Sample records for driving force andstructure

  1. Numerical Study of Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Plates

    DTIC Science & Technology

    2009-09-01

    FORCE LOAD AND CLAMPED BOUNDARY.................73 APPENDIX F: ADDITIONAL FIGURES FOR COMPOSITE DE NSITY EFFECTS WITH CONCE NTRATED FORCE LOAD AND...Structure Strain and Kine tic Energy Comparison for Elastic Modulus Variations with Concentrated Force and Clamped Boundary .........................31...48 Figure 49. Experiment Strain Gage La yout on Underside of Composite Plate

  2. Energy Based Topology Optimization of Morphing Wings a Multidisciplinary Global/Local Design Approach

    DTIC Science & Technology

    2006-12-01

    subsystem that drives the active materials to achieve the desired shape changes. As opposed to fixed wing structures in which the aerodynamic and...structures and aerodynamics occur in conjunction with the active material and electronic subsystem interactions that involve transfer of energy from a source...which the aerodynamic and structure integration for the entire wing is the most important interaction mechanism, in the case of a morphing wing

  3. Heavy Oil Detection (Prototypes)

    DTIC Science & Technology

    2009-06-01

    accomplish a variety of tasks to be successful. These include detecting the oil, possibly concentrating/ corralling the oil for collection, and...structures (e.g., reefs , cables, and pipelines). Other non-contact seafloor survey techniques such as ROV video surveys pose the additional

  4. Acquisition of a High Voltage/High resolution Transmission Electron Microscope.

    DTIC Science & Technology

    1988-08-21

    microstructural design starts at the nanometer level. One such method is colloidal processing of materials with ultrafine particles in which particle...applications in the colloidal processing of ceramics with ultrafine particles . Aftervards, nanometer-sized particles will be synthesized and...STRUCTURAL CONTROL WITH ULTRAFINE PARTICLES Jun Liu. Mehmet Sarikaya, and I. A. Aksay Department of Materials Science and Engineering. Advanced

  5. Synthetic Nanovaccines Against Respiratory Pathogens (SYNARP)

    DTIC Science & Technology

    2010-07-01

    nanoscale delivery systems can provide versatile platforms for development of effective, safe, and cost-efficient vaccines. The materials used in these...polymers was estimated by calculating the degree of polymerization (DP) using the peak area normalized with the protons representing hydrolyzed and...structures can be prototyped very easily and rapidly using a simple mask. In this work, the desired 5x5 array of discrete wells was created using

  6. Exoplanet atmospheres: a brand-new and rapidly expanding research field

    NASA Astrophysics Data System (ADS)

    López-Morales, M.

    2011-11-01

    The field of exoplanets is quickly expanding from just the detectionof new planets and the measurement of their most basic parameters,such as mass, radius and orbital configuration, to the firstmeasurements of their atmospheric characteristics, such astemperature, chemical composition, albedo, dynamics andstructure. Here I will overview some the main findings on exoplanetatmospheres until September 2010, first from space and just in thepast two years also from the ground.

  7. The Role of a Novel Myosin Isoform in Prostate Cancer Metastasis

    DTIC Science & Technology

    2013-10-01

    of unconventional myosin function and targeting, Annu. Rev. Cell Dev. Biol. 27 (2011) 133–155. [42] W. Kliche, S. Fujita- Becker , M. Kollmar, D.J...tissue-specific diseases (laminopathies), including Emery–Dreifuss muscular dystrophy , Dunnigan-type familial partial lipodystrophy (FPLD), and...structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies , cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823

  8. Evaluation of Dried Storage of Platelets and RBC for Transfusion: Lyophilization and other Dehydration Techniques.

    DTIC Science & Technology

    1992-11-02

    linking agents. Water replacement molecules, such as trehalose or sucrose at concentrations up to 1 M, did not suffice to stabilize platelets for...concentration of albumin (5% w/v) or trehalose (250 mM - I M) is required in the final suspension prior to freeze-drying to ensure platelet yield and...structurally or functionally intact platelets post- rehydration; the presence of albumin or trehalose raises this yield to 90-100%. Lvophilization and Storage

  9. USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 63.

    DTIC Science & Technology

    1977-01-24

    powdery mildew and a curve in the stem under the ear. Plants with chromosome two had cylindrical, long, loose ears with the first stalk elongated and...structures of Puccinia graminis f. sp. tritici in vitro and on the surface of wheat leaves showed that the parameters of appressoria changed considerably...581.174.1.032.3:582.542.1 HARDENING OF PLANTS AS A MEANS TO INCREASE RESISTANCE OF CHLOROPLAST MEMBRANES TO DEHYDRATION, STUDIED WITH WHEAT SEEDLINGS Moscow

  10. Proceedings of the 2009 Antenna Applications Symposium held in Monticello, Illinois on 22-24 September 2009. Volume 1

    DTIC Science & Technology

    2009-12-12

    Circuit Design, Theory and Applications. Prentice-Hall, 1 ed., 2000. 39 MEASUREMENT OF ELECTRICALLY SMALL ANTENNAS Suhail Barot, Paul E. Mayes, Paul ...2] “Ansoft HFSS, Version 9.2.1,” Ansoft Corporation, Pittsburgh, PA. 50 REDUCED-SIZE LINEAR ANTENNA ELEMENTS Paul E. Mayes, Paul W. Klock and...structures," IRE Internation convention, vol. 5, pp. 119-129, Mar 1957. [2] K. M. P. Aghdam, R. Faraji- Dana , and J. Rashed-Mohassel, "Compact dual

  11. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors 2 (2nd) Held in Boston, Massachusetts on August 22-24 1985

    DTIC Science & Technology

    1986-04-30

    such as complementary form of the receptor but that the oxotremorine and McN-A-343 may be due to this factor, supermolecule’ formed is unstable and...structural series. The anomalies in the behaviour of the oxotremorine group compared to carbachol or acetylcholine may have this Drwia College, Cambride...x 10 ~ 1.3±0.1 0.5±+0. 1 Carbachol (7.14±+0.47) x 10" 1.0+0.1 1.2 ±0.2 Oxotremorine (2.17 i0.14)x 10-1 1.0±0.1 0.7±0.3 Acetyl-p-methylcholine’ (234

  12. The application of multilayer elastic beam in MEMS safe and arming system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guozhong, E-mail: liguozhong-bit@bit.edu.cn; Shi, Gengchen; Sui, Li

    In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of themore » multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.« less

  13. Glenohumeral contact force during flat and topspin tennis forehand drives.

    PubMed

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  14. Friction phenomena and phase transition in the underdamped two-dimensional Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Duan, Wen-Shan; Chen, Jian-Min; Yang, Lei; Tekić, Jasmina; Shao, Zhi-Gang; Wang, Cang-Long

    2010-11-01

    Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.

  15. Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.

    PubMed

    Wiggermann, Neal

    2017-01-01

    Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p < 0.05) lower for all tasks, and below psychophysical limits. Powered drive reduced peak forces between 38% (maneuvering into elevator) and 94% (descending ramp). Powered drive also reduced stopping distance by 55%. When maneuvering, the integral of hand force was 34% lower with powered drive, but average forces during straight-line pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  17. Driving force of stacking-fault formation in SiC p-i-n diodes.

    PubMed

    Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K

    2004-04-30

    The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.

  18. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-01-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.

  19. Human health and the water environment: using the DPSEEA framework to identify the driving forces of disease.

    PubMed

    Gentry-Shields, Jennifer; Bartram, Jamie

    2014-01-15

    There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.

  20. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    NASA Astrophysics Data System (ADS)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  1. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    PubMed

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  3. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  4. Apparatus and method for producing an artificial gravitational field

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason (Inventor)

    1993-01-01

    An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.

  5. The driving forces of land change in the Northern Piedmont of the United States

    USGS Publications Warehouse

    Auch, Roger F.; Napton, Darrell E.; Kambly, Steven; Moreland, Thomas R.; Sayler, Kristi L.

    2012-01-01

    Driving forces facilitate or inhibit land-use/land-cover change. Human driving forces include political, economic, cultural, and social attributes that often change across time and space. Remotely sensed imagery provides regional land-change data for the Northern Piedmont, an ecoregion of the United States that continued to urbanize after 1970 through conversion of agricultural and forest land covers to developed uses. Eight major driving forces facilitated most of the land conversion; other drivers inhibited or slowed change. A synergistic web of drivers may be more important in understanding land change than individual drivers by themselves.

  6. Towards understanding what contributes to forming an opinion

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Song, Jia; Huo, Jie; Hao, Rui; Wang, Xu-Ming

    Opinion evolution mechanism can be captured by physical modeling. In this paper, a kinetic equation is established by defining a generalized displacement(cognitive level), a driving force and the related factors such as generalized potential, information quantity and attitude. It has been shown that the details of opinion evolution depend on the type of the driving force, self-dominated driving or environment-dominated driving. In the former case, the participants can have their attitudes changed in the process of competition between the self-driving force and environment-driving force. In the latter case, all of the participants are pulled by the environment. Some regularities behind the dynamics of opinion are also revealed, for instance, the information entropy decays with time in a special way, etc. The results may help us to get some deep understanding for the formation of a public opinion.

  7. Parametric modulation of thermomagnetic convection in magnetic fluids.

    PubMed

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  8. The Energetics of Motivated Cognition: A Force-Field Analysis

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia

    2012-01-01

    A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…

  9. Shoulder muscle forces during driving: Sudden steering can load the rotator cuff beyond its repair limit

    PubMed Central

    Pandis, Petros; Prinold, Joe A.I.; Bull, Anthony M.J.

    2015-01-01

    Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations. PMID:26139549

  10. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2016-09-13

    Here we numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinalmore » to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. Lastly, we map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.« less

  11. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2016-09-01

    We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.

  12. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-07-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.

  13. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    PubMed Central

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2018-01-01

    We compare forces resisting DNA packaging in bacteriophage phi29 inferred from optical tweezers studies with forces driving DNA ejection inferred from osmotic pressure studies. Ejection forces from 0–80% filling are consistent with a model that assumes a repulsive DNA-DNA interaction potential derived from DNA condensation studies and predicts an inverse spool DNA conformation. Forces resisting packaging from ~80–100% filling are also consistent with this model. However, that electron microscopy does not reveal a spool conformation suggests that this model overestimates bending rigidity and underestimates repulsion. Below 80% filling, inferred ejection forces are higher than those resisting packaging. Although unexpected, this suggests that most force that builds during packaging is available to drive DNA ejection. PMID:28618627

  14. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    PubMed Central

    Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind

    2012-01-01

    Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531

  15. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  16. Low-Frequency Oscillations and Control of the Motor Output

    PubMed Central

    Lodha, Neha; Christou, Evangelos A.

    2017-01-01

    A less precise force output impairs our ability to perform movements, learn new motor tasks, and use tools. Here we show that low-frequency oscillations in force are detrimental to force precision. We summarize the recent evidence that low-frequency oscillations in force output represent oscillations of the spinal motor neuron pool from the voluntary drive, and can be modulated by shifting power to higher frequencies. Further, force oscillations below 0.5 Hz impair force precision with increased voluntary drive, aging, and neurological disease. We argue that the low-frequency oscillations are (1) embedded in the descending drive as shown by the activation of multiple spinal motor neurons, (2) are altered with force intensity and brain pathology, and (3) can be modulated by visual feedback and motor training to enhance force precision. Thus, low-frequency oscillations in force provide insight into how the human brain regulates force precision. PMID:28261107

  17. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  18. A guide for statewide impaired-driving task forces.

    DOT National Transportation Integrated Search

    2009-09-01

    The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...

  19. An introductory handbook for state task forces to combat drunk driving.

    DOT National Transportation Integrated Search

    1983-01-01

    In June 1982 Governor Robb created a task force to identify and assess efforts under way in Virginia to address the problem of drunken driving and to make recommendations. This booklet was prepared to assist the task force in its deliberations.

  20. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  1. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  2. Axial force and efficiency tests of fixed center variable speed belt drive

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1981-01-01

    An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.

  3. Phase locking route behind complex periodic windows in a forced oscillator

    NASA Astrophysics Data System (ADS)

    Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei

    2013-09-01

    Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.

  4. Easter microplate dynamics

    NASA Astrophysics Data System (ADS)

    Neves, M. C.; Searle, R. C.; Bott, M. H. P.

    2003-04-01

    We use two-dimensional elastic finite element analysis, supplemented by strength estimates, to investigate the driving mechanism of the Easter microplate. Modeled stresses are compared with the stress indicators compiled from earthquake focal mechanisms and structural observations. The objective is to constrain the tectonic forces that govern the Easter microplate rotation and to test the microplate driving hypothesis proposed by [1993]. We infer that the mantle basal drag cannot drive the microplate rotation but opposes it, and that the asthenospheric viscosity is no more than about 1 × 1018 Pa s. At most, the basal drag comprises 20% of the force resisting microplate rotation. The outward pull of the main plates can drive the rotation by shear drag applied along the northern and southern boundaries of the microplate. However, we propose an additional driving force which arises from the strong variation of the ridge resistance force along the east and west rifts, so that the main driving torques come from the pull of the major plates acting across the narrowing and slowing rifts. This requires the strength to increase substantially toward the rift tips due to thickening of the brittle lithosphere as the spreading rate slows.

  5. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    PubMed

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  6. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    ERIC Educational Resources Information Center

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  7. Lyapunov stability analysis for the generalized Kapitza pendulum

    NASA Astrophysics Data System (ADS)

    Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.

    2017-12-01

    In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.

  8. Position and force control of a vehicle with two or more steerable drive wheels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less

  9. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    PubMed

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  10. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  11. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  12. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  13. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  14. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek…

  15. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    PubMed

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  16. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  17. Information driving force and its application in agent-based modeling

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  18. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  19. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  20. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  1. Metal band drives in spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Maus, Daryl

    1993-01-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  2. Weber electrodynamics, part I. general theory, steady current effects

    NASA Astrophysics Data System (ADS)

    Wesley, J. P.

    1990-10-01

    The original Weber action at a distance theory, valid for slowly varying effects, is extended to time-retarded fields, valid for rapidly varying effects including radiation. A new law for the force on a charge moving in this field is derived (replacing the Lorentz force which violates Newton's third law). The limitations of the Maxwell theory are discussed. The Weber theory, in addition to predicting all of the usual electrodynamic results, predicts the following crucial results for slowly varying effects (where Maxwell theory fails): 1) the force on Ampere's bridge in agreement with the measurements of Moyssides and Pappas, 2) the tension required to rupture current carrying wires as observed by Graneau, 3) the force to drive the Graneau-Hering submarine, 4) the force to drive the mercury in Hering's pump, and 5) the force to drive the oscillations in a current carrying mercury wedge as observed by Phipps.

  3. Crash and risky driving involvement among novice adolescent drivers and their parents.

    PubMed

    Simons-Morton, Bruce G; Ouimet, Marie Claude; Zhang, Zhiwei; Klauer, Sheila E; Lee, Suzanne E; Wang, Jing; Albert, Paul S; Dingus, Thomas A

    2011-12-01

    We compared rates of risky driving among novice adolescent and adult drivers over the first 18 months of adolescents' licensure. Data-recording systems installed in participants' vehicles provided information on driving performance of 42 newly licensed adolescent drivers and their parents. We analyzed crashes and near crashes and elevated g-force event rates by Poisson regression with random effects. During the study period, adolescents were involved in 279 crashes or near crashes (1 involving injury); parents had 34 such accidents. The incidence rate ratio (IRR) comparing adolescent and parent crash and near-crash rates was 3.91. Among adolescent drivers, elevated rates of g-force events correlated with crashes and near crashes (r = 0.60; P < .001). The IRR comparing incident rates of risky driving among adolescents and parents was 5.08. Adolescents' rates of crashes and near crashes declined with time (with a significant uptick in the last quarter), but elevated g-force event rates did not decline. Elevated g-force events among adolescents may have contributed to crash and near-crash rates that remained much higher than adult levels after 18 months of driving.

  4. Experimental modeling of the effect of hurricane wind forces on driving behavior and vehicle performance.

    PubMed

    Rodriguez, Jose M; Codjoe, Julius; Osman, Osama; Ishak, Sherif; Wolshon, Brian

    2015-01-01

    While traffic planning is important for developing a hurricane evacuation plan, vehicle performance on the roads during extreme weather conditions is critical to the success of the planning process. This novel study investigates the effect of gusty hurricane wind forces on the driving behavior and vehicle performance. The study explores how the parameters of a driving simulator could be modified to reproduce wind loadings experienced by three vehicle types (passenger car, ambulance, and bus) during gusty hurricane winds, through manipulation of appropriate software. Thirty participants were then tested on the modified driving simulator under five wind conditions (ranging from normal to hurricane category 4). The driving performance measures used were heading error and lateral displacement. The results showed that higher wind forces resulted in more varied and greater heading error and lateral displacement. The ambulance had the greatest heading errors and lateral displacements, which were attributed to its large lateral surface area and light weight. Two mathematical models were developed to estimate the heading error and lateral displacements for each of the vehicle types for a given change in lateral wind force. Through a questionnaire, participants felt the different characteristics while driving each vehicle type. The findings of this study demonstrate the valuable use of a driving simulator to model the behavior of different vehicle types and to develop mathematical models to estimate and quantify driving behavior and vehicle performance under hurricane wind conditions.

  5. Training toddlers seated on mobile robots to drive indoors amidst obstacles.

    PubMed

    Chen, Xi; Ragonesi, Christina; Galloway, James C; Agrawal, Sunil K

    2011-06-01

    Mobility is a causal factor in development. Children with mobility impairments may rely upon power mobility for independence and thus require advanced driving skills to function independently. Our previous studies show that while infants can learn to drive directly to a goal using conventional joysticks in several months of training, they are unable in this timeframe to acquire the advanced skill to avoid obstacles while driving. Without adequate driving training, children are unable to explore the environment safely, the consequences of which may in turn increase their risk for developmental delay. The goal of this research therefore is to train children seated on mobile robots to purposefully and safely drive indoors. In this paper, we present results where ten typically-developing toddlers are trained to drive a robot within an obstacle course. We also report a case study with a toddler with spina-bifida who cannot independently walk. Using algorithms based on artificial potential fields to avoid obstacles, we create force field on the joystick that trains the children to navigate while avoiding obstacles. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. Our results suggest that the use of a force-feedback joystick may yield faster learning than the use of a conventional joystick.

  6. Modeling of Passive Forces of Machine Tool Covers

    NASA Astrophysics Data System (ADS)

    Kolar, Petr; Hudec, Jan; Sulitka, Matej

    The passive forces acting against the drive force are phenomena that influence dynamical properties and precision of linear axes equipped with feed drives. Covers are one of important sources of passive forces in machine tools. The paper describes virtual evaluation of cover passive forces using the cover complex model. The model is able to compute interaction between flexible cover segments and sealing wiper. The result is deformation of cover segments and wipers which is used together with measured friction coefficient for computation of cover total passive force. This resulting passive force is dependent on cover position. Comparison of computational results and measurement on the real cover is presented in the paper.

  7. Synchronization of a self-sustained cold-atom oscillator

    NASA Astrophysics Data System (ADS)

    Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.

    2018-04-01

    Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.

  8. Extracting the driving force from ozone data using slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, Geli; Yang, Peicai; Zhou, Xiuji

    2016-05-01

    Slow feature analysis (SFA) is a recommended technique for extracting slowly varying features from a quickly varying signal. In this work, we apply SFA to total ozone data from Arosa, Switzerland. The results show that the signal of volcanic eruptions can be found in the driving force, and wavelet analysis of this driving force shows that there are two main dominant scales, which may be connected with the effect of climate mode such as North Atlantic Oscillation (NAO) and solar activity. The findings of this study represent a contribution to our understanding of the causality from observed climate data.

  9. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.

    PubMed

    Berman, Yonatan; Ben-Jacob, Eshel; Zhang, Xin; Shapira, Yoash

    2016-01-01

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  10. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces

    PubMed Central

    Berman, Yonatan; Zhang, Xin; Shapira, Yoash

    2016-01-01

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress. PMID:27031230

  11. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale

    NASA Astrophysics Data System (ADS)

    Tang, Sai; Wang, Jincheng; Li, Junjie; Wang, Zhijun; Guo, Yaolin; Guo, Can; Zhou, Yaohe

    2017-06-01

    Through phase-field-crystal (PFC) simulations, we investigated, on the atomic scale, the crucial role played by interface energy anisotropy and growth driving force during the morphological evolution of a dendrite tip at low growth driving force. In the layer-by-layer growth manner, the interface energy anisotropy drives the forefront of the dendrite tip to evolve to be highly similar to the corner of the corresponding equilibrium crystal from the aspects of atom configuration and morphology, and thus affects greatly the formation and growth of a steady-state dendrite tip. Meanwhile, the driving force substantially influences the part behind the forefront of the dendrite tip, rather than the forefront itself. However, as the driving force increases enough to change the layer-by-layer growth to the multilayer growth, the morphology of the dendrite tip's forefront is completely altered. Parabolic fitting of the dendrite tip reveals that an increase in the influence of interface energy anisotropy makes dendrite tips deviate increasingly from a parabolic shape. By quantifying the deviations under various interface energy anisotropies and growth driving forces, it is suggested that a perfect parabola is an asymptotic limit for the shape of the dendrite tips. Furthermore, the atomic scale description of the dendrite tip obtained in the PFC simulation is compatible with the mesoscopic results obtained in the phase-field simulation in terms of the dendrite tip's morphology and the stability criterion constant.

  12. 7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. TOP SURFACES OF FOUR HYDRAULIC UNITS TO DRIVE COMPRESSORS. Looking southeast along rear of building. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  13. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  14. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  15. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  16. 40 CFR 1066.210 - Dynamometers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to recreate the mechanical inertia and frictional forces that a vehicle exerts on road surfaces... drive axles may share a single drive roll. Use good engineering judgment to ensure that the dynamometer... engineering judgment. (3) The load applied by the dynamometer simulates forces acting on the vehicle during...

  17. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.

    2016-04-25

    Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the firstmore » time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.« less

  18. Flow enhancement of deformable self-driven objects by countercurrent

    NASA Astrophysics Data System (ADS)

    Mashiko, Takashi; Fujiwara, Takashi

    2016-10-01

    We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB

  19. Recurrence plots revisited

    NASA Astrophysics Data System (ADS)

    Casdagli, M. C.

    1997-09-01

    We show that recurrence plots (RPs) give detailed characterizations of time series generated by dynamical systems driven by slowly varying external forces. For deterministic systems we show that RPs of the time series can be used to reconstruct the RP of the driving force if it varies sufficiently slowly. If the driving force is one-dimensional, its functional form can then be inferred up to an invertible coordinate transformation. The same results hold for stochastic systems if the RP of the time series is suitably averaged and transformed. These results are used to investigate the nonlinear prediction of time series generated by dynamical systems driven by slowly varying external forces. We also consider the problem of detecting a small change in the driving force, and propose a surrogate data technique for assessing statistical significance. Numerically simulated time series and a time series of respiration rates recorded from a subject with sleep apnea are used as illustrative examples.

  20. How the interior viscosity structure of a terrestrial planet controls plate driving forces and plate tectonics

    NASA Astrophysics Data System (ADS)

    Hoeink, T.; Lenardic, A.; Jellinek, M.; Richards, M. A.

    2011-12-01

    One of the fundamental unresolved problems in Earth and planetary science is the generation of plate tectonics from mantle convection. Important achievements can be made when considering rheological properties in the context of mantle convection dynamics. Among these milestones are (1) a deeper understanding of the balance of forces that drive and resist plate motion and (2) the dynamic generation of narrow plate boundaries (that lead to a piecewise continuous surface velocity distribution). Extending classic plate-tectonic theory we predict a plate driving force due to viscous coupling at the base of the plate from fast flow in the asthenosphere. Flow in the asthenosphere is due to shear-driven contributions from an overriding plate and due to additional pressure-driven contributions. We use scaling analysis to show that the extent to which this additional plate-driving force contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces driving the motions of the Atlantic and Pacific plates. At the global scale of terrestrial planets, we use 3D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to demonstrate that a thin low-viscosity layer (asthenosphere) governs convective stresses imparted to the lithosphere. We find, consistent with theoretical predictions, that convective stresses increase for thinner asthenospheres. This result might eliminate the need for special weakening mechanisms to generate plate tectonics from mantle convection. Our results elucidate the role of the asthenosphere for plate tectonics on Earth, and also provide insights into the differences in tectonic styles between Earth and Venus.

  1. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less

  3. Driving-forces model on individual behavior in scenarios considering moving threat agents

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  4. Active mechanics in living oocytes reveal molecular-scale force kinetics

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  5. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  6. A Note on Diffusive Mass Transport.

    ERIC Educational Resources Information Center

    Haynes, Henry W., Jr.

    1986-01-01

    Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)

  7. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive.

    PubMed

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Joon Sohn, Won; Loeb, Gerald E; Sanger, Terence D; Valero-Cuevas, Francisco J

    2017-04-01

    We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function-and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.

  8. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive

    NASA Astrophysics Data System (ADS)

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Sohn, Won Joon; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective. We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Main results. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function—and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.

  9. Teen drivers' awareness of vehicle instrumentation in naturalistic research.

    PubMed

    Ehsani, J P; Haynie, D; Ouimet, M C; Zhu, C; Guillaume, C; Klauer, S G; Dingus, T; Simons-Morton, B G

    2017-12-01

    Naturalistic driving methods require the installation of instruments and cameras in vehicles to record driving behavior. A critical, yet unexamined issue in naturalistic driving research is the extent to which the vehicle instruments and cameras used for naturalistic methods change human behavior. We sought to describe the degree to which teenage participants' self-reported awareness of vehicle instrumentation changes over time, and whether that awareness was associated with driving behaviors. Forty-two newly-licensed teenage drivers participated in an 18-month naturalistic driving study. Data on driving behaviors including crash/near-crashes and elevated gravitational force (g-force) events rates were collected over the study period. At the end of the study, participants were asked to rate the extent to which they were aware of instruments in the vehicle at four time points. They were also asked to describe their own and their passengers' perceptions of the instrumentation in the vehicle during an in-depth interview. The number of critical event button presses was used as a secondary measure of camera awareness. The association between self-reported awareness of the instrumentation and objectively measured driving behaviors was tested using correlations and linear mixed models. Most participants' reported that their awareness of vehicle instrumentation declined across the duration of the 18-month study. Their awareness increased in response to their passengers' concerns about the cameras or if they were involved in a crash. The number of the critical event button presses was initially high and declined rapidly. There was no correlation between driver's awareness of instrumentation and their crash and near-crash rate or elevated g-force events rate. Awareness was not associated with crash and near-crash rates or elevated g-force event rates, consistent with having no effect on this measure of driving performance. Naturalistic driving studies are likely to yield valid measurements of driving behavior. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  10. Neuromorphic Meets Neuromechanics, Part II: The Role of Fusimotor Drive

    PubMed Central

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Joon Sohn, Won; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-01-01

    Objective We studied the fundamentals of muscle afferentation by building a neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bidirectional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Results We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function — and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons. PMID:28094764

  11. Characteristics of secondary migration driving force of tight oil and its geologic effect: a case study of Jurassic in Central Sichuan Basin

    NASA Astrophysics Data System (ADS)

    Pang, Zhenglian; Tao, Shizhen; Zhang, Bin; Wu, Songtao; Yang, Jiajing; Chen, Ruiyin

    2017-04-01

    As the rising of its production, tight oil is becoming more and more important. Much research has been done about it. Some articles mention that buoyancy is ineffective for tight oil secondary migration, and abnormal pressure is the alternative. Others believe that overpressure caused hydrocarbon generation is the very force. Though opinions have been given, there are two inadequacies. Firstly, the points are lack of sufficient evidences. Mostly, they are only one or two sentences in the papers. Secondly, geologic effect of the change of driving force hasn't been discussed. In this context, analog experiments, physical property testing, mercury injection, and oil/source comparison were utilized to study 3 issues: origin and value of tight oil secondary migration resistance, values and effectiveness of different potential driving forces, and geologic effect of tight oil secondary migration driving force. Firstly, resistance values of tight reservoir were detected by analog experiments. The value of tight limestone is 15.8MPa, while tight sandstone is 10.7MPa. Tiny size of pores and throats in tight reservoir is the main reason causing huge resistances. Over 90% of pores and throats in tight reservoir are smaller than 1μm. They form huge capillary force when oil migrating through them. Secondly, maximum of buoyancy in study area was confirmed, 0.09MPa, too small to overcome the resistances. Meanwhile, production data suggests that tight oil distribution pattern is not controlled by buoyancy. Conversely, analog experiment proves that overpressure caused by hydrocarbon generation can reach 38MPa, large enough to be the driving force. This idea is also supported by positive correlation between output and source rock formation pressure. Thirdly, is the geologic effect of tight oil secondary migration resistance and driving force. Tight oil can migrate only as non-darcy flow due to huge resistances according to percolation experiments. It needs to overcome the starting pressure gradient. As a result, it migrated a much shorter distance compared with conventional petroleum, coincident with the result of oil/source comparison. The effect of driving force is that boundary of tight oil profitable area is controlled by source rock. This boundary in the study area is the line of hydrocarbon generating strength of 40×104t/km2. By confirming controlling factors of tight oil formation and their evaluation index, it is of great significance during tight oil exploration.

  12. Line length dependence of threshold current density and driving force in eutectic SnPb and SnAgCu solder electromigration

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang

    2008-04-01

    The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.

  13. High reliability linear drive device for artificial hearts

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Zhao, Wenxiang; Liu, Guohai; Shen, Yue; Wang, Fangqun

    2012-04-01

    In this paper, a new high reliability linear drive device, termed as stator-permanent-magnet tubular oscillating actuator (SPM-TOA), is proposed for artificial hearts (AHs). The key is to incorporate the concept of two independent phases into this linear AH device, hence achieving high reliability operation. The fault-tolerant teeth are employed to provide the desired decoupling phases in magnetic circuit. Also, as the magnets and the coils are located in the stator, the proposed SPM-TOA takes the definite advantages of robust mover and direct-drive capability. By using the time-stepping finite element method, the electromagnetic characteristics of the proposed SPM-TOA are analyzed, including magnetic field distributions, flux linkages, back- electromotive forces (back-EMFs) self- and mutual inductances, as well as cogging and thrust forces. The results confirm that the proposed SPM-TOA meets the dimension, weight, and force requirements of the AH drive device.

  14. Improved motors for utility applications: Volume 6, Squirrel-cage rotor analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, J.W.; McCoy, R.M.

    1986-11-01

    An analysis of squirrel cage induction motor rotors was undertaken in response to an Industry Assessment Study finding 10% of motor failures to be rotor related. The analysis focuses on evaluating rotor design life. The evaluation combines state-of-the-art electromagnetic, thermal, and structural solution techniques into an integrated analysis and presents a simple summary. Finite element techniques are central tools in the analysis. The analysis is applied to a specific forced draft fan drive design. Fans as a category of application have a higher failure rate than other categories of power station auxiliary motor applications. Forced-draft fan drives are one ofmore » the major fan drives which accelerate a relatively high value of rotor load inertia. Various starting and operating conditions are studied for this forced-draft fan drive motor including a representative application duty cycle.« less

  15. Haptic device for telerobotic surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt; Salisbury, Jr., J. Kenneth

    A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleysmore » and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.« less

  16. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, John H., E-mail: john.h.cantrell@nasa.gov; Cantrell, Sean A., E-mail: scantrell@nlsanalytics.com

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force “stiffness,” the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model withmore » frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.« less

  17. Current kinematics and dynamics of Africa and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.

    2014-06-01

    Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

  18. Skill Needs and Human Resources Development in the Emerging Field of Nanotechnology

    ERIC Educational Resources Information Center

    Yawson, Robert Mayfield

    2010-01-01

    Strong societal requirements and consumer acceptance are the driving force of nanotechnology development. The necessity for qualified experts and strong demand on education in the multi-, trans- and interdisciplinary field of nanotechnology is a logical consequence of this driving force. There is the need for a comprehensive national…

  19. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  20. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    PubMed

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  1. Ratchet baryogenesis and an analogy with the forced pendulum

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  2. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  3. Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions.

    PubMed

    Ikonen, Timo; Shin, Jaeoh; Sung, Wokyung; Ala-Nissila, Tapio

    2012-05-28

    We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.

  4. Training Toddlers Seated on Mobile Robots to Steer Using Force-Feedback Joystick.

    PubMed

    Agrawal, S K; Xi Chen; Ragonesi, C; Galloway, J C

    2012-01-01

    The broader goal of our research is to train infants with special needs to safely and purposefully drive a mobile robot to explore the environment. The hypothesis is that these impaired infants will benefit from mobility in their early years and attain childhood milestones, similar to their healthy peers. In this paper, we present an algorithm and training method using a force-feedback joystick with an "assist-as-needed" paradigm for driving training. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. We show results with a group study on typically developing toddlers that such a haptic guidance algorithm is superior to training with a conventional joystick. We also provide a case study on two special needs children, under three years old, who learn to make sharp turns during driving, when trained over a five-day period with the force-feedback joystick using the algorithm.

  5. Characterization of Intercalated Graphite Fibers for Microelectromechanical Systems (MEMS) Applications

    DTIC Science & Technology

    2007-03-01

    electric charge to drive movement, eg. a micromirror . These two actuator types have different characteristics and apply dif- ferent forces. The thermal...actuators include micromirrors , comb drives, cantilevers and scratch drives. A scratch drive actuator uses an applied square wave voltage to operate, as

  6. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    PubMed

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  7. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion

    PubMed Central

    Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-01-01

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124

  8. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2015-12-28

    In this work, we numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additionalmore » contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. Finally, at higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.« less

  9. Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force

    NASA Astrophysics Data System (ADS)

    Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min

    2017-01-01

    Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.

  10. Dynamics and control of instrumented harmonic drives

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  11. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji

    2014-08-14

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, anmore » approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.« less

  12. The nature of the laning transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Glanz, T.; Löwen, H.

    2012-11-01

    If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.

  13. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less

  14. Human grasp assist device and method of use

    NASA Technical Reports Server (NTRS)

    Linn, Douglas Martin (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor)

    2012-01-01

    A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.

  15. Dynamo Induced by Time-periodic Force

    NASA Astrophysics Data System (ADS)

    Wei, Xing

    2018-03-01

    To understand the dynamo driven by time-dependent flow, e.g., turbulence, we investigate numerically the dynamo induced by time-periodic force in rotating magnetohydrodynamic flow and focus on the effect of force frequency on the dynamo action. It is found that the dynamo action depends on the force frequency. When the force frequency is near resonance the force can drive dynamo, but when it is far away from resonance dynamo fails. In the frequency range near resonance to support dynamo, the force frequency at resonance induces a weak magnetic field and magnetic energy increases as the force frequency deviates from the resonant frequency. This is opposite to the intuition that a strong flow at resonance will induce a strong field. It is because magnetic field nonlinearly couples with fluid flow in the self-sustained dynamo and changes the resonance of driving force and inertial wave.

  16. 78 FR 42758 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive...-PW-229 engines for the Hellenic Air Force F-16 aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, and...

  17. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    PubMed

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  18. Regional Quality Assurance Activity in Higher Education in Southeast Asia: Its Characteristics and Driving Forces

    ERIC Educational Resources Information Center

    Umemiya, Naoki

    2008-01-01

    This article analyses the characteristics and driving forces of regional quality assurance activity in Southeast Asia, which has been actively promoted in recent years by the ASEAN University Network, an organisation for higher education under the auspices of the Association of Southeast Asian Nations (ASEAN). There are now more collaborative…

  19. Understanding Resonance Graphs Using Easy Java Simulations (EJS) and Why We Use EJS

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel

    2015-01-01

    This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of…

  20. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  1. Energy level alignment in TiO2/metal sulfide/polymer interfaces for solar cell applications.

    PubMed

    Lindblad, Rebecka; Cappel, Ute B; O'Mahony, Flannan T F; Siegbahn, Hans; Johansson, Erik M J; Haque, Saif A; Rensmo, Håkan

    2014-08-28

    Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO2/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb2S3 and Bi2S3 deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO2 and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results were used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb2S3 showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO2/Bi2S3 interface on the other hand showed no driving force for electron injection to TiO2, and the performance of the corresponding solar cell was very low.

  2. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  3. Nonlinear Magnus-induced dynamics and Shapiro spikes for ac and dc driven skyrmions on periodic quasi-one-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Reichhardt, Cynthia J. Olson

    We numerically examine skyrmions interacting with a periodic quasi-one-dimensional substrate. When we drive the skyrmions perpendicular to the substrate periodicity direction, a rich variety of nonlinear Magnus-induced effects arise, in contrast to an overdamped system that shows only a linear velocity-force curve for this geometry. The skyrmion velocity-force curve is strongly nonlinear and we observe a Magnus-induced speed-up effect when the pinning causes the Magnus velocity response to align with the dissipative response. At higher applied drives these components decouple, resulting in strong negative differential conductivity. For skyrmions under combined ac and dc driving, we find a new class of phase locking phenomena in which the velocity-force curves contain a series of what we call Shapiro spikes, distinct from the Shapiro steps observed in overdamped systems. There are also regimes in which the skyrmion moves in the direction opposite to the applied dc drive to give negative mobility.

  4. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  5. Analysis of driving force and exciting voltage for a bi-material infrared resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2018-01-01

    For a designed sensor with bi-material resonator which is used to detect infrared (IR) radiation by means of tracking the change in resonance frequency of the resonator with temperature attributed to the IR radiation from targets, in accordance with electromagnetic theory, the relationship between the electrical driving force exerted on the resonator and the exciting voltage applied across two electrodes of the capacitor in the sensor is presented. According to vibration theory, the dependence of the driving force on the exciting voltage is analyzed. The result of analysis is used to guide the vibration mode and frequency-amplitude response simulations of the resonator. The simulation value is approximately equal to the measured value, which demonstrates that the analysis result is effective and practicable.

  6. Consensus statement of the European Heart Rhythm Association: updated recommendations for driving by patients with implantable cardioverter defibrillators.

    PubMed

    Vijgen, Johan; Botto, Gianluca; Camm, John; Hoijer, Carl-Johan; Jung, Werner; Le Heuzey, Jean-Yves; Lubinski, Andrzej; Norekvål, Tone M; Santomauro, Maurizio; Schalij, Martin; Schmid, Jean-Paul; Vardas, Panos

    2010-03-01

    Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document, (Table see text). Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Consensus statement of the European Heart Rhythm Association: updated recommendations for driving by patients with implantable cardioverter defibrillators.

    PubMed

    Vijgen, Johan; Botto, Gianluca; Camm, John; Hoijer, Carl-Johan; Jung, Werner; Le Heuzey, Jean-Yves; Lubinski, Andrzej; Norekvål, Tone M; Santomauro, Maurizio; Schalij, Martin; Schmid, Jean-Paul; Vardas, Panos

    2009-08-01

    Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document. [table: see text] Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations.

  8. Mechanical Rectification of Oscillatory Motion for High Torque Microactuators

    NASA Astrophysics Data System (ADS)

    You, Liang; Tabib-Azar, Massood

    2004-03-01

    High-torque and scalable rotational micromotors were designed, microfabricated using a 3 mask LPCVD polysilicon process, and characterized. Oscillatory motions generated by comb-drive actuators were rectified by a rotor with fins. The actuator periodically deforms the fins generating forces with tangential and normal components in the rotor. Tangential forces generate rotation. In comparison to the electrostatic side-drive micromotor (torque pN-m), the measured torques for these micromotors were much larger and reached 4.5 µN-m at 200Vpp applied to the comb-drive at 1 KHz. Both the comb-drive and the finned rotor are second-order resonant structures that, when coupled, result in interesting dynamic that manifests itself as different excitation (forward, reverse, stepping, and chaotic) modes of the rotor.

  9. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    PubMed

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  10. The electromigration force in metallic bulk

    NASA Astrophysics Data System (ADS)

    Lodder, A.; Dekker, J. P.

    1998-01-01

    The voltage induced driving force on a migrating atom in a metallic system is discussed in the perspective of the Hellmann-Feynman force concept, local screening concepts and the linear-response approach. Since the force operator is well defined in quantum mechanics it appears to be only confusing to refer to the Hellmann-Feynman theorem in the context of electromigration. Local screening concepts are shown to be mainly of historical value. The physics involved is completely represented in ab initio local density treatments of dilute alloys and the implementation does not require additional precautions about screening, being typical for jellium treatments. The linear-response approach is shown to be a reliable guide in deciding about the two contributions to the driving force, the direct force and the wind force. Results are given for the wind valence for electromigration in a number of FCC and BCC metals, calculated using an ab initio KKR-Green's function description of a dilute alloy.

  11. Self Assembled Particles

    NASA Technical Reports Server (NTRS)

    Palacci, Jeremie (Inventor); Pine, David J. (Inventor); Chaikin, Paul Michael (Inventor); Sacanna, Stefano (Inventor)

    2017-01-01

    A self-assembling structure using non-equilibrium driving forces leading to 'living crystals' and other maniputable particles with a complex dynamics. The dynamic self-assembly assembly results from a competition between self-propulsion of particles and an attractive interaction between the particles. As a result of non-equilibrium driving forces, the crystals form, grow, collide, anneal, repair themselves and spontaneously self-destruct, thereby enabling reconfiguration and assembly to achieve a desired property.

  12. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  13. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force

    NASA Astrophysics Data System (ADS)

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  14. Driving reconnection in sheared magnetic configurations with forced fluctuations

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  15. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.

    PubMed

    Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G

    2014-06-25

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  16. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator

    PubMed Central

    Koh, Keng Huat; Sreekumar, M.; Ponnambalam, S. G.

    2014-01-01

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications. PMID:28788114

  17. [Landscape pattern change and its driving forces in Xixi National Wetland Park since 1993].

    PubMed

    Cheng, Qian; Wu, Xiuju

    2006-09-01

    Under the support of GIS technology and the TM images of Xixi National Wetland Park, this paper studied the past ten years' landscape pattern change and its driving forces of Xixi Wetland. The results showed that the landscape diversity index increased from 1.7854 in 1993 to 1.8438 in 2001 and 2.2096 in 2003, and the landscape fragmentation index increased from 0.0036 in 1993 to 0.0042 in 2001, and 0.0047 in 2003, suggesting that the landscape fragmentation was increased with time. Human activity was the main driving force, while the exploitation of real estate was the main internal factor of the landscape pattern change of Xixi wetland. In addition, social and economic development level had a strong effect on the overall diversity of the landscape.

  18. The mean Evershed flow

    NASA Astrophysics Data System (ADS)

    Hu, W.-R.

    1984-09-01

    The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.

  19. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    PubMed

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  20. Measurements of the driving forces of bio-motors using the fluctuation theorem

    PubMed Central

    Hayashi, Kumiko; Tanigawara, Mizue; Kishikawa, Jun-ichi

    2012-01-01

    The fluctuation theorem (FT), which is a recent achievement in non-equilibrium statistical mechanics, has been suggested to be useful for measuring the driving forces of motor proteins. As an example of this application, we performed single-molecule experiments on F1-ATPase, which is a rotary motor protein, in which we measured its rotary torque by taking advantage of FT. Because fluctuation is inherent nature in biological small systems and because FT is a non-destructive force measurement method using fluctuation, it will be applied to a wide range of biological small systems in future. PMID:27857609

  1. Clogging and transport of driven particles in asymmetric funnel arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-06-01

    We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle–particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.

  2. Negative differential mobility and trapping in active matter systems

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. O.

    2018-01-01

    Using simulations, we examine the average velocity as a function of applied drift force for active matter particles moving through a random obstacle array. We find that for low drift force, there is an initial flow regime where the mobility increases linearly with drive, while for higher drift forces a regime of negative differential mobility appears in which the velocity decreases with increasing drive due to the trapping of active particles behind obstacles. A fully clogged regime exists at very high drift forces when all the particles are permanently trapped behind obstacles. We find for increasing activity that the overall mobility is nonmonotonic, with an enhancement of the mobility for small levels of activity and a decrease in mobility for large activity levels. We show how these effects evolve as a function of disk and obstacle density, active run length, drift force, and motor force.

  3. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    NASA Astrophysics Data System (ADS)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  4. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.).

    PubMed

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.

  5. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  6. Analysis on design and performance of a solar rotary house

    NASA Astrophysics Data System (ADS)

    Fan, Xuhong; Zhang, Zhaochang; Yang, Fan; Cao, Lilin; Xu, Jing; Yuan, Mingyang

    2017-04-01

    A solar rotary house is designed, composed of rotating main structure, fixed cylinder, rotating drive system, solar photovoltaic system and so on, to achieve 360° rotation. Thus it can change the dark and humid situation of the traditional fixed house shade. Its bearing capacity, driving force and safety are analyzed. Rotary driving force and living energy are provided by solar photovoltaic system on roofs and walls. The Phonenics, Ecotect simulation analysis conclude that the rotating house indoor has better natural ventilation effect, more uniform lighting, better the sunshine time compared with traditional houses, becoming a green, energy-saving, comfortable building model.

  7. Solid Rocket Testing at AFRL (Briefing Charts)

    DTIC Science & Technology

    2016-10-21

    Force Research Laboratory (AFMC) AFRL /RQRO 8 Draco Drive Edwards AFB, CA 93524-7135 Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive...19b. TELEPHONE NUMBER (Include area code) 10/21/2016 Briefing Charts 01 October 2016 - 31 October 2016 Solid Rocket Testing at AFRL Robert Antypas Air ...Space Dominance MOJAVE BORONHWY 58 LANCASTER H IG H W A Y 14 RESERVATION BOUNDARY 0 5 10SCALE IN MILES HWY 395 EDWARDS

  8. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    PubMed

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  9. Forces Driving Chaperone Action

    PubMed Central

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C. A.

    2016-01-01

    SUMMARY It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client’s affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  10. Ball Screw Actuator Including a Stop with an Integral Guide

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  11. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host-Guest Recognition or Hydrophilic-Hydrophobic Interaction?

    PubMed

    Bai, Yang; Fan, Xiao-dong; Yao, Hao; Yang, Zhen; Liu, Ting-ting; Zhang, Hai-tao; Zhang, Wan-bin; Tian, Wei

    2015-09-03

    Tuning of the morphology and size of supramolecular self-assemblies is of theoretical and practical significance. To date, supramolecular driving forces in different solvents remain unclear. In this study, we first synthesized an amphiphilic β-cyclodextrin (β-CD) dimer that consists of one hydrophobic ibuprofen (Ibu) and two hydrophilic β-CD moieties (i.e., Ibu-CD2). Ibu-CD2 possesses double supramolecular driving forces, namely, the host-guest recognition and hydrophilic-hydrophobic interaction. The host-guest interaction of Ibu-CD2 induced the formation of branched supramolecular polymers (SPs) in pure water, whereas the hydrophilic-hydrophobic interaction generated spherical or irregular micelles in water/organic mixtures. The SP size increased with the increase in Ibu-CD2 concentration in pure water. By contrast, the size of micelles decreased with the increase in volume ratio of water in mixtures.

  12. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trendsmore » and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.« less

  13. Ethical Problems in the Practice of Organization Development.

    ERIC Educational Resources Information Center

    Wooten, Kevin C.; White, Louis P.

    1983-01-01

    This article discusses forces that affect the professional ethics of organizational development (OD). Both driving forces and restraining forces have influenced the current status of OD ethics. These forces have operated since the emergence of OD itself, and their fluctuating intensity results in the dynamic nature of the OD profession. (SSH)

  14. Mechano-adaptation of the stem cell nucleus.

    PubMed

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  15. Mechano-adaptation of the stem cell nucleus

    PubMed Central

    Heo, Su-Jin; Cosgrove, Brian D.; Dai, Eric N.; Mauck, Robert L.

    2018-01-01

    ABSTRACT Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this “mechano-adaptation” are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation. PMID:29099288

  16. Single-Cell Force Spectroscopy of Probiotic Bacteria

    PubMed Central

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.

    2013-01-01

    Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831

  17. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  18. Land use change and its driving forces toward mutual conversion in Zhangjiakou City, a farming-pastoral ecotone in Northern China.

    PubMed

    Liu, Chao; Xu, Yueqing; Sun, Piling; Huang, An; Zheng, Weiran

    2017-09-14

    Land use/cover change (LUCC), a local environmental issue of global importance, and its driving forces have been crucial issues in geography and environmental research. Previous studies primarily focused on major driving factors in various land use types, with few explorations of differences between driving forces of mutual land use type conversions, especially in fragile eco-environments. In this study, Zhangjiakou City, in a farming-pastoral ecotone in Northern China, was taken as an example to analyze land use change between 1989 and 2015, and explore the driving forces of mutual land use type conversions using canonical correlation analysis. Satellite images and government statistics, including social-economic and natural data, were used as sources. Arable land, forestland, and grassland formed the main land use structure. From 1989 to 2015 forestland, orchard land, and construction land significantly increased, while arable land, grassland, unused land, and water areas decreased. Conversions from grassland to forestland; from arable land to orchard land, forestland and construction land; and from unused land to grassland and forestland were the primary land use changes. Among these, the conversion from grassland to forestland had the highest ranking. Average annual precipitation and per capita net income of rural residents positively affected the conversion of arable land to forestland and unused land to grassland. GDP, total population, and urbanization rate contributed most significantly to converting arable land to construction land; total retail sales of social consumer goods, average annual temperature, and GDP had important positive influences in converting arable land to orchard land.

  19. Self-determined mechanisms in complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin

    2008-03-01

    Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.

  20. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng

    2012-06-01

    This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.

  1. Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Lai, Li; Peng, Hao; Tu, Zhe; Zhong, Suchuan

    2018-01-01

    The dynamics of many soft condensed matter and biological systems is affected by space limitations, which produce some peculiar effects on the systems' stochastic resonance (SR) behavior. In this study, we propose a model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal driving force and is under the influence of a multiplicative white noise. The output response of the system is a periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of these confined systems and could constitute an important tool for controlling their basic properties.

  2. Response characteristic of high-speed on/off valve with double voltage driving circuit

    NASA Astrophysics Data System (ADS)

    Li, P. X.; Su, M.; Zhang, D. B.

    2017-07-01

    High-speed on/off valve, an important part of turbocharging system, its quick response has a direct impact on the turbocharger pressure cycle. The methods of improving the response characteristic of high speed on/off valve include increasing the magnetic force of armature and the voltage, decreasing the mass and current of coil. The less coil number of turns, the solenoid force is smaller. The special armature structure and the magnetic material will raise cost. In this paper a new scheme of double voltage driving circuit is investigated, in which the original driving circuit of high-speed on/off valve is replaced by double voltage driving circuit. The detailed theoretical analysis and simulations were carried out on the double voltage driving circuit, it showed that the switching time and delay time of the valve respectively are 3.3ms, 5.3ms, 1.9ms and 1.8ms. When it is driven by the double voltage driving circuit, the switching time and delay time of this valve are reduced, optimizing its response characteristic. By the comparison related factors (such as duty cycle or working frequency) about influences on response characteristic, the superior of double voltage driving circuit has been further confirmed.

  3. 14. Main entrance to Gwing from Apollo Drive, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Main entrance to G-wing from Apollo Drive, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce

    PubMed Central

    Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-01-01

    Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were rlng=0.71 and rlat=0.83, respectively, while the corresponding acceleration measurements between Android and DAS were rlng=0.95 and rlat=0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. Conclusions The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. PMID:29674309

  5. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-03-01

    We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular ( ) and parallel ( ) to the external drive direction: / =n /m , where n and m are integers. The skyrmion passes through a series of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion can lock to a Hall angle greater than the clean limit value and then jump back to the lower value at higher drives. The skyrmion-substrate interactions can also produce a skyrmion acceleration effect in which, due to the nondissipative dynamics, the skyrmion velocity exceeds the value expected to be produced by the external drive. We find that these effects are robust for different types of periodic substrates. Using a simple model for a skyrmion interacting with a single pinning site, we can capture the behavior of the change in the Hall angle with increasing external drive. When the skyrmion moves through the pinning site, its trajectory exhibits a side step phenomenon since the Magnus term induces a curvature in the skyrmion orbit. As the drive increases, this curvature is reduced and the side step effect is also reduced. Increasing the strength of the Magnus term reduces the range of impact parameters over which the skyrmion can be captured by a pinning site, which is one of the reasons that strong Magnus force effects reduce the pinning in skyrmion systems.

  6. The effect of competition on heart rate during kart driving: A field study.

    PubMed

    Matsumura, Kenta; Yamakoshi, Takehiro; Yamakoshi, Yasuhiro; Rolfe, Peter

    2011-09-09

    Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.

  7. The effect of competition on heart rate during kart driving: A field study

    PubMed Central

    2011-01-01

    Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength. PMID:21906298

  8. Domain Wall Evolution in Phase Transforming Oxides

    DTIC Science & Technology

    2015-01-14

    configumtions under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between -1...configurations under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between...Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1/2Ti1/2)O3–0.45PbTiO3 polycrystalline ferroelectrics, Applied Physics Letters

  9. Application of Laser Ranging and VLBI Data to a Study of Plate Tectonic Driving Forces

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The conditions under which changes in plate driving or resistive forces associated with plate boundary earthquakes are measurable with laser ranging or very long base interferometry were investigated. Aspects of plate forces that can be characterized by such measurements were identified. Analytic solutions for two dimensional stress diffusion in a viscoelastic plate following earthquake faulting on a finite fault, finite element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting, and quantitative constraints from modeling of global intraplate stress on the magnitude of deviatoric stress in the lithosphere are among the topics discussed.

  10. Theoretical analysis of the formation driving force and decreased sensitivity for CL-20 cocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Jun-Hong; Shi, Liang-Wei; Zhang, Chao-Yang; Li, Hong-Zhen; Chen, Min-Bo; Chen, Wei-Ming

    2016-07-01

    Methods that analyze the driving force in the formation of the new energetic cocrystal are proposed in this paper. Various intermolecular interactions in the 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,9.03,11]dodecane (CL-20) cocrystals are compared with those in pure CL-20 and coformer crystals by atom in molecule (AIM) and Hirshfeld surface methods under the supramolecular cluster model. The driving force in the formation of the CL-20 cocrystals is analyzed. The main driving force in the formation of the cocrystal CL-20/HMX comes from the O···H interactions, that in the formation of the cocrystal CL-20/TNT from the O···H and C···O interactions, and that in the formation of the cocrystal CL-20/BTF from the N···H and N···O interactions. Other interactions in the CL-20 cocrystals only contribute to their stabilization. At the same time, the reasons for the decreased impact sensitivity of the CL-20 cocrystals are also analyzed. They are the strengthening of the intermolecular interactions, the reducing of the free space, and the changing of the surrounding of CL-20 molecule in the CL-20 cocrystals in comparison with those in the pure CL-20 crystal.

  11. [Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China].

    PubMed

    Shen, Lu; Tian, Mei-rong; Gao, Ji-xi; Qian, Jin-ping

    2016-01-01

    Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend. The coniferous forest and grassland had strong windbreak and sand fixation capacity in unit area among the various land categories. In terms of spatial distribution, the windbreak and sand fixation function in western and southeastern region was weak and needed to be strengthened with ecological restoration efforts. Through the study of the social driving forces of each administrative region in the function zone, there were 3 main social driving forces of soil erosion in the administrative functions: the intensity of input-output, the level of economic development and the level of agriculture-husbandry development.

  12. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE PAGES

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2018-05-03

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  13. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  14. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes.

    PubMed

    Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang

    2014-01-01

    We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.

  15. 8. Drainage ditch from the corner of Apollo Drive and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Drainage ditch from the corner of Apollo Drive and SAC Boulevard looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  16. 17. View of Mercury Avenue from Apollo Drive, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View of Mercury Avenue from Apollo Drive, looking north at E-wing - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  17. Toward Greater Cooperation? FM 100-5 and AFDD 1

    DTIC Science & Technology

    1997-05-22

    complementary with respect to technological superiority, information dominance , and asymmetric force application. Both the Army and the Air Force are...Force have the same understanding of technology superiority, information dominance and asymmetric force application. Differences in emphasis on the...for military operations while the Air Force views technology as the driving factor for military capability. Both services understand that information

  18. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  19. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  20. Head tilt during driving.

    PubMed

    Zikovitz, D C; Harris, L R

    1999-05-01

    In order to distinguish between the use of visual and gravito-inertial force reference frames, the head tilt of drivers and passengers were measured as they went around corners at various speeds. The visual curvature of the corners were thus dissociated from the magnitude of the centripetal forces (0.30-0.77 g). Drivers' head tilts were highly correlated with the visually-available estimate of the curvature of the road (r2=0.86) but not with the centripetal force (r2<0.1). Passengers' head tilts were inversely correlated with the lateral forces (r2=0.3-0.7) and seem to reflect a passive sway. The strong correlation of the tilt of drivers' heads with a visual aspect of the road ahead, supports the use of a predominantly visual reference frame for the driving task.

  1. Driving morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Ann; Miansari, Morteza; Friend, James

    The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).

  2. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.)

    PubMed Central

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about –0.15 MPa. PMID:20974734

  3. AST: Activity-Security-Trust driven modeling of time varying networks.

    PubMed

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-18

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  4. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  5. Numerical Simulation of Permeation from Deposited Droplets: Model Expansion

    DTIC Science & Technology

    1992-04-01

    This is primarily due to the low vapor pressures of chemical agent simulants, which minimize the driving forces for diffusion through the gas-phase...was presented at the November 1990 CRDEC Scientific Conference on Chemical Defense Research (4]. Previous work in this area also includes a substantial...most of the overall chemical poten- tial driving force is dissipated in the gas, not the membrane phase). 1.0 l 0.9-0 A 0 0.8 - 0.7 C 0.6,, 0.00 0.25

  6. Aquatic toxicology: fact or fiction?

    PubMed Central

    Macek, K J

    1980-01-01

    A brief history of the development of the field of aquatic toxicology is provided. In order to provide a perspective on the state-of-the-art in aquatic toxicology relative to classical toxicology, the two fields are compared from the standpoint of the type of scientist practicing each field, the respective objectives of each, the forces which drive the activity in each field, and the major advantages and disadvantages accruing to the practitioner of aquatic toxicology as a result of the differences in objectives and driving forces. PMID:6993200

  7. Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints

    NASA Astrophysics Data System (ADS)

    Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang

    2018-03-01

    In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.

  8. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0 % to 80 % filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ˜80 % to 100 % filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ˜80 % filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  9. Cross-shaped torsional spring

    DOEpatents

    Williamson, Matthew M.; Pratt, Gill A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  10. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.

    PubMed

    Keller, Nicholas; Berndsen, Zachary T; Jardine, Paul J; Smith, Douglas E

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  11. 92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ASH REMOVAL DOORS. NOTE STOKER LINE SHAFT DRIVE UNDER CEILING. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  12. 77 FR 67343 - Procurement List; Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Metropolitan Airport (RMMA), Air Traffic Control Tower (ATCT) & Base Building, 11001 Control Tower Drive...: Department of the Air Force (5700)/Eielson Air Force Base (FA 5004), Eielson AFB, AK. [[Page 67344

  13. The Air Force Research Laboratory’s In-Space Propulsion Program

    DTIC Science & Technology

    2015-02-01

    Air Force Research Laboratory (AFMC) AFRL /RQRS 1 Ara...MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT Edwards AFB CA 93524-7048 NUMBER(S) AFRL ...illustrate the rationale behind AFRL’s technology development strategy. INTRODUCTION The Air Force Research Laboratory ( AFRL ) is the technology

  14. NEWS ARTICLES

    Science.gov Websites

    CENTCOM: Search CENTCOM CENTCOM Home ABOUT US COMMAND NARRATIVE LEADERSHIP COMPONENT COMMANDS HISTORY , security forces May 14, 2018 Syrian Democratic Forces fire in self-defense May 11, 2018 Military Strikes against Daesh terrorists in Iraq and Syria May 04, 2018 Syrian Democratic Forces announce drive to reclaim

  15. Kinesthetic coupling between operator and remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Salisbury, J. K., Jr.

    1980-01-01

    A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.

  16. 15. Threequarter view of Gwing from intersection of Apollo Drive ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Three-quarter view of G-wing from intersection of Apollo Drive and Mercury Avenue, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  17. Optimization of spent fuel pool weir gate driving mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  18. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  19. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  20. Exercise tricycle for paraplegics.

    PubMed

    Gföhler, M; Loicht, M; Lugner, P

    1998-01-01

    The work describes a tricycle that can be used by paraplegics without assistance. Paraplegics can get on and off the tricycle independently, using hydraulic adjustment of the saddle height. The two rear wheels can be swivelled with adjustable hydraulic damping, which avoids the stability problems of a standard tricycle when riding around bends. The principal driving power is assumed to be provided by functional electrical stimulation of the femoral muscles. A hub motor is integrated in the front wheel to increase the radius of action, as additional drive for cycling up gradients and in case muscle force is not sufficient. The desired drive power is adjusted by a throttle grip on the handlebar. The percentage of motor power can also be adjusted. The force applied to the pedal, the absolute angular position of the crank, and the angular velocity of the front wheel are continuously measured by a force measurement pedal and a goniometer. Based on this information, the motor and the functional electrical stimulation of the legs are controlled.

  1. INCREASED VOLUNTARY DRIVE IS ASSOCIATED WITH CHANGES IN COMMON OSCILLATIONS FROM 13 TO 60 HZ OF INTERFERENCE BUT NOT RECTIFIED ELECTROMYOGRAPHY

    PubMed Central

    NETO, OSMAR P.; BAWEJA, HARSIMRAN S.; CHRISTOU, EVANGELOS A.

    2013-01-01

    The purpose of this study was to compare the capability of interference and rectified electromyography (EMG) to detect changes in the beta (13–30-HZ) and Piper (30–60-HZ) bands when voluntary force is increased. Twenty adults exerted a constant force abduction of the index finger at 15% and 50% of maximum. The common oscillations at various frequency bands (0–500 HZ) were estimated from the first dorsal interosseous muscle using cross wavelets of interference and rectified EMG. For the interference EMG signals, normalized power significantly (P < 0.01) increased with force in the beta (9.0 ± 0.9 vs. 15.5 ± 2.1%) and Piper (13.6 ± 0.9 vs. 21 ± 1.7%) bands. For rectified EMG signals, however, the beta and Piper bands remained unchanged (P > 0.4). Although rectified EMG is used in many clinical studies to identify changes in the oscillatory drive to the muscle, our findings suggest that only interference EMG can accurately capture the increase in oscillatory drive from 13 to 60 HZ with voluntary force. PMID:20589885

  2. Nonlinear resonances and antiresonances of a forced sonic vacuum

    DOE PAGES

    Pozharskiy, D.; Zhang, Y.; Williams, M. O.; ...

    2015-12-23

    We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude- and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force (“antiresonances”) between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., ofmore » period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) “nonlinear spectrum” in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). As a result, we rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves.« less

  3. Is the 2nd Law of Thermodynamics Conditioned? Separating Heat and Cold by a Magnetic Body Force and the Principle for a Non-Carnot Engine

    NASA Astrophysics Data System (ADS)

    Luo, Weili

    2017-11-01

    A new type of heat engine has been proposed in 2005 that defies fundamental thermodynamic law: A specifically designed magnetic body force can reverse heat flow from high temperature to low temperature. This mechanism can drive heat to higher temperature, rendering the possibility to re-use the ``waste heat''. As the result, the efficiency is much higher than that of the Carnot Engine. In a recent paper a realization of this proposed mechanism is reported: by using a specific configuration of temperature and magnetic field gradients, we observed that magnetic body force suppresses the gravito-thermal convective heat when the gradients of temperature and field are anti-parallel to each other. This driving force stops the heat flow of approaching to thermal equilibrium in the system, causing the temperature difference across the sample to increase with applied fields. In this work, I will discuss the driving mechanism for this phenomenon and its application in the proposed engine. This remarkable result suggests that the 2nd law of thermodynamics maybe conditioned and needs to be re-examined.

  4. Physical driving force of actomyosin motility based on the hydration effect.

    PubMed

    Suzuki, Makoto; Mogami, George; Ohsugi, Hideyuki; Watanabe, Takahiro; Matubayasi, Nobuyuki

    2017-12-01

    We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force. © 2017 Wiley Periodicals, Inc.

  5. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  6. Study of scratch drive actuator force characteristics

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Brown, J. Gordon; Uttamchandani, Deepak

    2002-11-01

    Microactuators are one of the key components in MEMS technology, and various designs have been realized through different fabrication processes. One type of microactuator commonly used is the scratch drive actuator (SDA) that is frequently fabricated by surface micromachining processes. An experimental investigation has been conducted on the force characteristics of SDAs fabricated using the JDSU Microsystems MUMPs process. One-, two-, three- and four-plate SDAs connected to box-springs have been designed and fabricated for these experiments using MUMPs run 44. The spring constant for the box-springs has been calculated by FEM using ANSYS software. The product of the spring constant and spring extension is used to measure the forces produced by these SDAs. It is estimated that the forces produced exceed 250 μN from a one-plate SDA and 850 μN from a four-plate SDA.

  7. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Nuclear Treaty... meetings. SUMMARY: The Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification will... Applications International Corporation, 4001 North Fairfax Drive, Suite 300, Arlington, VA. FOR FURTHER...

  8. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce.

    PubMed

    Freidlin, Raisa Z; Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-04-19

    Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were r lng =0.71 and r lat =0.83, respectively, while the corresponding acceleration measurements between Android and DAS were r lng =0.95 and r lat =0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. ©Raisa Z Freidlin, Amisha D Dave, Benjamin G Espey, Sean T Stanley, Marcial A Garmendia, Randall Pursley, Johnathon P Ehsani, Bruce G Simons-Morton, Thomas J Pohida. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 19.04.2018.

  9. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    PubMed

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  11. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  12. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  13. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.

  14. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    PubMed

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  15. 6. Interior, rear offices: operations assistant office looking north toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior, rear offices: operations assistant office looking north toward security operations officer's office. - Ellsworth Air Force Base, Rushmore Air Force Station, Security Central Control Building, Quesada Drive, Blackhawk, Meade County, SD

  16. --No Title--

    Science.gov Websites

    when his car went into a ravine due to high waters. 8/8/2013 MO Jane McDonald 69 F Road Driving Brush Road Driving Appears victim tried to drive through high water on a road, but stalled. Got out to try the flooded area of a street when his car was swept away by the forceful current off of the road and

  17. Color constrasts in advertising: facade colors of food and drink consumption venues

    NASA Astrophysics Data System (ADS)

    Hutchings, John

    2002-06-01

    The building facade has a visually defined impact and there are numerous forces driving the choice of colors used. Commercial premises such as pubs, restaurants and bars are normally but not always clearly marked as such. Although we human beings can have the option of free choice in the colors we use around the home there are numerous positive driving forces dictating those we use in business life. Many of these factors have been identified. They depend on the type of population these venues serve, their geography and their traditions.

  18. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  19. Effects of work zone configurations and traffic density on performance variables and subjective workload.

    PubMed

    Shakouri, Mahmoud; Ikuma, Laura H; Aghazadeh, Fereydoun; Punniaraj, Karthy; Ishak, Sherif

    2014-10-01

    This paper investigates the effect of changing work zone configurations and traffic density on performance variables and subjective workload. Data regarding travel time, average speed, maximum percent braking force and location of lane changes were collected by using a full size driving simulator. The NASA-TLX was used to measure self-reported workload ratings during the driving task. Conventional lane merge (CLM) and joint lane merge (JLM) were modeled in a driving simulator, and thirty participants (seven female and 23 male), navigated through the two configurations with two levels of traffic density. The mean maximum braking forces was 34% lower in the JLM configuration, and drivers going through the JLM configuration remained in the closed lane longer. However, no significant differences in speed were found between the two merge configurations. The analysis of self-reported workload ratings show that participants reported 15.3% lower total workload when driving through the JLM. In conclusion, the implemented changes in the JLM make it a more favorable merge configuration in both high and low traffic densities in terms of optimizing traffic flow by increasing the time and distance cars use both lanes, and in terms of improving safety due to lower braking forces and lower reported workload. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. AST: Activity-Security-Trust driven modeling of time varying networks

    PubMed Central

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  1. Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers

    NASA Astrophysics Data System (ADS)

    Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong

    2017-04-01

    Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.

  2. The interplay of stiffness and force anisotropies drives embryo elongation

    PubMed Central

    Vuong-Brender, Thanh Thi Kim; Ben Amar, Martine; Pontabry, Julien; Labouesse, Michel

    2017-01-01

    The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo. DOI: http://dx.doi.org/10.7554/eLife.23866.001 PMID:28181905

  3. The Effect on Teenage Risky Driving of Feedback From a Safety Monitoring System: A Randomized Controlled Trial

    PubMed Central

    Bingham, C. Raymond; Ouimet, Marie Claude; Pradhan, Anuj; Chen, Rusan; Barretto, Andrea; Shope, Jean

    2012-01-01

    Purpose Teenage risky driving may be due to teenagers not knowing what is risky, preferring risk, or the lack of consequences. Elevated gravitational-force (g-force) events, caused mainly by hard braking and sharp turns, provide a valid measure of risky driving and are the target of interventions using in-vehicle data recording and feedback devices. The effect of two forms of feedback about risky driving events to teenagers only or to teenagers and their parents was tested in a randomized controlled trial. Methods Ninety parent-teen dyads were randomized to one of two groups: (1) immediate feedback to teens (Lights Only); or (2) immediate feedback to teens plus family access to event videos and ranking of the teen relative to other teenage drivers (Lights Plus). Participants’ vehicles were instrumented with data recording devices and events exceeding 0.5 g were assessed for two weeks of baseline and 13 weeks of feedback. Results Growth analysis with random slopes yielded a significant decrease in event rates for the Lights Plus group (slope = −.11, p < 0.01), but no change for the Lights Only group (slope = 0.05, p = 0.67) across the 15 weeks. A large effect size of 1.67 favored the Lights Plus group. Conclusions Provision of feedback with possible consequences associated with parents being informed reduced risky driving, while immediate feedback only to teenagers did not. Implications and Contribution Reducing elevated g-force events due to hard stops and sharp turns could reduce crash rates among novice teenage drivers. Using materials from the DriveCam For Families Program we found that feedback to both teens and parents significantly reduced rates, while feedback only to teens did not. PMID:23375825

  4. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  5. Intro & Basic R&D Overview for NRC RAP Administrator

    DTIC Science & Technology

    2011-07-13

    Air Force Research Laboratory (AFMC) AFRL /RZS 5 Pollux Drive Edwards AFB CA...NUMBER (include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Air Force Research Laboratory Edwards Air Force ...BOUNDARY 0 5 10 SCALE IN MILES HWY 395 ROSAMOND BLVD. MERCURY BLVD. R O C K ET S IT E R O A D EDWARDS AIR FORCE BASE Air Force Research

  6. Cross-shaped torsional spring

    DOEpatents

    Williamson, M.M.; Pratt, G.A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  7. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime

    NASA Astrophysics Data System (ADS)

    Casado-Pascual, Jesús

    2018-03-01

    The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.

  8. SCM-Forcing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shaocheng; Tang, Shuaiqi; Zhang, Yunyan

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  9. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  10. Entropic Approach to Brownian Movement.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    A diffusional driving force, called the radial force, which is responsible for the increase with time of the scalar separation between a fixed point and a particle undergoing three-dimensional Brownian motion, is derived using Boltzmann's equation. (Author/HM)

  11. Mechanisms driving variability in the ocean forcing of Pine Island Glacier

    PubMed Central

    Webber, Benjamin G. M.; Heywood, Karen J.; Stevens, David P.; Dutrieux, Pierre; Abrahamsen, E. Povl; Jenkins, Adrian; Jacobs, Stanley S.; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan

    2017-01-01

    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS. PMID:28211473

  12. Analytical investigation of the faster-is-slower effect with a simplified phenomenological model

    NASA Astrophysics Data System (ADS)

    Suzuno, K.; Tomoeda, A.; Ueyama, D.

    2013-11-01

    We investigate the mechanism of the phenomenon called the “faster-is-slower”effect in pedestrian flow studies analytically with a simplified phenomenological model. It is well known that the flow rate is maximized at a certain strength of the driving force in simulations using the social force model when we consider the discharge of self-driven particles through a bottleneck. In this study, we propose a phenomenological and analytical model based on a mechanics-based modeling to reveal the mechanism of the phenomenon. We show that our reduced system, with only a few degrees of freedom, still has similar properties to the original many-particle system and that the effect comes from the competition between the driving force and the nonlinear friction from the model. Moreover, we predict the parameter dependences on the effect from our model qualitatively, and they are confirmed numerically by using the social force model.

  13. Novel Straight Road Driving Control of Power Assisted Wheelchair Based on Disturbance Estimation of Right and Left Wheels

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.

  14. Alcohol control in Virginia : planning documents for use by agencies of the Commonwealth.

    DOT National Transportation Integrated Search

    1982-01-01

    The Governor's Task Force to Combat Drunk Driving was created to confront the problem of drunken driving in Virginia, and to ascertain Virginia's current efforts to address this problem so that these efforts could be assessed and appropriate changes ...

  15. Does the S.D.E.P. increase performance?

    NASA Astrophysics Data System (ADS)

    Syltebo, Andy

    2003-05-01

    Through the guidance of the program, "Physical Systems," at The Evergreen State College in Olympia Washington, Andy Syltebo will be investigating how the Surface Drive Enhancement Project will affect the performance of a planing hull powered by surface drive propulsion. A radio controlled model boat of the forementioned design is the prototype vehicle used for experimentation and analysis. The idea of this project revolves around harnessing the energy in the water of a rooster tail ejected from the wake of a surface drive propeller of a boat with a planing hull design. The Surface Drive Enhancement Project (S.D.E.P. for short) is an angled set of adjustable platforms placed in the path of the rooster tail. Theoretically, it experiences the normal force of the water on its surface which, through conservation of momentum, distributes a force on the boat, with which the S.D.E.P. is attached, in both the upwards and forwards directions. This design will be tested and documented to see if it increases forward velocity without sacrificing handling characteristics.

  16. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  17. Soliton motion in a parametrically ac-driven damped Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, K.O.; Malomed, B.A.; Bishop, A.R.

    We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually relaxes back to the equilibrium state that existed before the passage of themore » soliton. The perturbation theory predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic. {copyright} {ital 1998} {ital The American Physical Society}« less

  18. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    NASA Astrophysics Data System (ADS)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis for the Zhuhai Government in building National Forest City. Keywords: forest and greenbelt; remote sensing; dynamic monitoring; driving force; vegetation coverage

  19. Hydraulic Limits on Maximum Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water potential compare well with measured peak transpiration and minimum water potentials across plant types and biomes, suggesting that plant water transport system and stomatal regulation co-evolved to meet peak atmospheric demands, thus sustaining carbon uptake while avoiding tissue damage even in such harsh conditions.

  20. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  1. Vortex dynamics in type-II superconductors under strong pinning conditions

    NASA Astrophysics Data System (ADS)

    Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

    2017-10-01

    We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

  2. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems.

    PubMed

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  3. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.

    PubMed

    Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam

    2014-03-03

    Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Stride length: the impact on propulsion and bracing ground reaction force in overhand throwing.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L

    2018-03-26

    Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior-posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs' braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.

  5. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    PubMed Central

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  6. Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules.

    PubMed

    Quintas, Pedro O; Cepeda, Andreia P; Borges, Nuno; Catarino, Teresa; Turner, David L

    2013-06-01

    Multihaem cytochromes are essential to the energetics of organisms capable of bioremediation and energy production. The haems in several of these cytochromes have been discriminated thermodynamically and their individual rates of reduction by small electron donors were characterized. The kinetic characterization of individual haems used the Marcus theory of electron transfer and assumed that the rates of reduction of each haem by sodium dithionite depend only on the driving force, while electrostatic interactions were neglected. To determine the relative importance of these factors in controlling the rates, we studied the effect of ionic strength on the redox potential and the rate of reduction by dithionite of native Methylophilus methylotrophus cytochrome c″ and three mutants at different pH values. We found that the main factor determining the rate is the driving force and that Marcus theory describes this satisfactorily. This validates the method of the simultaneous fitting of kinetic and thermodynamic data in multihaem cytochromes and opens the way for further investigation into the mechanisms of these proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A future without health? Health dimension in global scenario studies.

    PubMed Central

    Martens, Pim; Huynen, Maud

    2003-01-01

    This paper reviews the health dimension and sociocultural, economic, and ecological determinants of health in existing global scenario studies. Not even half of the 31 scenarios reviewed gave a good description of future health developments and the different scenario studies did not handle health in a consistent way. Most of the global driving forces of health are addressed adequately in the selected scenarios, however, and it therefore would have been possible to describe the future developments in health as an outcome of these multiple driving forces. To provide examples on how future health can be incorporated in existing scenarios, we linked the sociocultural, economic, and environmental developments described in three sets of scenarios (special report on emission scenarios (SRES), global environmental outlook-3 (GEO3), and world water scenarios (WWS)) to three potential, but imaginary, health futures ("age of emerging infectious diseases", "age of medical technology", and "age of sustained health"). This paper provides useful insights into how to deal with future health in scenarios and shows that a comprehensive picture of future health evolves when all important driving forces and pressures are taken into account. PMID:14997242

  8. Do Young Drivers Become Safer After Being Involved in a Collision?

    PubMed Central

    O’Brien, Fearghal; Bible, Joe; Liu, Danping; Simons-Morton, Bruce G.

    2017-01-01

    As drivers age, their risk of being involved in a car collision decreases. The present study investigated if this trend is due, in part, to some risky drivers having a collision early in their driving lives and subsequently reducing their risky driving after that negative experience. Accelerometers and video cameras were installed in the vehicles of 16- to 17-year-old drivers (N = 254), allowing coders to measure the number of g-force events (i.e., events in which a threshold acceleration level was exceeded) per 1,000 miles and the number of collisions. Among the 41 participants who experienced a severe collision, the rate of g-force events dropped significantly in the 1st month after the collision, remained unchanged for the 2nd month, and increased significantly in the 3rd month. There were no changes in the rate of g-force events at comparable time points for the drivers not involved in a collision. Being involved in a collision led to a decrease in risky driving, but this may have been a temporary effect. PMID:28406372

  9. Electrophysiology of sodium-coupled transport in proximal renal tubules.

    PubMed

    Lang, F; Messner, G; Rehwald, W

    1986-06-01

    Effects of sodium-coupled transport on intracellular electrolytes and electrical properties of proximal renal tubule cells are described in this review. Simultaneous with addition of substrate for sodium-coupled transport to luminal perfusates, both cell membranes depolarize. The luminal cell membrane depolarizes due to opening of sodium-cotransport pathways. The depolarization of the peritubular cell membrane during sodium-coupled transport is primarily due to a circular current reentering the lumen via the paracellular pathway. The depolarization leads to a transient decrease of basolateral potassium conductance that in turn amplifies the depolarization. However, within 5-10 min of continued exposure to substrate, potassium conductance increases again, and peritubular cell membrane repolarizes. During depolarization the driving force of peritubular bicarbonate exit is reduced. As a result net alkalinization of the cell prevails despite an increase of intracellular sodium activity, which reduces the driving force for the sodium-hydrogen ion exchanger and would thus have been expected to acidify the cell. No evidence is obtained for regulatory inhibition of sodium-coupled transport by intracellular sodium or calcium. Rather, luminal cotransport is altered by the change of driving forces.

  10. Spontaneous Ion Depletion and Accumulation Phenomena Induced by Imbibition through Permselective Medium

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Jung, Yeonsu; Park, Sungmin; Kim, Ho-Young; Kim, Sung Jae

    2016-11-01

    Generally, an ion depletion region near a permselective medium is induced by predominant ion flux through the medium. External electric field or hydraulic pressure has been reported as the driving forces. Among these driving forces, an imbibition through the nanoporous medium was chosen as the mechanism to spontaneously generate the ion depletion region. The water-absorbing process leads to the predominant ion flux so that the spontaneous formation of the ion depletion zone is expected even if there are no additional driving forces except for the inherent capillary action. In this presentation, we derived the analytical solutions using perturbation method and asymptotic analysis for the spontaneous phenomenon. Using the analysis, we found that there is also spontaneous accumulation regime depending on the mobility of dissolved electrolytic species. Therefore, the rigorous analysis of the spontaneous ion depletion and accumulation phenomena would provide a key perspective for the control of ion transportation in nanofluidic system such as desalinator, preconcentrator, and energy harvesting device, etc. Samsung Research Funding Center of Samsung Electronics (SRFC-MA1301-02) and BK21 plus program of Creative Research Engineer Development IT, Seoul National University.

  11. Proposed low-temperature solar engine

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.; Kearns, G. B.

    1976-01-01

    Engine, proposed for conversion of Sun's heat to motion without need for heat pumps and associated equipment, uses expansion and contraction of aluminum rod to drive tow out-of-phase windlasses. Linear displacement of 0.076 cm in rod will exert sufficient force to drive pumps, generators, and compressors.

  12. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  13. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    DTIC Science & Technology

    2015-03-26

    Air Force (2010). Manual de Conduccion Logistica . Buenos Aires: HQ Argentine Air Force. Argentine Air Force (2012). El vuelo del condor: 1912-2012...recommendation was made to consider organic or private transportation and reduce transportation time in order to improve responsiveness and drive down...determine overall transportation demand and capacity required for a defined level of service, and to evaluate the tradeoffs between costs and service

  14. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  15. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  16. Simulation of parameters of hydraulic drive with volumetric type controller

    NASA Astrophysics Data System (ADS)

    Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.

    2017-09-01

    The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.

  17. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  18. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  19. Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system

    NASA Astrophysics Data System (ADS)

    Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing

    2015-09-01

    A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.

  20. Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Weigang; Lapenta, Giovanni; Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven

    The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopicmore » drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.« less

  1. Drive Control of an Electric Vehicle by a Non-linear Controller

    NASA Astrophysics Data System (ADS)

    Mubin, Marizan; Ouchi, Shigeto; Anabuki, Masatoshi; Hirata, Hiroshi

    The driving force of automobiles is transmitted by the frictional force between the tires and the road surface. This frictional force is a function of the weight of the car-body and the friction coefficient μ between the tires and the road surface. The friction coefficient μ is also a function of the following parameters: the slip ratio λ determined by the car-body speed and the wheel speed, and the condition of the road surface. Slippage of automobiles which causes much damage often occurs during accelerating and braking. In this paper, we propose a new drive control system which has an effect on acceleration and braking. In the drive control system, a non-linear controller designed by using a Lyapunov function is used. This non-linear controller has two functions: first one is μ control which moves the car-body, another one is λ control. The controller is designed in order that μ and λ work at noslip and with slip respectively. As another controller, a disturbance observer is used for estimating the car-body speed which is difficult to be measured. Then, this lead to the proof of the stability condition of the combined system which consists of two controllers: the non-linear controller and the disturbance observer. Finally, the effectiveness of this control system is proved by a very satisfactory simulation and experimental results for two cases.

  2. MRCK-1 drives apical constriction in C. elegans by linking developmental patterning to force generation

    PubMed Central

    Marston, Daniel J.; Higgins, Christopher D.; Peters, Kimberly A.; Cupp, Timothy D.; Dickinson, Daniel J.; Pani, Ariel M.; Moore, Regan P.; Cox, Amanda H.; Kiehart, Daniel P.; Goldstein, Bob

    2016-01-01

    Summary Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis. PMID:27451898

  3. Contradictory Evidence on Wave Forcing of Tropical Upwelling in the Brewer-Dobson Circulation - A Suggested Resolution

    NASA Technical Reports Server (NTRS)

    Zhou, Tiehan; Geller, Marvin A.; Lin, Wuyin

    2011-01-01

    ERA-40 data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical wave forcing exerts its influence on tropical upwelling via its body force on the zonal mean flow.

  4. Air Force Health Study. An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. Volume 1

    DTIC Science & Technology

    1991-03-01

    found to be significantly associated with coordination and a central nervous system index, but cranial nerve function and peripheral nerve status...AD-A237 516 Air Force Health Study A An Epidemiologic In vestigation of Health Effects in Air Force Personnel Following Exposure to Herbicides SAIC...Smeda SCIENCE APPLICATIONS EPIDEMIOLOGY RESEARCH DIVISION INTERNATIONAL CORPORATION ARMSTRONG LABORATORY 8400 Westpark Drive HUMAN SYSTEMS DIVISION

  5. An Army Force Structure for the Future

    DTIC Science & Technology

    1992-03-31

    realization: deterring aggression; ensuring access to foreign markets , energy, mineral resources, the oceans, and space; maintaining stable regional...establish the optimum organisational mix for independent and highly flexible operational-level activity." 7 Two factors are driving this structural change...armored forces; and optimizing the force mix of the three. However, before describing the specific changes needed to shape the future Army, a delineation

  6. Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction

    NASA Astrophysics Data System (ADS)

    Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.

    2017-11-01

    The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.

  7. Development of a shear force measurement dummy for seat comfort.

    PubMed

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  8. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  9. Micromechanical analysis of volumetric growth in the context of open systems thermodynamics and configurational mechanics. Application to tumor growth

    NASA Astrophysics Data System (ADS)

    Ganghoffer, J. F.; Boubaker, M. B.

    2017-03-01

    We adopt in this paper the physically and micromechanically motivated point of view that growth (resp. resorption) occurs as the expansion (resp. contraction) of initially small tissue elements distributed within a host surrounding matrix, due to the interfacial motion of their boundary. The interface motion is controlled by the availability of nutrients and mechanical driving forces resulting from the internal stresses that built in during the growth. A general extremum principle of the zero potential for open systems witnessing a change of their mass due to the diffusion of nutrients is constructed, considering the framework of open systems thermodynamics. We postulate that the shape of the tissue element evolves in such a way as to minimize the zero potential among all possible admissible shapes of the growing tissue elements. The resulting driving force for the motion of the interface sets a surface growth models at the scale of the growing tissue elements, and is conjugated to a driving force identified as the interfacial jump of the normal component of an energy momentum tensor, in line with Hadamard's structure theorem. The balance laws associated with volumetric growth at the mesoscopic level result as the averaging of surface growth mechanisms occurring at the microscopic scale of the growing tissue elements. The average kinematics has been formulated in terms of the effective growth velocity gradient and elastic rate of deformation tensor, both functions of time. This formalism is exemplified by the simulation of the avascular growth of multicell spheroids in the presence of diffusion of nutrients, showing the respective influence of mechanical and chemical driving forces in relation to generation of internal stresses.

  10. Design and analysis of the Gemini chain system in dual clutch transmission of automobile

    NASA Astrophysics Data System (ADS)

    Cheng, Yabing; Guo, Haitao; Fu, Zhenming; Wan, Nen; Li, Lei; Wang, Yang

    2015-01-01

    Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.

  11. Driving force analysis of proton tunnelling across a reactivity series for an enzyme-substrate complex.

    PubMed

    Hothi, Parvinder; Hay, Sam; Roujeinikova, Anna; Sutcliffe, Michael J; Lee, Michael; Leys, David; Cullis, Paul M; Scrutton, Nigel S

    2008-11-24

    Quantitative structure-activity relationships are widely used to probe C-H bond breakage by quinoprotein enzymes. However, we showed recently that p-substituted benzylamines are poor reactivity probes for the quinoprotein aromatic amine dehydrogenase (AADH) because of a requirement for structural change in the enzyme-substrate complex prior to C-H bond breakage. This rearrangement is partially rate limiting, which leads to deflated kinetic isotope effects for p-substituted benzylamines. Here we report reactivity (driving force) studies of AADH with p-substituted phenylethylamines for which the kinetic isotope effect (approximately 16) accompanying C-H/C-(2)H bond breakage is elevated above the semi-classical limit. We show bond breakage occurs by quantum tunnelling and that within the context of the environmentally coupled framework for H-tunnelling the presence of the p-substituent places greater demand on the apparent need for fast promoting motions. The crystal structure of AADH soaked with phenylethylamine or methoxyphenylethylamine indicates that the structural change identified with p-substituted benzylamines should not limit the reaction with p-substituted phenylethylamines. This is consistent with the elevated kinetic isotope effects measured with p-substituted phenylethylamines. We find a good correlation in the rate constant for proton transfer with bond dissociation energy for the reactive C-H bond, consistent with a rate that is limited by a Marcus-like tunnelling mechanism. As the driving force becomes larger, the rate of proton transfer increases while the Marcus activation energy becomes smaller. This is the first experimental report of the driving force perturbation of H-tunnelling in enzymes using a series of related substrates. Our study provides further support for proton tunnelling in AADH.

  12. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  13. Hydrodynamic Forces on Composite Structures

    DTIC Science & Technology

    2014-06-01

    and placed under a vacuum of 10 mmHg overnight. The vacuum set up over the composite sample is shown in Figure 13, the hose in upper left leads to...pulley system, one of which drives the carriage via a braided steel cable. Although the pulley connection between the motor and the drive axle may...slip this system contains a tensioner device. More likely, the braided steel cable is slipping against the drive pulley which has a quarter-inch

  14. Modeling Interactions Between Flexible Flapping Wing Spars, Mechanisms, and Drive Motors

    DTIC Science & Technology

    2011-09-01

    of dynamical equations is presented that allow micro air vehicle (MAV) or- nithopter designers to match drive motors to loads produced by flexible...aeroelastic systems is presented. One potential use for such a model is to serve as the basis for a vehicle design tool that matches drive motors to loads...friction. ∗Senior Aerospace Engineer, Control Design and Analysis Branch, 2210 Eighth Street, Ste. 21, Air Force Research Labora- tory, WPAFB, OH 45433

  15. Transfer system

    DOEpatents

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  16. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  17. Differences in net primary production and biogeochemistry between contrasting floodplain forests

    Treesearch

    Erik B. Schilling; B. Graeme Lockaby

    2000-01-01

    A firm understanding of the driving forces controlling variation among wetland forests continues to elude scientists and land managers—specifically the biogeochemical processes controlling vegetation production. Within contrasting wetland forests, insight into the biogeochemical processes driving productivity levels may befound by examining the degree to which nitrogen...

  18. Making Curiosity Accessible: Lynne Cutler--Oakland Public Library

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    Lynne Cutler's driving force is the intense curiosity that led her to audit 24 additional courses while studying librarianship. It is what drives her to make Oakland Public Library's services available to those with disabilities, so that everyone can have "access to all the things in life I treasure, like books, words, music, art,…

  19. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... installation and at various heights under the edge of the door and located in line with the driving point of... installation, the bottom edge of the door under the driving force of the operator is to be against the floor... that represents the most severe operating condition. Any accessories having an effect on the intended...

  20. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  1. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  2. The Strategic Development of the Trinidad and Tobago Defence Force

    DTIC Science & Technology

    2009-06-12

    and ecommerce . In combination, these driving forces of change led to an explosion in world trade, an exponential increase in business...the troops into rural communities and assisted villagers in community structural improvements and socialized with them. This was designed to win

  3. The role of biotic forces in driving macroevolution: beyond the Red Queen

    PubMed Central

    Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.

    2015-01-01

    A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685

  4. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  5. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  6. What drives innovation in renewable energy technology? Evidence based on patent counts

    NASA Astrophysics Data System (ADS)

    McCormick, Jesse

    America's future economic growth and international competitiveness depend on our capacity to innovate, particularly in emerging global markets. This paper analyzes the forces that drive innovation in one such market, renewable energy technologies, utilizing the theory of induced technological innovation. Specifically, this paper operationalizes the determinants of innovation to consist of: 1) private market forces, 2) public policy that influences price and market size, and 3) public policy that catalyzes R&D investment. Analysis is conducted using a negative binomial regression to determine which of the three foundational determinants has the greatest impact on renewable energy innovation. In so doing this paper builds off of work conducted by Johnstone et al. (2010). Innovation is measured using European Patent Office data on a panel of 24 countries spanning the period from 1978-2005. The implications of this study are straightforward; policies, not market forces, are responsible for driving innovation in renewable energy technologies. Market-oriented policies are effective for mature technologies, particularly hydro, and to a lesser extent wind and solar power. R&D-oriented policy is effective for a broader technology set. In short, the United States needs a comprehensive policy environment to support renewable energy innovation; market forces alone will not provide the pace and breadth of innovations needed. That environment can and should be strategically targeted, however, to effectively allocate scare resources.

  7. Observation and simulation of an optically driven micromotor

    NASA Astrophysics Data System (ADS)

    Metzger, N. K.; Mazilu, M.; Kelemen, L.; Ormos, P.; Dholakia, K.

    2011-04-01

    In the realm of low Reynolds number flow there is a need to find methods to pump, move and mix minute amounts of analyte. Interestingly, micro-devices performing such actuation can be initiated by means of the light-matter interaction. Light induced forces and torques are exerted on such micro-objects, which are then driven by the optical gradient or scattering force. Here, different driving geometries can be realized to harness the light induced force. For example, the scattering force enables micro-gears to be operated in a tangential setup where the micromotor rotors are in line with an optical waveguide. The operational geometry we investigate has the advantage that it reduces the complexity of the driving of such a device in a microfluidic environment by delivering the actuating light by means of a waveguide or fiber optic. In this paper we explore the case of a micromotor being driven by a fiber optically delivered light beam. We experimentally investigate how the driving light interacts with and diffracts from the motor, utilizing two-photon imaging. The micromotor rotation rate dependence on the light field parameters is explored. Additionally, a theoretical model based on the paraxial approximation is used to simulate the torque and predict the rotation rate of such a device and compare it with experiment. The results presented show that our model can be used to optimize the micromotor performance and some example motor designs are evaluated.

  8. Control rod drive

    DOEpatents

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  9. Control rod for a nuclear reactor

    DOEpatents

    Roman, Walter G.; Sutton, Jr., Harry G.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

  10. Equipment Location Plan, partial basement plan. (Includes identification of each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial basement plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southeast part of the basement.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L DPC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 100, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/100, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  11. Equipment Location Plan, partial first floor plan. (Includes identification of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial first floor plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southwest part of the first floor.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L EDTCC/EDLCC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 85, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/85, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  12. Non-Equlibrium Driven Dynamics of Continuous Attractors in Place Cell Networks

    NASA Astrophysics Data System (ADS)

    Zhong, Weishun; Kim, Hyun Jin; Schwab, David; Murugan, Arvind

    Attractors have found much use in neuroscience as a means of information processing and decision making. Examples include associative memory with point and continuous attractors, spatial navigation and planning using place cell networks, dynamic pattern recognition among others. The functional use of such attractors requires the action of spatially and temporally varying external driving signals and yet, most theoretical work on attractors has been in the limit of small or no drive. We take steps towards understanding the non-equilibrium driven dynamics of continuous attractors in place cell networks. We establish an `equivalence principle' that relates fluctuations under a time-dependent external force to equilibrium fluctuations in a `co-moving' frame with only static forces, much like in Newtonian physics. Consequently, we analytically derive a network's capacity to encode multiple attractors as a function of the driving signal size and rate of change.

  13. A two-layer linear piezoelectric micromotor.

    PubMed

    Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A first bending (B1) mode two-layer piezoelectric ultrasonic linear micromotor has been developed for microoptics driving applications. The piezo-vibrator of the micromotor was composed of two small Pb(Zr,Ti)O3 (PZT-5) plates, with overall dimensions and mass of only 2.0 × 2.0 × 5.0 mm(3) and 0.2 g, respectively. The proposed micromotor could operate either in single-phase voltage (standing wave) mode or two-phase voltage (traveling wave) mode to drive a slider via friction force to provide bidirectional linear motion. A large thrust of up to 0.30 N, which corresponds to a high unit volume direct driving force of 15 mN/mm(3), and a linear movement velocity of up to 230 mm/s were obtained under an applied voltage of 80 Vpp at the B1 mode resonance frequency of 174 kHz.

  14. New level of vehicle comfort and vehicle stability via utilisation of the suspensions anti-dive and anti-squat geometry

    NASA Astrophysics Data System (ADS)

    Lindvai-Soos, Daniel; Horn, Martin

    2018-07-01

    In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.

  15. The Triggering of Large-Scale Waves by CME Initiation

    NASA Astrophysics Data System (ADS)

    Forbes, Terry

    Studies of the large-scale waves generated at the onset of a coronal mass ejection (CME) can provide important information about the processes in the corona that trigger and drive CMEs. The size of the region where the waves originate can indicate the location of the magnetic forces that drive the CME outward, and the rate at which compressive waves steepen into shocks can provide a measure of how the driving forces develop in time. However, in practice it is difficult to separate the effects of wave formation from wave propagation. The problem is particularly acute for the corona because of the multiplicity of wave modes (e.g. slow versus fast MHD waves) and the highly nonuniform structure of the solar atmosphere. At the present time large-scale numerical simulations provide the best hope for deconvolving wave propagation and formation effects from one another.

  16. A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang

    2013-01-01

    A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  18. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  19. A general method for the layout of ailerons and elevators of gliders and motorplanes

    NASA Technical Reports Server (NTRS)

    Hiller, M. H.

    1979-01-01

    A method is described which allows the layout of the spatial driving mechanism of the aileron for a glider or a motorplane to be performed in a systematic manner. In particular, a prescribed input-output behavior of the mechanism can be realized by variation of individual parameters of the spatial four-bar mechanisms which constitute the entire driving mechanism. By means of a sensitivity analysis, a systematic choice of parameters is possible. At the same time the forces acting in the mechanism can be limited by imposing maximum values of the forces as secondary conditions during the variation process.

  20. Model-based auralizations of violin sound trends accompanying plate-bridge tuning or holding.

    PubMed

    Bissinger, George; Mores, Robert

    2015-04-01

    To expose systematic trends in violin sound accompanying "tuning" only the plates or only the bridge, the first structural acoustics-based model auralizations of violin sound were created by passing a bowed-string driving force measured at the bridge of a solid body violin through the dynamic filter (DF) model radiativity profile "filter" RDF(f) (frequency-dependent pressure per unit driving force, free-free suspension, anechoic chamber). DF model auralizations for the more realistic case of a violin held/played in a reverberant auditorium reveal that holding the violin greatly diminishes its low frequency response, an effect only weakly compensated for by auditorium reverberation.

  1. Effect of ionization on the oxidation kinetics of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong

    2018-03-01

    Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.

  2. Study on loading and unloading performance of new energy vehicle battery sensor

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Ren, Kai; Liu, Ying

    2017-04-01

    This paper first introduces the 18650 battery, describes the importance of the battery temperature sensor, uses Ansys Workbench finite element simulation software and the mean of the combination of displacement constraint and reaction force, studies the force and the size of the change of new energy vehicle battery temperature sensor in the loading, translation and unloading of the three cases, then make the test to verify its accuracy. At last, the test results are compared with the usual maximum acceleration of the vehicle in driving which verified the sensor of the car will not fall off in the car driving process and work normally.

  3. Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.

    PubMed

    Noh, Minkyun; Gruber, Wolfgang; Trumper, David L

    2017-10-01

    We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.

  4. The Study of Driving Forces of Land Use Transformation in the Pearl River Delta during 1990 to 2010※

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Wang, Xiuming; Zhao, Peng; Liu, Xucheng; Zhang, Yuhuan

    2018-05-01

    Based on the land use data of the study area in 1990, 2000 and 2010, the paper tries to analyse the characteristic of land use and cover change (LUCC) in Pearl River Delta and its driving forces as well as the differences of driving forces among Shenzhen, Dongguan and Foshan by adopting the approaches of land use dynamic degree, the land use transition matrix and case studies. The results show that a large amount of farmland and forests have been converted to construction land in the study area, and the synthesize land use dynamic degrees of the study area are 2.3% and 6.2% during 1990-2000 and 2000-2010, respectively. The results also indicate that Zhuhai and Shenzhen have the highest land use dynamic degree among the nine cities of Pearl River Delta during 1990-2000, and Dongguan has the highest land use dynamic degree during 2000-2010. It can be inferred that the transitions from farmland and forest to construction land have been propelled by the local economic development and population growth, and the land use changes in forest and grassland have been driven by natural factors such as slope and elevation.

  5. Survey of the present state of the art of piezoelectric linear motors

    PubMed

    Hemsel; Wallaschek

    2000-03-01

    Piezoelectric ultrasonic motors have been investigated for several years and have already found their first practical applications. Their key feature is that they are able to produce a high thrust force related to their volume. Beside rotary drives like the travelling wave motor, linear drives have also been developed, but only a few are presently commercially available. In the present paper, we first describe the state of the art of linear piezoelectric motors. The motors are characterized with respect to their no-load velocity, maximum thrust force, efficiency and other technical properties. In the second part, we present a new motor, which is judged to be capable of surpassing the characteristics of other piezoelectric motors because of its unique design which allows the piezoelectric drive elements to be pre-stressed in the direction of their polarization. The piezoelectric elements convert energy using the longitudinal d33 effect which allows an improved reliability, large vibration amplitudes and excellent piezoelectric coupling. Energy loss by vibration damping is minimized, and the efficiency can be improved significantly. Experimental results show that the motor characteristics can be optimized for a particular task by choosing the appropriate operating parameters such as exciting voltage, exciting frequency and normal force.

  6. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  7. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces.

    PubMed

    Barisic, Marin; Aguiar, Paulo; Geley, Stephan; Maiato, Helder

    2014-12-01

    Accurate chromosome segregation during cell division in metazoans relies on proper chromosome congression at the equator. Chromosome congression is achieved after bi-orientation to both spindle poles shortly after nuclear envelope breakdown, or by the coordinated action of motor proteins that slide misaligned chromosomes along pre-existing spindle microtubules. These proteins include the minus-end-directed kinetochore motor dynein, and the plus-end-directed motors CENP-E at kinetochores and chromokinesins on chromosome arms. However, how these opposite and spatially distinct activities are coordinated to drive chromosome congression remains unknown. Here we used RNAi, chemical inhibition, kinetochore tracking and laser microsurgery to uncover the functional hierarchy between kinetochore and arm-associated motors, exclusively required for congression of peripheral polar chromosomes in human cells. We show that dynein poleward force counteracts chromokinesins to prevent stabilization of immature/incorrect end-on kinetochore-microtubule attachments and random ejection of polar chromosomes. At the poles, CENP-E becomes dominant over dynein and chromokinesins to bias chromosome ejection towards the equator. Thus, dynein and CENP-E at kinetochores drive congression of peripheral polar chromosomes by preventing arm-ejection forces mediated by chromokinesins from working in the wrong direction.

  8. Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai

    NASA Astrophysics Data System (ADS)

    Shafizadeh-Moghadam, Hossein; Helbich, Marco

    2015-03-01

    The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.

  9. Driving forces behind the Chinese public's demand for improved environmental safety.

    PubMed

    Wen, Ting; Wang, Jigan; Ma, Zongwei; Bi, Jun

    2017-12-15

    Over the past decades, the public demand for improved environmental safety keeps increasing in China. This study aims to assess the driving forces behind the increasing public demand for improved environmental safety using a provincial and multi-year (1995, 2000, 2005, 2010, and 2014) panel data and the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The potential driving forces investigated included population size, income levels, degrees of urbanization, and educational levels. Results show that population size and educational level are positively (P<0.01) associated with public demand for improved environmental safety. No significant impact on demand was found due to the degree of urbanization. For the impact due to income level, an inverted U-shaped curve effect with the turning point of ~140,000 CNY GDP per capita is indicated. Since per capita GDP of 2015 in China was approximately 50,000 CNY and far from the turning point, the public demand for improved environmental safety will continue rising in the near future. To meet the increasing public demand for improved environmental safety, proactive and risk prevention based environmental management systems coupled with effective environmental risk communication should be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fracture toughness in Mode I (GIC) for ductile adhesives

    NASA Astrophysics Data System (ADS)

    Gálvez, P.; Carbas, RJC; Campilho, RDSG; Abenojar, J.; Martínez, MA; Silva LFM, da

    2017-05-01

    Works carried out in this publication belong to a project that seeks the replacement of welded joints by adhesive joints at stress concentration nodes in bus structures. Fracture toughness in Mode I (GIC) has been measured for two different ductile adhesives, SikaTack Drive and SikaForce 7720. SikaTack Drive is a single-component polyurethane adhesive with high viscoelasticity (more than 100%), whose main use is the car-glass joining and SikaForce 7720 is double-component structural polyurethane adhesive. Experimental works have been carried out from the test called Double Cantilever Beam (DCB), using two steel beams as adherents and an adhesive thickness according to the problem posed in the Project, of 2 and 3 mm for SikaForce 7720 and SikaTack Drive, respectively. Three different methods have been used for measuring the fracture toughness in mode I (GIC) from the values obtained in the experimental DCB procedure for each adhesive: Corrected Beam Theory (CBT), Compliance Calibration Method (CCM) and Compliance Based Beam Method (CBBM). Four DCB specimens have been tested for each adhesive. Dispersion of each GIC calculation method for each adhesive has been studied. Likewise variations between the three different methods have been also studied for each adhesive.

  11. Templated electrokinetic directed chemical assembly for the fabrication of close-packed plasmonic metamolecules

    NASA Astrophysics Data System (ADS)

    Thrift, W. J.; Darvishzadeh-Varcheie, M.; Capolino, F.; Ragan, R.

    2017-08-01

    Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface promoting the assembly of close-packed metamolecules. Here, electron beam lithography defined Au pillars are used as seed structures that generate electrohydrodynamic flows. Chemical crosslinking between Au surfaces enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique electromagnetic properties.

  12. Modelling landscape change in paddy fields using logistic regression and GIS

    NASA Astrophysics Data System (ADS)

    Franjaya, E. E.; Syartinilia; Setiawan, Y.

    2018-05-01

    Paddy field in karawang district, as an important agricultural land in west java, has been decreased since 1994. From previous study, paddy fields dominantly turned into built area. The changes were almost occured in the middle area of the district where roadways, industries, settlements, and commercial buildings were existed. These were estimated as driving forces. But, we still need to prove it. This study aimed to construct the paddy field probability change model, subsequently the driving forces will be obtained. GIS combined with logistic regression using environmental variables were used as main method in this study. Ten environmental variables were elevation 0–500 m, elevation>500 m, slope<8%, slope>8%, CBD, build up area, river, irrigation, toll and national roadway, and collector and local roadway. The result indicated that four variables were significantly played as driving forces (slope>8%, CBD area, build up area, and collector and local roadway). Paddy field has high, medium, and low probability to change which covered about 27.8%, 7.8%, and 64.4% area in Karawang respectively. Based on landscape ecology, the recommendation that suitable with landscape change is adaptive management.

  13. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

    DTIC Science & Technology

    2014-06-20

    Figure 17. The engines ingest air /fuel mixture through a dual mixing screw carburetor to the crankcase. Crankcase compression drives the scavenging...Alex K. Rowton, Captain, USAF AFIT-ENY-T-14-J-36 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed

  14. Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations

    DTIC Science & Technology

    2017-05-23

    Dynamics Simulations Ghanshyam L. Vaghjiani Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013 Air Force...Aerospace Systems Directorate Air Force Research Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil IMPROVED...PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release

  15. On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System

    NASA Astrophysics Data System (ADS)

    Wang, Joseph

    Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.

  16. Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.

    2017-12-01

    This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.

  17. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    PubMed Central

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  18. Aerosol Forcing of Climate Change and Anomalous Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change, Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so-called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.

  19. Aerosol Forcing of Climate Change and "Anomalous" Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1999-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so- called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.

  20. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi

    PubMed Central

    Parker, Aimee; Maclaren, Oliver J.; Fletcher, Alexander G.; Muraro, Daniele; Kreuzaler, Peter A.; Byrne, Helen M.; Maini, Philip K.; Watson, Alastair J. M.; Pin, Carmen

    2017-01-01

    The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. PMID:27811059

  1. External solution driving forces for isotonic fluid absorption in proximal tubules.

    PubMed

    Andreoli, T E; Schafer, J A

    1979-02-01

    We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.

  2. Competing in an International Era: Preparing the Workforce for the Global Economy. In Depth.

    ERIC Educational Resources Information Center

    Harmon, Robert, Ed.

    2000-01-01

    During the past decade, countries in Asia, Latin America, and Central Europe have been experiencing a number of converging factors that drive economic growth, propelling them toward greater economic competitiveness with the economies of the United States (U.S.), Japan, and Western Europe. A major driving force behind this global economic growth is…

  3. Inductrack configuration

    DOEpatents

    Post, Richard Freeman [Walnut Creek, CA

    2006-08-29

    A simple permanent-magnet-excited maglev geometry provides levitation forces and is stable against vertical displacements from equilibrium but is unstable against horizontal displacements. An Inductrack system is then used in conjunction with this system to effect stabilization against horizontal displacements and to provide centering forces to overcome centrifugal forces when the vehicle is traversing curved sections of a track or when any other transient horizontal force is present. In some proposed embodiments, the Inductrack track elements are also employed as the stator of a linear induction-motor drive and braking system.

  4. Inductrack configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-07

    A simple permanent-magnet-excited maglev geometry provides levitation forces and is stable against vertical displacements from equilibrium but is unstable against horizontal displacements. An Inductrack system is then used in conjunction with this system to effect stabilization against horizontal displacements and to provide centering forces to overcome centrifugal forces when the vehicle is traversing curved sections of a track or when any other transient horizontal force is present. In some proposed embodiments, the Inductrack track elements are also employed as the stator of a linear induction-motor drive and braking system.

  5. A Service in Transition: Forging an Integrated Institutional Identity for the United States Air Force

    DTIC Science & Technology

    2010-06-01

    Jr (Bomber) o Seventh Air Force, LTG Jeffrey A. Remington (Fighter) o Eleventh Air Force, LTG Dana T. Atkins (Fighter) o Thirteenth Air Force, LTG...Acculturation.‖ In Handbook of Socialization: Theory and Research, edited by Joan E. Grusec, and Paul D. Hastings, 543-560. New York, NY: Guilford...Philip. ―Determinism and Indeterminacy in the History of Technology.‖ In Does Technology Drive History?, edited by Merritt Roe Smith, and Leo Marx

  6. Developing a Global Mindset: Integrating Demographics, Sustainability, Technology, and Globalization

    ERIC Educational Resources Information Center

    Aggarwal, Raj

    2011-01-01

    Business schools face a number of challenges in responding to the business influences of demographics, sustainability, and technology--all three of which are also the fundamental driving forces for globalization. Demographic forces are creating global imbalances in worker populations and in government finances; the world economy faces…

  7. Photocopy of drawing (original drawing of Signal & Ordnance Warehouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Signal & Ordnance Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General)TRUSS DETAILS - MacDill Air Force Base, Signal & Ordnance Warehouse, 7620 Hanger Loop Drive, Tampa, Hillsborough County, FL

  8. Photocopy of drawing (original drawing of Photographic Laboratory Building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) PLANS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL

  9. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  10. Associations between motor unit action potential parameters and surface EMG features.

    PubMed

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.

  11. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, R.W.; Oberdorfer, J.A.

    A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of theirmore » effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.« less

  13. Static and dynamic deflection studies of the SRM aft case-nozzle joint

    NASA Technical Reports Server (NTRS)

    Christian, David C.; Kos, Lawrence D.; Torres, Isaias

    1989-01-01

    The redesign of the joints on the solid rocket motor (SRM) has prompted the need for analyzing the behavior of the joints using several different types of analyses. The types of analyses performed include modal analysis, static analysis, transient response analysis, and base driving response analysis. The forces used in these analyses to drive the mathematical model include SRM internal chamber pressure, nozzle blowout and side forces, shuttle vehicle lift-off dynamics, SRM pressure transient rise curve, gimbal forces and moments, actuator gimbal loads, and vertical and radial bolt preloads. The math model represented the SRM from the aft base tangent point (1,823.95 in) all the way back to the nozzle, where a simplified, tuned nozzle model was attached. The new design used the radial bolts as an additional feature to reduce the gap opening at the aft dome/nozzle fixed housing interface.

  14. Emergence of an apical epithelial cell surface in vivo

    PubMed Central

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B.

    2016-01-01

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological and laser-dissection experiments with theoretical modelling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  15. Magneto-capillary dynamics of amphiphilic Janus particles at curved liquid interfaces.

    PubMed

    Fei, Wenjie; Driscoll, Michelle M; Chaikin, Paul M; Bishop, Kyle J M

    2018-05-11

    A homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane. Application of a static homogeneous field drives particle motion to the drop equator where the particle's magnetic moment can align parallel to the field. As explained quantitatively by a simple model, the effective magnetic force on the particle scales linearly with the curvature of the interface. For particles adsorbed on small droplets such as those found in emulsions, these magneto-capillary forces can far exceed those due to magnetic field gradients in both magnitude and range. This mechanism may be useful in creating highly responsive emulsions and foams stabilized by magnetic particles.

  16. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  17. Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2006-11-01

    Frequency modulation atomic force microscopy (FM-AFM) utilizes the principle of self-excitation to ensure the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this is achieved by fixing the phase difference between tip deflection and driving force at precisely 90° . This, in turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude, even while operating away from the resonant frequency with the use of appropriate replacements in the existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demonstrate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase detuning, particularly in liquid environments.

  18. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  19. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  20. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP [Investigating the scale dependence of SCM simulated precipitation and cloud by using gridded forcing data at SGP

    DOE PAGES

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-05

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  1. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  2. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  3. A small, linear, piezoelectric ultrasonic cryomotor

    NASA Astrophysics Data System (ADS)

    Dong, Shuxiang; Yan, Li; Wang, Naigang; Viehland, Dwight; Jiang, Xiaoning; Rehrig, Paul; Hackenberger, Wes

    2005-01-01

    A small, linear-type, piezoelectric ultrasonic cryomotor has been developed for precision positioning at extremely low temperatures (⩾-200°C). This cryomotor consists of a pair of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal stacks, which are piezoelectrically excited into the rotating third-bending mode of the cryomotor stator's center, which in turn drives a contacted slider into linear motion via frictional forces. The performance characteristics achieved by the cryomotor are: (i) a maximum linear speed of >50mm /s; (ii) a stroke of >10mm; (iii) a driving force of >0.2N; (iv) a response time of ˜29ms; and (v) a step resolution of ˜20nm.

  4. Protein folding: complex potential for the driving force in a two-dimensional space of collective variables.

    PubMed

    Chekmarev, Sergei F

    2013-10-14

    Using the Helmholtz decomposition of the vector field of folding fluxes in a two-dimensional space of collective variables, a potential of the driving force for protein folding is introduced. The potential has two components. One component is responsible for the source and sink of the folding flows, which represent respectively, the unfolded states and the native state of the protein, and the other, which accounts for the flow vorticity inherently generated at the periphery of the flow field, is responsible for the canalization of the flow between the source and sink. The theoretical consideration is illustrated by calculations for a model β-hairpin protein.

  5. Generation of mechanical oscillation applicable to vibratory rate gyroscopes

    NASA Technical Reports Server (NTRS)

    Lemkin, Mark A. (Inventor); Juneau, Thor N. (Inventor); Clark, William A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    To achieve a drive-axis oscillation with improved frequency and amplitude stability, additional feedback loops are used to adjust force-feedback loop parameters. An amplitude-control loop measures oscillation amplitude, compares this value to the desired level, and adjusts damping of the mechanical sense-element to grow or shrink oscillation amplitude as appropriate. A frequency-tuning loop measures the oscillation frequency, compares this value with a highly stable reference, and adjusts the gain in the force-feedback loop to keep the drive-axis oscillation frequency at the reference value. The combined topology simultaneously controls both amplitude and frequency. Advantages of the combined topology include improved stability, fast oscillation start-up, low power consumption, and excellent shock rejection.

  6. Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.

    PubMed

    Kong, Xian; Jiang, Jian; Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2014-09-04

    Ion transport through nanochannels depends on various external driving forces as well as the structural and hydrodynamic inhomogeneity of the confined fluid inside of the pore. Conventional models of electrokinetic transport neglect the discrete nature of ionic species and electrostatic correlations important at the boundary and often lead to inconsistent predictions of the surface potential and the surface charge density. Here, we demonstrate that the electrokinetic phenomena can be successfully described by the classical density functional theory in conjunction with the Navier-Stokes equation for the fluid flow. The new theoretical procedure predicts ion conductivity in various pH-regulated nanochannels under different driving forces, in excellent agreement with experimental data.

  7. Ball Screw Actuator Including an Axial Soft Stop

    NASA Technical Reports Server (NTRS)

    Forrest, Steven Talbert (Inventor); Woessner, George (Inventor); Abel, Steve (Inventor); Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  8. Unsteady Sail Dynamics in Olympic Class Sailboats

    NASA Astrophysics Data System (ADS)

    Williamson, Charles; Schutt, Riley

    2016-11-01

    Unsteady sailing techniques have evolved in competitive sailboat fleets, in cases where the relative weight of the sailor is sufficient to impart unsteady motions to the boat and sails. We will discuss three types of motion that are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. In all of our cases, body weight movements induce unsteady sail motion, increasing driving force and speed through the water. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and a 6-GoPro camera array. We shall briefly discuss "sail flicking", whereby the helmsman periodically rolls the sail into the apparent wind, at an angle which is distinct from classical heave (in our case, the oscillations are not normal to the apparent flow). We also demonstrate "roll tacking", where there are considerable advantages to rolling the boat during such a maneuver, especially in light wind. In both of the above examples from on-the-water studies, corresponding experiments using a towing tank exhibit increases in the driving force, associated with the formation of strong vortex pairs into the flow. Finally, we focus on a technique known as "S-curving" in the case where the boat sails downwind. In contrast to the previous cases, it is drag force rather than lift force that the sailor is trying to maximise as the boat follows a zig-zag trajectory. The augmented apparent wind strength due to the oscillatory sail motion, and the growth of strong synchronised low-pressure wake vortices on the low-pressure side of the sail, contribute to the increase in driving force, and velocity-made-good downwind.

  9. Optimal design of a main driving mechanism for servo punch press based on performance atlases

    NASA Astrophysics Data System (ADS)

    Zhou, Yanhua; Xie, Fugui; Liu, Xinjun

    2013-09-01

    The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.

  10. Estimation of the neural drive to the muscle from surface electromyograms

    NASA Astrophysics Data System (ADS)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  11. Viscoelastic-coupling model for the earthquake cycle driven from below

    USGS Publications Warehouse

    Savage, J.C.

    2000-01-01

    In a linear system the earthquake cycle can be represented as the sum of a solution which reproduces the earthquake cycle itself (viscoelastic-coupling model) and a solution that provides the driving force. We consider two cases, one in which the earthquake cycle is driven by stresses transmitted along the schizosphere and a second in which the cycle is driven from below by stresses transmitted along the upper mantle (i.e., the schizosphere and upper mantle, respectively, act as stress guides in the lithosphere). In both cases the driving stress is attributed to steady motion of the stress guide, and the upper crust is assumed to be elastic. The surface deformation that accumulates during the interseismic interval depends solely upon the earthquake-cycle solution (viscoelastic-coupling model) not upon the driving source solution. Thus geodetic observations of interseismic deformation are insensitive to the source of the driving forces in a linear system. In particular, the suggestion of Bourne et al. [1998] that the deformation that accumulates across a transform fault system in the interseismic interval is a replica of the deformation that accumulates in the upper mantle during the same interval does not appear to be correct for linear systems.

  12. Increasing the Drive of Your Physics Class

    ERIC Educational Resources Information Center

    Eisenstein, Stanley

    2008-01-01

    First-year physics students often have a difficult time grasping Newton's laws of motion and recognizing the forces that these laws depend on. The "Paper Car" project is an experiential activity that is rich in application of force principles. It is also simple enough that students are able to integrate straightforward but non-trivial physics…

  13. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  14. Photocopy of drawing (original blueprint of Special Type Service Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original blueprint of Special Type Service Station in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Standard Oil Company Engineering Department of Louisville, KY) ELEVATIONS & SECTION - MacDill Air Force Base, Service Station, 7303 Hanger Loop Drive, Tampa, Hillsborough County, FL

  15. Photocopy of drawing (original blueprint of Special Type Service Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original blueprint of Special Type Service Station in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Standard Oil Company Engineering Department of Louisville, KY) PLAN - MacDill Air Force Base, Service Station, 7303 Hanger Loop Drive, Tampa, Hillsborough County, FL

  16. Photocopy of drawing (original blueprint of Special Type Service Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original blueprint of Special Type Service Station in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Standard Oil Company Engineering Department of Louisville, KY) SITE PLAN - MacDill Air Force Base, Service Station, 7303 Hanger Loop Drive, Tampa, Hillsborough County, FL

  17. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  18. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  19. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  20. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  1. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  2. Photocopy of drawing (original drawing of Signal & Ordnance Warehouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Signal & Ordnance Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) SECTIONS AND DETAILS - MacDill Air Force Base, Signal & Ordnance Warehouse, 7620 Hanger Loop Drive, Tampa, Hillsborough County, FL

  3. Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) END ELEVATION AND SECTIONS - MacDill Air Force Base, Quartermaster Warehouse & Commissary, 7621 Hillsborough Loop Drive, Tampa, Hillsborough County, FL

  4. Photocopy of drawing (original drawing of Photographic Laboratory Building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) MAIN ENTRANCE DETAILS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL

  5. Photocopy of drawing (original drawing of PaintOil & Dope Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Paint-Oil & Dope Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) DETAILS - MacDill Air Force Base, Paint, Oil & Dope Building, 7716 Hanger Loop Drive, Tampa, Hillsborough County, FL

  6. Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) SECTIONS AND DETAILS - MacDill Air Force Base, Quartermaster Warehouse & Commissary, 7621 Hillsborough Loop Drive, Tampa, Hillsborough County, FL

  7. Photocopy of drawing (original drawing of PaintOil & Dope Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Paint-Oil & Dope Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) PLAN AND ELEVATIONS - MacDill Air Force Base, Paint, Oil & Dope Building, 7716 Hanger Loop Drive, Tampa, Hillsborough County, FL

  8. Photocopy of drawing (original drawing of Signal & Ordnance Warehouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Signal & Ordnance Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) PLANS, ELEVATIONS, SECTIONS AND DETAILS - MacDill Air Force Base, Signal & Ordnance Warehouse, 7620 Hanger Loop Drive, Tampa, Hillsborough County, FL

  9. Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FRONT AND REAR ELEVATIONS - MacDill Air Force Base, Quartermaster Warehouse & Commissary, 7621 Hillsborough Loop Drive, Tampa, Hillsborough County, FL

  10. The Entrepreneurial Spirit and the Evolving Workplace.

    ERIC Educational Resources Information Center

    Workforce Economics, 1999

    1999-01-01

    A growing percentage of the U.S. work force depends upon entrepreneurial skills and behaviors to succeed in the new opportunity economy. The explosion of technology, accelerating need for new and different products, globalization of business, and demand for speed in delivery have shifted the economic driving force toward companies that can meet…

  11. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  12. The human power amplifier technology at the University of California, Berkeley.

    PubMed

    Kazerooni, H

    1996-01-01

    A human's ability to perform physical tasks is limited by physical strength, not by intelligence. We define "extenders" as a class of robot manipulators worn by humans to augment human mechanical strength, while the wearer's intellect remains the central control system for manipulating the extender. Our research objective is to determine the ground rules for the design and control of robotic systems worn by humans through the design, construction, and control of several prototype experimental direct-drive/non-direct-drive multi-degree-of-freedom hydraulic/electric extenders. The design of extenders is different from the design of conventional robots because the extender interfaces with the human on a physical level. Two sets of force sensors measure the forces imposed on the extender by the human and by the environment (i.e., the load). The extender's compliances in response to such contact forces were designed by selecting appropriate force compensators. This paper gives a summary of some of the selected research efforts related to Extender Technology, carried out during 1980s. The references, at the end of this article, give detailed description of the research efforts.

  13. Transmitral flow velocity-contour variation after premature ventricular contractions: a novel test of the load-independent index of diastolic filling.

    PubMed

    Boskovski, Marko T; Shmuylovich, Leonid; Kovács, Sándor J

    2008-12-01

    The new echocardiography-based, load-independent index of diastolic filling (LIIDF) M was assessed using load-/shape-varying E-waves after premature ventricular contractions (PVCs). Twenty-six PVCs in 15 subjects from a preexisting simultaneous echocardiography-catheterization database were selected. Perturbed load-state beats, defined as the first two post-PVC E-waves, and steady-state E-waves, were subjected to conventional and model-based analysis. M, a dimensionless index, defined by the slope of the peak driving-force vs. peak (filling-opposing) resistive-force regression, was determined from steady-state E-waves alone, and from load-perturbed E-waves combined with a matched number of subsequent beats. Despite high degrees of E-wave shape variation, M derived from load-varying, perturbed beats and M derived from steady-state beats alone were indistinguishable. Because the peak driving-force vs. peak resistive-force relation determining M remains highly linear in the extended E-wave shape and load variation regime observed, we conclude that M is a robust LIIDF.

  14. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  15. Stability enhancement and fuel economy of the 4-wheel-drive hybrid electric vehicles by optimal tyre force distribution

    NASA Astrophysics Data System (ADS)

    Goodarzi, Avesta; Mohammadi, Masoud

    2014-04-01

    In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.

  16. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.

    PubMed

    Dionisio, Valdeci C; Brown, David A

    2016-06-16

    Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface. To understand the level of transparency (i.e., interference with movement due to the mechanical interface) between human and robot, and to estimate and account for changes in the kinetics and kinematics of the gait pattern, we tested the KineAssist under conditions of self-drive and horizontal push assistance. The aims of this study were to compare the joint kinematics, forces and moments during walking at a fixed constant treadmill belt speed and constrained walking cadence, with and without the robotic device (OUT) and to compare the biomechanics of assistive and self-drive modes in the device. Twenty non-neurologically impaired adults participated in this study. We evaluated biomechanical parameters of walking at a fixed constant treadmill belt speed (1.0 m/s), with and without the robotic device in assistive mode. We also tested the self-drive condition, which enables the user to drive the speed and direction of a treadmill belt. Hip, knee and ankle angular displacements, ground reaction forces, hip, knee and ankle moments, and center of mass displacement were compared "in" vs "out" of the device. A repeated measures ANOVA test was applied with the three level factor of condition (OUT, AM, and SDM), and each participant was used as its own comparison. When comparing "in" and "out" of the device, we did not observe any interruptions and/or reversals of direction of the basic gait pattern trajectory, but there was increased ankle and hip angular excursions, vertical ground reaction force and hip moments and reduced center of mass displacement during the "in device" condition. Comparing assistive vs self-drive mode in device, participants had greater flexed posture and accentuated hip moments and propulsive force, but reduced braking force. Although the magnitudes and/or range of certain gait pattern components were altered by the device, we did not observe any interruption from the mechanical interface upon the advancement of the trajectories nor reversals in direction of movement which suggests that the KineAssist permits relative transparency (i.e.. lack of interference of movement by the device mechanism) to the individual's gait pattern. However, there are interactive forces to take into account, which appear to be overcome by kinematic and kinetic adjustments.

  17. The effect on teenage risky driving of feedback from a safety monitoring system: a randomized controlled trial.

    PubMed

    Simons-Morton, Bruce G; Bingham, C Raymond; Ouimet, Marie Claude; Pradhan, Anuj K; Chen, Rusan; Barretto, Andrea; Shope, Jean T

    2013-07-01

    Teenage risky driving may be due to teenagers not knowing what is risky, preferring risk, or the lack of consequences. Elevated gravitational-force (g-force) events, caused mainly by hard braking and sharp turns, provide a valid measure of risky driving and are the target of interventions using in-vehicle data recording and feedback devices. The effect of two forms of feedback about risky driving events to teenagers only or to teenagers and their parents was tested in a randomized controlled trial. Ninety parent-teen dyads were randomized to one of two groups: (1) immediate feedback to teens (Lights Only); or (2) immediate feedback to teens plus family access to event videos and ranking of the teen relative to other teenage drivers (Lights Plus). Participants' vehicles were instrumented with data recording devices and events exceeding .5 g were assessed for 2 weeks of baseline and 13 weeks of feedback. Growth curve analysis with random slopes yielded a significant decrease in event rates for the Lights Plus group (slope = -.11, p < .01), but no change for the Lights Only group (slope = .05, p = .67) across the 15 weeks. A large effect size of 1.67 favored the Lights Plus group. Provision of feedback with possible consequences associated with parents being informed reduced risky driving, whereas immediate feedback only to teenagers did not. Published by Elsevier Inc.

  18. An examination of the concept of driving point receptance

    NASA Astrophysics Data System (ADS)

    Sheng, X.; He, Y.; Zhong, T.

    2018-04-01

    In the field of vibration, driving point receptance is a well-established and widely applied concept. However, as demonstrated in this paper, when a driving point receptance is calculated using the finite element (FE) method with solid elements, it does not converge as the FE mesh becomes finer, suggesting that there is a singularity. Hence, the concept of driving point receptance deserves a rigorous examination. In this paper, it is firstly shown that, for a point harmonic force applied on the surface of an elastic half-space, the Boussinesq formula can be applied to calculate the displacement amplitude of the surface if the response point is sufficiently close to the load. Secondly, by applying the Betti reciprocal theorem, it is shown that the displacement of an elastic body near a point harmonic force can be decomposed into two parts, with the first one being the displacement of an elastic half-space. This decomposition is useful, since it provides a solid basis for the introduction of a contact spring between a wheel and a rail in interaction. However, according to the Boussinesq formula, this decomposition also leads to the conclusion that a driving point receptance is infinite (singular), and would be undefinable. Nevertheless, driving point receptances have been calculated using different methods. Since the singularity identified in this paper was not appreciated, no account was given to the singularity in these calculations. Thus, the validity of these calculation methods must be examined. This constructs the third part of the paper. As the final development of the paper, the above decomposition is utilised to define and determine driving point receptances required for dealing with wheel/rail interactions.

  19. On justification of efficient Energy-Force parameters of Hydraulic-excavator main mechanisms

    NASA Astrophysics Data System (ADS)

    Komissarov, Anatoliy; Lagunova, Yuliya; Shestakov, Viktor; Lukashuk, Olga

    2018-03-01

    The article formulates requirements for energy-efficient designs of the operational equipment of a hydraulic excavator (its boom, stick and bucket) and defines, for a mechanism of that equipment, a new term “performance characteristic”. The drives of main rotation mechanisms of the equipment are realized by hydraulic actuators (hydraulic cylinders) and transmission (leverage) mechanisms, with the actuators (the cylinders themselves, their pistons and piston rods) also acting as links of the leverage. Those drives are characterized by the complexity of translating mechanical-energy parameters of the actuators into energy parameters of the driven links (a boom, a stick and a bucket). Relations between those parameters depend as much on the types of mechanical characteristics of the hydraulic actuators as on the types of structural schematics of the transmission mechanisms. To assess how energy-force parameters of the driven links change when a typical operation is performed, it was proposed to calculate performance characteristics of the main mechanisms as represented by a set of values of transfer functions, i.e. by functional dependences between driven links and driving links (actuators). Another term “ideal performance characteristic” of a mechanism was introduced. Based on operation-emulating models for the main mechanisms of hydraulic excavators, analytical expressions were derived to calculate kinematic and force transfer functions of the main mechanisms.

  20. Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region

    NASA Astrophysics Data System (ADS)

    Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.

    2018-05-01

    The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.

  1. Functionalized SBA-15 materials for bilirubin adsorption

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  2. Dependence of intramolecular electron-transfer rates on driving force, pH, and temperature in ammineruthenium-modified ferrocytochromes c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wishart, J.F.; Sun, J.; Su, C.

    1997-01-23

    Several ruthenium ammine complexes were used to modify horse-heart cytochrome c at histidine-33, creating a series of (NH{sub 3}){sub 4}(L)Ru-Cyt c derivatives (L = H{sub 2}O/OH{sup -}, ammonia, 4-ethylpyridine, 3,5-lutidine, pyridine, isonicotinamide, N-methylpyrazinium) with a wide range of driving forces for Fe-to-Ru electron transfer (-{Delta}G{degree} = -0.125 to +0.46 eV). Electron-transfer rates and activation parameters were measured by pulse radiolysis using azide or carbonate radicals. The driving-force dependence of electron-transfer rates between redox centers of the same charge types obeys Marcus-Hush theory. The activationless rate limit for all of the ruthenium derivatives except the N-methylpyrazinium complex is 3.9x10{sup 5} s{supmore » -1}. Thermodynamic parameters obtained from nonisothermal differential pulse voltammetry show that the electron-transfer reactions are entropy-driven. The thermodynamic and kinetic effects of phosphate ion binding to the ruthenium center are examined. The rate of intramolecular electron transfer in (NH{sub 3}){sub 4}(isn)Ru{sup III}-Cyt c{sup II} decreases at high pH, with a midpoint at pH 9.1. 28 refs., 4 figs., 3 tabs.« less

  3. Adsorption of sugar surfactants at the air/water interface.

    PubMed

    Varga, Imre; Mészáros, Róbert; Stubenrauch, Cosima; Gilányi, Tibor

    2012-08-01

    The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  5. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china

    PubMed Central

    Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong

    2015-01-01

    Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160

  6. An Arduino-Based Resonant Cradle Design with Infant Cries Recognition

    PubMed Central

    Chao, Chun-Tang; Wang, Chia-Wei; Chiou, Juing-Shian; Wang, Chi-Jo

    2015-01-01

    This paper proposes a resonant electric cradle design with infant cries recognition, employing an Arduino UNO as the core processor. For most commercially available electric cradles, the drive motor is closely combined with the bearing on the top, resulting in a lot of energy consumption. In this proposal, a ball bearing design was adopted and the driving force is under the cradle to increase the distance from the object to fulcrum and torque. The sensors are designed to detect the oscillation state, and then the force is driven at the critical time to achieve the maximum output response while saving energy according to the principle of resonance. As for the driving forces, the winding power and motors are carefully placed under the cradle. The sensors, including the three-axis accelerometer and infrared sensor, are tested and applied under swinging amplitude control. In addition, infant cry recognition technology was incorporated in the design to further develop its functionality, which is a rare feature in this kind of hardware. The proposed nonlinear operator of fundamental frequency (f0) analysis is able to identify different types of infant cries. In conclusion, this paper proposes an energy-saving electric cradle with infant cries recognition and the experimental results demonstrate the effectiveness of this approach. PMID:26247947

  7. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    PubMed Central

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  8. THE ROLE OF COMPETITION EFFECT IN THE SELF-ASSEMBLY STRUCTURE OF 3,5-DIPHENYLBENZOIC ACID AND 2,2‧:6‧,2″-TERPYRIDINE-4‧-CARBOXYLIC ACID ON Ag(110)

    NASA Astrophysics Data System (ADS)

    Hu, Yufen; Li, Wei; Lu, Yan; Wang, Zhongping; Leng, Xinli; Liao, Qinghua; Liu, Xiaoqing; Wang, Li

    The self-assembly structures of 2,2‧:6‧,2‧‧-terpyridine-4‧-carboxylic acid (C16H11N3O2; YN) molecules and 3,5-diphenylbenzoic acid (C19H14O2; YC) molecules on Ag(110) surface have been investigated by scanning tunneling microscopy (STM) and Density Functional Theory (DFT) calculation. The YC molecules form two different well-organized structures due to the π-π stacking and dipole-dipole interactions. When three C atoms of YC molecules are replaced by three N atoms to form YN molecules, the main driving force to form ordered assembly structures of YN molecule is changed to metal-organic coordination bond and hydrogen bond. The dramatic changes of main driving force between YC/Ag(110) and YN/Ag(110) system demonstrate that the N atoms are apt to form metal-organic coordination bond and hydrogen bond but dipole-dipole interactions and π-π stacking are relative to C atoms. These findings further reveal that the optimization design of organic molecules could vary the main driving force and then lead to the change of the molecular self-assembly structures.

  9. Driving forces and the influence of the buffer composition on the complexation reaction between ibuprofen and HPCD.

    PubMed

    Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette

    2003-10-01

    Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.

  10. Influence of temperature on methane hydrate formation.

    PubMed

    Zhang, Peng; Wu, Qingbai; Mu, Cuicui

    2017-08-11

    During gas hydrate formation process, a phase transition of liquid water exists naturally, implying that temperature has an important influence on hydrate formation. In this study, methane hydrate was formed within the same media. The experimental system was kept at 1.45, 6.49, and 12.91 °C respectively, and then different pressurization modes were applied in steps. We proposed a new indicator, namely the slope of the gas flow rates against time (dν g /dt), to represent the intrinsic driving force for hydrate formation. The driving force was calculated as a fixed value at the different stages of formation, including initial nucleation/growth, secondary nucleation/growth, and decay. The amounts of gas consumed at each stage were also calculated. The results show that the driving force during each stage follows an inverse relation with temperature, whereas the amount of consumed gas is proportional to temperature. This opposite trend indicates that the influences of temperature on the specific formation processes and final amounts of gas contained in hydrate should be considered separately. Our results also suggest that the specific ambient temperature under which hydrate is formed should be taken into consideration, when explaining the formation of different configurations and saturations of gas hydrates in natural reservoirs.

  11. An Arduino-Based Resonant Cradle Design with Infant Cries Recognition.

    PubMed

    Chao, Chun-Tang; Wang, Chia-Wei; Chiou, Juing-Shian; Wang, Chi-Jo

    2015-08-03

    This paper proposes a resonant electric cradle design with infant cries recognition, employing an Arduino UNO as the core processor. For most commercially available electric cradles, the drive motor is closely combined with the bearing on the top, resulting in a lot of energy consumption. In this proposal, a ball bearing design was adopted and the driving force is under the cradle to increase the distance from the object to fulcrum and torque. The sensors are designed to detect the oscillation state, and then the force is driven at the critical time to achieve the maximum output response while saving energy according to the principle of resonance. As for the driving forces, the winding power and motors are carefully placed under the cradle. The sensors, including the three-axis accelerometer and infrared sensor, are tested and applied under swinging amplitude control. In addition, infant cry recognition technology was incorporated in the design to further develop its functionality, which is a rare feature in this kind of hardware. The proposed nonlinear operator of fundamental frequency (f0) analysis is able to identify different types of infant cries. In conclusion, this paper proposes an energy-saving electric cradle with infant cries recognition and the experimental results demonstrate the effectiveness of this approach.

  12. Increased foot-stretcher height improves rowing performance: evidence from biomechanical perspectives on water.

    PubMed

    Liu, Yang; Gao, Binghong; Li, Jiru; Ma, Zuchang; Sun, Yining

    2018-06-07

    The aim of this study was to investigate whether changes on foot-stretcher height were associated with characteristics of better rowing performance. Ten male rowers performed a 200 m rowing trial at their racing rate at each of three foot-stretcher heights. A single scull was equipped with an accelerometer to collect boat acceleration, an impeller with embedded magnets to collect boat speed, specially designed gate sensors to collect gate force and angle, and a compact string potentiometer to collect leg drive length. All sensor signals were sampled at 50 Hz. A one-way repeated measures ANOVA showed that raising foot-stretcher position had a significant reduction on total gate angle and leg drive length. However, a raised foot-stretcher position had a deeper negative peak of boat acceleration at the catch, a lower boat fluctuation, a faster leg drive speed, a larger gate force for the port and starboard side separately. This could be attributed to the optimisation of the magnitude and direction of the foot force with a raised foot-stretcher position. Although there was a significant negative influence of a raised foot-stretcher position on two kinematic variables, biomechanical evidence suggested that a raised foot-stretcher position could contribute to the improvement of rowing performance.

  13. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    PubMed Central

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  14. Control of adaptive optic element displacement with the help of a magnetic rheology drive

    NASA Astrophysics Data System (ADS)

    Deulin, Eugeni A.; Mikhailov, Valeri P.; Sytchev, Victor V.

    2000-10-01

    The control system of adaptive optic of a large astronomical segmentated telescope was designed and tested. The dynamic model and the amplitude-frequency analysis of the new magnetic rheology (MR) drive are presented. The loop controlled drive consists of hydrostatic carrier, MR hydraulic loop controlling system, elastic thin wall seal, stainless seal which are united in a single three coordinate manipulator. This combination ensures short positioning error (delta) (phi)

  15. The Challenge to Create the Space Drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1999-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electromagnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electromagnetics that leads to using electromagnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or reformulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  16. Challenge to Create the Space Drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1997-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electromagnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of space-time as a function of electromagnetics that leads to using electromagnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's principle or reformulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  17. The challenge to create the space drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electro-magnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electro-magnetics that leads to using electro-magnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or re-formulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  18. A tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel independent brake from moderate driving to limit handling

    NASA Astrophysics Data System (ADS)

    Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo

    2018-04-01

    This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.

  19. Dynamically tuned vibratory micromechanical gyroscope accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.

    1997-11-01

    A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (mV/deg/sec) sensitivity.

  20. Intramolecular energy transfer and the driving mechanisms for large-amplitude collective motions of clusters

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2009-04-01

    This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to molecular reactions in which a system changes its overall mass distribution in a significant way.

  1. Impact assessment of land use planning driving forces on environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Longgao, E-mail: chenlonggao@163.com; Yang, Xiaoyan; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116

    Land use change may exert a negative impact on environmental quality. A state–impact–state (SIS) model describing a state transform under certain impacts has been integrated into land use planning (LUP) environmental impact assessment (LUPEA). This logical model is intuitive and easy to understand, but the exploration of impact is essential to establish the indicator system and to identify the scope of land use environmental impact when it is applied to a specific region. In this study, we investigated environmental driving forces from land use planning (LUPF), along with the conception, components, scope, and impact of LUPF. This method was illustratedmore » by a case study in Zoucheng, China. Through the results, we concluded that (1) the LUPF on environment are impacts originated from the implementation of LUP on a regional environment, which are characterized by four aspects: magnitude, direction, action point, and its owner; (2) various scopes of LUPF on individual environmental elements based on different standards jointly define the final scope of LUPEA; (3) our case study in Zoucheng demonstrates the practicability of this proposed approach; (4) this method can be embedded into LUPEA with direction, magnitudes, and scopes of the LUPF on individual elements obtained, and the identified indicator system can be directly employed into LUPEA and (5) the assessment helps to identify key indicators and to set up a corresponding strategy to mitigate the negative impact of LUP on the environment, which are two important objectives of strategic environmental assessment (SEA) in LUP. - Highlights: • Environmental driving forces from land use planning (LUPF) are investigated and categorized. • Our method can obtains the direction, magnitudes and scopes of environmental driving forces. • The LUPEA scope is determined by the combination of various scopes of LUPF on individual elements. • LUPF assessment can be embedded into LUPEA. • The method can help to identify key indicators and set up a strategy to mitigate negative environmental impact.« less

  2. Proceedings of the Seminar on the DoD Computer Security Initiative Program (3rd), National Bureau of Standards, Gaithersburg, Maryland, November 18-20, 1980.

    DTIC Science & Technology

    1980-01-01

    TECHNIQUES IMPROVING RAPIDLY C-7 INDUSTRY THRUSTS IN 70s DRIVING FORCE : IMPROVE PRODUCT QUALITY * EASE MAINTENANCE, MODIFICATION IMPROVE PERFORMANCE...together a task force to make recommendations on what we should be doing about computer secur- ity. Other members of the task force came from both our...of the marketing task force mostly echoed and endorsed the user’s report. Both reports were issued in March of 1973. Notice that DoD 5200.28 had just

  3. Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.

  4. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    PubMed

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.

  5. Abnormal grain growth in iron-silicon

    NASA Astrophysics Data System (ADS)

    Bennett, Tricia A.

    Abnormal grain growth (AGG) was studied in an Fe-1%Si alloy using automated Electron Backscattered Diffraction (EBSD) to determine the driving force for this phenomenon. Experiments were performed with the knowledge that there are several possible driving forces and, the intent to determine the true driving force by elimination of the other potential candidates. These potential candidates include surface energy anisotropy, anisotropic grain boundary properties and the stored energy of deformation. In this work, surface energy and grain boundary anisotropies as well as the stored energy of deformation were investigated as the possible driving forces for AGG. Accordingly, industrially processed samples that were temper rolled to 1.5% and 8% were annealed in air for various times followed by quenching in water. The results obtained were compared to those from heat treatments performed in wet 15%H2-85%N2 at a US Steel facility. In addition, for a more complete study of the effect of surface energy anisotropies on AGG, the 1.5% temper-rolled material was heat-treated in other atmospheres such as 5%H2-95%Ar, 98%H2-2%He, 98%H2-2%H 2S, and 98%H2-2%N2 for 1 hour followed by quenching in water. The character of the grain boundaries in the materials was also examined for each set of experiments conducted, while the influence of stored energy was evaluated by examining intragranular orientation gradients. AGG occurred regardless of annealing atmosphere though the most rapid progression was observed in samples annealed in air. In general, grains of varying orientations grew abnormally. One consistently observed trend in all the detailed studies was that the matrix grains remained essentially static and either did not grow or only grew very slowly. On the other hand, the abnormally large grains (ALG), on average, were approximately 10 times the size of the matrix. Analysis of the grain boundary character of the interfaces between abnormal grains and the matrix showed no significant variation from the overall population of boundaries. This suggested that grain boundary character was not a factor in controlling AGG. When the effect of stored energy differences was considered, it was observed that grains that experienced AGG had low orientation gradients. Based on these results and cross comparison of all classes of experiments performed, it was determined that stored energy differences were the main driving force for AGG in this Fe-1%Si alloy.

  6. Fueled By Wealth, Funneled By Politics: The Dominance of Domestic Drivers of Arms Procurement in Southeast Asia

    DTIC Science & Technology

    2015-12-01

    in driving arms procurements in Malaysia , Indonesia, and Singapore: availability of resources, domestic politics, external threats, and force...could incite more frequent excursions toward competitive arms dynamics. 14. SUBJECT TERMS Malaysia , Indonesia, Singapore, Southeast Asia, arms...This thesis investigates the following four factors to determine which are most powerful in driving arms procurements in Malaysia , Indonesia, and

  7. West wall, display area (room 101), view 1 of 4: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West wall, display area (room 101), view 1 of 4: southwest corner, showing stairs to commander's quarters and viewing bridge, windows to controller's room (room 102), south end of control consoles, and holes in pedestal floor for computer equipment cables (tape drive I/O?) - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  8. Strategic Studies Quarterly. Volume 7, Number 3, Fall 2013

    DTIC Science & Technology

    2013-01-01

    air players in India’s Kargil campaign figured prominently in driving out the invaders, it is hard to say which was the more decisive force element...Yet, based on the facts, one can say unequivocally that allied airpower singlehandedly achieved NATO goals in both Operation Allied Force over...campaign from start to finish.22 To that extent, one can honestly say that for the first time in history, the use of airpower alone forced the wholesale

  9. Military Force and Culture Change: Systems, Narratives, and the Social Transmission of Behavior in Counter-Terrorism Strategy

    DTIC Science & Technology

    2006-03-01

    prospects of acting upon culture with force. In particular, this thesis explores the narrative and storytelling dimensions of culture, offering a theory...narrative and storytelling dimensions of culture, offering a theory of story that can be used to drive innovative counter-terrorism strategies and... storytelling ), and limn the prospects for using military force to shape that piece. This charter is, of course, far too broad to constitute a thesis-length

  10. Boomers and seniors: The driving force behind leisure participation

    Treesearch

    Lynda J. Sperazza; Priya Banerjee

    2010-01-01

    The 76 million Americans in the Baby Boomer population are the force behind the changing demographic picture of society today. Boomers' spending habits and lifestyle choices will also have a powerful influence on retirement and leisure in the coming decades. Boomers will redefine retirement and are expected to demand more than current senior programs and...

  11. Do International Cocurricular Activities Have an Impact on Cultivating a Global Mindset in Business School Students?

    ERIC Educational Resources Information Center

    Le, Quan; Ling, Teresa; Yau, Jot

    2018-01-01

    In today's integrated global economy, business executives of multinational corporations are required to have a flexible global mindset in order to cope with the driving forces of globalization. Thus, the global market forces stress the importance for business schools to graduate students with skill sets pertinent to functioning competitively in…

  12. Oscillations of a Meterstick on Two Rotating Shafts

    ERIC Educational Resources Information Center

    Balta, Nuri

    2016-01-01

    Most students find real-world examples of harmonic oscillations interesting. Besides, normal and friction forces are the types of concepts in physics that are readily applicable to their everyday life. For instance, we depend on these forces to write, to drive cars, to pick up objects, and even to walk! And yet introductory physics students have…

  13. Photocopy of drawing (original drawing of Double N.C.O. Quarters in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Double N.C.O. Quarters in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) INTERIOR DETAILS - MacDill Air Force Base, Double Non-Commissioned Officers' Quarters, 7418 Hanger Loop Drive, Tampa, Hillsborough County, FL

  14. Photocopy of drawing (original drawing of Armament & Instrument Inspection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Armament & Instrument Inspection and Adjustment Bldg. in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND DETAILS - MacDill Air Force Base, Armament & Instrument Inspection & Adjustment Building, 7807 Hanger Loop Drive, Tampa, Hillsborough County, FL

  15. Photocopy of drawing (original drawing of Q.M. Gas & Oil ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Gas & Oil House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND DETAILS - MacDill Air Force Base, Quartermaster Gas & Oil House, 8103 Hanger Loop Drive, Tampa, Hillsborough County, FL

  16. Photocopy of drawing (original drawing of Armament & Instrument Inspection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Armament & Instrument Inspection and Adjustment Bldg. in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND SECTIONS - MacDill Air Force Base, Armament & Instrument Inspection & Adjustment Building, 7807 Hanger Loop Drive, Tampa, Hillsborough County, FL

  17. Photocopy of drawing (original drawing of Double N.C.O. Quarters in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Double N.C.O. Quarters in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND SECTION - MacDill Air Force Base, Double Non-Commissioned Officers' Quarters, 7418 Hanger Loop Drive, Tampa, Hillsborough County, FL

  18. A Research on the Use of Social Media Networks by Teacher Candidates

    ERIC Educational Resources Information Center

    Bolat, Yaviz

    2018-01-01

    Social media networks are the most important product of the development of computer and communication technologies that affect social life. Social media networks have become a driving force in social and cultural development, while providing social contact for people. This force has improved its sphere of influence over societies in many fields…

  19. KSC-2014-3111

    NASA Image and Video Library

    2014-07-02

    VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket is seen eight minutes before launching from Space Launch Complex 2 at Vandenberg Air Force Base in California on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: NASA/Bill Ingalls

  20. Photocopy of drawing (original drawing of Photographic Laboratory Building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) FRONT AND RIGHT SIDE ELEVATIONS AND SECTIONS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL

  1. Photocopy of drawing (original drawing of Photographic Laboratory Building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) REAR AND LEFT SIDE ELEVATIONS AND SECTIONS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL

  2. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS, SECTIONS, AND DETAILS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  3. Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Warehouse & Commissary in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FIRST FLOOR PLAN AND DOOR DETAILS - MacDill Air Force Base, Quartermaster Warehouse & Commissary, 7621 Hillsborough Loop Drive, Tampa, Hillsborough County, FL

  4. Photocopy of drawing (original drawing of Q.M. Warehouse in possession ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) PLANS, ELEVATIONS, SECTIONS, AND ELECTRICAL DETAILS - MacDill Air Force Base, Quartermaster Warehouse, 7605 Hillsborough Loop Drive, Tampa, Hillsborough County, FL

  5. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FLOOR PLANS AND SECTIONS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  6. Comments on John Willinsky's Learning to Divide the World: Education at Empire's End

    ERIC Educational Resources Information Center

    Wang, Tsung Juang

    2006-01-01

    John Willinsky's view that imperialism and its legacy remain the driving force that divides the world into "superior" and "inferior" cultures fails to take into account other forces that also encourage peoples of different cultures to emphasize the differences between themselves. He is correct in noting that imperialism led to much injustice and…

  7. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  8. Present-day deformation across the Basin and Range Province, western United States

    USGS Publications Warehouse

    Thatcher, W.; Foulger, G.R.; Julian, B.R.; Svarc, J.; Quilty, E.; Bawden, G.W.

    1999-01-01

    The distribution of deformation within the Basin and Range province was determined from 1992, 1996, and 1998 surveys of a dense, 800-kilometer- aperture, Global Positioning System network, Internal deformation generally follows the pattern of Holocene fault distribution and is concentrated near the western extremity of the province, with lesser amounts focused near the eastern boundary. Little net deformation occurs across the central 500 kilometers of the network in western Utah and eastern Nevada. Concentration of deformation adjacent to the rigid Sierra Nevada block indicates that external plate-driving forces play an important role in driving deformation, modulating the extensional stress field generated by internal buoyancy forces that are due to lateral density gradients and topography near the province boundaries.

  9. Inverse dynamics of adaptive structures used as space cranes

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.

  10. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    NASA Astrophysics Data System (ADS)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  11. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Christian J., E-mail: christian.long@nist.gov; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Cannara, Rachel J.

    2015-07-15

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on themore » AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.« less

  12. Level set method for image segmentation based on moment competition

    NASA Astrophysics Data System (ADS)

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  13. Pressure-volume behavior of the upper airway.

    PubMed

    Fouke, J M; Teeter, J P; Strohl, K P

    1986-09-01

    The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.

  14. Theoretical study of enhancing the piezoelectric nanogenerator's output power by optimizing the external force's shape

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Qin, Yong

    2017-07-01

    The average power is one of the key parameters of piezoelectric nanogenerators (PENGs). In this paper, we demonstrate that the PENG's output can be gigantically improved by choosing driving force with an appropriate shape. When the load resistance is 100 MΩ and the driven forces have a magnitude of 19.6 nN, frequency of 10 Hz, the average power of PENG driven by square shaped force is six orders of magnitude higher than that driven by triangular shaped and sinusoidal shaped forces. These results are of importance for optimizing the average power of the PENGs in practical applications.

  15. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  16. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    PubMed

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng

    2010-07-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  18. Roof plan, Combat Operations Center, Building No. 2605. (Also includes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof plan, Combat Operations Center, Building No. 2605. (Also includes a typical roof section, with new fiberglass and urethane insulation layers.) By Federal Builders, 575 Carreon Drive, Colton, California. Sheet 1 of 1, dated 18 May 1992. Scale one-eighth inch to one foot. 24x36 inches. ink on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  19. A Vibrating Jaw Crusher with Auteresonant Electric Motor Drive of Swinging Movement

    NASA Astrophysics Data System (ADS)

    Zagrivniy, E. A.; Poddubniy, D. A.

    2018-01-01

    The article relates to a vibrating jaw crusher with pendulum vibrating exciter auteresonant electric motor drive and with elastic element rational force distribution, with limited peak-to-peak swing. Its design and its math model are presented. Also disclosed is the operating principle of a vibrating jaw crusher and the control algorithm for controlling the crushing jaw for maintaining the operating mode at resonant frequency.

  20. Unmanned Airlift: How Should We Proceed?

    DTIC Science & Technology

    2002-04-01

    Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor: Lt Col Vincent T. Jovene Maxwell Air Force Base...thank my research advisor, Lt Col Jim Jovene for his guidance and assistance. I also owe a special thanks to Mr. Bob Peak of the Southeast SATS Lab...National Aerospace System ( NAS ) are driving the advancement of automating technologies, and it shows how this drive toward automation is laying the

  1. Base drive for paralleled inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  2. Experimental verification and comparison of the rubber V- belt continuously variable transmission models

    NASA Astrophysics Data System (ADS)

    Grzegożek, W.; Dobaj, K.; Kot, A.

    2016-09-01

    The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.

  3. Visual force feedback in laparoscopic training.

    PubMed

    Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny

    2012-01-01

    To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.

  4. Nuclear reactor control apparatus

    DOEpatents

    Sridhar, Bettadapur N.

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  5. Large Format Multifunction 2-Terabyte Optical Disk Storage System

    NASA Technical Reports Server (NTRS)

    Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.

    1996-01-01

    The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.

  6. An Evaluation of Automotive Interior Packages Based on Human Ocular and Joint Motor Properties

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Rakumatsu, Takeshi; Horiue, Masayoshi; Miyazaki, Tooru; Nishikawa, Kazuo; Nouzawa, Takahide; Tsuji, Toshio

    This paper proposes a new evaluation method of an automotive interior package based on human oculomotor and joint-motor properties. Assuming the long-term driving situation in the express high way, the three evaluation indices were designed on i) the ratio of head motion at gazing the driving items; ii) the load torque for maintaining the standard driving posture; and iii) the human force manipulability at the end-point of human extremities. Experiments were carried out for two different interior packages with four subjects who have the special knowledge on the automobile development. Evaluation results demonstrate that the proposed method can quantitatively analyze the driving interior in good agreement with the generally accepted subjective opinion in the automobile industry.

  7. Wake Island, United States Territory General Environmental Compliance Assessment and Wastewater Characterization Survey.

    DTIC Science & Technology

    1998-04-01

    Flight, 15th Civil Engineering Squadron, Hickam Air Force Base , Hawaii. The primary goals of this survey were to: 1. Provide a general environmental...2402 E Drive Brooks Air Force Base TX 78235-5114 W*C QTTALIT7 INSPECTED 4 NOTICES When Government drawings, specifications, or other data are used...time of this survey the real property assets of Wake Island were the responsibility of the US Air Force . Hickam AFB, Hawaii maintains the records for

  8. Robot gripper

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1987-01-01

    An electronic force-detecting robot gripper for gripping objects and attaching to an external robot arm is disclosed. The gripper comprises motor apparatus, gripper jaws, and electrical circuits for driving the gripper motor and sensing the amount of force applied by the jaws. The force applied by the jaws is proportional to a threshold value of the motor current. When the motor current exceeds the threshold value, the electrical circuits supply a feedback signal to the electrical control circuit which, in turn, stops the gripper motor.

  9. Estimates of the Officer Force Structure Required to Man the Projected Naval Combatant Forces of the 1980s and 1990s.

    DTIC Science & Technology

    1980-10-01

    Element, 64709N Prototype Manpower/Personnel Systems (U), Project Z1302-PN Officer Career Models (U), funded by the Office of the Deputy Assistant... Models for Navy Officer Billets portion of the proposed NPS research effort to develop an integrated officer system planning model ; the purpose of this...attempting to model the Naval officer force structure as a system. This study considers the primary first order factors which drive the requirements

  10. Air Force Health Study. An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. Introduction, Background and Conclusions (Chapters 1-5, 18, 19)

    DTIC Science & Technology

    1991-03-01

    SAIC Editors: Cynthia A. Marut Ellsabeth M. Smoda SCIENCE APPLICATIONS EPIDEMIOLOGY RESEARCH DIVISION INTERNATIONAL CORPORATION ARMSTRONG LABORATORY...8400 Westpark Drive HUMAN SYSTEMS DIVISION (AFSC) McLean, VA 22102 Brooks Air Force Base, TX 78235 in con/unction WithS~DTIC SCRIPPS CLINIC & RESEARCH ...FOUNDATION, LET LA JOLLA. CA ELECTEJ•UL 011991, NATIONAL OPINION RESEARCH CENTER. CHICAGO. IL Marchl 1tO1 Introduction. Backgroend and Conclusions

  11. Tunable optical lens array using viscoelastic material and acoustic radiation force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  12. Harmonic and anharmonic oscillations investigated by using a microcomputer-based Atwood's machine

    NASA Astrophysics Data System (ADS)

    Pecori, Barbara; Torzo, Giacomo; Sconza, Andrea

    1999-03-01

    We describe how the Atwood's machine, interfaced to a personal computer through a rotary encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy force acting on a body immersed in water. We report experimental studies of oscillators produced by driving forces of the type F=-kxn with n=1,2,3, and F=-k sgn(x). Finally we suggest how this apparatus can be used for showing to the students a macroscopic model of interatomic forces.

  13. Chemical reactions induced by oscillating external fields in weak thermal environments

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Bartsch, Thomas; Hernandez, Rigoberto

    2015-02-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations.

  14. Simulation of Dynamo Action Generated by a Precession Driven Flow.

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Vogt, T.; Gundrum, T.; Stefani, F.

    2017-12-01

    Since many years precession is regarded as an alternative flow drivingmechanism that may account, e.g., for remarkable features of theancient lunar magnetic field [Dwyer 2011; Noir 2013; Weiss 2014] or asa complementary power source for the geodynamo [Malkus 1968; Vanyo1991]. Precessional forcing is also of great interest from theexperimental point of view because it represents a natural forcingmechanism that allows an efficient driving of conducting fluid flowson the laboratory scale without making use of propellers orpumps. Within the project DRESDYN (DREsden Sodium facility for DYNamoand thermohydraulic studies) a dynamo experiment is under developmentat Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in which a precessiondriven flow of liquid sodium with a magnetic Reynolds number of up toRm=700 will be used to drive dynamo action.Our present study addresses preparative numerical simulations and flowmeasurements at a small model experiment running with water. Theresulting flow pattern and amplitude provide the essential ingredientsfor kinematic dynamo models that are used to estimate whether theparticular flow is able to drive a dynamo. In the strongly non-linearregime the flow essentially consists of standing inertial waves (see Figure). Most remarkable feature is the occurrence of a resonant-like axisymmetricmode which emerges around a precession ratio of Ωp/Ωc = 0.1on top of the directly forced re-circulation flow. The combination ofthis axisymmetric mode and the forced m=1 Kelvin mode is indeedcapable of driving a dynamo at a critical magnetic Reynolds number ofRmc=430 which is well within the range achievable in theexperiment. However, the occurrence of the axisymmetric mode slightlydepends on the absolute rotation rate of the cylinder and futureexperiments are required to indicate whether it persists at theextremely large Re that will be obtained in the large scale sodiumexperiment.

  15. Micropropulsion Research at AFRL (Postprint)

    DTIC Science & Technology

    2000-07-01

    Air Force Research Laboratory (AFMC) AFRL /PRS 11. SPONSOR/MONITOR’S 5 Pollux Drive...be enabling for a new fleet of 25-kg class spacecraft supporting these missions. In response to this need, the Air Force Research Laboratory is... Research Laboratory (AFMC) AFRL /PRSS 1 Ara Road. Edwards AFB CA 93524-7013 AFRL -PR-ED-TP-2000-101 9. SPONSORING / MONITORING AGENCY NAME(S)

  16. Analysis of ATP6 sequence diversity in the Triticum-Aegilops group of species reveals the crucial role of rearrangement in mitochondrial genome evolution

    USDA-ARS?s Scientific Manuscript database

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...

  17. Semi-active compressor valve

    DOEpatents

    Brun, Klaus; Gernentz, Ryan S.

    2010-07-27

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  18. Photocopy of drawing (original drawing of Armament & Instrument Inspection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Armament & Instrument Inspection and Adjustment Bldg. in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Construction Division, Office of the Quartermaster General) FIRST FLOOR PLAN, SECTIONS, AND DETAILS - MacDill Air Force Base, Armament & Instrument Inspection & Adjustment Building, 7807 Hanger Loop Drive, Tampa, Hillsborough County, FL

  19. Photocopy of drawing (original drawing of Double N.C.O. Quarters in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Double N.C.O. Quarters in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) FIRST AND SECOND FLOOR PLANS - MacDill Air Force Base, Double Non-Commissioned Officers' Quarters, 7418 Hanger Loop Drive, Tampa, Hillsborough County, FL

  20. Combination Antimicrobial Nanocomposite Materials for Neutralization of Biological Threat Agents (PREPRINT)

    DTIC Science & Technology

    2008-09-01

    AFRL-RX-TY-TP-2008-4601 PREPRINT COMBINATION ANTIMICROBIAL NANOCOMPOSITE MATERIALS FOR NEUTRALIZATION OF BIOLOGICAL THREAT AGENTS...AIRBASE TECHNOLOGIES DIVISION MATERIALS AND MANUFACTURING DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND 139 BARNES DRIVE, SUITE 2...a composite material that combines the protein and inorganic components. The process can be mimicked in vitro to some degree, providing methods for

  1. Driving Forces of Dynamic Changes in Soil Erosion in the Dahei Mountain Ecological Restoration Area of Northern China Based on GIS and RS

    PubMed Central

    Li, Xiao; Niu, Xiang; Wang, Bing; Gao, Peng; Liu, Yu

    2016-01-01

    Dynamic change in soil erosion is an important focus of regional ecological restoration research. Here, the dynamic changes of soil erosion and its driving forces in the Dahei Mountain ecological restoration area of northern China were analyzed by LANDSAT TM remote sensing captured via geographic information system (GIS) technologies during three typical periods in 2004, 2008 and 2013. The results showed the following: (1) a decrease in intensive erosion and moderate erosion areas, as well as an increase in light erosion areas, was observed during two periods: one from 2004 to 2008 and the other from 2008 to 2013. (2) Between 2004 and 2008, the variation in the range of slight erosion was the largest (24.28%), followed by light erosion and intensive erosion; between 2008 and 2013, the variation in the range of intensive erosion area was the largest (9.89%), followed by slight erosion and moderate erosion. (3) Socioeconomic impact, accompanied by natural environmental factors, was the main driving force underlying the change in soil erosion within the ecological restoration area. In particular, the socioeconomic factors of per capita forest area and land reclamation rate, as well as the natural environmental factor of terrain slope, significantly influenced soil erosion changes within the ecological restoration area. PMID:26981637

  2. Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers.

    PubMed

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2013-05-16

    Spin-cast films of dyes (donor-π-donor, donor-π-acceptor, and acceptor-π-acceptor type, where the donor is Ph2N-, the acceptor is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) blended with nonconjugated bisphthalimides were prepared. Upon visible-light excitation of the dyes, quenching of the excited state occurs by exciplex formation between dye and bisphthalimide molecules or, in some cases, by excimer formation or aggregation-induced emission between two dye molecules. The extent of exciplex formation is dependent on the driving force, which can be calculated using the energy difference between the lowest unoccupied molecular orbitals (LUMOs) of the dyes and bisphthalimides. The results show that complete exciplex formation occurs when this driving force is greater than 0.57 eV whereas partial exciplex formation occurs when the driving force is between 0.28 and 0.57 eV. The exciplex emission energies can also be predicted by calculating the difference between the LUMO level of the bisphthalimide and the highest occupied molecular orbital (HOMO) of the dye. These calculated values, which were obtained from the electrochemically determined energy levels, showed good agreement with the observed emission energies. The exciplex lifetimes were found to be significantly longer than the lifetimes of the lone dyes. These exciplexes formed from nonlinked donors and acceptors in the solid state might have potential uses in nonlinear photonics.

  3. [Spatiotemporal patterns and driving forces of land use change in industrial relocation area: a case study of old industrial area in Tiexi of Shenyang, Northeast China].

    PubMed

    Wang, Mei-Ling; Bing, Long-Fei; Xi, Feng-Ming; Wu, Rui; Geng, Yong

    2013-07-01

    Based on the QuickBird remote sensing images and with the support of GIS, this paper analyzed the spatiotemporal characteristics of land use change and its driving forces in old industrial area of Tiexi, Shenyang City of Liaoning Province in 2000-2010. During the study period, the industrial and mining warehouse land pattern had the greatest change, evolving from the historical pattern of residential land in the south and of industrial land in the north into residential land as the dominant land use pattern. In the last decade, the residential land area increased by 9%, mainly transferred from the industrial and mining warehouse land located in the north of Jianshe Road, while the industrial and mining warehouse land area decreased by 20%. The land areas for the commercial service and for the administrative and public services were increased by 1.3% and 3.1%, respectively. The land area for construction had a greater change, with an overall change rate being 76.9%. The land use change rate in 2000-2005 was greater than that in 2005-2010. National development strategies and policies, regional development planning, administrative reform, and industrial upgrading were the main driving forces of the land use change in old industrial area of Tiexi.

  4. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species.

    PubMed

    Challis, Gregory L; Hopwood, David A

    2003-11-25

    In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of beta-lactam antibiotics and beta-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes.

  5. Direct Visualization of Barrier Crossing Dynamics in a Driven Optical Matter System.

    PubMed

    Figliozzi, Patrick; Peterson, Curtis W; Rice, Stuart A; Scherer, Norbert F

    2018-04-25

    A major impediment to a more complete understanding of barrier crossing and other single-molecule processes is the inability to directly visualize the trajectories and dynamics of atoms and molecules in reactions. Rather, the kinetics are inferred from ensemble measurements or the position of a transducer ( e. g., an AFM cantilever) as a surrogate variable. Direct visualization is highly desirable. Here, we achieve the direct measurement of barrier crossing trajectories by using optical microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i. e. passing events, in an optical ring trap. A two-step mechanism similar to a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis that combines detailed knowledge of each trajectory, a statistically significant number of repetitions of the passing events, and the driving force dependence of the process. We find that while the total event rate increases with driving force, this increase is due to an increase in the rate of encounters. There is no drive force dependence on the rate of barrier crossing because the key motion for the process involves a random (thermal) radial fluctuation of one particle allowing the other to pass. This simple experiment can readily be extended to study more complex barrier crossing processes by replacing the spherical metal nanoparticles with anisotropic ones or by creating more intricate optical trapping potentials.

  6. Simple Patchy-Based Simulators Used to Explore Pondscape Systematic Dynamics

    PubMed Central

    Fang, Wei-Ta; Chou, Jui-Yu; Lu, Shiau-Yun

    2014-01-01

    Thousands of farm ponds disappeared on the tableland in Taoyuan County, Taiwan since 1920s. The number of farm ponds that have disappeared is 1,895 (37%), 2,667 ponds remain (52%), and only 537 (11%) new ponds were created within a 757 km2 area in Taoyuan, Taiwan between 1926 and 1960. In this study, a geographic information system (GIS) and logistic stepwise regression model were used to detect pond-loss rates and to understand the driving forces behind pondscape changes. The logistic stepwise regression model was used to develop a series of relationships between pondscapes affected by intrinsic driving forces (patch size, perimeter, and patch shape) and external driving forces (distance from the edge of the ponds to the edges of roads, rivers, and canals). The authors concluded that the loss of ponds was caused by pond intrinsic factors, such as pond perimeter; a large perimeter increases the chances of pond loss, but also increases the possibility of creating new ponds. However, a large perimeter is closely associated with circular shapes (lower value of the mean pond-patch fractal dimension [MPFD]), which characterize the majority of newly created ponds. The method used in this study might be helpful to those seeking to protect this unique landscape by enabling the monitoring of patch-loss problems by using simple patchy-based simulators. PMID:24466281

  7. Migration mechanisms of a faceted grain boundary

    NASA Astrophysics Data System (ADS)

    Hadian, R.; Grabowski, B.; Finnis, M. W.; Neugebauer, J.

    2018-04-01

    We report molecular dynamics simulations and their analysis for a mixed tilt and twist grain boundary vicinal to the Σ 7 symmetric tilt boundary of the type {1 2 3 } in aluminum. When minimized in energy at 0 K , a grain boundary of this type exhibits nanofacets that contain kinks. We observe that at higher temperatures of migration simulations, given extended annealing times, it is energetically favorable for these nanofacets to coalesce into a large terrace-facet structure. Therefore, we initiate the simulations from such a structure and study as a function of applied driving force and temperature how the boundary migrates. We find the migration of a faceted boundary can be described in terms of the flow of steps. The migration is dominated at lower driving force by the collective motion of the steps incorporated in the facet, and at higher driving forces by the step detachment from the terrace-facet junction and propagation of steps across the terraces. The velocity of steps on terraces is faster than their velocity when incorporated in the facet, and very much faster than the velocity of the facet profile itself, which is almost stationary. A simple kinetic Monte Carlo model matches the broad kinematic features revealed by the molecular dynamics. Since the mechanisms seem likely to be very general on kinked grain-boundary planes, the step-flow description is a promising approach to more quantitative modeling of general grain boundaries.

  8. Development of Velocity Guidance Assistance System by Haptic Accelerator Pedal Reaction Force Control

    NASA Astrophysics Data System (ADS)

    Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).

  9. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species

    PubMed Central

    Challis, Gregory L.; Hopwood, David A.

    2003-01-01

    In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of β-lactam antibiotics and β-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes. PMID:12970466

  10. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    NASA Astrophysics Data System (ADS)

    Wang, Changhai

    2016-09-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  11. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  12. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    NASA Astrophysics Data System (ADS)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  13. Driving forces for adsorption of amphiphilic peptides to the air-water interface.

    PubMed

    Engin, Ozge; Villa, Alessandra; Sayar, Mehmet; Hess, Berk

    2010-09-02

    We have studied the partitioning of amphiphilic peptides at the air-water interface. The free energy of adsorption from bulk to interface was calculated by determining the potential of mean force via atomistic molecular dynamics simulations. To this end a method is introduced to restrain or constrain the center of mass of a group of molecules in a periodic system. The model amphiphilic peptides are composed of alternating valine and asparagine residues. The decomposition of the free energy difference between the bulk and interface is studied for different peptide block lengths. Our analysis revealed that for short amphiphilic peptides the surface driving force dominantly stems from the dehydration of hydrophobic side chains. The only opposing force is associated with the loss of orientational freedom of the peptide at the interface. For the peptides studied, the free energy difference scales linearly with the size of the molecule, since the peptides mainly adopt extended conformations both in bulk and at the interface. The free energy difference depends strongly on the water model, which can be rationalized through the hydration thermodynamics of hydrophobic solutes. Finally, we measured the reduction of the surface tension associated with complete coverage of the interface with peptides.

  14. Actin growth profile in clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.

    2017-05-01

    Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.

  15. Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation

    PubMed Central

    Thoren, Katie L.; Worden, Evan J.; Yassif, Jaime M.; Krantz, Bryan A.

    2009-01-01

    Cellular compartmentalization requires machinery capable of translocating polypeptides across membranes. In many cases, transported proteins must first be unfolded by means of the proton motive force and/or ATP hydrolysis. Anthrax toxin, which is composed of a channel-forming protein and two substrate proteins, is an attractive model system to study translocation-coupled unfolding, because the applied driving force can be externally controlled and translocation can be monitored directly by using electrophysiology. By controlling the driving force and introducing destabilizing point mutations in the substrate, we identified the barriers in the transport pathway, determined which barrier corresponds to protein unfolding, and mapped how the substrate protein unfolds during translocation. In contrast to previous studies, we find that the protein's structure next to the signal tag is not rate-limiting to unfolding. Instead, a more extensive part of the structure, the amino-terminal β-sheet subdomain, must disassemble to cross the unfolding barrier. We also find that unfolding is catalyzed by the channel's phenylalanine-clamp active site. We propose a broad molecular mechanism for translocation-coupled unfolding, which is applicable to both soluble and membrane-embedded unfolding machines. PMID:19926859

  16. Towards a universal description of cohesive-particle flows

    NASA Astrophysics Data System (ADS)

    Lamarche, Casey; Liu, Peiyuan; Kellogg, Kevin; Lattanzi, Aaron; Hrenya, Christine

    2017-11-01

    A universal framework for describing cohesive granular flows seems unattainable based on prior works, making a fundamental continuum theory to predict such flows appear unachievable. For the first time, universal behavior of cohesive-grain flows is demonstrated by linking the macroscopic (many-grain) behavior to grain-grain interactions via two dimensionless groups: a generalized Bond number BoG - ratio of maximum cohesive force to the force driving flow - and a new Agglomerate number Ag - ratio of critical cohesive energy to the granular energy. Cohesive-grain flow is investigated in several systems, and universal behavior is determined via collapse of a cohesion-dependent output variable from each system with the appropriate dimensionless group. Universal behavior is observed using BoG for dense (enduring-contact-dominated) flows and Ag for dilute (collision-dominated) flows, as BoG accounts for the cohesive contact force and Ag for increased collisional dissipation due to cohesion. Hence, a new physical picture is presented, namely, BoG dominates in dense flows, where force chains drive momentum transfer, and Ag dominates in dilute systems, where the dissipative collisions dominate momentum transfer. Apparent discrepancies with past treatments are resolved. Dow Corning Corporation.

  17. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis

    PubMed Central

    Nerger, Bryan A.; Siedlik, Michael J.; Nelson, Celeste M.

    2016-01-01

    Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces. PMID:28008471

  18. An allosterically regulated reversible mechanical molecular switch: A de novo protein maquette functions as a redox/ionic strength sensor coupling chemical binding energy or charge interactions to conformational change

    NASA Astrophysics Data System (ADS)

    Grosset, Anne Marie

    2000-10-01

    Switch-like structural rearrangements of subunits due to charge-interactions are common in the basic biological action of proteins that couple and transfer chemical and ionic signals, sensing and regulation, mechanical force and electrochemical free energy. A simple synthetic protein model (maquette) has been designed to better understand the engineering of natural switches. Basic thermodynamic principles define the two key elements required for biological or chemical function of a switch. First, there must be two well-defined states. In this case, the two conformational states must have an energetic difference (DeltaDeltaG°) that is spanned by the applied driving force. Second, there must be an external stimulus, which preferentially interacts with one of the two states. The external stimulus provides the driving force that shifts the equilibrium from the first state to the second state (≥10:1 shifting towards ≤1:10). The energetic difference between the states must be the same order of magnitude as the driving force. In this synthetic protein, the two conformational states correspond to parallel (syn) and antiparallel (anti) assembly of the two identical helix-ss-helix subunits that bind heme close to the di-sulfide loop region. Charge interactions between two ferric hemes bound to histidines provide a driving force on the order of 2 kcal/mol (corresponding in the syn-topology to the 75--100 mV split in the heme redox potentials, or the 25--80 times weaker binding for the second ferric heme). The tetra-alpha-helix bundle has been modified to have a DeltaG around 1.8--2.5 kcal/mol (a 50--80 fold difference in the anti/syn ratio). Therefore, oxidation and reduction of the heme, or the binding of a second charged ferric heme can reversibly switch between syn- and anti-topologies, providing a sensitive detector of redox state or heme concentration. External solution conditions (e.g. ionic composition) can act on the protein remotely from the primary internal switch action and confer a secondary level of allosteric regulation. Bifunctional ligands can link subunits to shift topology. Scanning redox potentiometry can monitor the kinetics of topological change. Point amino acid substitutions and computer repacking of the hydrophobic core can modulate both the kinetics and the energetics.

  19. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  20. Conservation laws shape dissipation

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Esposito, Massimiliano

    2018-02-01

    Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.

  1. A piezoelectric ultrasonic linear micromotor using a slotted stator.

    PubMed

    Yun, Cheol-Ho; Watson, Brett; Friend, James; Yeo, Leslie

    2010-08-01

    A novel ultrasonic micro linear motor that uses 1st longitudinal and 2nd bending modes, derived from a bartype stator with a rectangular slot cut through the stator length, has been proposed and designed for end-effect devices of microrobotics and bio-medical applications. The slot structure plays an important role in the motor design, and can be used not only to tune the resonance frequency of the two vibration modes but also to reduce the undesirable longitudinal coupling displacement caused by bending vibration at the end of the stator. By using finite element analysis, the optimal slot dimension to improve the driving tip motion was determined, resulting in the improvement of the motor performance. The trial linear motor, with a weight of 1.6 g, gave a maximum driving velocity of 1.12 m/s and a maximum driving force of 3.4 N. A maximum mechanical output power of 1.1 W was obtained at force of 1.63 N and velocity of 0.68 m/s. The output mechanical power per unit weight was 688 W/kg.

  2. Improving the accuracy of walking piezo motors.

    PubMed

    den Heijer, M; Fokkema, V; Saedi, A; Schakel, P; Rost, M J

    2014-05-01

    Many application areas require ultraprecise, stiff, and compact actuator systems with a high positioning resolution in combination with a large range as well as a high holding and pushing force. One promising solution to meet these conflicting requirements is a walking piezo motor that works with two pairs of piezo elements such that the movement is taken over by one pair, once the other pair reaches its maximum travel distance. A resolution in the pm-range can be achieved, if operating the motor within the travel range of one piezo pair. However, applying the typical walking drive signals, we measure jumps in the displacement up to 2.4 μm, when the movement is given over from one piezo pair to the other. We analyze the reason for these large jumps and propose improved drive signals. The implementation of our new drive signals reduces the jumps to less than 42 nm and makes the motor ideally suitable to operate as a coarse approach motor in an ultra-high vacuum scanning tunneling microscope. The rigidity of the motor is reflected in its high pushing force of 6.4 N.

  3. General scaling relations for locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Slonaker, James; Motley, D. Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken

    2017-05-01

    Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.

  4. A numerical study of the benefits of driving jellyfish bells at their natural frequency.

    PubMed

    Hoover, Alexander; Miller, Laura

    2015-06-07

    A current question in swimming and flight is whether or not driving flexible appendages at their resonant frequency results in faster or more efficient locomotion. It has been suggested that jellyfish swim faster when the bell is driven at its resonant frequency. The goal of this study was to determine whether or not driving a jellyfish bell at its resonant frequency results in a significant increase in swimming velocity. To address this question, the immersed boundary method was used to solve the fully coupled fluid structure interaction problem of a flexible bell in a viscous fluid. Free vibration numerical experiments were used to determine the resonant frequency of the jellyfish bell. The jellyfish bells were then driven at frequencies ranging from above and below the resonant frequency. We found that jellyfish do swim fastest for a given amount of applied force when the bells are driven near their resonant frequency. Nonlinear effects were observed for larger deformations, shifting the optimal frequency to higher than the resonant frequency. We also found that the benefit of resonant forcing decreases for lower Reynolds numbers. Published by Elsevier Ltd.

  5. High mobility vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H. (Inventor); Nasif, Annette K. (Inventor)

    2001-01-01

    A vehicle, for driving over a ground surface, has a body with a left side, a right side, a front and a back. The vehicle includes left and right drive mechanisms. Each mechanism includes first and second traction elements for engaging the ground surface and transmitting a driving force between the vehicle and ground surface. Each mechanism includes first and second arms coupled to the first and second traction elements for relative rotation about first and second axis respectively. Each mechanism includes a rotor having a third axis, the rotor coupled to the body for rotation about the third axis and coupled to the first and second arms for relative rotation about the third axis. The mechanism includes first and second drive motors for driving the first and second traction elements and first and second transmissions, driven by the first and second motors and engaging the rotor. Driving the first and second traction elements simultaneously rotates the rotor relative to the first and second arms, respectively.

  6. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    PubMed Central

    Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu

    2011-01-01

    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures. PMID:22346578

  7. The neuromotor effects of transverse friction massage.

    PubMed

    Begovic, Haris; Zhou, Guang-Quan; Schuster, Snježana; Zheng, Yong-Ping

    2016-12-01

    Transverse friction massage (TFM), as an often used technique by therapists, is known for its effect in reducing the pain and loosing the scar tissues. Nevertheless, its effects on neuromotor driving mechanism including the electromechanical delay (EMD), force transmission and excitation-contraction (EC) coupling which could be used as markers of stiffness changes, has not been computed using ultrafast ultrasound (US) when combined with external sensors. Hence, the aim of this study was to find out produced neuromotor changes associated to stiffness when TFM was applied over Quadriceps femoris (QF) tendon in healthy subjcets. Fourteen healthy males and fifteen age-gender matched controls were recruited. Surface EMG (sEMG), ultrafast US and Force sensors were synchronized and signals were analyzed to depict the time delays corresponding to EC coupling, force transmission, EMD, torque and rate of force development (RFD). TFM has been found to increase the time corresponding to EC coupling and EMD, whilst, reducing the time belonging to force transmission during the voluntary muscle contractions. A detection of the increased time of EC coupling from muscle itself would suggest that TFM applied over the tendon shows an influence on changing the neuro-motor driving mechanism possibly via afferent pathways and therefore decreasing the active muscle stiffness. On the other hand, detection of decreased time belonging to force transmission during voluntary contraction would suggest that TFM increases the stiffness of tendon, caused by faster force transmission along non-contractile elements. Torque and RFD have not been influenced by TFM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Climate forcings in the industrial era.

    PubMed

    Hansen, J E; Sato, M; Lacis, A; Ruedy, R; Tegen, I; Matthews, E

    1998-10-27

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  9. Climate Forcings in the Industrial Era

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is-that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  10. Climate forcings in the Industrial era

    PubMed Central

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular “business as usual” or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue. PMID:9788985

  11. Climate Forcing in the Industrial Era

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  12. Perspective: Climate Forcings in the Industrial Era

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  13. Prototype Space Fabrication Platform

    DTIC Science & Technology

    1993-12-01

    Wheel Mechanism . . 5-12 5.3.4 Butt Welding of T-Beams ..... .......... 5-14 5.3.5 Application of Cross Members ............ 5-17 5.3.6 Application of...fabrication process and deployed into spece by a drive mechanism on each cap member. The drive mechanism also provided the force necessary to extract...members were stacked closely together and stored in a clip mechanism . The clip had a belt ’ ed mechanism designed to advance the stack, one member at

  14. Military Portal, augmenting the U.S. Air Force Portal and DoD portal, Army,

    Science.gov Websites

    Troops-to-Teachers Program This portal page is designed so it can be copied to a hard drive, forwarded by aspect of the military. C'mon down and visit us online. If you make a copy of this page on your hard you put this file on your hard drive, you can modify it and add links of your own choosing ... such as

  15. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  16. Breaking rocks made easy: subcritical processes and tectonic predesign

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Anne; Krautblatter, Michael

    2017-04-01

    In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of the forms we study, and break rocks easily.

  17. Formation and structure of Al-Zr metallic glasses studied by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Zhao, S. Z.; Dai, Y.; Cui, Y. Y.; Liu, B. X.

    2011-06-01

    Based on the recently constructed n-body potential, both molecular dynamics and Monte Carlo simulations revealed that the Al-Zr amorphous alloy or metallic glass can be obtained within the composition range of 24-66 at. % Zr. The revealed composition range could be considered the intrinsic glass-forming range and it quantitatively indicates the glass-forming ability of the Al-Zr system. The underlying physics of the finding is that, within the composition range, the amorphous alloys are energetically favored to form. In addition, it is proposed that the energy difference between a solid solution and the amorphous phase could serve as the driving force of the crystalline to amorphous transition and the driving force should be sufficiently large for amorphization to take place. The minimum driving forces for fcc Al-based and hcp Zr-based Al-Zr solid solutions to amorphize are calculated to be about -0.05 and -0.03 eV/atom, respectively, whereas the maximum driving force is found to be -0.23 eV/atom at the alloy stoichiometry of Al60Zr40. A thermodynamics parameter γ¯, defined as the ratio of the driving force to the formation energy of the solid solution, is further proposed to indicate the glass-forming ability of an Al-Zr alloy. Thermodynamics calculations show that the glass-forming ability of the Al56Zr44 alloy is the largest, implying that the Al56Zr44 amorphous alloy is more ready to form than other alloys in the Al-Zr system. Besides, Voronoi analysis found that there exists a strong correlation between the coordinate number and structure. Amorphization could result in increase of coordinate numbers and about 1.5% volume-expansion. The volume-expansion induced by amorphization can be attributed to two factors, i.e., the total bond number of the Al-Zr amorphous phase is greater than that of the corresponding solid solution, and the averaged bond length of the Al-Zr amorphous phase is longer than that of the corresponding solid solution. For the Al-Zr alloys, especially for the Al-Zr amorphous phase, there exists a negative chemical micro-inhomogeneity in the alloys, suggesting that metallic bonds prefer to be formed between the atoms of dissimilar species. Finally, it is found that there is a weak correspondence between the bond-angle distributions of Al-Zr amorphous alloys and the solid solutions. It is further suggested that the configuration of Al-Zr amorphous alloys embodies some hybrid imprint of bcc, fcc, and hcp structures. More interestingly, the short-range order is also observed in the bond-angle distributions.

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Presents: (1) a simple demonstration which illustrates the driving force of entropy using the familiar effects of the negative thermal expansion coefficient of rubber; and (2) a demonstration of tetrahedral bonding using soap films. (CS)

  19. 77 FR 27737 - Procurement List Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ..., pictures, wall art, artificial plants, light fixtures, globes/lenses, trophies/display cases, drapes... Forces Medical Examiner System, Building 115, 115 Purple Heart Drive, Dover AFB, DE. NPA: The Chimes, Inc...

  20. Experimental muscle pain increases variability of neural drive to muscle and decreases motor unit coherence in tremor frequency band.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Falla, Deborah; Farina, Dario

    2015-08-01

    It has been observed that muscle pain influences force variability and low-frequency (<3 Hz) oscillations in the neural drive to muscle. In this study, we aimed to investigate the effect of experimental muscle pain on the neural control of muscle force at higher frequency bands, associated with afferent feedback (alpha band, 5-13 Hz) and with descending cortical input (beta band, 15-30 Hz). Single-motor unit activity was recorded, in two separate experimental sessions, from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles with intramuscular wire electrodes, during isometric abductions of the fifth finger at 10% of maximal force [maximum voluntary contraction (MVC)] and ankle dorsiflexions at 25% MVC. The contractions were repeated under three conditions: no pain (baseline) and after intramuscular injection of isotonic (0.9%, control) and hypertonic (5.8%, painful) saline. The results showed an increase of the relative power of both the force signal and the neural drive at the tremor frequency band (alpha, 5-13 Hz) between the baseline and hypertonic (painful) conditions for both muscles (P < 0.05) but no effect on the beta band. Additionally, the strength of motor unit coherence was lower (P < 0.05) in the hypertonic condition in the alpha band for both muscles and in the beta band for the ADM. These results indicate that experimental muscle pain increases the amplitude of the tremor oscillations because of an increased variability of the neural control (common synaptic input) in the tremor band. Moreover, the concomitant decrease in coherence suggests an increase in independent input in the tremor band due to pain. Copyright © 2015 the American Physiological Society.

Top