown to be a major driver of uncertainty in fire emissions, but has had little attention until recently. We review the current state of fuel characterization for fire management and carbon accounting, and present a new approach to quantifying fuel loading for use in fire-emissions mapping and for improving fire-effects assessment. The latest results of a study funded by the Joint Fire Science Program (JFSP) are presented, where a fuel loading database is being built to quantify variation in fuel loadings, as represented in the Fuel Characteristic Classification System (FCCS), across the conterminous US and Alaska. Statistical assessments of these data at multiple spatial scales will improve tools used by fire managers and scientists to quantify fire's impact on the land, atmosphere, and carbon cycle.
Redwing: A MOOSE application for coupling MPACT and BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick N. Gleicher; Michael Rose; Tom Downar
Fuel performance and whole core neutron transport programs are often used to analyze fuel behavior as it is depleted in a reactor. For fuel performance programs, internal models provide the local intra-pin power density, fast neutron flux, burnup, and fission rate density, which are needed for a fuel performance analysis. The fuel performance internal models have a number of limitations. These include effects on the intra-pin power distribution by nearby assembly elements, such as water channels and control rods, and the further limitation of applicability to a specified fuel type such as low enriched UO2. In addition, whole core neutronmore » transport codes need an accurate intra-pin temperature distribution in order to calculate neutron cross sections. Fuel performance simulations are able to model the intra-pin fuel displacement as the fuel expands and densifies. These displacements must be accurately modeled in order to capture the eventual mechanical contact of the fuel and the clad; the correct radial gap width is needed for an accurate calculation of the temperature distribution of the fuel rod. Redwing is a MOOSE-based application that enables coupling between MPACT and BISON for transport and fuel performance coupling. MPACT is a 3D neutron transport and reactor core simulator based on the method of characteristics (MOC). The development of MPACT began at the University of Michigan (UM) and now is under the joint development of ORNL and UM as part of the DOE CASL Simulation Hub. MPACT is able to model the effects of local assembly elements and is able calculate intra-pin quantities such as the local power density on a volumetric mesh for any fuel type. BISON is a fuel performance application of Multi-physics Object Oriented Simulation Environment (MOOSE), which is under development at Idaho National Laboratory. BISON is able to solve the nonlinearly coupled mechanical deformation and heat transfer finite element equations that model a fuel element as it is depleted in a nuclear reactor. Redwing couples BISON and MPACT in a single application. Redwing maps and transfers the individual intra-pin quantities such as fission rate density, power density, and fast neutron flux from the MPACT volumetric mesh to the individual BISON finite element meshes. For a two-way coupling Redwing maps and transfers the individual pin temperature field and axially dependent coolant densities from the BISON mesh to the MPACT volumetric mesh. Details of the mapping are given. Redwing advances the simulation with the MPACT solution for each depletion time step and then advances the multiple BISON simulations for fuel performance calculations. Sub-cycle advancement can be applied to the individual BISON simulations and allows multiple time steps to be applied to the fuel performance simulations. Currently, only loose coupling where data from a previous time step is applied to the current time step is performed.« less
Westinghouse ICF power plant study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sucov, E. W.
1980-10-01
In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO/sub 2/ laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions.more » Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point.« less
Fell, James C.; Todd, Michael; Voas, Robert B.
2011-01-01
Introduction The high crash rate of youthful novice drivers has been recognized for half a century. Over the last decade, graduated driver licensing (GDL) systems, which extend the period of supervised driving and limit the novice’s exposure to higher-risk conditions (such as nighttime driving) has effectively reduced crash involvements of novice drivers. Method This study used data from the Fatality Analysis Reporting System (FARS) and the implementation dates of GDL laws in a state-by-year panel study to evaluate the effectiveness of two key elements of GDL laws: nighttime restrictions and passenger limitations. Results Nighttime restrictions were found to reduce 16- and 17-year-old driver involvements in nighttime fatal crashes by an estimated 10% and 16- and 17-year-old drinking drivers in nighttime fatal crashes by 13%. Passenger restrictions were found to reduce 16- and 17-year-old driver involvements in fatal crashes with teen passengers by an estimated 9%. Conclusions These results confirm the effectiveness of these provisions in GDL systems. Impact on Public Health The results of this study indicate that nighttime restrictions and passenger limitations are very important components of any GDL law. PMID:22017831
MCNP-model for the OAEP Thai Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III
An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculationsmore » were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.« less
Expert system for surveillance and diagnosis of breach fuel elements
Gross, K.C.
1988-01-21
An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.
Expert system for surveillance and diagnosis of breach fuel elements
Gross, Kenny C.
1989-01-01
An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.
NEUTRONIC REACTOR CONSTRUCTION
Vernon, H.C.; Goett, J.J.
1958-09-01
A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.
Breden, C.R.; Schultz, A.B.
1961-06-01
A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.
Johnson, Carl E.; Crouthamel, Carl E.
1980-01-01
A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.
FUEL ELEMENT FOR A NUCLEAR REACTOR
Davidson, J.K.
1963-11-19
A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)
METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR
Koch, L.J.
1959-01-20
A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.
Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia
NASA Astrophysics Data System (ADS)
Deka, Pratibha; Hoque, Raza Rafiqul
2015-05-01
Biomass fuel smoke particles (BFSPs) of rural kitchens collected during dry and wet seasons were characterized for elements, anions and carbon. The BFSPs of kitchens using varied biomass fuel types viz. cow dung stick, mixed biomass, cow-dung stick-mixed biomass and sugarcane bagasse were chosen for the study. The BFSPs from cow dung fuel stick showed higher levels of elements, anions and particulate carbon than other BFSPs. Calcium, K, Fe and Mg were the major elements found in all BFSPs, which did not vary much between the seasons. Sulphate was found to be the dominant anion present in all BFSPs followed by Clˉ and PO43-. Seasonal variation was pronounced in the case of abundance of anions and particulate carbon. The ratio OC/EC, often used as source signature of biomass burning, was found to be within 1.89-7.41 and 1.72-6.19 during dry and wet seasons respectively.
Lashkari, A; Khalafi, H; Kazeminejad, H
2013-05-01
In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.
Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core
Lashkari, A.; Khalafi, H.; Kazeminejad, H.
2013-01-01
In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672
ON CRITICAL MASS ANALYSIS OF JRR-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-01-01
The critica mass of the JRR-2 was found to be 15 fuel elements, instead of 8 as expected, when the reactor reached criticaity. The critica mass was analyzed by AMF and JAERI a few years ago, but afterwards some modifications have been made of the stucture for the reinforcement, for example, during the construction. The critical mass is recalculated perfectly and the difference bctween 15 and S fuel elements is discussed. The deviation of the critical mass is mainly caused by the effects of control rods, fuel elcments, grid-plate, etc., in the reflector; only heavy water or light water wasmore » conaidered as the reflector in the previous calculation. A simple method is used to calculate the critical mass. The effective multiplication factor for the core with 15 fuel elements is obtained about 2% higher than the experimental value. This difference is also discussed in detail. (auth)« less
Modeling and Simulation of a Nuclear Fuel Element Test Section
NASA Technical Reports Server (NTRS)
Moran, Robert P.; Emrich, William
2011-01-01
"The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.
Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Wishart; Matthew Shirk
2012-12-01
Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models.more » As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.« less
36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...
36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Code of Federal Regulations, 2010 CFR
2010-01-01
... transuranic elements. Different technical processes can accomplish this separation. However, over the years Purex has become the most commonly used and accepted process. Purex involves the dissolution of... facilities have process functions similar to each other, including: irradiated fuel element chopping, fuel...
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie
2014-01-01
CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.
NTREES Testing and Operations Status
NASA Technical Reports Server (NTRS)
Emrich, Bill
2007-01-01
Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. Currently, the construction of such a simulator has been completed at the Marshall Space Flight Center, and will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are fabricated. This present work addresses the operational status of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.
GEH-4-42, 47; Hot pressed, I and E cooled fuel element irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neidner, R.
1959-11-02
In our continual effort to improve the present fuel elements which are irradiated in the numerous Hanford reactors, we have made what we believe to be a significant improvement in the hot pressing process for jacketing uranium fuel slugs. We are proposing a large scale evaluation testing program in the Hanford reactors but need the vital and basic information on the operating characteristics of this type slug under known and controlled operating conditions. We, therefore, have prepared two typical fuel slugs and will want them irradiated to about 1000 MWD/T exposure (this will require about four to five total cycles).
CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME
Duckworth, W.H.
1957-12-01
This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.
Fertilizer recommendations for switchgrass: Quantifying economic effects on quality and yield
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a native, perennial warm season grass that is suited for biomass production for conversion to renewable fuels as well as feed production on marginal soils. Yield responses to macro nutrients of N, P and K, have shown N to be the major driver for capturing yield p...
Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle
with the standards helps all drivers understand and recognize charging station signage. Pavement . Notably, most jurisdictions deem pavement markings unenforceable on their own. For general information about pavement markings, see Chapter 3B of the MUTCD. More Information In March 2013, the State of
Long-term No-Till: A Major Driver of Fungal Communities in Dryland Wheat Cropping Systems
USDA-ARS?s Scientific Manuscript database
In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-ter...