Sample records for drone aircraft

  1. The Science of Drones

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.; Mueller, Eric

    2017-01-01

    Drone: the public's term for any flying vehicle that doesn't have a pilot onboard. Unmanned aircraft system (UAS): preferred civil term that emphasizes the drone as a "system". Unmanned aerial vehicle (UAV): older but common term, especially in academia. Remotely piloted aircraft system (RPAS): the military's most common term for a drone, and probably the most accurate.

  2. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  3. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  4. Enlisted or Officer Drone Pilots

    DTIC Science & Technology

    2010-04-01

    begin to emerge. While both sets of pilots begrudge their video game status, the disparagement affects the warrior Army more than it affects the...missions, and will continue to replace today’s manned aircraft. The video game stigma of drones is largely irrelevant in the Air Force. Except for...drone control room is getting shot at, drones require military managers more than heroes. The video game stigma of drones has a greater significance

  5. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  6. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  7. Personality Test Scores that Distinguish U.S. Air Force Remotely Piloted Aircraft Drone Pilot Training Candidates

    DTIC Science & Technology

    2014-02-18

    advancement of aviation drone technology has led to significant developments and improvements in the capabilities of military remotely piloted aircraft...stress; less excitement seeking and action oriented; less assertive; more socially introverted and withdrawn; more socially compliant and...to age and educational differences. Fifth, evaluations that involve selection and assessment of pilot applicants should include collateral sources of

  8. A drone detection with aircraft classification based on a camera array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  9. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.

    PubMed

    Van Tilburg, Christopher

    2017-06-01

    Unmanned aircraft systems (UAS), colloquially called drones, are used commonly for military, government, and civilian purposes, including both commercial and consumer applications. During a search and rescue mission in Oregon, a UAS was used to confirm a fatality in a slot canyon; this eliminated the need for a dangerous rappel at night by rescue personnel. A second search mission in Oregon used several UAS to clear terrain. This allowed search of areas that were not accessible or were difficult to clear by ground personnel. UAS with cameras may be useful for searching, observing, and documenting missions. It is possible that UAS might be useful for delivering equipment in difficult areas and in communication. Copyright © 2017. Published by Elsevier Inc.

  10. Drones in medicine-The rise of the machines.

    PubMed

    Balasingam, Manohari

    2017-09-01

    This is a medical kitty hawk moment. Drones are pilotless aircrafts that were initially used exclusively by the military but are now also used for various scientific purposes, public safety, and in commercial industries. The healthcare industry in particular can benefit from their technical capabilities and ease of use. Common drone applications in medicine include the provision disaster assessments when other means of access are severely restricted; delivering aid packages, medicines, vaccines, blood and other medical supplies to remote areas; providing safe transport of disease test samples and test kits in areas with high contagion; and potential for providing rapid access to automated external defibrillators for patients in cardiac arrest. Drones are also showing early potential to benefit geriatric medicine by providing mobility assistance to elderly populations using robot-like technology. Looking further to the future, drones with diagnostic imaging capabilities may have a role in assessing health in remote communities using telemedicine technology. The Federal Aviation Administration (FAA) in the United States and the European Aviation Safety Agency (EASA) in the European Union are some examples of legislative bodies with regulatory authority over drone usage. These agencies oversee all technical, safety, security and administrative issues related to drones. It is important that drones continue to meet or exceed the requirements specified in each of these regulatory areas. The FAA is challenged with keeping pace legislatively with the rapid advances in drone technology. This relative lag has been perceived as slowing the proliferation of drone use. Despite these regulatory limitations, drones are showing significant potential for transforming healthcare and medicine in the 21st century. © 2017 John Wiley & Sons Ltd.

  11. NASA Conducts "Out of Sight" Drone Tests in Nevada

    NASA Image and Video Library

    2016-10-27

    Shareable video highlighting NASA's work with the Federal Aviation Administration (FAA) to develop an air traffic management platform for drones, called the Unmanned Aircraft Systems Traffic Management system or UTM.

  12. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  13. Self repairing composites for drone air vehicles

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2015-04-01

    The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.

  14. Risk Perception and the Public Acceptance of Drones.

    PubMed

    Clothier, Reece A; Greer, Dominique A; Greer, Duncan G; Mehta, Amisha M

    2015-06-01

    Unmanned aircraft, or drones, are a rapidly emerging sector of the aviation industry. There has been limited substantive research, however, into the public perception and acceptance of drones. This article presents the results from two surveys of the Australian public designed to investigate (1) whether the public perceive drones to be riskier than existing manned aviation, (2) whether the terminology used to describe the technology influences public perception, and (3) what the broader concerns are that may influence public acceptance of the technology. We find that the Australian public currently hold a relatively neutral attitude toward drones. Respondents did not consider the technology to be overly unsafe, risky, beneficial, or threatening. Drones are largely viewed as being of comparable risk to that of existing manned aviation. Furthermore, terminology had a minimal effect on the perception of the risks or acceptability of the technology. The neutral response is likely due to a lack of knowledge about the technology, which was also identified as the most prevalent public concern as opposed to the risks associated with its use. Privacy, military use, and misuse (e.g., terrorism) were also significant public concerns. The results suggest that society is yet to form an opinion of drones. As public knowledge increases, the current position is likely to change. Industry communication and media coverage will likely influence the ultimate position adopted by the public, which can be difficult to change once established. © 2014 Society for Risk Analysis.

  15. Multivariable control of a rolling spider drone

    NASA Astrophysics Data System (ADS)

    Lyu, Haifeng

    The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.

  16. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  17. The Effectiveness of Drone Strikes in Counterinsurgency and Counterterrorism Campaigns

    DTIC Science & Technology

    2013-09-01

    accurate missiles that have the ca- pacity to target individuals, automobiles , and sections of structures such as rooms in a large house. Perhaps the...unmanned aerial ve- hicles (UAVs) or remotely piloted aircraft (RPAs)—are pilotless aircraft controlled by individuals located on the ground, often some...with many of the advantages that ground forces offer in counterinsurgency operations. The fact that drones are pilotless means that their use does

  18. Drone warfare

    NASA Astrophysics Data System (ADS)

    Gusterson, Hugh

    2017-11-01

    Crude drones existed as early as World War I, but the technology matured in the Yugoslav Wars of the 1990s and the current wars around the Middle East. The U.S. first used a weaponized drone in late 2001, in Afghanistan. Drones may cause more or less civilian casualties depending on the targeting protocols employed by their operators. There is an inherent ambiguity in determining who is an insurgent from several thousand feet, but civilian casualties are likely to be higher if targeters emphasize "signature strikes" over "personality strikes," if they engage in "double-tap strikes," if they rely too much on local informants, and if they rely too heavily on cellphone identification in the absence of corroboration from other intelligence sources. The legality of drone warfare is fairly clear in established battle zones such as Afghanistan, but is more problematic in terms of both international and domestic law when it comes to drone strikes in countries such as Yemen, Pakistan and Somalia with which the U.S. is not at war. Looking to the future, the U.S. would be well advised to sponsor negotiations for an international drone convention that might establish clear international rules for the use of drones, ban autonomous smart drones, and establish adjudicatory procedures to handle allegations of war crimes.

  19. An analysis of post-traumatic stress symptoms in United States Air Force drone operators.

    PubMed

    Chappelle, Wayne; Goodman, Tanya; Reardon, Laura; Thompson, William

    2014-06-01

    Remotely piloted aircraft (RPA), commonly referred to as "drones," have emerged over the past decade as an innovative warfighting tool. Given there is a paucity of empirical research assessing drone operators, the purpose of this study was to assess for the prevalence of PTSD symptoms among this cohort. Of the 1084 United States Air Force (USAF) drone operators that participated, a total of 4.3% endorsed a pattern of symptoms of moderate to extreme level of severity meeting criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders-4th edition. The incidence of PTSD among USAF drone operators in this study was lower than rates of PTSD (10-18%) among military personnel returning from deployment but higher than incidence rates (less than 1%) of USAF drone operators reported in electronic medical records. Although low PTSD rates may be promising, limitations to this study are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. God's eye news: The use of drones in journalism, a documentary film

    NASA Astrophysics Data System (ADS)

    Carroll, Robert L., Jr.

    This thesis uses the format of documentary film to investigate the aesthetic, legal, and ethical issues surrounding the use of Unmanned Aircraft Systems, commonly known as drones, in journalism. Particularly important are the topics of public perception, safety, freedom of speech, and privacy. Do journalists' First Amendment protections extend to the right to gather images using drones? How will the privacy of citizens be protected against aerial cameras that can go virtually unnoticed? Can drones be safely integrated into the National Airspace System? The goal of the documentary is not necessarily to answer these questions, but to gather opinions from journalists, video professionals, legal experts, flight instructors and historians, to provide the facts so that viewers can reach their own informed conclusions.

  1. Droning on about the Weather: Meteorological Science on a School-Friendly Scale

    ERIC Educational Resources Information Center

    Murphy, Phil; O'Neill, Ashley; Brown, Abby

    2016-01-01

    Meteorology is an important branch of science that offers exciting career opportunities and yet is not usually included in school curricula. The availability of multi-rotor model aircraft (drones) offers an exciting opportunity to bring meteorology into school science.

  2. Drone-Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas.

    PubMed

    Erat, Okan; Isop, Werner Alexander; Kalkofen, Denis; Schmalstieg, Dieter

    2018-04-01

    Drones allow exploring dangerous or impassable areas safely from a distant point of view. However, flight control from an egocentric view in narrow or constrained environments can be challenging. Arguably, an exocentric view would afford a better overview and, thus, more intuitive flight control of the drone. Unfortunately, such an exocentric view is unavailable when exploring indoor environments. This paper investigates the potential of drone-augmented human vision, i.e., of exploring the environment and controlling the drone indirectly from an exocentric viewpoint. If used with a see-through display, this approach can simulate X-ray vision to provide a natural view into an otherwise occluded environment. The user's view is synthesized from a three-dimensional reconstruction of the indoor environment using image-based rendering. This user interface is designed to reduce the cognitive load of the drone's flight control. The user can concentrate on the exploration of the inaccessible space, while flight control is largely delegated to the drone's autopilot system. We assess our system with a first experiment showing how drone-augmented human vision supports spatial understanding and improves natural interaction with the drone.

  3. Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones

    NASA Astrophysics Data System (ADS)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.

    2016-12-01

    We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.

  4. Drones in Extension Programming: Implementation of Adult and Youth Activities

    ERIC Educational Resources Information Center

    de Koff, Jason P.

    2017-01-01

    The use of unmanned aircraft systems (UASs), or consumer drones, in agriculture has the potential to revolutionize the way certain farm practices are conducted and the way science, technology, engineering, and math principles can be taught. Currently, there is need for UAS training for both adults and youths, and that need will increase with the…

  5. Unmanned aircraft system bridge inspection demonstration project phase II final report.

    DOT National Transportation Integrated Search

    2017-06-01

    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  6. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations.

    PubMed

    Karaca, Yunus; Cicek, Mustafa; Tatli, Ozgur; Sahin, Aynur; Pasli, Sinan; Beser, Muhammed Fatih; Turedi, Suleyman

    2018-04-01

    This study explores the potential use of drones in searching for and locating victims and of motorized transportation of search and rescue providers in a mountain environment using a simulation model. This prospective randomized simulation study was performed in order to compare two different search and rescue techniques in searching for an unconscious victim on snow-covered ground. In the control arm, the Classical Line Search Technique (CLT) was used, in which the search is performed on foot and the victim is reached on foot. In the intervention arm, the Drone-snowmobile Technique (DST) was used, the search being performed by drone and the victim reached by snowmobile. The primary outcome of the study was the comparison of the two search and rescue techniques in terms of first human contact time. Twenty search and rescue operations were conducted in this study. Median time to arrival at the mannequin was 57.3min for CLT, compared to 8.9min for DST. The median value of the total searched area was 88,322.0m 2 for CLT and 228,613.0m 2 for DST. The median area searched per minute was 1489.6m 2 for CLT and 32,979.9m 2 for DST (p<0.01 for all comparisons). In conclusion, a wider area can be searched faster by drone using DST compared to the classical technique, and the victim can be located faster and reached earlier with rescuers transported by snowmobile. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Drone noise

    NASA Astrophysics Data System (ADS)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  8. Surface flow measurements from drones

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  9. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  10. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    PubMed

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  11. Domesticating the Drone: The Demilitarisation of Unmanned Aircraft for Civil Markets.

    PubMed

    Boucher, Philip

    2015-12-01

    Remotely piloted aviation systems (RPAS) or 'drones' are well known for their military applications, but could also be used for a range of non-military applications for state, industrial, commercial and recreational purposes. The technology is advanced and regulatory changes are underway which will allow their use in domestic airspace. As well as the functional and economic benefits of a strong civil RPAS sector, the potential benefits for the military RPAS sector are also widely recognised. Several actors have nurtured this dual-use aspect of civil RPAS development. However, concerns have been raised about the public rejecting the technology because of their association with military applications and potentially controversial applications, for example in policing and border control. In contrast with the enthusiasm for dual-use exhibited throughout the EC consultation process, the strategy for avoiding public rejection devised in its roadmap would downplay the connection between military and non-military RPAS and focus upon less controversial applications such as search and rescue. We reflect upon this contrast in the context of the European agenda of responsible research and innovation. In doing so, we do not rely upon critique of drones per se, in their neither their civil nor military guise, but explore the extent to which current strategies for managing their public acceptability are compatible with a responsible and socially beneficial development of RPAS for civil purposes.

  12. Dragon Drone UAV System

    DTIC Science & Technology

    2003-09-02

    TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dragon Drone UAV System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A E R O S Y S T E M S BAI’s Dragon Drone ...the hundreds. BAI’s Dragon Drone system is the result of combining new ideas and emerging technologies with the in-depth knowl- edge gained from real

  13. KDB-1 LOW-LEVEL AIRCRAFT SAMPLING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plagge, H.J.

    1961-03-01

    Use of KDB-1 drone aircraft appears feasible for the sampling of atomic debris at altitudes from 1000 to 40,000 feet. Further development would be necessary for precision control below 1000 feet. Further development and testing remains to be done on the sampling devices before the system can become operational. This system would be approximately one-seventh as expensive as present systems using manned aircraft. (auth)

  14. Cooperative Spatial Retreat for Resilient Drone Networks.

    PubMed

    Kang, Jin-Hyeok; Kwon, Young-Min; Park, Kyung-Joon

    2017-05-03

    Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes.

  15. Using an Instrumented Drone to Sample Dust Devils

    NASA Astrophysics Data System (ADS)

    Jackson, Brian; Lorenz, Ralph; Davis, Karan; Lipple, Brock

    2017-10-01

    Dust devils are low-pressure, small (many to tens of meters) convective vortices powered by surface heating and rendered visible by lofted dust. Dust devils occur in arid climates on Earth, where they degrade air quality and pose a hazard to small aircraft. They also occur ubiquitously on Mars, where they may dominate the supply of atmospheric dust. Since dust contributes significantly to Mars’ atmospheric heat budget, dust devils probably play an important role in its climate. The dust-lifting capacity of a devil likely depends sensitively on its structure, particularly the wind and pressure profiles, but the exact dependencies are poorly constrained. Thus, the exact contribution to Mars’ atmosphere remains unresolved. Moreover, most previous studies of martian dust devils have relied on passive sampling of the profiles via meteorology packages on landed spacecraft, resulting in random encounter geometries which non-trivially skew the retrieved profiles. Analog studies of terrestrial devils have employed more active sampling (instrumented vehicles or manned aircraft) but have been limited to near-surface (few meters) or relatively high altitude (hundreds of meters) sampling. Unmanned aerial vehicles (UAVs) or drones, combined with miniature, digital instrumentation, promise a novel and uniquely powerful platform from which to sample dust devils via (relatively) controlled geometries at a wide variety of altitudes. In this presentation, we will describe a pilot study using an instrumented quadcopter on an active field site in southeastern Oregon, which (to our knowledge) has not previously been surveyed for dust devils. We will present preliminary results from the resulting encounters, including stereo image analysis and encounter footage collected onboard the drone.

  16. A Case for Drones

    ERIC Educational Resources Information Center

    Preble, Brian C.

    2015-01-01

    The time has come for drones. The use of unmanned aerial vehicles played an integral and indispensable part in the United States' military operations during the wars in both Afghanistan and Iraq. Since then, drones have taken new forms, found their way into hobbyists' hands, and recently have played a role in postmodern transportation. Current…

  17. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    PubMed

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population.

  18. The design of the multipurpose Lusi drone. When technology can access harsh environments.

    NASA Astrophysics Data System (ADS)

    Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano; Iarocci, Alessandro

    2016-04-01

    Extreme and inaccessible environments are a new frontier that unmanned and remotely operated vehicles can today safely access and monitor. The Lusi mud eruption (NE Java Island, Indonesia) represents one of these harsh environments that are totally unreachable with traditional techniques. Here boiling mud is constantly spewed tens of meters in height and tall gas clouds surround the 100 meters wide active crater. The crater is surrounded by a 600 meters circular zone of hot mud that prevents any approach to investigate and sample the eruption site. In the framework of the Lusi Lab project (ERC grant n° 308126) we assembled and designed a multipurpose drone to survey the eruption site. The Lusi drone is equipped with numerous airborne devices suitable for use on board of other multicopters. During the missions three cameras can complete 1) video survey, 2) high resolution photogrammetry of desired and preselected polygons, and 3) thermal photogrammetry surveys with infra-red camera to locate hot fluids seepage areas or faulted zones. Crater sampling and monitoring operations can be pre-planned with a flight software, and the pilot is required only for take-off and landing. An automatic winch allows the deployment of gas, mud and water samplers and contact thermometers to be operated with no risk for the aircraft. During the winch operations (that can be performed automatically) the aircraft hovers at a safety height until the tasks are completed while being controlled by the winch embedded processor. The drone is also equipped with a GPS connected CO2 and CH4 sensors. Gridded surveys using these devices allowed obtaining 2D maps of the concentration and distribution of various gasses over the area covered by the flight path.

  19. Approaching birds with drones: first experiments and ethical guidelines

    PubMed Central

    Vas, Elisabeth; Lescroël, Amélie; Duriez, Olivier; Boguszewski, Guillaume; Grémillet, David

    2015-01-01

    Unmanned aerial vehicles, commonly called drones, are being increasingly used in ecological research, in particular to approach sensitive wildlife in inaccessible areas. Impact studies leading to recommendations for best practices are urgently needed. We tested the impact of drone colour, speed and flight angle on the behavioural responses of mallards Anas platyrhynchos in a semi-captive situation, and of wild flamingos (Phoenicopterus roseus) and common greenshanks (Tringa nebularia) in a wetland area. We performed 204 approach flights with a quadricopter drone, and during 80% of those we could approach unaffected birds to within 4 m. Approach speed, drone colour and repeated flights had no measurable impact on bird behaviour, yet they reacted more to drones approaching vertically. We recommend launching drones farther than 100 m from the birds and adjusting approach distance according to species. Our study is a first step towards a sound use of drones for wildlife research. Further studies should assess the impacts of different drones on other taxa, and monitor physiological indicators of stress in animals exposed to drones according to group sizes and reproductive status. PMID:25652220

  20. Classifications, applications, and design challenges of drones: A review

    NASA Astrophysics Data System (ADS)

    Hassanalian, M.; Abdelkefi, A.

    2017-05-01

    Nowadays, there is a growing need for flying drones with diverse capabilities for both civilian and military applications. There is also a significant interest in the development of novel drones which can autonomously fly in different environments and locations and can perform various missions. In the past decade, the broad spectrum of applications of these drones has received most attention which led to the invention of various types of drones with different sizes and weights. In this review paper, we identify a novel classification of flying drones that ranges from unmanned air vehicles to smart dusts at both ends of this spectrum, with their new defined applications. Design and fabrication challenges of micro drones, existing methods for increasing their endurance, and various navigation and control approaches are discussed in details. Limitations of the existing drones, proposed solutions for the next generation of drones, and recommendations are also presented and discussed.

  1. Using Recreational Drones to Promote STEM Learning

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Dahlman, L. E.; Mooney, M. E.; Russell, R. M.

    2017-12-01

    The popularity of unmanned aerial vehicles (UAVs or drones) as a fun, inexpensive (<$100), and easy to fly "toy" continues to grow yearly. Flying drones can also serve as a great entry point to stimulate curiosity and encourage students to engage in science, technology, engineering, and math (STEM) investigations. Leveraging the popularity of recreational drones, the Education Committee at the Earth System Information Partners (ESIP) has worked with educators, researchers, and data scientists to develop a Drones for STEM initiative to inspire learners to use drones as a platform to collect and analyze local-scale data using lightweight cameras and/or sensors. In 2016, the initiative developed learning activity outlines and piloted the materials at an ESIP-sponsored teacher workshop and National Science Teacher Association sessions. After incorporating feedback from those sessions, ESIP collaborated with the UCAR Center for Science Education to publish finalized activities. Available on the UCAR SciEd website (SciEd.ucar.edu/engineering-activities), the activities encompass skills to measure drone payload, flight height, and velocity. Investigations also encourage the use of repeat photography, comparing images from drones and satellites, and creating 3D structure from motion (SfM) models from overlapping photographs. The site also offers general guidance to develop science projects or science fair investigations using Next Generation Science Standards science and engineering practices. To encourage the use of drones in STEM, UNAVCO and NOAA staff, sponsored by ESIP, led two hands-on workshops this summer; a three half-day workshop at the Earth Educator Rendezvous (EER) and a half-day session during the ESIP Educator Workshop. Participants practiced UAV flying skills, experimented with lightweight sensors, and learned about current drone-enhanced research projects. In small groups, they tested existing activities and designed student-focused investigations. Examples

  2. Approaching birds with drones: first experiments and ethical guidelines.

    PubMed

    Vas, Elisabeth; Lescroël, Amélie; Duriez, Olivier; Boguszewski, Guillaume; Grémillet, David

    2015-02-01

    Unmanned aerial vehicles, commonly called drones, are being increasingly used in ecological research, in particular to approach sensitive wildlife in inaccessible areas. Impact studies leading to recommendations for best practices are urgently needed. We tested the impact of drone colour, speed and flight angle on the behavioural responses of mallards Anas platyrhynchos in a semi-captive situation, and of wild flamingos (Phoenicopterus roseus) and common greenshanks (Tringa nebularia) in a wetland area. We performed 204 approach flights with a quadricopter drone, and during 80% of those we could approach unaffected birds to within 4 m. Approach speed, drone colour and repeated flights had no measurable impact on bird behaviour, yet they reacted more to drones approaching vertically. We recommend launching drones farther than 100 m from the birds and adjusting approach distance according to species. Our study is a first step towards a sound use of drones for wildlife research. Further studies should assess the impacts of different drones on other taxa, and monitor physiological indicators of stress in animals exposed to drones according to group sizes and reproductive status. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Cooperative Spatial Retreat for Resilient Drone Networks †

    PubMed Central

    Kang, Jin-Hyeok; Kwon, Young-Min; Park, Kyung-Joon

    2017-01-01

    Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes. PMID:28467390

  4. Drone transportation of blood products.

    PubMed

    Amukele, Timothy; Ness, Paul M; Tobian, Aaron A R; Boyd, Joan; Street, Jeff

    2017-03-01

    Small civilian unmanned aerial vehicles (drones) are a novel way to transport small goods. To the best of our knowledge there are no studies examining the impact of drone transport on blood products, describing approaches to maintaining temperature control, or component physical characteristics during drone transport. Six leukoreduced red blood cell (RBC) and six apheresis platelet (PLT) units were split using sterile techniques. The larger parent RBC and PLT units, as well as six unthawed plasma units frozen within 24 hours of collection (FP24), were placed in a cooler, attached to the drone, and flown for up to 26.5 minutes with temperature logging. Ambient temperatures during the experimental window ranged between -1 and 18°C across 2 days. The difference between the ambient and unit temperatures was approximately 20°C for PLT and FP24 units. After flight, the RBC parent units were centrifuged and visually checked for hemolysis; the PLTs were checked for changes in mean PLT volumes (MPVs), pH, and PLT count; and the frozen air bubbles on the back of the FP24 units were examined for any changes in size or shape, as evidence of thawing. There was no evidence of RBC hemolysis; no significant changes in PLT count, pH, or MPVs; and no changes in the FP24 bubbles. The temperature of all units was maintained during transport and flight. There was no adverse impact of drone transport on RBC, PLT, or FP24 units. These findings suggest that drone transportation systems are a viable option for the transportation of blood products. © 2016 AABB.

  5. Outdoor flocking of quadcopter drones with decentralized model predictive control.

    PubMed

    Yuan, Quan; Zhan, Jingyuan; Li, Xiang

    2017-11-01

    In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Drones--ethical considerations and medical implications.

    PubMed

    Pepper, Tom

    2012-01-01

    Drones enhance military capability and form a potent element of force protection, allowing humans to be removed from hazardous environments and tedious jobs. However, there are moral, legal, and political dangers associated with their use. Although a time may come when it is possible to develop a drone that is able to autonomously and ethically engage a legitimate target with greater reliability than a human, until then military drones demand a crawl-walk-run development methodology, consent by military personnel for weapon use, and continued debate about the complex issues surrounding their deployment.

  7. Evolution of space drones for planetary exploration: A review

    NASA Astrophysics Data System (ADS)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  8. Contribution of honeybee drones of different age to colonial thermoregulation.

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2009-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones' contribution to thermoregulation at 5 different experimental temperatures ranging from 15-34 °C. The frequency and the degree of endothermy depended on the drones' local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0-2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones' increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature.

  9. A Fully Coupled, Automated Formation Control System for Dissimilar Aircraft in Maneuvering Formation Flight

    DTIC Science & Technology

    1991-03-01

    Command contracted with IBM in the mid seventies to build a drone formation control system capable of controlling a number of drone aircraft... Number 6, 1 July 1964 to 26 February 1965. Contract Number DA-36-039-AMC� (E), 1E1-20601-A219-03. Burlington, Massachusetts: Radio Corporation of ...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GE

  10. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    NASA Astrophysics Data System (ADS)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  11. [Investigation of gestagenic effect of raw drone milk in rats].

    PubMed

    Seres, Adrienn; Ducza, Eszter; Gáspár, Róbert

    2014-01-01

    Numerous honeybee products are used in traditional medicine. The best-known honeybee products are the honey, the propolis and the royal jelly. Drone milk is a relatively little-known honeybee product. Although, drone milk is traditionally used to treat infertility and to promote vitality in both men and women in certain countries, the literature furnishes no information concerning effects of the drone milk. The oestrogenic and androgenic effects of drone milk have recently been reported in rats and the effective compounds have also been identified. The aim of this study was to determine the putative gestagenic effect of raw drone milk in rats. Maintenance of pregnancy assays revealed that drone milk was able to increase the number of surviving fetuses. This results suggested some gestagenic effects. This effect was confirmed by RT-PCR and Western blot methods in which the mRNA and protein expressions of gestagen-dependent CRLR (Calcitonin Receptor-Like Receptor) peptide were determined. To determine the efficacy of gestagenic effect of drone milk, spironolactone (weak gestagen compound) was used. The combination of drone milk and spironolactone showed more potent gestagenic effect. These results lead us to suppose that raw drone milk shows weak gestagenic effect and this effect can be increased by another weak gestagen. Further studies are required to clarify the gestagenic mechanisms of action of drone milk.

  12. Less Talk More Drone: Social Research with UAVs

    ERIC Educational Resources Information Center

    Birtchnell, Thomas; Gibson, Chris

    2015-01-01

    There is a growing body of work in geography and sociology on the impact of drones on warfare, surveillance and civil protest. This paper assesses the challenges of using drones for teaching human geography and spatial social sciences. Affordable and expensive drones are now available in the market place; however, there has been next to no…

  13. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    PubMed

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  14. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  15. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    PubMed

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  16. Mortality data in the age of drones ‡.

    PubMed

    Carruthers, Elspeth

    2018-03-01

    Mortality data plays an essential role in shaping humanitarian, legal and ethical responses to conflict situations. The rise of drone warfare poses new questions regarding the accuracy and reliability of mortality data in conflict. This article examines some of the methodological and political challenges to collecting mortality data in drone warfare, and how the way in which drones are framed in public discourse contributes to these challenges.

  17. Quantitative patterns in drone wars

    NASA Astrophysics Data System (ADS)

    Garcia-Bernardo, Javier; Dodds, Peter Sheridan; Johnson, Neil F.

    2016-02-01

    Attacks by drones (i.e., unmanned combat air vehicles) continue to generate heated political and ethical debates. Here we examine the quantitative nature of drone attacks, focusing on how their intensity and frequency compare with that of other forms of human conflict. Instead of the power-law distribution found recently for insurgent and terrorist attacks, the severity of attacks is more akin to lognormal and exponential distributions, suggesting that the dynamics underlying drone attacks lie beyond these other forms of human conflict. We find that the pattern in the timing of attacks is consistent with one side having almost complete control, an important if expected result. We show that these novel features can be reproduced and understood using a generative mathematical model in which resource allocation to the dominant side is regulated through a feedback loop.

  18. An approach to the drone fleet survivability assessment based on a stochastic continues-time model

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos

    2017-09-01

    An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.

  19. Drones for Provision of Flotation Support in Simulated Drowning.

    PubMed

    Bäckman, Anders; Hollenberg, Jacob; Svensson, Leif; Ringh, Mattias; Nordberg, Per; Djärv, Therese; Forsberg, Sune; Hernborg, Olof; Claesson, Andreas

    The feasibility and potential of using drones for providing flotation devices in cases of drowning have not yet been assessed. We hypothesize that a drone carrying an inflatable life buoy is a faster way to provide flotation compared with traditional methods. The purpose of this study is to explore the feasibility and efficiency of using a drone for delivering and providing flotation support to conscious simulated drowning victims. A simulation study was performed with a simulated drowning victim 100 m from the shore. A drone (DJI Phantom 4; dji, Shenzhen, China) equipped with an inflatable life buoy of 60 N was compared with traditional surf rescue swimming for providing flotation. The primary outcome was delay (minutes:seconds). A total number of 30 rescues were performed with a median time to delivery of the floating device of 30 seconds (interquartile range [IQR] = 24-32 seconds) for the drone compared with 65 seconds (IQR = 60-77 seconds) with traditional rescue swimming (P < .001). The drone had an accuracy of 100% in dropping the inflatable life buoy < 5 m from the victim, with a median of 1 m (IQR = 1-2 m). Using drones to deliver inflatable life buoys is safe and may be a faster method to provide early flotation devices to conscious drowning victims compared with rescue swimming. Copyright © 2018 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  20. Drone Swarms

    DTIC Science & Technology

    2017-05-25

    Adjustment in Aggressive and Nonaggressive Children,” Journal of Abnormal Child Psychology 32, no. 3 (June 2004): 305-20. 128 Naveh, In Pursuit of... Abnormal Child Psychology 32, no. 3 (June 2004): 305-20. Bousquet, Antoine. The Scientific Way of Warfare: Order and Chaos of the Battlefields of...38 Drone Swarm Integration

  1. Honeybee drones are attracted by groups of consexuals in a walking simulator.

    PubMed

    Brandstaetter, Andreas Simon; Bastin, Florian; Sandoz, Jean-Christophe

    2014-04-15

    During the mating season, honeybee males, the drones, gather in congregation areas 10-40 m above ground. When a receptive female, a queen, enters the congregation, drones are attracted to her by queen-produced pheromones and visual cues and attempt to mate with the queen in mid-air. It is still unclear how drones and queens find the congregations. Visual cues on the horizon are most probably used for long-range orientation. For shorter-range orientation, however, attraction by a drone-produced aggregation pheromone has been proposed, yet so far its existence has not been confirmed conclusively. The low accessibility of congregation areas high up in the air is a major hurdle and precise control of experimental conditions often remains unsatisfactory in field studies. Here, we used a locomotion compensator-based walking simulator to investigate drones' innate odor preferences under controlled laboratory conditions. We tested behavioral responses of drones to 9-oxo-2-decenoic acid (9-ODA), the major queen-produced sexual attractant, and to queen mandibular pheromone (QMP), an artificial blend of 9-ODA and several other queen-derived components. While 9-ODA strongly dominates the odor bouquet of virgin queens, QMP rather resembles the bouquet of mated queens. In our assay, drones were attracted by 9-ODA, but not by QMP. We also investigated the potential attractiveness of male-derived odors by testing drones' orientation responses to the odor bouquet of groups of 10 living drones or workers. Our results demonstrate that honeybee drones are attracted by groups of other drones (but not by workers), which may indicate a role of drone-emitted cues for the formation of congregations.

  2. Web-based interactive drone control using hand gesture

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  3. Web-based interactive drone control using hand gesture.

    PubMed

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  4. Optimizing a Drone Network to Deliver Automated External Defibrillators.

    PubMed

    Boutilier, Justin J; Brooks, Steven C; Janmohamed, Alyf; Byers, Adam; Buick, Jason E; Zhan, Cathy; Schoellig, Angela P; Cheskes, Sheldon; Morrison, Laurie J; Chan, Timothy C Y

    2017-06-20

    Public access defibrillation programs can improve survival after out-of-hospital cardiac arrest, but automated external defibrillators (AEDs) are rarely available for bystander use at the scene. Drones are an emerging technology that can deliver an AED to the scene of an out-of-hospital cardiac arrest for bystander use. We hypothesize that a drone network designed with the aid of a mathematical model combining both optimization and queuing can reduce the time to AED arrival. We applied our model to 53 702 out-of-hospital cardiac arrests that occurred in the 8 regions of the Toronto Regional RescuNET between January 1, 2006, and December 31, 2014. Our primary analysis quantified the drone network size required to deliver an AED 1, 2, or 3 minutes faster than historical median 911 response times for each region independently. A secondary analysis quantified the reduction in drone resources required if RescuNET was treated as a large coordinated region. The region-specific analysis determined that 81 bases and 100 drones would be required to deliver an AED ahead of median 911 response times by 3 minutes. In the most urban region, the 90th percentile of the AED arrival time was reduced by 6 minutes and 43 seconds relative to historical 911 response times in the region. In the most rural region, the 90th percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone network across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve similar AED delivery times. An optimized drone network designed with the aid of a novel mathematical model can substantially reduce the AED delivery time to an out-of-hospital cardiac arrest event. © 2017 American Heart Association, Inc.

  5. Drone Detects Hotspots of Radiation and CO2 Outgassing

    NASA Astrophysics Data System (ADS)

    Takac, M.; Kletetschka, G.

    2016-12-01

    Market availability of environmental sensors and drones allow drones to become part of the education activities promoting environmental science both in high schools and grade schools. Here we provide one mode of drone operation for potential use in educational framework.Drone can carry devices that are capable of measuring various parameters of the environment. Commercial radiation and gas (CO2) sensors can be attached to the commercial drone. Our specific drone acquired data set of CO2 measurements over the natural outgassing of CO2 and another set of measurements over old uranium mine. Measurements of CO2 gave a poor signal to noise ratio. Its sensitivity, however, was enough to detect an increase in CO2 in the closed room with humans present compared to the fresh air outside. We could measure an increase of CO2 when directly over the source of natural CO2 outburst. Our data showed that CO2 concentration quickly dilutes in air few meters from the source to concentrations that are within the noise limit. However, the radiation measurements provided a map that correlates well with radiation survey obtained by ground measurements with more sophisticated instrument. We used the most common conventional drone, which is on the market and highly effective personal dosimeter, which can also be used for fire and rescue for its durability. Experimental field measurements were done at Třebsko site, where a map of radioactivity using standard spot measurements was already done. A field experiment was done in winter months when demand for the drone was higher due to cold and wet weather. We tested profiles and height versus the intensity of the recorded signal measurements. We consulted our results and ability to measure radioactivity with the regional fire-fighting units headquarters and verify the applicability and use of this technology for their needs.

  6. Queen volatiles as a modulator of Tetragonisca angustula drone behavior.

    PubMed

    Fierro, Macario M; Cruz-López, Leopoldo; Sánchez, Daniel; Villanueva-Gutiérrez, Rogel; Vandame, Remy

    2011-11-01

    Tetragonisca angustula mating occurs during the virgin queen nuptial flight, usually in the presence of a drone congregation area (DCA). The presence of virgin queen pheromone is considered the trigger for DCA establishment, although this has not been demonstrated experimentally. We established meliponaries, in different habitats, with T. angustula virgin queens during the main drone reproduction period. Eight DCAs were observed in urban areas, and all established outside or near colonies containing at least one virgin queen. The accumulation of drones in the DCAs occurred from 08:00 to 18:00 h and over 3-35 days. The number of drones in DCAs ranged from 60 to 2,000. In field trials, drones were attracted to virgin queens and also, unexpectedly, to physogastric queens. Volatiles collected from both virgin and physogastric queens elicited strong electoantennogram (EAG) responses from drones. Virgin and physogastric queen volatiles were qualitatively similar, but quantitatively different, in chemical composition. The queen's abdomen was the principal source of these compounds. Isopropyl hexanoate (IPH), the most abundant compound in virgin queen volatiles and one of the most abundant in physogastric queen volatiles, was identified as one of the compounds that elicited EAG responses and was demonstrated to attract drones in a field test.

  7. Lethal Surveillance: Drones and the Geo-History of Modern War

    NASA Astrophysics Data System (ADS)

    Kindervater, Katharine Hall

    Interdisciplinary both in scope and method, my dissertation, Lethal Surveillance: Drones and the Geo-History of Modern War, examines the history of drone technology from the start of the 20th century to the present in order to understand the significance of the increasing centrality of drones to current American military engagements and security practices more generally. Much of the scholarship on drones and many other contemporary military technologies tends to view the technology as radically new, missing both the historical development of these objects as well as the perspectives and rationalities that are embedded in their use. For this research, I focused on three main periods of drone research and development: the early years of World War I and II in the UK, the Cold War, and the 1990s. In studying this history of the drone, I found that two key trends emerge as significant: the increasing importance of information to warfare under the rubric of intelligence, reconnaissance and surveillance; and a shift toward more dynamic, speedier, and individualized targeting practices. I argue that the widespread use of drones today thus represents the culmination of attempts in war to effectively link these two trends, creating a practice I call lethal surveillance -- with the armed Predator effectively closing the loop between identifying and killing targets. The concept of lethal surveillance, which in my dissertation I place squarely within the histories of modern scientific thinking and Western liberal governance, allows us to see how techniques of Western state power and knowledge production are merging with practices of killing and control in new ways, causing significant changes to both the operations of the state and to practices of war. Framing the drone through the lens of lethal surveillance, therefore, allows us to see the longer histories the drone is embedded in as well as other security practices it is connected to.

  8. Contribution of honeybee drones of different age to colonial thermoregulation*

    PubMed Central

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2011-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones’ contribution to thermoregulation at 5 different experimental temperatures ranging from 15–34 °C. The frequency and the degree of endothermy depended on the drones’ local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0–2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones’ increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature. PMID:22140282

  9. How Should the Joint Force Handle the Command and Control of Unmanned Aircraft Systems?

    DTIC Science & Technology

    2008-11-18

    personnel, and control apparatus. Collectively these are the unmanned aircraft system (UAS). The outputs of a UAS can range from full motion video ...reconnaissance aircraft, like the pilotless Predator drone that provides real-time surveillance video to the battlefield.”55 He continued, “While...www.foxnews.com/story/0,2933,351964,00.html [accessed July 7, 2008]. Baldor, Lolita C. Associated Press. “Increased UAV Reliance Evident in 2009 Budget

  10. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?

    USDA-ARS?s Scientific Manuscript database

    Civilian applications of unmanned aircraft systems (UAS, also called drones) are rapidly expanding into crop production. UAS acquire high spatial resolution remote sensing imagery that can be used three different ways in agriculture. One is to assist crop scouts looking for problems in crop fields....

  11. Person identification from aerial footage by a remote-controlled drone.

    PubMed

    Bindemann, Markus; Fysh, Matthew C; Sage, Sophie S K; Douglas, Kristina; Tummon, Hannah M

    2017-10-19

    Remote-controlled aerial drones (or unmanned aerial vehicles; UAVs) are employed for surveillance by the military and police, which suggests that drone-captured footage might provide sufficient information for person identification. This study demonstrates that person identification from drone-captured images is poor when targets are unfamiliar (Experiment 1), when targets are familiar and the number of possible identities is restricted by context (Experiment 2), and when moving footage is employed (Experiment 3). Person information such as sex, race and age is also difficult to access from drone-captured footage (Experiment 4). These findings suggest that such footage provides a particularly poor medium for person identification. This is likely to reflect the sub-optimal quality of such footage, which is subject to factors such as the height and velocity at which drones fly, viewing distance, unfavourable vantage points, and ambient conditions.

  12. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest.

    PubMed

    Claesson, A; Fredman, D; Svensson, L; Ringh, M; Hollenberg, J; Nordberg, P; Rosenqvist, M; Djarv, T; Österberg, S; Lennartsson, J; Ban, Y

    2016-10-12

    The use of an automated external defibrillator (AED) prior to EMS arrival can increase 30-day survival in out-of-hospital cardiac arrest (OHCA) significantly. Drones or unmanned aerial vehicles (UAV) can fly with high velocity and potentially transport devices such as AEDs to the site of OHCAs. The aim of this explorative study was to investigate the feasibility of a drone system in decreasing response time and delivering an AED. Data of Global Positioning System (GPS) coordinates from historical OHCA in Stockholm County was used in a model using a Geographic Information System (GIS) to find suitable placements and visualize response times for the use of an AED equipped drone. Two different geographical models, urban and rural, were calculated using a multi-criteria evaluation (MCE) model. Test-flights with an AED were performed on these locations in rural areas. In total, based on 3,165 retrospective OHCAs in Stockholm County between 2006-2013, twenty locations were identified for the potential placement of a drone. In a GIS-simulated model of urban OHCA, the drone arrived before EMS in 32 % of cases, and the mean amount of time saved was 1.5 min. In rural OHCA the drone arrived before EMS in 93 % of cases with a mean amount of time saved of 19 min. In these rural locations during (n = 13) test flights, latch-release of the AED from low altitude (3-4 m) or landing the drone on flat ground were the safest ways to deliver an AED to the bystander and were superior to parachute release. The difference in response time for EMS between urban and rural areas is substantial, as is the possible amount of time saved using this UAV-system. However, yet another technical device needs to fit into the chain of survival. We know nothing of how productive or even counterproductive this system might be in clinical reality. To use drones in rural areas to deliver an AED in OHCA may be safe and feasible. Suitable placement of drone systems can be designed by using GIS models

  13. A new android smartphone app for geospatial mapping from drones and kites

    NASA Astrophysics Data System (ADS)

    Anderson, Karen; Griffiths, Dave; Debell, Leon; Steve, Hancock; James, Duffy; Jamie, Shutler; Liam, Reinhardt; Griffiths, Amber; Threadgill, Katie

    2016-04-01

    This paper will describe the development, testing and deployment of a free-to-use, open-source, android-based smartphone application for capturing geo-tagged aerial photographs for grass-roots remote sensing (RS) and mapping applications. Historically, RS data have been acquired from sensors on platforms such as piloted aircraft or satellites but a new self-service, and to some extent, 'grassroots' (participatory and distributed) RS revolution is underway making use of drones and kites as platforms for proximal observations of environmental phenomena. There are a growing number of papers in the geosciences and in landscape ecology utilising such platforms for cost-effective, self-service acquisition of RS data. These platforms cannot carry the heavy payloads used on satellites or aircraft, but they offer a more flexible way of gathering responsive survey data, and their low flying capability means that very fine-grained data can be captured easily. The current scientific focus for drone- and kite-based aerial mapping relies on automatically-triggered camera systems, followed by complex post-processing algorithms (e.g. computer vision-based 'structure-from-motion' software) to convert the resulting aerial photography data into orthorectified maps and point clouds. Whilst these approaches generate high quality products, for many applications the complexity is a barrier to uptake. Wiring the camera to an autopilot trigger is non-trivial, and the post-processing stage demands expensive and complex software and high performance computing. For many basic mapping applications, the workflow is too complex and the detail in the products exceed what is really needed. We asked: what if a basic smartphone, with its plethora of on-board sensors (accelerometer, GPS, compass, camera) could be used to generate ready-to-use spatial data from lightweight aerial platforms such as drones or kites? We built an android application to test the capability of standard smartphones as remote

  14. Hypersonic drone design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Efforts were focused on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necessary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: to fulfill a need for experimental data in the hypersonic regime, and to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. Three areas of great concern to NASP design were examined: propulsion, thermal management, and flight systems. Problem solving in these areas was directed towards design of the drone with the idea that the same design techniques could be applied to the NASP. A seventy degree swept double delta wing configuration, developed in the 70's at NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air-launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based upon the flight requirements give the drone a gross launch weight of 134,000 lb. and an overall length of 85 feet.

  15. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Abel, I.

    1981-01-01

    Modal identification results are presented that were obtained from recent flight flutter tests of a drone vehicle with a research wing equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surfaces on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  16. Relatedness among honeybees (Apis mellifera) of a drone congregation

    PubMed Central

    Baudry, E.; Solignac, M.; Garnery, L.; Gries, M.; Cornuet, J.-M.; Koeniger, N.

    1998-01-01

    The honeybee (Apis mellifera) queen mates during nuptial flights, in the so-called drone congregation area where many males from surrounding colonies gather. Using 20 highly polymorphic microsatellite loci, we studied a sample of 142 drones captured in a congregation close to Oberursel (Germany). A parentage test based on lod score showed that this sample contained one group of four brothers, six groups of three brothers, 20 groups of two brothers and 80 singletons. These values are very close to a Poisson distribution. Therefore, colonies were apparently equally represented in the drone congregation, and calculations showed that the congregation comprised males that originated from about 240 different colonies. This figure is surprisingly high. Considering the density of colonies around the congregation area and the average flight range of males, it suggests that most colonies within the recruitment perimeter delegated drones to the congregation with an equal probability, resulting in an almost perfect panmixis. Consequently, the relatedness between a queen and her mates, and hence the inbreeding coefficient of the progeny, should be minimized. The relatedness among the drones mated to the same queen is also very low, maximizing the genetic diversity among the different patrilines of a colony.

  17. "They're Always over Us"--Teaching about Drones

    ERIC Educational Resources Information Center

    Pearcy, Mark

    2015-01-01

    Social studies teachers have an obligation to help students grapple with and thoughtfully examine controversial issues, often in a contemporary context. One such issue is the U.S. use of unmanned aerial vehicles, generally known as drones. Whether for surveillance purposes or military missions, the use of drones by the U.S. government has preceded…

  18. Age-specific olfactory attraction between Western honey bee drones (Apis mellifera) and its chemical basis.

    PubMed

    Bastin, Florian; Savarit, Fabrice; Lafon, Grégory; Sandoz, Jean-Christophe

    2017-01-01

    During the mating season, drones (males) of the Western honey bee (Apis mellifera) form congregations numbering thousands high in the air. Virgin queens arrive at these congregations after they have formed and mate on the fly with 15-20 drones. To explain the formation of drone congregations, a drone-produced aggregation pheromone has been proposed many years ago but due to the low accessibility of natural mating sites in bees, its study has progressed slowly. Recently, we used a walking simulator in controlled laboratory conditions to show that drones are indeed attracted by groups of other drones. Since these previous experiments were carried out with drones captured when flying out of the hive, it is currently unclear if this olfactory attraction behaviour is related to the drones' sexual maturity (usually reached between 9 and 12 days) and may thus be indicative of a possible role in congregation formation, or if it is observed at any age and may represent in-hive aggregation. We thus assessed here the dependency of drone olfactory attraction on their age. First, we performed behavioural experiments in the walking simulator to measure olfactory preferences of drones in three age groups from 2-3 to 12-15 days. Then, we performed chemical analyses in the same age groups to evaluate whether chemical substances produced by the drones may explain age differences in olfactory attraction. We show that honey bee drones are attracted by conspecifics of the same age when they are sexually mature (12-15 days old) but not when they are younger (2-3 and 7-8 days old). In parallel, our data show that drones' chemical profile changes with age, including its most volatile fraction. These results are discussed in the context of drone mutual attraction both within the hive and at drone congregations.

  19. Freshly squeezed: anaphylaxis caused by drone larvae juice.

    PubMed

    Stoevesandt, J; Trautmann, A

    2017-11-30

    Drone larvae are mostly considered a by-product of beekeeping, but have recently been advo-cated as a high-protein source of food. There are as yet no data concerning their allergenic po-tential. We report on a 29-year old bee keeper who experienced an anaphylactic reaction following the consumption of a freshly prepared beverage from raw drone larvae. Larvae-specific sensitization was confirmed by prick-to-prick and basophil activation testing. Bee stings and classical bee products including honey and royal jelly were tolerated. This is the hitherto first report on IgE-mediated allergy to drone larvae. We suggest that a certain awareness towards the allergenicity of bee larvae is required.

  20. AR.Drone: security threat analysis and exemplary attack to track persons

    NASA Astrophysics Data System (ADS)

    Samland, Fred; Fruth, Jana; Hildebrandt, Mario; Hoppe, Tobias; Dittmann, Jana

    2012-01-01

    In this article we illustrate an approach of a security threat analysis of the quadrocopter AR.Drone, a toy for augmented reality (AR) games. The technical properties of the drone can be misused for attacks, which may relate security and/or privacy aspects. Our aim is to sensitize for the possibility of misuses and the motivation for an implementation of improved security mechanisms of the quadrocopter. We focus primarily on obvious security vulnerabilities (e.g. communication over unencrypted WLAN, usage of UDP, live video streaming via unencrypted WLAN to the control device) of this quadrocopter. We could practically verify in three exemplary scenarios that this can be misused by unauthorized persons for several attacks: high-jacking of the drone, eavesdropping of the AR.Drones unprotected video streams, and the tracking of persons. Amongst other aspects, our current research focuses on the realization of the attack of tracking persons and objects with the drone. Besides the realization of attacks, we want to evaluate the potential of this particular drone for a "safe-landing" function, as well as potential security enhancements. Additionally, in future we plan to investigate an automatic tracking of persons or objects without the need of human interactions.

  1. A collaborative smartphone sensing platform for detecting and tracking hostile drones

    NASA Astrophysics Data System (ADS)

    Boddhu, Sanjay K.; McCartney, Matt; Ceccopieri, Oliver; Williams, Robert L.

    2013-05-01

    In recent years, not only United States Armed Services but other Law-enforcement agencies have shown increasing interest in employing drones for various surveillance and reconnaissance purposes. Further, recent advancements in autonomous drone control and navigation technology have tremendously increased the geographic extent of dronebased missions beyond the conventional line-of-sight coverage. Without any sophisticated requirement on data links to control them remotely (human-in-loop), drones are proving to be a reliable and effective means of securing personnel and soldiers operating in hostile environments. However, this autonomous breed of drones can potentially prove to be a significant threat when acquired by antisocial groups who wish to target property and life in urban settlements. To further escalate the issue, the standard detection techniques like RADARs, RF data link signature scanners, etc..., prove futile as the drones are smaller in size to evade successful detection by a RADAR based system in urban environment and being autonomous, have the capability of operating without a traceable active data link (RF). Hence, towards investigating possible practical solutions for the issue, the research team at AFRL's Tec^Edge Labs under SATE and YATE programs has developed a highly scalable, geographically distributable and easily deployable smartphone-based collaborative platform that can aid in detecting and tracking unidentified hostile drones. In its current state, this collaborative platform built on the paradigm of "Human-as-Sensors", consists primarily of an intelligent Smartphone application that leverages appropriate sensors on the device to capture a drone's attributes (flight direction, orientation, shape, color, etc..,) with real-time collaboration capabilities through a highly composable sensor cloud and an intelligent processing module (based on a Probabilistic model) that can estimate and predict the possible flight path of a hostile drone

  2. The social implications of using drones for biodiversity conservation.

    PubMed

    Sandbrook, Chris

    2015-11-01

    Unmanned aerial vehicles, or 'drones', appear to offer a flexible, accurate and affordable solution to some of the technical challenges of nature conservation monitoring and law enforcement. However, little attention has been given to their possible social impacts. In this paper, I review the possible social impacts of using drones for conservation, including on safety, privacy, psychological wellbeing, data security and the wider understanding of conservation problems. I argue that negative social impacts are probable under some circumstances and should be of concern for conservation for two reasons: (1) because conservation should follow good ethical practice; and (2) because negative social impacts could undermine conservation effectiveness in the long term. The paper concludes with a call for empirical research to establish whether the identified social risks of drones occur in reality and how they could be mitigated, and for self-regulation of drone use by the conservation sector to ensure good ethical practice and minimise the risk of unintended consequences.

  3. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    PubMed

    Li, Zhiyong; Huang, Zachary Y; Sharma, Dhruv B; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  4. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera

    PubMed Central

    Li, Zhiyong; Huang, Zachary Y.; Sharma, Dhruv B.; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Background Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. Methodology/Principal Findings We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. Conclusions/Significance We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices. PMID:26882104

  5. Drone Technology and Future Aviation on This Week @NASA – August 5, 2016

    NASA Image and Video Library

    2016-08-05

    On Aug. 2, NASA’s Associate Administrator for Aeronautics Jaiwon Shin, representatives from the Federal Aviation Administration (FAA), aviation industry leaders and the academic research community participated in a workshop hosted by the White House Office of Science and Technology Policy (OSTP) to discuss Drones and the Future of Aviation. The event was designed to explore airspace integration issues; public and commercial uses; and safety, security, and privacy concerns related to this emerging technology. NASA is working with the FAA on a traffic management system that will enable pilots of these aircraft to fly safely in the national airspace. Also, Maryland Storms Imaged from Space, Io’s Collapsing Atmosphere, Orion Crew Module Moved, AstrOlympics, and more!

  6. A Grassroots Remote Sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones

    PubMed Central

    Anderson, K.; Griffiths, D.; DeBell, L.; Hancock, S.; Duffy, J. P.; Shutler, J. D.; Reinhardt, W. J.; Griffiths, A.

    2016-01-01

    This manuscript describes the development of an android-based smartphone application for capturing aerial photographs and spatial metadata automatically, for use in grassroots mapping applications. The aim of the project was to exploit the plethora of on-board sensors within modern smartphones (accelerometer, GPS, compass, camera) to generate ready-to-use spatial data from lightweight aerial platforms such as drones or kites. A visual coding ‘scheme blocks’ framework was used to build the application (‘app’), so that users could customise their own data capture tools in the field. The paper reports on the coding framework, then shows the results of test flights from kites and lightweight drones and finally shows how open-source geospatial toolkits were used to generate geographical information system (GIS)-ready GeoTIFF images from the metadata stored by the app. Two Android smartphones were used in testing–a high specification OnePlus One handset and a lower cost Acer Liquid Z3 handset, to test the operational limits of the app on phones with different sensor sets. We demonstrate that best results were obtained when the phone was attached to a stable single line kite or to a gliding drone. Results show that engine or motor vibrations from powered aircraft required dampening to ensure capture of high quality images. We demonstrate how the products generated from the open-source processing workflow are easily used in GIS. The app can be downloaded freely from the Google store by searching for ‘UAV toolkit’ (UAV toolkit 2016), and used wherever an Android smartphone and aerial platform are available to deliver rapid spatial data (e.g. in supporting decision-making in humanitarian disaster-relief zones, in teaching or for grassroots remote sensing and democratic mapping). PMID:27144310

  7. A Grassroots Remote Sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones.

    PubMed

    Anderson, K; Griffiths, D; DeBell, L; Hancock, S; Duffy, J P; Shutler, J D; Reinhardt, W J; Griffiths, A

    2016-01-01

    This manuscript describes the development of an android-based smartphone application for capturing aerial photographs and spatial metadata automatically, for use in grassroots mapping applications. The aim of the project was to exploit the plethora of on-board sensors within modern smartphones (accelerometer, GPS, compass, camera) to generate ready-to-use spatial data from lightweight aerial platforms such as drones or kites. A visual coding 'scheme blocks' framework was used to build the application ('app'), so that users could customise their own data capture tools in the field. The paper reports on the coding framework, then shows the results of test flights from kites and lightweight drones and finally shows how open-source geospatial toolkits were used to generate geographical information system (GIS)-ready GeoTIFF images from the metadata stored by the app. Two Android smartphones were used in testing-a high specification OnePlus One handset and a lower cost Acer Liquid Z3 handset, to test the operational limits of the app on phones with different sensor sets. We demonstrate that best results were obtained when the phone was attached to a stable single line kite or to a gliding drone. Results show that engine or motor vibrations from powered aircraft required dampening to ensure capture of high quality images. We demonstrate how the products generated from the open-source processing workflow are easily used in GIS. The app can be downloaded freely from the Google store by searching for 'UAV toolkit' (UAV toolkit 2016), and used wherever an Android smartphone and aerial platform are available to deliver rapid spatial data (e.g. in supporting decision-making in humanitarian disaster-relief zones, in teaching or for grassroots remote sensing and democratic mapping).

  8. Age-specific olfactory attraction between Western honey bee drones (Apis mellifera) and its chemical basis

    PubMed Central

    Bastin, Florian; Savarit, Fabrice; Lafon, Grégory

    2017-01-01

    During the mating season, drones (males) of the Western honey bee (Apis mellifera) form congregations numbering thousands high in the air. Virgin queens arrive at these congregations after they have formed and mate on the fly with 15-20 drones. To explain the formation of drone congregations, a drone-produced aggregation pheromone has been proposed many years ago but due to the low accessibility of natural mating sites in bees, its study has progressed slowly. Recently, we used a walking simulator in controlled laboratory conditions to show that drones are indeed attracted by groups of other drones. Since these previous experiments were carried out with drones captured when flying out of the hive, it is currently unclear if this olfactory attraction behaviour is related to the drones’ sexual maturity (usually reached between 9 and 12 days) and may thus be indicative of a possible role in congregation formation, or if it is observed at any age and may represent in-hive aggregation. We thus assessed here the dependency of drone olfactory attraction on their age. First, we performed behavioural experiments in the walking simulator to measure olfactory preferences of drones in three age groups from 2-3 to 12-15 days. Then, we performed chemical analyses in the same age groups to evaluate whether chemical substances produced by the drones may explain age differences in olfactory attraction. We show that honey bee drones are attracted by conspecifics of the same age when they are sexually mature (12-15 days old) but not when they are younger (2-3 and 7-8 days old). In parallel, our data show that drones’ chemical profile changes with age, including its most volatile fraction. These results are discussed in the context of drone mutual attraction both within the hive and at drone congregations. PMID:28977020

  9. Using Drones to Study Human Beings: Ethical and Regulatory Issues.

    PubMed

    Resnik, David B; Elliott, Kevin C

    2018-02-27

    Researchers have used drones to track wildlife populations, monitor forest fires, map glaciers, and measure air pollution but have only begun to consider how to use these unmanned aerial vehicles to study human beings. The potential use of drones to study public gatherings or other human activities raises novel issues of privacy, confidentiality, and consent, which this article explores in depth. It argues that drone research could fall into several different categories: non-human subjects research (HSR), exempt HSR, or non-exempt HSR. In the case of non-exempt HSR, it will be difficult for institutional review boards to approve studies unless they are designed so that informed consent can be waived. Whether drone research is non-HSR, exempt HSR, or non-exempt HSR, it is important for investigators to consult communities which could be affected by the research.

  10. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery

    DOE PAGES

    Stolaroff, Joshuah K.; Samaras, Constantine; O'Neill, Emma R.; ...

    2018-02-13

    Here, the use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery bymore » small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.« less

  11. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolaroff, Joshuah K.; Samaras, Constantine; O'Neill, Emma R.

    Here, the use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery bymore » small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.« less

  12. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery.

    PubMed

    Stolaroff, Joshuah K; Samaras, Constantine; O'Neill, Emma R; Lubers, Alia; Mitchell, Alexandra S; Ceperley, Daniel

    2018-02-13

    The use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery by small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.

  13. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production.

    PubMed

    Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg

    2012-04-15

    Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.

  14. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids.

    PubMed

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous ("sea") routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.

  15. Advanced Doppler radar physiological sensing technique for drone detection

    NASA Astrophysics Data System (ADS)

    Yoon, Ji Hwan; Xu, Hao; Garcia Carrillo, Luis R.

    2017-05-01

    A 24 GHz medium-range human detecting sensor, using the Doppler Radar Physiological Sensing (DRPS) technique, which can also detect unmanned aerial vehicles (UAVs or drones), is currently under development for potential rescue and anti-drone applications. DRPS systems are specifically designed to remotely monitor small movements of non-metallic human tissues such as cardiopulmonary activity and respiration. Once optimized, the unique capabilities of DRPS could be used to detect UAVs. Initial measurements have shown that DRPS technology is able to detect moving and stationary humans, as well as largely non-metallic multi-rotor drone helicopters. Further data processing will incorporate pattern recognition to detect multiple signatures (motor vibration and hovering patterns) of UAVs.

  16. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  17. Hypersonic drone vehicle design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  18. Integrated approach to monitor water dynamics with drones

    NASA Astrophysics Data System (ADS)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  19. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones.

    PubMed

    Herrmann, Matthias; Trenzcek, Tina; Fahrenhorst, Hartmut; Engels, Wolf

    2005-12-30

    Diploid males have long been considered a curiosity contradictory to the haplo-diploid mode of sex determination in the Hymenoptera. In Apis mellifera, 'false' diploid male larvae are eliminated by worker cannibalism immediately after hatching. A 'cannibalism substance' produced by diploid drone larvae to induce worker-assisted suicide has been hypothesized, but it has never been detected. Diploid drones are only removed some hours after hatching. Older larvae are evidently not regarded as 'false males' and instead are regularly nursed by the brood-attending worker bees. As the pheromonal cues presumably are located on the surface of newly hatched bee larvae, we extracted the cuticular secretions and analyzed their chemical composition by gas chromatograph-mass spectrometry (GC-MS) analyses. Larvae were sexed and then reared in vitro for up to three days. The GC-MS pattern that was obtained, with alkanes as the major compounds, was compared between diploid and haploid drone larvae. We also examined some physical parameters of adult drones. There was no difference between diploid and haploid males in their weight at the day of emergence. The diploid adult drones had fewer wing hooks and smaller testes. The sperm DNA content was 0.30 and 0.15 pg per nucleus, giving an exact 2:1 ratio for the gametocytes of diploid and haploid drones, respectively. Vitellogenin was found in the hemolymph of both types of imaginal drones at 5 to 6 days, with a significantly lower titer in the diploids.

  20. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    PubMed Central

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous (“sea”) routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects. PMID:28971063

  1. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  2. Strategic Design for Delivery with Linked Transportation Assets : Trucks and Drones

    DOT National Transportation Integrated Search

    2018-01-01

    Home delivery by drones as an alternative or complement to traditional delivery by trucks is attracting considerable attention from major retailers and services, as well as startups. While drone delivery may offer considerable economic savings, the f...

  3. Noise and LPI radar as part of counter-drone mitigation system measures

    NASA Astrophysics Data System (ADS)

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles

    2017-05-01

    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  4. Pediatric ocular trauma caused by recreational drones: two case reports.

    PubMed

    Spitzer, Nicole; Singh, Jasleen K

    2018-03-14

    Drones are increasingly being used by children and adults recreationally and commercially. The propeller blades when spinning at high speeds may cause serious harm to the eye and orbital structures. We report 2 cases of injuries to the eye and orbital structures caused by drones. Copyright © 2018. Published by Elsevier Inc.

  5. Taking the High Road: Privacy in the Age of Drones

    ERIC Educational Resources Information Center

    Hamilton, Lucas; Harrington, Michael; Lawrence, Cameron; Perrot, Remy; Studer, Severin

    2017-01-01

    This case examines the technological, ethical and legal issues surrounding the use of drones in business. Mary McKay, a recent Management Information Systems (MIS) graduate sets up a professional photography and videography business. She gains a leg up on the competition with drone-mounted cameras and live video streaming through the free…

  6. Captive chimpanzee takes down a drone: tool use toward a flying object.

    PubMed

    van Hooff, Jan A R A M; Lukkenaar, Bas

    2015-10-01

    On 10 April 2015, a Dutch TV crew was filming at the Royal Burgers Zoo in Arnhem, The Netherlands. It was the intention to film the chimpanzees in the enclosure from close-by and from above with the means of a drone. When the drone came a bit closer to the chimpanzees, a female individual made two sweeps with a branch that she held in one hand. The second one was successful and downed the drone. The use of the stick in this context was a unique action. It seemed deliberate given the decision to collect it and carry it to a place where the drone might be attacked. This episode adds to the indications that chimpanzees engage in forward planning of tool-use acts.

  7. Locating AED Enabled Medical Drones to Enhance Cardiac Arrest Response Times.

    PubMed

    Pulver, Aaron; Wei, Ran; Mann, Clay

    2016-01-01

    Out-of-hospital cardiac arrest (OOHCA) is prevalent in the United States. Each year between 180,000 and 400,000 people die due to cardiac arrest. The automated external defibrillator (AED) has greatly enhanced survival rates for OOHCA. However, one of the important components of successful cardiac arrest treatment is emergency medical services (EMS) response time (i.e., the time from EMS "wheels rolling" until arrival at the OOHCA scene). Unmanned Aerial Vehicles (UAV) have regularly been used for remote sensing and aerial imagery collection, but there are new opportunities to use drones for medical emergencies. The purpose of this study is to develop a geographic approach to the placement of a network of medical drones, equipped with an automated external defibrillator, designed to minimize travel time to victims of out-of-hospital cardiac arrest. Our goal was to have one drone on scene within one minute for at least 90% of demand for AED shock therapy, while minimizing implementation costs. In our study, the current estimated travel times were evaluated in Salt Lake County using geographical information systems (GIS) and compared to the estimated travel times of a network of AED enabled medical drones. We employed a location model, the Maximum Coverage Location Problem (MCLP), to determine the best configuration of drones to increase service coverage within one minute. We found that, using traditional vehicles, only 4.3% of the demand can be reached (travel time) within one minute utilizing current EMS agency locations, while 96.4% of demand can be reached within five minutes using current EMS vehicles and facility locations. Analyses show that using existing EMS stations to launch drones resulted in 80.1% of cardiac arrest demand being reached within one minute Allowing new sites to launch drones resulted in 90.3% of demand being reached within one minute. Finally, using existing EMS and new sites resulted in 90.3% of demand being reached while greatly reducing

  8. A Landscape Analysis to Understand Orientation of Honey Bee (Hymenoptera: Apidae) Drones in Puerto Rico.

    PubMed

    Galindo-Cardona, A; Monmany, A C; Diaz, G; Giray, T

    2015-08-01

    Honey bees [Apis mellifera L. (Apidae, Hymenoptera)] show spatial learning behavior or orientation, in which animals make use of structured home ranges for their daily activities. Worker (female) orientation has been studied more extensively than drone (male) orientation. Given the extensive and large flight range of drones as part of their reproductive biology, the study of drone orientation may provide new insight on landscape features important for orientation. We report the return rate and orientation of drones released at three distances (1, 2, and 4 km) and at the four cardinal points from an apiary located in Gurabo, Puerto Rico. We used high-resolution aerial photographs to describe landscape characteristics at the releasing sites and at the apiary. Analyses of variance were used to test significance among returning times from different distances and directions. A principal components analysis was used to describe the landscape at the releasing sites and generalized linear models were used to identify landscape characteristics that influenced the returning times of drones. Our results showed for the first time that drones are able to return from as far as 4 km from the colony. Distance to drone congregation area, orientation, and tree lines were the most important landscape characteristics influencing drone return rate. We discuss the role of landscape in drone orientation. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Skull fracture with effacement of the superior sagittal sinus following drone impact: a case report.

    PubMed

    Chung, Lawrance K; Cheung, Yuri; Lagman, Carlito; Au Yong, Nicholas; McBride, Duncan Q; Yang, Isaac

    2017-09-01

    The popularity of unmanned aerial vehicles, or drones, raises safety concerns as they become increasingly common for commercial, personal, and recreational use. Collisions between drones and people may result in serious injuries. A 13-year-old male presented with a comminuted depressed skull fracture causing effacement of the superior sagittal sinus secondary to a racing drone impact. The patient experienced a brief loss of consciousness and reported lower extremity numbness and weakness after the accident. Imaging studies revealed bone fragments crossing the superior sagittal sinus with a short, focal segment of blood flow interruption. Neurosurgical intervention was deferred given the patient's improving neurological deficits, and the patient was treated conservatively. He was discharged home in stable condition. Drones may represent a hazard when operated inappropriately due to their capacity to fly at high speeds and altitudes. Impacts from drones can carry enough force to cause skull fractures and significant head injuries. The rising popularity of drones likely translates to an increased incidence of drone-related injuries. Thus, clinicians should be aware of this growing trend.

  10. Landscape Analysis of Drone Congregation Areas of the Honey Bee, Apis mellifera

    PubMed Central

    Galindo-Cardona, Alberto; Monmany, A. Carolina; Moreno-Jackson, Rafiné; Rivera-Rivera, Carlos; Huertas-Dones, Carlos; Caicedo-Quiroga, Laura; Giray, Tugrul

    2012-01-01

    Male honey bees fly and gather at Drone Congregation Areas (DCAs), where drones and queens mate in flight. DCAs occur in places with presumably characteristic features. Using previously described landscape characteristics and observations on flight direction of drones in nearby apiaries, 36 candidate locations were chosen across the main island of Puerto Rico. At these locations, the presence or absence of DCAs was tested by lifting a helium balloon equipped with queen-sex-pheromone-impregnated bait, and visually determining the presence of high numbers of drones. Because of the wide distribution of honey bees in Puerto Rico, it was expected that most of the potential DCAs would be used as such by drones and queens from nearby colonies. Eight DCAs were found in the 36 candidate locations. Locations with and without DCAs were compared in a landscape analysis including characteristics that were described to be associated with DCAs and others. Aspect (direction of slope) and density of trails were found to be significantly associated with the presence of DCAs. PMID:23451901

  11. Droning On: American Strategic Myopia Toward Unmanned Aerial Systems

    DTIC Science & Technology

    2013-12-01

    torpedo, nicknamed the “Bug.”3 This system consisted of pre-set pneumatic and electrical controls that stabilized and guided it toward...race their homemade drones around Mount Damavand.88 These competitions and DIY efforts provide short-term innovation of unmanned technologies. This...an even greater threat to the homeland comes from homegrown or lone wolf actor’s possession of unmanned technology. DIY kits aid in building drones

  12. Diagnostic of Gravitropism-like Stabilizer of Inspection Drone Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Kruglova, Tatyana; Sayfeddine, Daher; Bulgakov, Alexey

    2018-03-01

    This paper discusses the enhancement of flight stability of using an inspection drone to scan the condition of buildings on low and high altitude. Due to aerial perturbations and wakes, the drone starts to shake and may be damaged. One of the mechanical optimization methods it so add a built-in stabilizing mechanism. However, the performance of this supporting device becomes critical on certain flying heights, thus to avoid losing the drone. The paper is divided in two parts: the description of the gravitropism-like stabilizer and the diagnostic of its status using wavelet transformation and neural network classification.

  13. Vineyard management in virtual reality: autonomous control of a transformable drone

    NASA Astrophysics Data System (ADS)

    Griffiths, H.; Shen, H.; Li, N.; Rojas, S.; Perkins, N.; Liu, M.

    2017-05-01

    Grape vines are susceptible to many diseases. Routine scouting is critically important to keep vineyards in healthy condition. Currently, scouting relies on experienced farm workers to inspect acres of land while arduously filling out reports to document crop health conditions. This process is both labor and time consuming. Using drones to assist farm workers in scouting has great potential to improve the efficiency of vineyard management. Due to the complexity in grape farm disease detection, the drones are normally used to detect suspicious areas to help farm workers to prioritize scouting activities. Operations still rely heavily on humans for further inspection to be certain about the health conditions of the vines. This paper introduces an autonomous transition flight control method for a transformable drone, which is suitable for the future virtual presence of humans in further inspecting suspicious areas. The transformable drone adopts a tilt-rotor mechanism to automatically switch between hover and horizontal flight modes, following commands from virtual reality devices held in the ground control station. The conceptual design and transformation dynamics of the drone will be first discussed, followed by a model predictive control system developed to automatically control the transition flight. Simulation is also provided to show the effectiveness of the proposed control system.

  14. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  15. Evaluating the Role of Drone-Produced Chemical Signals in Mediating Social Interactions in Honey Bees (Apis mellifera).

    PubMed

    Villar, Gabriel; Wolfson, Megan D; Hefetz, Abraham; Grozinger, Christina M

    2018-01-01

    Pheromones play a critical role in shaping societies of social insects, including honey bees, Apis mellifera. While diverse functions have been ascribed to queen- and worker-produced compounds, few studies have explored the identity and function of male-produced (drone) compounds. However, several lines of evidence suggest that drones engage in a variety of social interactions inside and outside of the colony. Here we elucidate the chemical composition of extracts of the drone mandibular gland, and test the hypothesis that compounds produced in these glands, or a synthetic blend consisting of the six main compounds, mediate drone social interactions in and out of the colony. Drone mandibular glands primarily produce a blend of saturated, unsaturated and methyl branched fatty acids ranging in chain length from nonanoic to docosanoic acids, and both gland extracts and synthetic blends of these chemicals serve to attract drones outside of the hive, but do not attract workers inside the hive. These studies shed light on the role drones and drone-produced chemicals have on mediating social interactions with other drones and highlight their potential importance in communicating with other castes.

  16. Hacking and securing the AR.Drone 2.0 quadcopter: investigations for improving the security of a toy

    NASA Astrophysics Data System (ADS)

    Pleban, Johann-Sebastian; Band, Ricardo; Creutzburg, Reiner

    2014-02-01

    In this article we describe the security problems of the Parrot AR.Drone 2.0 quadcopter. Due to the fact that it is promoted as a toy with low acquisition costs, it may end up being used by many individuals which makes it a target for harmful attacks. In addition, the videostream of the drone could be of interest for a potential attacker due to its ability of revealing confidential information. Therefore, we will perform a security threat analysis on this particular drone. We will set the focus mainly on obvious security vulnerabilities like the unencrypted Wi-Fi connection or the user management of the GNU/Linux operating system which runs on the drone. We will show how the drone can be hacked in order to hijack the AR.Drone 2.0. Our aim is to sensitize the end-user of AR.Drones by describing the security vulnerabilities and to show how the AR.Drone 2.0 could be secured from unauthorized access. We will provide instructions to secure the drones Wi-Fi connection and its operation with the official Smartphone App and third party PC software.

  17. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793).

    PubMed

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-12-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones' genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones.

  18. 'You Wouldn't have Your Granny Using Them': Drawing Boundaries Between Acceptable and Unacceptable Applications of Civil Drones.

    PubMed

    Boucher, Philip

    2016-10-01

    Some industry and policy actors are concerned about public opposition to civil drones, in particular because of their association with military drones. However, very little is understood about public reactions to the technology. Strategies to 'manage public acceptance' have so far relied upon several untested assumptions. We conducted public engagement activities to explore citizens' visions of civil drones. Several insights counteracted the prevailing assumptions. Rejecting the notion of blanket support for or opposition to civil drones, we found that citizens make nuanced decisions about the acceptability of civil drones depending upon the purpose of the flight and the actors involved. The results are positioned in support for calls to strengthen the role of citizens in civil drone development and, in particular, to shift away from the current focus on citizens' acceptance of civil drone development towards the development of civil drones that are acceptable to citizens.

  19. Molecular, physiological and behavioral responses of honey bee (Apis mellifera) drones to infection with microsporidian parasites.

    PubMed

    Holt, Holly L; Villar, Gabriel; Cheng, Weiyi; Song, Jun; Grozinger, Christina M

    2018-06-01

    Susceptibility to pathogens and parasites often varies between sexes due to differences in life history traits and selective pressures. Nosema apis and Nosema ceranae are damaging intestinal pathogens of European honey bees (Apis mellifera). Nosema pathology has primarily been characterized in female workers where infection is energetically costly and accelerates worker behavioral maturation. Few studies, however, have examined infection costs in male honey bees (drones) to determine if Nosema similarly affects male energetic status and sexual maturation. We infected newly emerged adult drones with Nosema spores and conducted a series of molecular, physiological, and behavioral assays to characterize Nosema etiology in drones. We found that infected drones starved faster than controls and exhibited altered patterns of flight activity in the field, consistent with energetic distress or altered rates of sexual maturation. Moreover, expression of candidate genes with metabolic and/or hormonal functions, including members of the insulin signaling pathway, differed by infection status. Of note, while drone molecular responses generally tracked predictions based on worker studies, several aspects of infected drone flight behavior contrasted with previous observations of infected workers. While Nosema infection clearly imposed energetic costs in males, infection had no impact on drone sperm numbers and had only limited effects on antennal responsiveness to a major queen sex pheromone component (9-ODA). We compare Nosema pathology in drones with previous studies describing symptoms in workers and discuss ramifications for drone and colony fitness. Copyright © 2018. Published by Elsevier Inc.

  20. Measuring Gases Using Drones at Turrialba Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Stix, J.; Alan, A., Jr.; Corrales, E.; D'Arcy, F.; de Moor, M. J.; Diaz, J. A.

    2016-12-01

    We are currently developing a series of drones and associated instrumentation to study Turrialba volcano in Costa Rica. This volcano has shown increasing activity during the last 20 years, and the volcano is currently in a state of heightened unrest as exemplified by recent explosive activity in May-August 2016. The eruptive activity has made the summit area inaccessible to normal gas monitoring activities, prompting development of new techniques to measure gas compositions. We have been using two drones, a DJI Spreading Wings S1000 octocopter and a Turbo Ace Matrix-i quadcopter, to airlift a series of instruments to measure volcanic gases in the plume of the volcano. These instruments comprise optical and electrochemical sensors to measure CO2, SO2, and H2S concentrations which are considered the most significant species to help forecast explosive eruptions and determine the relative proportions of magmatic and hydrothermal components in the volcanic gas. Additionally, cameras and sensors to measure air temperature, relative humidity, atmospheric pressure, and GPS location are included in the package to provide meteorological and geo-referenced information to complement the concentration data and provide a better picture of the volcano from a remote location. The integrated payloads weigh 1-2 kg, which can typically be flown by the drones in 10-20 minutes at altitudes of 2000-4000 meters. Preliminary tests at Turrialba in May 2016 have been very encouraging, and we are in the process of refining both the drones and the instrumentation packages for future flights. Our broader goals are to map gases in detail with the drones in order to make flux measurements of each species, and to apply this approach at other volcanoes.

  1. Emailing Drones: From Design to Test Range to ARS Offices and into the Field

    NASA Astrophysics Data System (ADS)

    Fuka, D. R.; Singer, S.; Rodriguez, R., III; Collick, A.; Cunningham, A.; Kleinman, P. J. A.; Manoukis, N. C.; Matthews, B.; Ralston, T.; Easton, Z. M.

    2017-12-01

    Unmanned aerial vehicles (UAVs or `drones') are one of the newest tools available for collecting geo- and biological-science data in the field, though today's commercial drones only come in a small range of options. While scientific research has benefitted from the enhanced topographic and surface characterization data that UAVs can provide through traditional image based remote sensing techniques, drones have significantly greater mission-specific potential than are currently utilized. The reasons for this under-utilization are twofold, 1) because with their broad capabilities comes the need to be careful in implementation, and as such, FAA and other regulatory agencies around the world have blanket regulations that can inhibit new designs from being implemented, and 2) current multi-mission-multi-payload commercial drones have to be over-designed to compensate for the fact that they are very difficult to stabilize for multiple payloads, leading to a much higher cost than necessary. For this project, we explore and demonstrate a workflow to optimize the design, testing, approval, and implementation of embarrassingly inexpensive mission specific drones, with two use cases. The first will follow the process from design (at VTech and UH Hilo) to field implementation (by USDA-ARS in PA and Extension in VA) of several custom water quality monitoring drones, printed on demand at ARS and Extension offices after testing at the Pan-Pacific UAS Test Range Complex (PPUTRC). This type of customized drone can allow for an increased understanding in the transition from non-point source to point source agri-chemical and pollutant transport in watershed systems. The second use case will follow the same process, resulting in customized drones with pest specific traps built into the design. This class of customized drone can facilitate IPM pest monitoring programs nationwide, decreasing the intensive and costly quarantine and population elimination measures that currently exist

  2. Drone swarm with free-space optical communication to detect and make deep decisions about physical problems for area surveillance

    NASA Astrophysics Data System (ADS)

    Mazher, Wamidh Jalil; Ibrahim, Hadeel T.; Ucan, Osman N.; Bayat, Oguz

    2018-03-01

    This paper aims to design a drone swarm network by employing free-space optical (FSO) communication for detecting and deep decision making of topological problems (e.g., oil pipeline leak), where deep decision making requires the highest image resolution. Drones have been widely used for monitoring and detecting problems in industrial applications during which the drone sends images from the on-air camera video stream using radio frequency (RF) signals. To obtain higher-resolution images, higher bandwidth (BW) is required. The current study proposed the use of the FSO communication system to facilitate higher BW for higher image resolution. Moreover, the number of drones required to survey a large physical area exceeded the capabilities of RF technologies. Our configuration of the drones is V-shaped swarm with one leading drone called mother drone (DM). The optical decode-and-forward (DF) technique is used to send the optical payloads of all drones in V-shaped swarm to the single ground station through DM. Furthermore, it is found that the transmitted optical power (Pt) is required for each drone based on the threshold outage probability of FSO link failure among the onboard optical-DF drones. The bit error rate of optical payload is calculated based on optical-DF onboard processing. Finally, the number of drones required for different image resolutions based on the size of the considered topological area is optimized.

  3. Inspiration from drones, Lidar measurements and 3D models in undergraduate teaching

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Thomas; Ellis, Jennifer

    2017-04-01

    Three-dimensional models, photogrammetry and remote sensing are increasingly common techniques used in structural analysis. We have found that using drones and Lidar on undergraduate field trips has piqued interest in fieldwork, provided data for follow-up laboratory exercises, and inspired undergraduates to attempt 3D modelling in independent mapping projects. The scale of structures visible in cliff and sea shore exposures in South Wales is ideal for using drones to capture images for 3D models. Fault scarps in the South Wales coalfield were scanned by Lidar and drone. Our experience suggests that the drone data were much easier to acquire and process than the Lidar data, and adequate for most teaching purposes. In the lab, we used the models to show the structure in 3D, and as the basis for an introduction to geological modelling software. Now that tools for photogrammetry, drones, and processing software are widely available and affordable, they can be readily integrated into teaching. An additional benefit from the images and models is that they may be used for exercises that can be substituted for fieldwork to achieve some (but not all) of the learning outcomes in the case that field access is prevented.

  4. Acoustic Characterization of a Multi-Rotor Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Feight, Jordan; Gaeta, Richard; Jacob, Jamey

    2017-11-01

    In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.

  5. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    PubMed

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-04

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  6. Current Counter-Drone Technology Solutions to Shield Airports and Approach and Departure Corridors

    DOT National Transportation Integrated Search

    2016-12-15

    The proliferation of drones has the potential to harm people and property. In particular, drones flying near airports and airport approaches can cause flight disruptions, as well as other serious challenges and incidents. There is a need to understan...

  7. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  8. Small Sized Drone Fall Recover Mechanism Design

    NASA Astrophysics Data System (ADS)

    LIU, Tzu-Heng; CHAO, Fang-Lin; LIOU, Jhen-Yuan

    2017-12-01

    Drones uses four motors to rotate clockwise, counter-clockwise, or change in rotational speed to change its status of motion. The problem of Unmanned Aerial Vehicle turnover causes personal loses and harm local environment. Designs of devices that can let falling drones recover are discussed. The models attempt to change the orientation, so that the drone may be able to improve to the point where it can take off again. The design flow included looking for functional elements, using simplify model to estimate primary functional characteristics, and find the appropriate design parameters. For reducing the complexity, we adopted the simple rotate mechanism with rotating arms to change the fuselage angle and reduce the dependence on the extra-components. A rough model was built to verify structure, and then the concept drawing and prototype were constructed. We made the prototype through the integration of mechanical part and the electronic control circuit. The electronic control module that selected is Arduino-mini pro. Through the Bluetooth modules, user can start the rebound mechanism by the motor control signal. Protections frames are added around each propeller to improve the body rotate problem. Limited by current size of Arduino module, motor and rebound mechanism make the main chassis more massive than the commercial product. However, built-in sensor and circuit miniaturization will improve it in future.

  9. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    PubMed

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.

  10. Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru

    2018-04-01

    Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.

  11. Aerial drone misadventure: A novel case of trauma resulting in ocular globe rupture.

    PubMed

    Moskowitz, Eliza E; Siegel-Richman, Yonaton M; Hertner, George; Schroeppel, Thomas

    2018-06-01

    The purpose of this case report is to present the novel findings of a drone causing such a traumatic ocular injury and provide recommendations for how it might be prevented. We report on a recent case where a child presented to our Emergency Department after incurring a blow to the face by the propeller of a remote controlled drone. The patient suffered significant trauma including rupture of the right globe. As drone sales continue to rise, it is important that physicians be prepared to treat the potential injuries that may result from using these devices. Furthermore, in an attempt to reduce the number of visits associated with remote controlled drones, physicians should be prepared to provide advice as to how patients can reduce the risks of injury. We hope that the framework and recommendations below will help physicians decrease adverse outcomes related to this unusual injury pattern.

  12. Identification and Reconfigurable Control of Impaired Multi-Rotor Drones

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Bencomo, Alfredo

    2016-01-01

    The paper presents an algorithm for control and safe landing of impaired multi-rotor drones when one or more motors fail simultaneously or in any sequence. It includes three main components: an identification block, a reconfigurable control block, and a decisions making block. The identification block monitors each motor load characteristics and the current drawn, based on which the failures are detected. The control block generates the required total thrust and three axis torques for the altitude, horizontal position and/or orientation control of the drone based on the time scale separation and nonlinear dynamic inversion. The horizontal displacement is controlled by modulating the roll and pitch angles. The decision making algorithm maps the total thrust and three torques into the individual motor thrusts based on the information provided by the identification block. The drone continues the mission execution as long as the number of functioning motors provide controllability of it. Otherwise, the controller is switched to the safe mode, which gives up the yaw control, commands a safe landing spot and descent rate while maintaining the horizontal attitude.

  13. Feasibility study of modifications to BQM-34E drone for NASA research applications

    NASA Technical Reports Server (NTRS)

    James, H. A.

    1972-01-01

    The feasibility of modifying an existing supersonic drone into a free-flight research vehicle is examined. Appropriate structural and control system modifications, reliability and operational considerations, and ROM costs indicate that the BQM-34E drone is indeed suitable as a NASA research vehicle.

  14. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil

    PubMed Central

    2009-01-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European. PMID:21637465

  15. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil.

    PubMed

    Collet, Thais; Cristino, Alexandre Santos; Quiroga, Carlos Fernando Prada; Soares, Ademilson Espencer Egea; Del Lama, Marco Antônio

    2009-10-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European.

  16. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    NASA Technical Reports Server (NTRS)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  17. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations

    PubMed Central

    Mortensen, Ashley N.; Ellis, James D.

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African−matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  18. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793)

    PubMed Central

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-01-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones’ genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones. PMID:25558361

  19. Science, technology and the future of small autonomous drones.

    PubMed

    Floreano, Dario; Wood, Robert J

    2015-05-28

    We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

  20. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    PubMed

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. Copyright © 2015 Elsevier Ltd

  1. Application of a Leap Motion Sensor for Improved Drone Control

    DTIC Science & Technology

    2017-12-01

    command ( )u t needed to control the distance error ( )e t was obtained using         0 1 t p d i de t u t K e t e d T T dt...SENSOR FOR IMPROVED DRONE CONTROL by Alfredo Belaunde Sara-Lafosse December 2017 Thesis Advisor: Xiaoping Yun Second Reader: James Calusdian THIS...thesis 4. TITLE AND SUBTITLE APPLICATION OF A LEAP MOTION SENSOR FOR IMPROVED DRONE CONTROL 5. FUNDING NUMBERS 6. AUTHOR(S) Alfredo Belaunde Sara

  2. Drone-borne GPR design: Propagation issues

    NASA Astrophysics Data System (ADS)

    Chandra, Madhu; Tanzi, Tullio Joseph

    2018-01-01

    In this paper, we shall address the electromagnetic wave propagation issues that are critical to determining the feasibility of a drone-borne ground-penetrating radar sensor for humanitarian applications, particularly in the context of disaster management. Frequency- and polarization-dependent scattering, attenuation and dispersion of radar signals penetrating into the sub-surface region will determine the applicability of a drone-mounted radar sensor capable of registering radar echoes for observing and monitoring sub-surface features. The functionality of the radar will thus be assessed depending on key radar parameters that include the central radar frequency, the modulation depth, and the mode of radar operation (pulsed FM, FM-CW), the antenna type, the available power-budget. In the analysis to be presented, the radar equation, together with the aforementioned propagation effects, will be used to simulate the signal strength of radar echoes under different conditions arising from the chosen key-radar parameters and the assumed physical properties of the sub-surface earth medium. The analysis to be presented will indicate whether or not the drone-borne ground-penetrating radar is a feasible system and if it could be constructed with the technologies available today. Taking into account the strict constraints involved to design drone applications for Public Protection and Disaster Relief (PPDR), the ideas developed hereafter are both prospective and exploratory. The objective is to see if a solution can be found in the near future. xml:lang="fr" Dans l'analyse présentée, l'équation radar, ainsi que les effets de propagation susmentionnés, serviront à simuler la puissance du signal des échos radar sous différentes conditions découlant des paramètres clés choisis et les propriétés physiques du milieu sous la surface. L'étude a pour objectif de démontrer si le système est réalisable et s'il peut être construit avec les technologies disponibles

  3. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  4. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height

  5. Topography changes monitoring of small islands using camera drone

    NASA Astrophysics Data System (ADS)

    Bang, E.

    2017-12-01

    Drone aerial photogrammetry was conducted for monitoring topography changes of small islands in the east sea of Korea. Severe weather and sea wave is eroding the islands and sometimes cause landslide and falling rock. Due to rugged cliffs in all direction and bad accessibility, ground based survey methods are less efficient in monitoring topography changes of the whole area. Camera drones can provide digital images and movie in every corner of the islands, and drone aerial photogrammetry is powerful to get precise digital surface model (DSM) for a limited area. We have got a set of digital images to construct a textured 3D model of the project area every year since 2014. Flight height is in less than 100m from the top of those islands to get enough ground sampling distance (GSD). Most images were vertically captured with automatic flights, but we also flied drones around the islands with about 30°-45° camera angle for constructing 3D model better. Every digital image has geo-reference, but we set several ground control points (GCPs) on the islands and their coordinates were measured with RTK surveying methods to increase the absolute accuracy of the project. We constructed 3D textured model using photogrammetry tool, which generates 3D spatial information from digital images. From the polygonal model, we could get DSM with contour lines. Thematic maps such as hill shade relief map, aspect map and slope map were also processed. Those maps make us understand topography condition of the project area better. The purpose of this project is monitoring topography change of these small islands. Elevation difference map between DSMs of each year is constructed. There are two regions showing big negative difference value. By comparing constructed textured models and captured digital images around these regions, it is checked that a region have experienced real topography change. It is due to huge rock fall near the center of the east island. The size of fallen rock can be

  6. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  7. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  8. Antennal proteome comparison of sexually mature drone and forager honeybees.

    PubMed

    Feng, Mao; Song, Feifei; Aleku, Dereje Woltedji; Han, Bin; Fang, Yu; Li, Jianke

    2011-07-01

    Honeybees have evolved an intricate system of chemical communication to regulate their complex social interactions. Specific proteins involved in odorant detection most likely supported this chemical communication. Odorant reception takes place mainly in the antennae within hairlike structures called olfactory sensilla. Antennal proteomes of sexually mature drone and forager worker bees (an age group of bees assigned to perform field tasks) were compared using two-dimensional electrophoresis, mass spectrometry, quantitative real-time polymerase chain reaction, and bioinformatics. Sixty-one differentially expressed proteins were identified in which 67% were highly upregulated in the drones' antennae whereas only 33% upregulated in the worker bees' antennae. The antennae of the worker bees strongly expressed carbohydrate and energy metabolism and molecular transporters signifying a strong demand for metabolic energy and odorant binding proteins for their foraging activities and other olfactory responses, while proteins related to fatty acid metabolism, antioxidation, and protein folding were strongly upregulated in the drones' antennae as an indication of the importance for the detection and degradation of sex pheromones during queen identification for mating. On the basis of both groups of altered antenna proteins, carbohydrate metabolism and energy production and molecular transporters comprised more than 80% of the functional enrichment analysis and 45% of the constructed biological interaction networks (BIN), respectively. This suggests these two protein families play crucial roles in the antennal olfactory function of sexually mature drone and forager worker bees. Several key node proteins in the BIN were validated at the transcript level. This first global proteomic comparative analysis of antennae reveals sex-biased protein expression in both bees, indicating that odorant response mechanisms are sex-specific because of natural selection for different olfactory

  9. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    PubMed

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-07

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  10. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    PubMed

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Altus I aircraft taking off from lakebed runway

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft takes off from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  12. Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana.

    PubMed

    Mueller, Matthias Y; Moritz, Robin Fa; Kraus, F Bernhard

    2012-06-01

    Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.

  13. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  14. Drones may be used to save lives in out of hospital cardiac arrest due to drowning.

    PubMed

    Claesson, A; Svensson, L; Nordberg, P; Ringh, M; Rosenqvist, M; Djarv, T; Samuelsson, J; Hernborg, O; Dahlbom, P; Jansson, A; Hollenberg, J

    2017-05-01

    Drowning leading to out-of-hospital cardiac arrest (OHCA) and death is a major public health concern. Submersion with duration of less than 10min is associated with favorable neurological outcome and nearby bystanders play a considerable role in rescue and resuscitation. Drones can provide a visual overview of an accident scene, their potential as lifesaving tools in drowning has not been evaluated. The aim of this simulation study was to evaluate the efficiency of a drone for providing earlier location of a submerged possible drowning victim in comparison with standard procedure. This randomized simulation study used a submerged manikin placed in a shallow (<2m) 100×100-m area at Tylösand beach, Sweden. A search party of 14 surf-lifeguards (control) was compared to a drone transmitting video to a tablet (intervention). Time from start to contact with the manikin was the primary endpoint. Twenty searches were performed in total, 10 for each group. The median time from start to contact with the manikin was 4:34min (IQR 2:56-7:48) for the search party (control) and 0:47min (IQR 0:38-0:58) for the drone-system (intervention) respectively (p<0.001). The median time saved by using the drone was 3:38min (IQR 2:02-6:38). A drone transmitting live video to a tablet is feasible, time saving in comparison to traditional search parties and may be used for providing earlier location of submerged victims at a beach. Drone search can possibly contribute to earlier onset of CPR in drowning victims. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honey bees.

    PubMed

    Calderón, R A; Ureña, S; van Veen, J W

    2012-04-01

    Varroa destructor is known to be the most serious parasite of Apis mellifera worldwide. In order to reproduce varroa females enter worker or drone brood shortly before the cell is sealed. From March to December 2008, the reproductive rate and offspring mortality (mature and immature stages), focusing on male absence and male mortality of V. destructor, was investigated in naturally infested worker and drone brood of Africanized honey bees (AHB) in Costa Rica. Data were obtained from 388 to 403 single infested worker and drone brood cells, respectively. Mite fertility in worker and drone brood cells was 88.9 and 93.1%, respectively. There was no difference between the groups (X(2) = 3.6, P = 0.06). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring in drone cells (64.8%) compared to worker cells (37.6%) (X(2) = 57.2, P < 0.05). A greater proportion of mites in worker brood cells produced non-viable female offspring. Mite offspring mortality in both worker and drone cells was high in the protonymph stage (mobile and immobile). A significant finding was the high rate of male mortality. The worker and drone brood revealed that 23.9 and 6.9%, respectively, of the adult male offspring was found dead. If the absence (missing) of the male and adult male mortality are taken together the percentage of cells increased to 40.0 and 21.3% in worker and drone cells, respectively (X(2) = 28.8, P < 0.05). The absence of the male or male mortality in a considerable number of worker cells naturally infested with varroa is the major factor in our study which reduces the production of viable daughters in AHB colonies in Costa Rica.

  16. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  17. Social signals and aversive learning in honey bee drones and workers.

    PubMed

    Avalos, Arian; Pérez, Eddie; Vallejo, Lianna; Pérez, María E; Abramson, Charles I; Giray, Tugrul

    2017-01-15

    The dissemination of information is a basic element of group cohesion. In honey bees (Apis mellifera Linnaeus 1758), like in other social insects, the principal method for colony-wide information exchange is communication via pheromones. This medium of communication allows multiple individuals to conduct tasks critical to colony survival. Social signaling also establishes conflict at the level of the individual who must trade-off between attending to the immediate environment or the social demand. In this study we examined this conflict by challenging highly social worker honey bees, and less social male drone honey bees undergoing aversive training by presenting them with a social stress signal (isopentyl acetate, IPA). We utilized IPA exposure methods that caused lower learning performance in appetitive learning in workers. Exposure to isopentyl acetate (IPA) did not affect performance of drones and had a dose-specific effect on worker response, with positive effects diminishing at higher IPA doses. The IPA effects are specific because non-social cues, such as the odor cineole, improve learning performance in drones, and social homing signals (geraniol) did not have a discernible effect on drone or worker performance. We conclude that social signals do generate conflict and that response to them is dependent on signal relevance to the individual as well as the context. We discuss the effect of social signal on learning both related to its social role and potential evolutionary history. © 2017. Published by The Company of Biologists Ltd.

  18. Social signals and aversive learning in honey bee drones and workers

    PubMed Central

    Pérez, Eddie; Vallejo, Lianna; Pérez, María E.; Abramson, Charles I.; Giray, Tugrul

    2017-01-01

    ABSTRACT The dissemination of information is a basic element of group cohesion. In honey bees (Apis mellifera Linnaeus 1758), like in other social insects, the principal method for colony-wide information exchange is communication via pheromones. This medium of communication allows multiple individuals to conduct tasks critical to colony survival. Social signaling also establishes conflict at the level of the individual who must trade-off between attending to the immediate environment or the social demand. In this study we examined this conflict by challenging highly social worker honey bees, and less social male drone honey bees undergoing aversive training by presenting them with a social stress signal (isopentyl acetate, IPA). We utilized IPA exposure methods that caused lower learning performance in appetitive learning in workers. Exposure to isopentyl acetate (IPA) did not affect performance of drones and had a dose-specific effect on worker response, with positive effects diminishing at higher IPA doses. The IPA effects are specific because non-social cues, such as the odor cineole, improve learning performance in drones, and social homing signals (geraniol) did not have a discernible effect on drone or worker performance. We conclude that social signals do generate conflict and that response to them is dependent on signal relevance to the individual as well as the context. We discuss the effect of social signal on learning both related to its social role and potential evolutionary history. PMID:27895050

  19. Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana

    PubMed Central

    Mueller, Matthias Y; Moritz, Robin FA; Kraus, F Bernhard

    2012-01-01

    Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives. PMID:22833802

  20. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).

    PubMed

    Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A

    2016-10-01

    Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    PubMed

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  2. Drone Transport of Chemistry and Hematology Samples Over Long Distances.

    PubMed

    Amukele, Timothy K; Hernandez, James; Snozek, Christine L H; Wyatt, Ryan G; Douglas, Matthew; Amini, Richard; Street, Jeff

    2017-11-02

    We addressed the stability of biological samples in prolonged drone flights by obtaining paired chemistry and hematology samples from 21 adult volunteers in a single phlebotomy event-84 samples total. Half of the samples were held stationary, while the other samples were flown for 3 hours (258 km) in a custom active cooling box mounted on the drone. After the flight, 19 chemistry and hematology tests were performed. Seventeen analytes had small or no bias, but glucose and potassium in flown samples showed an 8% and 6.2% bias, respectively. The flown samples (mean, 24.8°C) were a mean of 2.5°C cooler than the stationary samples (mean, 27.3°C) during transportation to the flight field as well as during the flight. The changes in glucose and potassium are consistent with the magnitude and duration of the temperature difference between the flown and stationary samples. Long drone flights of biological samples are feasible but require stringent environmental controls to ensure consistent results. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. NASA Leads Demo for Drone Traffic Management Tech

    NASA Image and Video Library

    2017-06-30

    During the latest NASA-led demonstrations of technologies that could be part of an automated traffic management system for drones, pilots sent their vehicles beyond visual line-of-sight in simulated infrastructure inspections, search and rescue support, and package delivery.

  4. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    PubMed

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers.

  5. Fifty Feet Above The Wall: Cartel Drones in the U.S.-Mexico Border Zone Airspace, and What to do About Them

    DTIC Science & Technology

    2018-03-01

    bombs in flight over targets. ISIS has demonstrated their drones can deliver what are essentially airborne improvised explosive devices (IEDs) with...Waters, “Types of Islamic State Drone Bombs and Where to Find Them,” Bellingcat, May 24, 2017, https://www.bellingcat.com/news/mena/2017/05/24/types...islamic-state-drone- bombs -find/. 116 Rowan Scarborough, “ISIS Drone Dropping Precision Bombs Alarms U.S. Military,” Washington Times, January 24, 2017

  6. Preservation of Domesticated Honey Bee (Hymenoptera: Apidae) Drone Semen.

    PubMed

    Paillard, M; Rousseau, A; Giovenazzo, P; Bailey, J L

    2017-08-01

    Preservation of honey bee (Apis mellifera L., Hymenoptera: Apidae) sperm, coupled with instrumental insemination, is an effective strategy to protect the species and their genetic diversity. Our overall objective is to develop a method of drone semen preservation; therefore, two experiments were conducted. Hypothesis 1 was that cryopreservation (-196 °C) of drone semen is more effective for long-term storage than at 16 °C. Our results show that after 1 yr of storage, frozen sperm viability was higher than at 16 °C, showing that cryopreservation is necessary to conserve semen. However, the cryoprotectant used for drone sperm freezing, dimethyl sulfoxide (DMSO), can harm the queen and reduce fertility after instrumental insemination. Hypothesis 2 was that centrifugation of cryopreserved semen to reduce DMSO prior to insemination optimize sperm quality. Our results indicate that centrifuging cryopreserved sperm to remove cryoprotectant does not affect queen survival, spermathecal sperm count, or sperm viability. Although these data do not indicate that centrifugation of frozen-thawed sperm improves queen health and fertility after instrumental insemination, we demonstrate that cryopreservation is achievable, and it is better for long-term sperm storage than above-freezing temperatures for duration of close to a year. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Mapping Gnss Restricted Environments with a Drone Tandem and Indirect Position Control

    NASA Astrophysics Data System (ADS)

    Cledat, E.; Cucci, D. A.

    2017-08-01

    The problem of autonomously mapping highly cluttered environments, such as urban and natural canyons, is intractable with the current UAV technology. The reason lies in the absence or unreliability of GNSS signals due to partial sky occlusion or multi-path effects. High quality carrier-phase observations are also required in efficient mapping paradigms, such as Assisted Aerial Triangulation, to achieve high ground accuracy without the need of dense networks of ground control points. In this work we consider a drone tandem in which the first drone flies outside the canyon, where GNSS constellation is ideal, visually tracks the second drone and provides an indirect position control for it. This enables both autonomous guidance and accurate mapping of GNSS restricted environments without the need of ground control points. We address the technical feasibility of this concept considering preliminary real-world experiments in comparable conditions and we perform a mapping accuracy prediction based on a simulation scenario.

  8. Severe extremity amputations in surviving Palestinian civilians caused by explosives fired from drones during the Gaza War.

    PubMed

    Heszlein-Lossius, Hanne; Al-Borno, Yahya; Shaqoura, Samar; Skaik, Nashwa; Giil, Lasse Melvær; Gilbert, Mads

    2018-02-21

    During four separate Israeli military attacks on Gaza (2006, 2009, 2012, and 2014), about 4000 Palestinians were killed and more than 17 000 injured (412 killed and 1264 injured in 2006; 1383 killed and more than 5300 injured in 2009; 130 killed and 1399 injured in 2012; and 2251 killed and 11 231 injured in 2014). An unknown number of people had traumatic amputations of one or more extremities. Use of unmanned Israeli drones for surveillance and armed attacks on Gaza was evident, but exact figures on numbers of drone strikes on Gaza are not available. The aim of this study was to explore the medical consequences of strikes on Gaza with different weapons, including drones. We studied a cohort of civilians in the Gaza Strip who had one of more traumatic limb amputation during the Israeli military attacks between 2006 and 2016. The study was done at The Artificial Limb and Polio Center (ALPC) in the Gaza Strip where most patients are treated and trained after amputation. We used standardised forms and validated instruments to record date and mechanism of injury, self-assessed health, socioeconomic status, anatomical location and length of amputation, comorbidity, and the results of a detailed clinical examination. The studied cohort consisted of 254 Paletinian civilians (234 [92%] men, 20 [8%] women, and 43 [17%] children aged 18 years and younger) with traumatic amputations caused by different weapons. 216 (85%) people had amputations proximal to wrist or ankle, 131 (52%) patients had more than one major amputation or an amputation above the knee, or both, and 136 (54%) people were injured in attacks with Israeli drones, including eight (40%) of the women. The most severe amputations were caused by drone attacks (p=0·0001). Extremity injuries after drone attacks led to immediate amputation more often than with other weapons (p=0·014). Patients injured during cease-fire periods were younger than patients injured during periods of declared Israeli military

  9. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-04

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.

  10. A Holistic Strategy Examining How Armed Drone Strikes Interact with Other Elements of National Power

    DTIC Science & Technology

    2017-06-01

    states in terms of diplomatic, information, military—other than drone strikes—and economic instruments of national power to achieve the objectives...United States conducted in fragile states in terms of diplomatic, information, military—other than drone strikes—and economic instruments of...29  3.  2015 National Military Strategy .................................................30  E.  ECONOMIC

  11. The Drone Court And Due Process

    DTIC Science & Technology

    2016-12-01

    killings. However, specific people were targeted through the use of drones; it could be argued that this does, in fact, fit the definition of...Court (FISC) and Foreign Intelligence Surveillance Act (FISA) are the same and used interchangeably. 9 Amos N. Guiora and Jeffrey S. Brand ...receives, and that judges use when deciding if the same executive branch can pursue surveillance in a given case. Guiora and Brand point out that

  12. Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides.

    PubMed

    Burley, Lisa M; Fell, Richard D; Saacke, Richard G

    2008-08-01

    We conducted research to examine the potential impacts ofcoumaphos, fluvalinate, and Apilife VAR (Thymol) on drone honey bee, Apis mellifera L. (Hymenoptera: Apidae), sperm viability over time. Drones were reared in colonies that had been treated with each miticide by using the dose recommended on the label. Drones from each miticide treatment were collected, and semen samples were pooled. The pooled samples from each treatment were subdivided and analyzed for periods of up to 6 wk. Random samples were taken from each treatment (n = 6 pools) over the 6-wk period. Sperm viability was measured using dual-fluorescent staining techniques. The exposure of drones to coumaphos during development and sexual maturation significantly reduced sperm viability for all 6 wk. Sperm viability significantly decreased from the initial sample to week 1 in control colonies, and a significant decrease in sperm viability was observed from week 5 to week 6 in all treatments and control. The potential impacts of these results on queen performance and failure are discussed.

  13. Altus I aircraft in flight, retracting landing gear after takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  14. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    PubMed

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  15. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    PubMed Central

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  16. Drone Use in Monioring Open Ocean Surface Debris, Including Paired Manta and Tucker Trawls for Relateing Sea State to Vertical Debris Distribution

    NASA Astrophysics Data System (ADS)

    Lattin, G.

    2016-02-01

    Monitoring debris at sea presents challenges not found in beach or riverine habitats, and is typically done with trawl nets of various apertures and mesh sizes, which limits the size of debris captured and the area surveyed. To partially overcome these limitations in monitoring floating debris, a Quadcopter drone with video transmitting and recording capabilities was deployed at the beginning and the end of manta trawl transects within the North Pacific Subtropical Gyre's eastern convergence zone. Subsurface tucker trawls at 10 meters were conducted at the same time as the manta trawls, in order to assess the effect of sea state on debris dispersal. Trawls were conducted on an 11 station grid used repeatedly since 1999. For drone observations, the operator and observer were stationed on the mother ship while two researchers collected observed debris using a rigid inflatable boat (RIB). The drone was flown to a distance of approximately 100 meters from the vessel in a zigzag or circular search pattern. Here we examine issues arising from drone deployment during the survey: 1) relation of area surveyed by drone to volume of water passing through trawl; 2) retrieval of drone-spotted and associated RIB spotted debris. 3) integrating post- flight image analysis into retrieved debris quantification; and 4) factors limiting drone effectiveness at sea. During the survey, debris too large for the manta trawl was spotted by the drone, and significant debris not observed using the drone was recovered by the RIB. The combination of drone sightings, RIB retrieval, and post flight image analysis leads to improved monitoring of debris at sea. We also examine the issue of the distribution of floating debris during sea states varying from 0-5 by comparing quantities from surface manta trawls to the tucker trawls at a nominal depth of 10 meters.

  17. A comparison of the reproductive ability of Varroa destructor (Mesostigmata:Varroidae) in worker and drone brood of Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V

    2007-01-01

    Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.

  18. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed

  19. Detect groundwater flowing from riverbed using a drone

    NASA Astrophysics Data System (ADS)

    Kato, Kenji; Takemon, Yasuhiro

    2017-04-01

    Estimate the direct flow of groundwater to river is an important step in understanding of hydrodynamics in river system. Function of groundwater in river system does not limit to the mass of water. Continuous supply with thermally stable water from riverbed produces a space with unique condition, which provides various functions for organisms inhabiting in river as a shelter avoiding large shift of temperature, or to maintain productivity for small scale ecosystem by supplying nutrient rich groundwater if it gushes out from the riverbed in a deep pool of river. This may contribute to biodiversity of river system. Such function of groundwater is more significant for rivers run in island and in mountain zone. To evaluate the function of groundwater flowing from riverbed we first try to find such site by using a drone equipped with a sensitive thermo-camera to detect water surface temperature. In the examined area temperature of the groundwater doesn't change much throughout a year at around 15 to 16 °C, while surface temperature of the examined river fluctuates from below 10 °C to over 25 °C throughout seasons. By using this difference in temperature between groundwater and river water we tried to find site where groundwater comes out from the riverbed. Obviously winter when surface temperature becomes below 10 °C is an appropriate season to find groundwater as it comes up to the surface of river with depth ranging from 1 to 3 m. Trial flight surveys of drone were conducted in Kano-river in Izu Peninsula located at southern foot of Mt. Fuji in central Japan. Employed drone was Inspire1 (DJI, China) equipped with a Thermal camera (Zenmuse XT ZXTA 19 FP, FLIR, USA) and operated by Kazuhide Juta (KELEK Co. Ltd., Japan) and Mitsuhiro Komiya (TAM.Co.,LTD). In contrast to the former cases with employing airplane for taking aerial photograph, drone takes photo while flying at a low-altitude. When it flies at 40m above the water surface of river, resolution is at an

  20. Implementation of the DAST ARW II control laws using an 8086 microprocessor and an 8087 floating-point coprocessor. [drones for aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Kelly, G. L.; Berthold, G.; Abbott, L.

    1982-01-01

    A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.

  1. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  2. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Drone Co-habitation Services operates a Phantom 3 commercial multi-rotor unmanned aircraft, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.

  3. Using Ready-To Drone Images in Forestry Activities: Case Study of ÇINARPINAR in Kahramanmaras, Turkey

    NASA Astrophysics Data System (ADS)

    Gülci, S.; Akgül, M.; Akay, A. E.; Taş, İ.

    2017-11-01

    This short paper aims to present pros and cons of current usage of ready-to-use drone images in the field of forestry also considering flight planning and photogrammetric processes. The capabilities of DJI Phantom 4, which is the low cost drone producing by Dji company, was evaluated through sample flights in Cinarpinar Forest Enterprise Chief in Kahramanmaras in Turkey. In addition, the photogrammetric workflow of obtained images and automated flight were presented with respect to capabilities of available software. The flight plans were created by using Pix4DCapture software with android based cell phone. The results indicated that high-resolution imagery obtained by drone can provide significant data for assessment of forest resources, forest roads, and stream channels.

  4. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds

    PubMed Central

    Whiting, Scott; Tucker, Tony; Guinea, Michael; Raith, Andrew; Douglas, Ryan

    2018-01-01

    Drones are being increasingly used in innovative ways to enhance environmental research and conservation. Despite their widespread use for wildlife studies, there are few scientifically justified guidelines that provide minimum distances at which wildlife can be approached to minimize visual and auditory disturbance. These distances are essential to ensure that behavioral and survey data have no observer bias and form the basis of requirements for animal ethics and scientific permit approvals. In the present study, we documented the behaviors of three species of sea turtle (green turtles, Chelonia mydas, flatback turtles, Natator depressus, hawksbill turtles, Eretmochelys imbricata), saltwater crocodiles (Crocodylus porosus), and crested terns (Thalasseus bergii) in response to a small commercially available (1.4 kg) multirotor drone flown in Northern Territory and Western Australia. Sea turtles in nearshore waters off nesting beaches or in foraging habitats exhibited no evasive behaviors (e.g. rapid diving) in response to the drone at or above 20–30 m altitude, and at or above 10 m altitude for juvenile green and hawksbill turtles foraging on shallow, algae-covered reefs. Adult female flatback sea turtles were not deterred by drones flying forward or stationary at 10 m altitude when crawling up the beach to nest or digging a body pit or egg chamber. In contrast, flyovers elicited a range of behaviors from crocodiles, including minor, lateral head movements, fleeing, or complete submergence when a drone was present below 50 m altitude. Similarly, a colony of crested terns resting on a sand-bank displayed disturbance behaviors (e.g. flight response) when a drone was flown below 60 m altitude. The current study demonstrates a variety of behavioral disturbance thresholds for diverse species and should be considered when establishing operating conditions for drones in behavioral and conservation studies. PMID:29561901

  5. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds.

    PubMed

    Bevan, Elizabeth; Whiting, Scott; Tucker, Tony; Guinea, Michael; Raith, Andrew; Douglas, Ryan

    2018-01-01

    Drones are being increasingly used in innovative ways to enhance environmental research and conservation. Despite their widespread use for wildlife studies, there are few scientifically justified guidelines that provide minimum distances at which wildlife can be approached to minimize visual and auditory disturbance. These distances are essential to ensure that behavioral and survey data have no observer bias and form the basis of requirements for animal ethics and scientific permit approvals. In the present study, we documented the behaviors of three species of sea turtle (green turtles, Chelonia mydas, flatback turtles, Natator depressus, hawksbill turtles, Eretmochelys imbricata), saltwater crocodiles (Crocodylus porosus), and crested terns (Thalasseus bergii) in response to a small commercially available (1.4 kg) multirotor drone flown in Northern Territory and Western Australia. Sea turtles in nearshore waters off nesting beaches or in foraging habitats exhibited no evasive behaviors (e.g. rapid diving) in response to the drone at or above 20-30 m altitude, and at or above 10 m altitude for juvenile green and hawksbill turtles foraging on shallow, algae-covered reefs. Adult female flatback sea turtles were not deterred by drones flying forward or stationary at 10 m altitude when crawling up the beach to nest or digging a body pit or egg chamber. In contrast, flyovers elicited a range of behaviors from crocodiles, including minor, lateral head movements, fleeing, or complete submergence when a drone was present below 50 m altitude. Similarly, a colony of crested terns resting on a sand-bank displayed disturbance behaviors (e.g. flight response) when a drone was flown below 60 m altitude. The current study demonstrates a variety of behavioral disturbance thresholds for diverse species and should be considered when establishing operating conditions for drones in behavioral and conservation studies.

  6. Evaluation of drone brood removal for management of Varroa destructor (Acari: Varroidae) in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States.

    PubMed

    Calderone, N W

    2005-06-01

    The efficacy of drone brood removal for the management of Varroa destructor Anderson & Trueman in colonies of the honey bee, A. mellifera L., was evaluated. Colonies were treated with CheckMite+ in the fall of 2002. The following spring, quantities of bees and brood were equalized, but colonies were not retreated. The brood nest of each colony consisted of 18 full-depth worker combs and two full-depth drone combs. Each worker comb had <12.9 cm2 of drone cells. Standard management practices were used throughout the season. Colonies were randomly assigned to one of two groups. In the control group, drone combs remained in place throughout the season. In the treatment group, drone combs were removed on 16 June, 16 July, 16 August, and 16 September and replaced with empty drone combs (16 June) or with drone combs removed on the previous replacement date. In the early fall, the average mite-to-bee ratio in the control group was significantly greater than the corresponding ratio in the treatment group. Drone brood removal did not adversely affect colony health as measured by the size of the worker population or by honey production. Fall worker populations were similar in the two groups. Honey production in treatment colonies was greater than or similar to production in control colonies. These data demonstrate that drone brood removal can serve as a valuable component in an integrated pest management program for V. destructor and may reduce the need for other treatments on a colony-by-colony basis.

  7. Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina.

    PubMed

    Cameron, E C; Franck, P; Oldroyd, B P

    2004-08-01

    In stingless bees, sex is determined by a single complementary sex-determining locus. This method of sex determination imposes a severe cost of inbreeding because an egg fertilized by sperm carrying the same sex allele as the egg results in a sterile diploid male. To explore how reproductive strategies may be used to avoid inbreeding in stingless bees, we studied the genetic structure of a population of 27 colonies and three drone congregations of Trigona collina in Chanthaburi, Thailand. The colonies were distributed across six nest aggregations, each aggregation located in the base of a different fig tree. Genetic analysis at eight microsatellite loci showed that colonies within aggregations were not related. Samples taken from three drone congregations showed that the males were drawn from a large number of colonies (estimated to be 132 different colonies in our largest swarm). No drone had a genotype indicating that it could have originated from the colony that it was directly outside. Combined, these results suggest that movements of drones and possibly movements of reproductive swarms among colony aggregations provide two mechanisms of inbreeding avoidance. Copyright 2004 Blackwell Publishing Ltd

  8. In flight image processing on multi-rotor aircraft for autonomous landing

    NASA Astrophysics Data System (ADS)

    Henry, Richard, Jr.

    An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.

  9. Incorporating Unmanned Aircraft Systems (UAS) into High School Curricula in Hawaii

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Lukaczyk, T.; Brendan, B.; Tomita, M.; Ralston, T.; Purdy, G.

    2016-12-01

    The availability of low-cost unmanned aircraft systems (UAS) permits their integration in educational programs. We report on experiences and future opportunities for incorporating UAS into High School curricula in Hawaii. We first review existing high school UAS programs and teaching material to highlight curricula options and needs. By working on the privately owned Island of Lana'i, we had permission for extensive UAS operation. Our initial focus of UAS educational outreach was on coastal ecosystems where erosion of overgrazed lands affects coral reefs and traditional coastal Hawaiian fishpond restoration projects which include high school students. We provide results of our classroom approach allowing students to learn to fly small, inexpensive UAS and discuss the different results at different grade levels. In addition to providing basic concepts of flight aeronautics, we reviewed information on safe and legal operation of UAS, as well as data management issues including geo-registration and imaging mosaics. We recommend science projects where UAS can study short-term events (e.g. storm runoff) or can be used for routine environmental monitoring over longer periods. Additionally, by linking students with local drone and drone racing clubs student participation and interest in UAS was extended beyond the classroom in a complementary manner. We propose inclusion of UAS into a future high school curriculum via a program called the Moonshot Laboratory which strives to repurpose traditional education structures toward design thinking, making use of individual and group collaborations to address self-selected projects relevant to local community interests. A Moonshot facility allows students to spend a portion of their week in a technology equipped makerspace, with access to university, business and community mentors, both local and remote. UAS projects are expected to address basic student questions, such as: how can I build a drone to take water samples?; how can I

  10. Altus aircraft on runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  11. Positional and Dimensional Accuracy Assessment of Drone Images Geo-referenced with Three Different GPSs

    NASA Astrophysics Data System (ADS)

    Cao, C.; Lee, X.; Xu, J.

    2017-12-01

    Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.

  12. A Drone-based Tropical Forest Experiment to Estimate Vegetation Properties

    NASA Astrophysics Data System (ADS)

    Henke, D.

    2017-12-01

    In mid-latitudes, remote sensing technology is intensively used to monitor vegetation properties. However, in the tropics, high cloud-cover and saturation effects of vegetation indices (VI) hamper the reliability of vegetation parameters derived from satellite data. A drone experiment over the Barro Colorado Island (BCI), Panama, with high temporal repetition rates was conducted in spring 2017 to investigate the robustness and stability of remotely sensed vegetation parameters in tropical environments. For this purpose, three 10-day flight windows in February, March and April were selected and drone flights were repeated on daily intervals when weather conditions and equipment allowed it. In total, 18 days were recorded with two different optical cameras on sensefly's eBee drone: one red, green, blue (RGB) camera and one camera with near infra-red (NIR), green and blue channels. When possible, the data were acquired at the same time of day. Pix4D and Agisoft software were used to calculate the Normalized Difference VI (NDVI) and forest structure. In addition, leave samples were collected ones per month from 16 different plant species and the relative water content was measured as ground reference. Further data sources for the analysis are phenocam images (RGB & NIR) on BCI and satellite images of MODIS (NDVI; Enhanced VI EVI) and Sentinel-1 (radar backscatter). The attached figure illustrates the main data collected on BCI. Initial results suggest that the coefficient of determination (R2) is relatively high between ground samples and drone data, Sentinel-1 backscatter and MODIS EVI with R2 values ranging from 0.4 to 0.6; on the contrary, R2 values between ground measurements and MODIS NDVI or phenocam images are below 0.2. As the experiment took place mainly during dry season on BCI, cloud-cover rates are less dominate than during wet season. Under these conditions, MODIS EVI, which is less vulnerable to saturation effects, seems to be more reliable than MODIS

  13. Parallel optimization algorithm for drone inspection in the building industry

    NASA Astrophysics Data System (ADS)

    Walczyński, Maciej; BoŻejko, Wojciech; Skorupka, Dariusz

    2017-07-01

    In this paper we present an approach for Vehicle Routing Problem with Drones (VRPD) in case of building inspection from the air. In autonomic inspection process there is a need to determine of the optimal route for inspection drone. This is especially important issue because of the very limited flight time of modern multicopters. The method of determining solutions for Traveling Salesman Problem(TSP), described in this paper bases on Parallel Evolutionary Algorithm (ParEA)with cooperative and independent approach for communication between threads. This method described first by Bożejko and Wodecki [1] bases on the observation that if exists some number of elements on certain positions in a number of permutations which are local minima, then those elements will be in the same position in the optimal solution for TSP problem. Numerical experiments were made on BEM computational cluster with using MPI library.

  14. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian

    2017-01-01

    Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.

  15. Temporal genetic structure of a drone congregation area of the giant Asian honeybee ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Kraus, F. B.; Koeniger, N.; Tingek, S.; Moritz, R. F. A.

    2005-12-01

    The giant Asian honeybee ( Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N e=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

  16. Environmental Assessment: Construction and Operation of an Alternate Drone Launch System at Tyndall Air Force Base

    DTIC Science & Technology

    2008-05-01

    matter less than or equal to 2.5 microns in aerodynamic diameter POL petroleum, oil , and lubricant RATO Rocket Assisted Take Off RCRA Resource... southeast of the Base airfield. The 325th Fighter Wing, Tyndall AFB, with the support of the Air Education and Training Command (AETC), has prepared this...segments. The drone launch facility is located just off U.S. Highway 98 southeast of the Base airfield (Figure 1-2). The proposed alternate drone

  17. An investigation into the effect of surveillance drones on textile evidence at crime scenes.

    PubMed

    Bucknell, Alistair; Bassindale, Tom

    2017-09-01

    With increasing numbers of Police forces using drones for crime scene surveillance, the effect of the drones on trace evidence present needs evaluation. In this investigation the effect of flying a quadcopter drone at different heights over a controlled scene and taking off at different distances from the scene were measured. Yarn was placed on a range of floor surfaces and the number lost or moved from their original position was recorded. It was possible to estimate "safe" distances above and take off distance from the bath mat (2m and 1m respectively), and carpet tile (3m and 1m) which were the roughest surfaces. The maximum distances tested of 5m above and 2m from was not far enough to prevent significant disturbance with the other floor surfaces. This report illustrates the importance of considering the impact of new technologies into a forensic workflow on established forensic evidence prior to implementation. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  18. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors

    PubMed Central

    Besada, Juan A.; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; Bernardos, Ana M.; Casar, José R.

    2018-01-01

    This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control. PMID:29641506

  19. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors.

    PubMed

    Besada, Juan A; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; López-Araquistain, Jaime; Bernardos, Ana M; Casar, José R

    2018-04-11

    This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control.

  20. How Drone Strikes and a Fake Vaccination Program Have Inhibited Polio Eradication in Pakistan: An Analysis of National Level Data.

    PubMed

    Kennedy, Jonathan

    2017-10-01

    This article investigates whether the United States' counterinsurgency operations have inhibited polio eradication efforts in northwestern Pakistan, the world's last major reservoir of polio. Anecdotal evidence suggests that militants disrupt polio vaccination programs because of suspicions that campaigns are a cover for gathering intelligence on Central Intelligence Agency (CIA) drone targets. This paper analyzes national-level quantitative data to test this argument. Between 2004 and 2012, the number of polio cases in Pakistan closely mirrored the number of drone strikes. But from 2013 onward, polio cases increased while drone strikes fell. This can be explained by the CIA's use of a fake immunization campaign in a failed attempt to obtain the DNA of Osama bin Laden's relatives prior to his assassination in 2011. This seemingly vindicated militants' suspicions that vaccination programs were a cover for espionage. Militants consequently intensified their disruption of immunization campaigns, resulting in an increase in polio cases in Pakistan, as well as in Afghanistan, Syria, and Iraq. For politicians and military planners, drones are attractive because they are said to harm fewer civilians than conventional methods of warfare. However, this paper demonstrates that drone strikes had negative effects on the well-being of civilians in Pakistan and further afield because they undermined global efforts to eradicate polio.

  1. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    USGS Publications Warehouse

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  2. Drone based estimation of actual evapotranspiration over different forest types

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2017-04-01

    Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.

  3. Micro turbine engines for drones propulsion

    NASA Astrophysics Data System (ADS)

    Dutczak, J.

    2016-09-01

    Development of micro turbine engines began from attempts of application of that propulsion source by group of enthusiasts of aviation model making. Nowadays, the domain of micro turbojet engines is treated on a par with “full size” aviation constructions. The dynamic development of these engines is caused not only by aviation modellers, but also by use of micro turbojet engines by army to propulsion of contemporary drones, i.e. Unmanned Aerial Vehicles (UAV) or Unmanned Aerial Systems (UAS). On the base of selected examples the state of art in the mentioned group of engines has been presented in the article.

  4. Localization of deformed wing virus infection in queen and drone Apis mellifera L

    PubMed Central

    Fievet, Julie; Tentcheva, Diana; Gauthier, Laurent; de Miranda, Joachim; Cousserans, François; Colin, Marc Edouard; Bergoin, Max

    2006-01-01

    The distribution of deformed wing virus infection within the honey bee reproductive castes (queens, drones) was investigated by in situ hybridization and immunohistology from paraffin embedded sections. Digoxygenin or CY5.5 fluorochrome end-labelled nucleotide probes hybridizing to the 3' portion of the DWV genome were used to identify DWV RNA, while a monospecific antibody to the DWV-VP1 structural protein was used to identify viral proteins and particles. The histological data were confirmed by quantitative RT-PCR of dissected organs. Results showed that DWV infection is not restricted to the digestive tract of the bee but spread in the whole body, including queen ovaries, queen fat body and drone seminal vesicles. PMID:16569216

  5. A Web of Drones: A 2040 Strategy to Reduce the United States Dependance on Space Based Capabilities

    DTIC Science & Technology

    2015-02-17

    AIR WAR COLLEGE AIR UNIVERSITY A WEB OF DRONES : A 2040 STRATEGY TO REDUCE THE UNITED STATES DEPENDANCE ON SPACE BASED CAPABILITIES by...James Morgan “Kawg” Curry , Colonel, USAF A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE A Web Of Drones : A 2040 Strategy To Reduce The United States Dependance On Space Based

  6. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  7. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    PubMed

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  8. Clones, Drones and Dragons: Ongoing Uncertainties around School Leader Development

    ERIC Educational Resources Information Center

    Walker, Allan

    2015-01-01

    This article examines a number of key issues around successful school leadership and leader development. Three metaphors are used to frame, track and analyse recent research and commentary in the area--these are clones, drones and dragons. Although development mechanisms rarely fall neatly within one category, the metaphors provide a useful way to…

  9. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    PubMed

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  10. Drone inflight mixing of biochemical samples.

    PubMed

    Katariya, Mayur; Chung, Dwayne Chung Kim; Minife, Tristan; Gupta, Harshit; Zahidi, Alifa Afiah Ahmad; Liew, Oi Wah; Ng, Tuck Wah

    2018-03-15

    Autonomous systems for sample transport to the laboratory for analysis can be improved in terms of timeliness, cost and error mitigation in the pre-analytical testing phase. Drones have been reported for outdoor sample transport but incorporating devices on them to attain homogenous mixing of reagents during flight to enhance sample processing timeliness is limited by payload issues. It is shown here that flipping maneuvers conducted with quadcopters are able to facilitate complete and gentle mixing. This capability incorporated during automated sample transport serves to address an important factor contributing to pre-analytical variability which ultimately impacts on test result reliability. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Drone photogrammetry for geological research: field digital stratigraphic logs for turbiditic reservoir analog studies in Calabria, Southern Italy.

    NASA Astrophysics Data System (ADS)

    Guillois, Maxime; Brocheray, Sandra; Paron, Paolo

    2017-04-01

    Drone technology combined with new algorithms like Structure from Motion (SfM) has revived and expanded the uses of photogrammetry bringing new flexibility and the capacity to carry on close range photogrammetry to inaccessible areas. This characteristics are particularly appealing in field geology offering the option to reconstruct continuous digital outcrop models of vertical or difficult to reach outcrops. In this light we present the results of a digital outcrop modelling of a Miocene turbiditic system (mainly sandstone) in Calabria (Southern Italy) generated through field data collected by means of a light-weight commercial drone, a detailed geological field survey and cloud point photogrammetric analyses comparing different software for this purpose (Agisoft Photoscan, Drone deploy, Arc3D). The geological model has been used as an input for preliminary reservoir modelling. We generated digital geological sections (stratigraphic logs) of 1,200 m of sections using expert digital image and terrain model interprepation from the DTM generated with drone data, with the goal to reconstruct the real thickness of each layer. We then compared the results with previously created detailed field geological cross sections. The comparison between drone-derived sections and field-survey sections shows a global accuracy of the thickness ranging between 1% to 10%. Although this new methodology still has to be validated in other morpho-lithological context it already demonstrating its usefulness for preliminary geological outcrop investigation and modelling in remote areas. We also compared the different softwares used and we made recommendations for future deployment. This research has been made possible thanks to a collaboration between UNESCO-IHE, The Netherlands, and UniLaSalle Beauvais, France.

  12. [Symptomatic Black Queen Cell Virus infection of drone brood in Hessian apiaries].

    PubMed

    Siede, Reinhold; Büchler, Ralph

    2003-01-01

    The Black Queen Cell Virus (BQCV) can affect brood of the honey bee (Apis mellifera). In general queen cells are endangered showing dark coloured cell walls as typical symptoms. Worker- and dronebrood can be infected by BQCV but normally without clinical symptoms. This paper describes for the first time a symptomatic BQCV-infection of diseased drone brood found on two bee yards in Hessen/Germany in 2001. The drone larvae were seriously damaged and some of them were dead. Samples of the affected brood were tested for BQCV by the PCR detection method. A BQCV specific nucleic acid fragment was found. The PCR product were sequenced and aligned with the relevant GenBank entry. At the nucleic acid level as well as at the deduced protein level the isolate showed a high similarity with the south african isolate noted in GenBank.

  13. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques

    NASA Astrophysics Data System (ADS)

    Casella, Elisa; Collin, Antoine; Harris, Daniel; Ferse, Sebastian; Bejarano, Sonia; Parravicini, Valeriano; Hench, James L.; Rovere, Alessio

    2017-03-01

    We propose a novel technique to measure the small-scale three-dimensional features of a shallow-water coral reef using a small drone equipped with a consumer-grade camera, a handheld GPS and structure from motion (SfM) algorithms. We used a GoPro HERO4 with a modified lens mounted on a DJI Phantom 2 drone (maximum total take-off weight <2 kg) to perform a 10 min flight and collect 306 aerial images with an overlap equal or greater than 90%. We mapped an area of 8380 m2, obtaining as output an ortho-rectified aerial photomosaic and a bathymetric digital elevation model (DEM) with a resolution of 0.78 and 1.56 cm pixel-1, respectively. Through comparison with airborne LiDAR data for the same area, we verified that the location of the ortho-rectified aerial photomosaic is accurate within 1.4 m. The bathymetric difference between our DEM and the LiDAR dataset is -0.016 ± 0.45 m (1σ). Our results show that it is possible, in conditions of calm waters, low winds and minimal sun glint, to deploy consumer-grade drones as a relatively low-cost and rapid survey technique to produce multispectral and bathymetric data on shallow-water coral reefs. We discuss the utility of such data to monitor temporal changes in topographic complexity of reefs and associated biological processes.

  14. Devising Mobile Sensing and Actuation Infrastructure with Drones.

    PubMed

    Bae, Mungyu; Yoo, Seungho; Jung, Jongtack; Park, Seongjoon; Kim, Kangho; Kim, Joon Yeop Lee; Kim, Hwangnam

    2018-02-19

    Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors' data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT).

  15. Devising Mobile Sensing and Actuation Infrastructure with Drones

    PubMed Central

    Jung, Jongtack; Park, Seongjoon; Kim, Kangho; Lee, Joon Yeop

    2018-01-01

    Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors’ data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT). PMID:29463064

  16. The Future of Drone Strikes: A Framework for Analyzing Policy Options

    DTIC Science & Technology

    2014-09-01

    Christmas Day” bomber, Umar Farouk Abdulmutallab, attempted to detonate a bomb hidden in his underwear during a flight to the U.S. in 2009. The...2013/08/the-case-against-drone-strikes-on-people- who-only-act-like-terrorists/278744/. 87 [30] Jack Goldsmith, “ Fire When Ready,” Foreign Policy

  17. Accuracy Analysis of a Dam Model from Drone Surveys

    PubMed Central

    Buffi, Giulia; Venturi, Sara

    2017-01-01

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185

  18. Accuracy Analysis of a Dam Model from Drone Surveys.

    PubMed

    Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio

    2017-08-03

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  19. Altus I aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft climbs away after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the

  20. Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey.

    PubMed

    Urbanová, Petra; Jurda, Mikoláš; Vojtíšek, Tomáš; Krajsa, Jan

    2017-12-01

    Recent advances in unmanned aerial technology have substantially lowered the cost associated with aerial imagery. As a result, forensic practitioners are today presented with easy low-cost access to aerial photographs at remote locations. The present paper aims to explore boundaries in which the low-end drone technology can operate as professional crime scene equipment, and to test the prospects of aerial 3D modeling in the forensic context. The study was based on recent forensic cases of falls from height admitted for postmortem examinations. Three mock outdoor forensic scenes featuring a dummy, skeletal remains and artificial blood were constructed at an abandoned quarry and subsequently documented using a commercial DJI Phantom 2 drone equipped with a GoPro HERO 4 digital camera. In two of the experiments, the purpose was to conduct aerial and ground-view photography and to process the acquired images with a photogrammetry protocol (using Agisoft PhotoScan ® 1.2.6) in order to generate 3D textured models. The third experiment tested the employment of drone-based video recordings in mapping scattered body parts. The results show that drone-based aerial photography is capable of producing high-quality images, which are appropriate for building accurate large-scale 3D models of a forensic scene. If, however, high-resolution top-down three-dimensional scene documentation featuring details on a corpse or other physical evidence is required, we recommend building a multi-resolution model by processing aerial and ground-view imagery separately. The video survey showed that using an overview recording for seeking out scattered body parts was efficient. In contrast, the less easy-to-spot evidence, such as bloodstains, was detected only after having been marked properly with crime scene equipment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor.

    PubMed

    Surlis, Carla; Carolan, James C; Coffey, Mary; Kavanagh, Kevin

    Varroa destructor is a haemophagous ectoparasite of honeybees and is considered a major causal agent of colony losses in Europe and North America. Although originating in Eastern Asia where it parasitizes Apis cerana, it has shifted hosts to the western honeybee Apis mellifera on which it has a greater deleterious effect on the individual and colony level. To investigate this important host-parasite interaction and to determine whether Varroa causes different effects on different castes we conducted a label free quantitative proteomic analysis of Varroa-parasitized and non-parasitized drone and worker Apis mellifera pupae. 1195 proteins were identified in total, of which 202 and 250 were differentially abundant in parasitized drone and worker pupae, respectively. Both parasitized drone and worker pupae displayed reduced abundance in proteins associated with the cuticle, lipid transport and innate immunity. Proteins involved in metabolic processes were more abundant in both parasitized castes although the response in workers was more pronounced. A number of caste specific responses were observed including differential abundance of numerous cytoskeletal and muscle proteins, which were of higher abundance in parasitized drones in comparison to parasitized workers. Proteins involved in fatty acid and carbohydrate metabolism were more abundant in parasitized workers as were a large number of ribosomal proteins highlighting either potentially divergent responses to Varroa or a different strategy by the mite when parasitizing the different castes. This data improves our understanding of this interaction and may provide a basis for future studies into improvements to therapy and control of Varroasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optimizing Drone Fertility With Spring Nutritional Supplements to Honey Bee (Hymenoptera: Apidae) Colonies.

    PubMed

    Rousseau, Andrée; Giovenazzo, Pierre

    2016-03-27

    Supplemental feeding of honey bee (Apis melliferaL., Hymenoptera: Apidae) colonies in spring is essential for colony buildup in northern apicultural regions. The impact of pollen and syrup feeding on drone production and sperm quality is not well-documented, but may improve fecundation of early-bred queens. We measured the impact of feeding sucrose syrup, and protein supplements to colonies in early spring in eastern Canada. Drones were reared under different nutritional regimes, and mature individuals were then assessed in regard to size, weight, and semen quality (semen volume, sperm count, and viability). Results showed significant increases in drone weight and abdomen size when colonies were fed sucrose and a protein supplement. Colonies receiving no additional nourishment had significantly less semen volume per drone and lower sperm viability. Our study demonstrates that feeding honey bee colonies in spring with sucrose syrup and a protein supplement is important to enhance drone reproductive quality. RÉSUMÉ: L'administration de suppléments alimentaires aux colonies de l'abeille domestique (Apis melliferaL., Hymenoptera: Apidae) au printemps est essentielle pour le bon développement des colonies dans les régions apicoles nordiques. L'impact de la supplémentation des colonies en pollen et en sirop sur la production des faux-bourdons et la qualité du sperme demeure peu documenté mais pourrait résulter en une meilleure fécondation des reines produites tôt en saison. Nous avons mesuré l'impact de la supplémentation en sirop et/ou en supplément de pollen sur les colonies d'abeilles tôt au printemps dans l'est du Canada. Les faux-bourdons ont été élevé sous différents régimes alimentaires et les individus matures ont ensuite été évalués pour leur taille, leur poids ainsi que la qualité de leur sperme (volume de sperme, nombre et viabilité des spermatozoïdes. Les résultats montrent une augmentation significative du poids et de la taille

  3. Visible, Very Near IR and Short Wave IR Hyperspectral Drone Imaging System for Agriculture and Natural Water Applications

    NASA Astrophysics Data System (ADS)

    Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.

    2017-10-01

    The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high (  50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.

  4. COUNTER-UAV SOLUTIONS FOR THE JOINT FORCE

    DTIC Science & Technology

    2017-04-06

    which include both remote controlled model aircraft and drones, have been on the commercial market for decades. However, they (specifically...Today, some of the most capable drones available on the commercial market can lift over 20lbs, remain airborne for over 40 minutes, exceed 85mph and...are controllable at a range of up to 5km. The following chart identifies some of the most common commercially available drones on the market with a

  5. Using low-cost drones to map malaria vector habitats.

    PubMed

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  6. The Activity of Carbohydrate-Degrading Enzymes in the Development of Brood and Newly Emerged workers and Drones of the Carniolan Honeybee, Apis mellifera carnica

    PubMed Central

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods. PMID:22943407

  7. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    PubMed

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  8. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators.

  9. JPRS Report, Proliferation Issues

    DTIC Science & Technology

    1992-10-30

    systemChina, the potential is there for enormous profits to be is marketed as a high-speed target drone , that can be usedmade. for training anti-aircraft and...maintenance support equipment, fully transportable by modernisation of older weapons systems. During the arms road, sea and air. The drone can be controlled...said the whole issue was and speculation. The Drone goes on display at the DEXSA shrouded in secrecy. 󈨠 Exposition, the report concludes. He said the

  10. CID Aircraft slap-down

    NASA Technical Reports Server (NTRS)

    1984-01-01

    , 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.

  11. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Karen Bollinger pilot and Nick Atkins of Alaska Center for Unmanned Aircraft Systems Integration program fly Ptarmigan quadcopter, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.

  12. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    ERIC Educational Resources Information Center

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  13. Observing Spring and Fall Phenology in a Deciduous Forest with Aerial Drone Imagery.

    PubMed

    Klosterman, Stephen; Richardson, Andrew D

    2017-12-08

    Plant phenology is a sensitive indicator of the effects of global change on terrestrial ecosystems and controls the timing of key ecosystem functions including photosynthesis and transpiration. Aerial drone imagery and photogrammetric techniques promise to advance the study of phenology by enabling the creation of distortion-free orthomosaics of plant canopies at the landscape scale, but with branch-level image resolution. The main goal of this study is to determine the leaf life cycle events corresponding to phenological metrics derived from automated analyses based on color indices calculated from drone imagery. For an oak-dominated, temperate deciduous forest in the northeastern USA, we find that plant area index (PAI) correlates with a canopy greenness index during spring green-up, and a canopy redness index during autumn senescence. Additionally, greenness and redness metrics are significantly correlated with the timing of budburst and leaf expansion on individual trees in spring. However, we note that the specific color index for individual trees must be carefully chosen if new foliage in spring appears red, rather than green-which we observed for some oak trees. In autumn, both decreasing greenness and increasing redness correlate with leaf senescence. Maximum redness indicates the beginning of leaf fall, and the progression of leaf fall correlates with decreasing redness. We also find that cooler air temperature microclimates near a forest edge bordering a wetland advance the onset of senescence. These results demonstrate the use of drones for characterizing the organismic-level variability of phenology in a forested landscape and advance our understanding of which phenophase transitions correspond to color-based metrics derived from digital image analysis.

  14. Observing Spring and Fall Phenology in a Deciduous Forest with Aerial Drone Imagery

    PubMed Central

    Richardson, Andrew D.

    2017-01-01

    Plant phenology is a sensitive indicator of the effects of global change on terrestrial ecosystems and controls the timing of key ecosystem functions including photosynthesis and transpiration. Aerial drone imagery and photogrammetric techniques promise to advance the study of phenology by enabling the creation of distortion-free orthomosaics of plant canopies at the landscape scale, but with branch-level image resolution. The main goal of this study is to determine the leaf life cycle events corresponding to phenological metrics derived from automated analyses based on color indices calculated from drone imagery. For an oak-dominated, temperate deciduous forest in the northeastern USA, we find that plant area index (PAI) correlates with a canopy greenness index during spring green-up, and a canopy redness index during autumn senescence. Additionally, greenness and redness metrics are significantly correlated with the timing of budburst and leaf expansion on individual trees in spring. However, we note that the specific color index for individual trees must be carefully chosen if new foliage in spring appears red, rather than green—which we observed for some oak trees. In autumn, both decreasing greenness and increasing redness correlate with leaf senescence. Maximum redness indicates the beginning of leaf fall, and the progression of leaf fall correlates with decreasing redness. We also find that cooler air temperature microclimates near a forest edge bordering a wetland advance the onset of senescence. These results demonstrate the use of drones for characterizing the organismic-level variability of phenology in a forested landscape and advance our understanding of which phenophase transitions correspond to color-based metrics derived from digital image analysis. PMID:29292742

  15. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  16. Natural Larval Diet Differently Influences the Pattern of Developmental Changes in DNA 5-Methylcytosine Levels in Apis mellifera Queens as Compared with Workers and Drones.

    PubMed

    Strachecka, A; Olszewski, K; Bajda, M; Demetraki-Paleolog, J

    2015-08-01

    The principal mechanism of gene activation/silencing is DNA 5-methylcytosine methylation. This study was aimed at determining global DNA methylation levels in larvae, prepupae, pupae, and 1-day-old adults of Apis mellifera queens, workers and drones. The Imprint Methylated DNA Quantification Kit MDQ1 was used. Percentages of DNA 5-methylcytosine were low and relatively similar in the larvae of all the castes until 4th day of larval development (3-5%). However, they were higher in the drone and worker larvae than in the queen larvae. Generally, the developmental patterns of changes in the DNA methylation levels were different in the queens in comparison with the drones and workers. While methylation increased in the queens, it decreased in the drones and workers. Methylated DNA methylcytosine percentages and weights in the queen prepupae (15%, 9.18 ng) and pupae (21%, 10.74 ng) were, respectively, three and four times higher than in the worker/drone brood of the same age (2.5-4%, 0.03-0.07 ng). Only in the queens, after a substantial increase, did DNA methylation decrease almost twice between the pupal stage and queen emergence (from 21% and 10.74 ng to 12% and 6.78 ng). This finding seems very interesting, particularly for experimental gerontology.

  17. Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: A case study of fipronil.

    PubMed

    Kairo, Guillaume; Poquet, Yannick; Haji, Haïthem; Tchamitchian, Sylvie; Cousin, Marianne; Bonnet, Marc; Pelissier, Michel; Kretzschmar, André; Belzunces, Luc P; Brunet, Jean-Luc

    2017-09-01

    Concern about the reproductive toxicity of plant protection products in honey bee reproducers is increasing. Because the reproductive capacity of honey bees is not currently considered during the risk assessment procedure performed during plant protection product registration, it is important to provide methods to assess such potential impairments. To achieve this aim, we used 2 different approaches that involved semifield and laboratory conditions to study the impact of fipronil on drone fertility. For each approach, the drones were reared for 20 d, from emergence to sexual maturity, and exposed to fipronil via a contaminated sugar solution. In both groups, the effects of fipronil were determined by studying life traits and fertility indicators. The results showed that the survival and maturity rates of the drones were better under laboratory conditions than under semifield conditions. Moreover, the drones reared under laboratory conditions produced more seminal fluid. Although these differences could be explained by environmental factors that may vary under semifield conditions, it was found that regardless of the approach used, fipronil did not affect survival rates, maturity rates, or semen volumes, whereas it did affect fertility by inducing a decrease in spermatozoa quantity that was associated with an increase in spermatozoa mortality. These results confirm that fipronil affects drone fertility and support the relevance of each approach for assessing the potential reproductive toxicity of plant protection products in honey bees. Environ Toxicol Chem 2017;36:2345-2351. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  18. Parametric analysis of a down-scaled turbo jet engine suitable for drone and UAV propulsion

    NASA Astrophysics Data System (ADS)

    Wessley, G. Jims John; Chauhan, Swati

    2018-04-01

    This paper presents a detailed study on the need for downscaling gas turbine engines for UAV and drone propulsion. Also, the procedure for downscaling and the parametric analysis of a downscaled engine using Gas Turbine Simulation Program software GSP 11 is presented. The need for identifying a micro gas turbine engine in the thrust range of 0.13 to 4.45 kN to power UAVs and drones weighing in the range of 4.5 to 25 kg is considered and in order to meet the requirement a parametric analysis on the scaled down Allison J33-A-35 Turbojet engine is performed. It is evident from the analysis that the thrust developed by the scaled engine and the Thrust Specific Fuel Consumption TSFC depends on pressure ratio, mass flow rate of air and Mach number. A scaling factor of 0.195 corresponding to air mass flow rate of 7.69 kg/s produces a thrust in the range of 4.57 to 5.6 kN while operating at a Mach number of 0.3 within the altitude of 5000 to 9000 m. The thermal and overall efficiency of the scaled engine is found to be 67% and 75% respectively for a pressure ratio of 2. The outcomes of this analysis form a strong base for further analysis, design and fabrication of micro gas turbine engines to propel future UAVs and drones.

  19. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Precision Hawk pilot readies Lancaster Mark 3 UAS for test flight.

  20. CID Aircraft post-impact lakebed skid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Moments after hitting and sliding through the wing openers the aircraft burst into flame, with a spectacular fireball seen emanating from the right inboard engine area. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four

  1. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.

    PubMed

    Mulero-Pázmány, Margarita; Jenni-Eiermann, Susanne; Strebel, Nicolas; Sattler, Thomas; Negro, Juan José; Tablado, Zulima

    2017-01-01

    The use of small Unmanned Aircraft Systems (UAS; also known as "drones") for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices.

  2. Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Based Diagnostics for Mobile Health Care.

    PubMed

    Priye, Aashish; Wong, Season; Bi, Yuanpeng; Carpio, Miguel; Chang, Jamison; Coen, Mauricio; Cope, Danielle; Harris, Jacob; Johnson, James; Keller, Alexandra; Lim, Richard; Lu, Stanley; Millard, Alex; Pangelinan, Adriano; Patel, Neal; Smith, Luke; Chan, Kamfai; Ugaz, Victor M

    2016-05-03

    We introduce a portable biochemical analysis platform for rapid field deployment of nucleic acid-based diagnostics using consumer-class quadcopter drones. This approach exploits the ability to isothermally perform the polymerase chain reaction (PCR) with a single heater, enabling the system to be operated using standard 5 V USB sources that power mobile devices (via battery, solar, or hand crank action). Time-resolved fluorescence detection and quantification is achieved using a smartphone camera and integrated image analysis app. Standard sample preparation is enabled by leveraging the drone's motors as centrifuges via 3D printed snap-on attachments. These advancements make it possible to build a complete DNA/RNA analysis system at a cost of ∼$50 ($US). Our instrument is rugged and versatile, enabling pinpoint deployment of sophisticated diagnostics to distributed field sites. This capability is demonstrated by successful in-flight replication of Staphylococcus aureus and λ-phage DNA targets in under 20 min. The ability to perform rapid in-flight assays with smartphone connectivity eliminates delays between sample collection and analysis so that test results can be delivered in minutes, suggesting new possibilities for drone-based systems to function in broader and more sophisticated roles beyond cargo transport and imaging.

  3. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    PubMed

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  4. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    PubMed Central

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  5. Symptoms of psychological distress and post-traumatic stress disorder in United States Air Force "drone" operators.

    PubMed

    Chappelle, Wayne L; McDonald, Kent D; Prince, Lillian; Goodman, Tanya; Ray-Sannerud, Bobbie N; Thompson, William

    2014-08-01

    The goal of this study is to repeat a survey administered in 2010 to assess for changes in mental health among United States Air Force aircrew operating Predator/Reaper remotely piloted aircraft, also commonly referred to as "drones." Participants were assessed for self-reported sources of occupational stress, levels of clinical distress using the Outcome Questionnaire-45.2, and symptoms of post-traumatic stress disorder (PTSD) using the PTSD Checklist-Military Version. A total of 1,094 aircrew responded to the web-based survey composed of the commercially available standardized instruments mentioned above. The survey also contained nonstandardized items asking participants to report the main sources of their occupational stress, as well as questions addressing demographics and work-related characteristics. The estimated response rate to the survey was 49%. Study results reveal the most problematic self-reported stressors are operational: low manning, extra duties/administrative tasks, rotating shift work, and long hours. The results also reveal 10.72% of operators self-reported experiencing high levels of distress and 1.57% reported high levels of PTSD symptomology. The results are lower than findings from the 2010 survey and from soldiers returning from Iraq and Afghanistan. Implications of the study and recommendations for United States Air Force line leadership and mental health providers are discussed. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  6. Drones of the dwarf honey bee Apis florea are attracted to (2E)-9-oxodecenoic acid and (2E)-10-hydroxydecenoic acid.

    PubMed

    Nagaraja, Narayanappa; Brockmann, Axel

    2009-06-01

    The queen mandibular gland component (2E)-9-oxodecenoic acid (9-ODA) has been suggested to function as the major sex pheromone component in all honey bee species. In contrast to this hypothesis, chemical analyses showed that in the Asian dwarf honey bee species, Apis florea, a different decenoic acid, (2E)-10-hydroxydecenoic acid (10-HDA), is the major component in the mandibular gland secretion. We show here that A. florea drones are attracted to 9-ODA as well as to 10-HDA. However, 10-HDA attracted higher numbers of drones at lower dosages than 9-ODA, and also was more attractive when directly compared to 9-ODA in a dual attraction experiment. We conclude that 10-HDA has to be viewed as the major sex pheromone in A. florea. The result that both pheromone components are capable of attracting drones when presented alone was unexpected with regard to existing sex pheromone attraction experiments in honey bees.

  7. Send In The Drones! Are Remotely Piloted Aircraft Changing America’s Threshold For Turning To Violence

    DTIC Science & Technology

    2011-12-01

    sides attempted to deliver explosive-laden unmanned balloons to the enemy. The Japanese revived this technique during World War II, when Japanese forces...attempted to send similar balloons across the Atlantic to cause destruction in the United States. 3 As aircraft technology developed, so did the...taken hostage following a failed hijacking attempt. The objective was to free the American captive and it was a success. 55 2005-2011, Pakistan

  8. Assessment of Various Remote Sensing Technologies in Biomass and Nitrogen Content Estimation Using AN Agricultural Test Field

    NASA Astrophysics Data System (ADS)

    Näsi, R.; Viljanen, N.; Kaivosoja, J.; Hakala, T.; Pandžić, M.; Markelin, L.; Honkavaara, E.

    2017-10-01

    Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear regression models were better than 90 % for the drone based datasets. The results showed that the use of spectral and 3D features together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the commercial users and farmers.

  9. Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential

    NASA Astrophysics Data System (ADS)

    Kairo, Guillaume; Provost, Bertille; Tchamitchian, Sylvie; Ben Abdelkader, Faten; Bonnet, Marc; Cousin, Marianne; Sénéchal, Jacques; Benet, Pauline; Kretzschmar, André; Belzunces, Luc P.; Brunet, Jean-Luc

    2016-08-01

    A species that requires sexual reproduction but cannot reproduce is doomed to extinction. The important increasing loss of species emphasizes the ecological significance of elucidating the effects of environmental stressors, such as pesticides, on reproduction. Despite its special reproductive behavior, the honey bee was selected as a relevant and integrative environmental model because of its constant and diverse exposure to many stressors due to foraging activity. The widely used insecticide Fipronil, the use of which is controversial because of its adverse effects on honey bees, was chosen to expose captive drones in hives via syrup contaminated at 0.1 μg/L and gathered by foragers. Such environmental exposure led to decreased spermatozoa concentration and sperm viability coupled with an increased sperm metabolic rate, resulting in drone fertility impairment. Subsequently, unexposed queens inseminated with such sperm exhibited fewer spermatozoa with lower viability in their spermatheca, leaving no doubt about the detrimental consequences for the reproductive potential of queens, which are key for colony sustainability. These findings suggest that pesticides could contribute to declining honey bee populations through fertility impairment, as exemplified by Fipronil. More broadly, reproductive disorders should be taken into consideration when investigating the decline of other species.

  10. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    NASA Astrophysics Data System (ADS)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  11. Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential.

    PubMed

    Kairo, Guillaume; Provost, Bertille; Tchamitchian, Sylvie; Ben Abdelkader, Faten; Bonnet, Marc; Cousin, Marianne; Sénéchal, Jacques; Benet, Pauline; Kretzschmar, André; Belzunces, Luc P; Brunet, Jean-Luc

    2016-08-23

    A species that requires sexual reproduction but cannot reproduce is doomed to extinction. The important increasing loss of species emphasizes the ecological significance of elucidating the effects of environmental stressors, such as pesticides, on reproduction. Despite its special reproductive behavior, the honey bee was selected as a relevant and integrative environmental model because of its constant and diverse exposure to many stressors due to foraging activity. The widely used insecticide Fipronil, the use of which is controversial because of its adverse effects on honey bees, was chosen to expose captive drones in hives via syrup contaminated at 0.1 μg/L and gathered by foragers. Such environmental exposure led to decreased spermatozoa concentration and sperm viability coupled with an increased sperm metabolic rate, resulting in drone fertility impairment. Subsequently, unexposed queens inseminated with such sperm exhibited fewer spermatozoa with lower viability in their spermatheca, leaving no doubt about the detrimental consequences for the reproductive potential of queens, which are key for colony sustainability. These findings suggest that pesticides could contribute to declining honey bee populations through fertility impairment, as exemplified by Fipronil. More broadly, reproductive disorders should be taken into consideration when investigating the decline of other species.

  12. Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential

    PubMed Central

    Kairo, Guillaume; Provost, Bertille; Tchamitchian, Sylvie; Ben Abdelkader, Faten; Bonnet, Marc; Cousin, Marianne; Sénéchal, Jacques; Benet, Pauline; Kretzschmar, André; Belzunces, Luc P.; Brunet, Jean-Luc

    2016-01-01

    A species that requires sexual reproduction but cannot reproduce is doomed to extinction. The important increasing loss of species emphasizes the ecological significance of elucidating the effects of environmental stressors, such as pesticides, on reproduction. Despite its special reproductive behavior, the honey bee was selected as a relevant and integrative environmental model because of its constant and diverse exposure to many stressors due to foraging activity. The widely used insecticide Fipronil, the use of which is controversial because of its adverse effects on honey bees, was chosen to expose captive drones in hives via syrup contaminated at 0.1 μg/L and gathered by foragers. Such environmental exposure led to decreased spermatozoa concentration and sperm viability coupled with an increased sperm metabolic rate, resulting in drone fertility impairment. Subsequently, unexposed queens inseminated with such sperm exhibited fewer spermatozoa with lower viability in their spermatheca, leaving no doubt about the detrimental consequences for the reproductive potential of queens, which are key for colony sustainability. These findings suggest that pesticides could contribute to declining honey bee populations through fertility impairment, as exemplified by Fipronil. More broadly, reproductive disorders should be taken into consideration when investigating the decline of other species. PMID:27549030

  13. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    PubMed

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  14. Drone based measurement system for radiofrequency exposure assessment.

    PubMed

    Joseph, Wout; Aerts, Sam; Vandenbossche, Matthias; Thielens, Arno; Martens, Luc

    2016-03-10

    For the first time, a method to assess radiofrequency (RF) electromagnetic field (EMF) exposure of the general public in real environments with a true free-space antenna system is presented. Using lightweight electronics and multiple antennas placed on a drone, it is possible to perform exposure measurements. This technique will enable researchers to measure three-dimensional RF-EMF exposure patterns accurately in the future and at locations currently difficult to access. A measurement procedure and appropriate measurement settings have been developed. As an application, outdoor measurements are performed as a function of height up to 60 m for Global System for Mobile Communications (GSM) 900 MHz base station exposure. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. CID Aircraft pre-impact lakebed skid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The B-720 is seen viewed moments after impact and just before hitting the wing openers. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and

  16. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  17. Altus I aircraft landing on Edwards lakebed runway 23

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft lands on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio

  18. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  19. Standardised Embedded Data framework for Drones [SEDD

    NASA Astrophysics Data System (ADS)

    Wyngaard, J.; Barbieri, L.; Peterson, F. S.

    2015-12-01

    A number of barriers to entry remain for UAS use in science. One in particular is that of implementing an experiment and UAS specific software stack. Currently this stack is most often developed in-house and customised for a particular UAS-sensor pairing - limiting its reuse. Alternatively, when adaptable a suitable commercial package may be used, but such systems are both costly and usually suboptimal.In order to address this challenge the Standardised Embedded Data framework for Drones [SEDD] is being developed in μpython. SEDD provides an open source, reusable, and scientist-accessible drop in solution for drone data capture and triage. Targeted at embedded hardware, and offering easy access to standard I/O interfaces, SEDD provides an easy solution for simply capturing data from a sensor. However, the intention is rather to enable more complex systems of multiple sensors, computer hardware, and feedback loops, via 3 primary components.A data asset manager ensures data assets are associated with appropriate metadata as they are captured. Thereafter, the asset is easily archived or otherwise redirected, possibly to - onboard storage, onboard compute resource for processing, an interface for transmission, another sensor control system, remote storage and processing (such as EarthCube's CHORDS), or to any combination of the above.A service workflow managerenables easy implementation of complex onboard systems via dedicated control of multiple continuous and periodic services. Such services will include the housekeeping chores of operating a UAS and multiple sensors, but will also permit a scientist to drop in an initial scientific data processing code utilising on-board compute resources beyond the autopilot. Having such capabilities firstly enables easy creation of real-time feedback, to the human- or auto- pilot, or other sensors, on data quality or needed flight path changes. Secondly, compute hardware provides the opportunity to carry out real-time data triage

  20. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine.

    PubMed

    Bhatt, Kunj; Pourmand, Ali; Sikka, Neal

    2018-02-28

    Advances in technology have revolutionized the medical field and changed the way healthcare is delivered. Unmanned aerial vehicles (UAVs) are the next wave of technological advancements that have the potential to make a huge splash in clinical medicine. UAVs, originally developed for military use, are making their way into the public and private sector. Because they can be flown autonomously and can reach almost any geographical location, the significance of UAVs are becoming increasingly apparent in the medical field. We conducted a comprehensive review of the English language literature via the PubMed and Google Scholar databases using search terms "unmanned aerial vehicles," "UAVs," and "drone." Preference was given to clinical trials and review articles that addressed the keywords and clinical medicine. Potential applications of UAVs in medicine are broad. Based on articles identified, we grouped UAV application in medicine into three categories: (1) Prehospital Emergency Care; (2) Expediting Laboratory Diagnostic Testing; and (3) Surveillance. Currently, UAVs have been shown to deliver vaccines, automated external defibrillators, and hematological products. In addition, they are also being studied in the identification of mosquito habitats as well as drowning victims at beaches as a public health surveillance modality. These preliminary studies shine light on the possibility that UAVs may help to increase access to healthcare for patients who may be otherwise restricted from proper care due to cost, distance, or infrastructure. As with any emerging technology and due to the highly regulated healthcare environment, the safety and effectiveness of this technology need to be thoroughly discussed. Despite the many questions that need to be answered, the application of drones in medicine appears to be promising and can both increase the quality and accessibility of healthcare.

  1. DAST Mated to B-52 on Ramp - Close-up

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Technicians mount a BQM-43 Firebee II drone on the wing pylon of NASA's B-52B launch aircraft. The drone was test flown as part of the Drones for Aerodynamic and Structural Testing (DAST) program. Research flights of drones with modified wings for the DAST program were conducted from 1977 to 1983. After the initial flights of Firebee II 72-1564, it was fitted with the Instrumented Standard Wing (also called the 'Blue Streak' wing). The first free flight attempt on March 7, 1979, was aborted before launch due to mechanical problems with the HH-53 recovery helicopter. The next attempt, on March 9, 1979, was successful. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but

  2. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  3. Estimating distribution of hidden objects with drones: from tennis balls to manatees.

    PubMed

    Martin, Julien; Edwards, Holly H; Burgess, Matthew A; Percival, H Franklin; Fagan, Daniel E; Gardner, Beth E; Ortega-Ortiz, Joel G; Ifju, Peter G; Evers, Brandon S; Rambo, Thomas J

    2012-01-01

    Unmanned aerial vehicles (UAV), or drones, have been used widely in military applications, but more recently civilian applications have emerged (e.g., wildlife population monitoring, traffic monitoring, law enforcement, oil and gas pipeline threat detection). UAV can have several advantages over manned aircraft for wildlife surveys, including reduced ecological footprint, increased safety, and the ability to collect high-resolution geo-referenced imagery that can document the presence of species without the use of a human observer. We illustrate how geo-referenced data collected with UAV technology in combination with recently developed statistical models can improve our ability to estimate the distribution of organisms. To demonstrate the efficacy of this methodology, we conducted an experiment in which tennis balls were used as surrogates of organisms to be surveyed. We used a UAV to collect images of an experimental field with a known number of tennis balls, each of which had a certain probability of being hidden. We then applied spatially explicit occupancy models to estimate the number of balls and created precise distribution maps. We conducted three consecutive surveys over the experimental field and estimated the total number of balls to be 328 (95%CI: 312, 348). The true number was 329 balls, but simple counts based on the UAV pictures would have led to a total maximum count of 284. The distribution of the balls in the field followed a simulated environmental gradient. We also were able to accurately estimate the relationship between the gradient and the distribution of balls. Our experiment demonstrates how this technology can be used to create precise distribution maps in which discrete regions of the study area are assigned a probability of presence of an object. Finally, we discuss the applicability and relevance of this experimental study to the case study of Florida manatee distribution at power plants.

  4. Estimating Distribution of Hidden Objects with Drones: From Tennis Balls to Manatees

    PubMed Central

    Martin, Julien; Edwards, Holly H.; Burgess, Matthew A.; Percival, H. Franklin; Fagan, Daniel E.; Gardner, Beth E.; Ortega-Ortiz, Joel G.; Ifju, Peter G.; Evers, Brandon S.; Rambo, Thomas J.

    2012-01-01

    Unmanned aerial vehicles (UAV), or drones, have been used widely in military applications, but more recently civilian applications have emerged (e.g., wildlife population monitoring, traffic monitoring, law enforcement, oil and gas pipeline threat detection). UAV can have several advantages over manned aircraft for wildlife surveys, including reduced ecological footprint, increased safety, and the ability to collect high-resolution geo-referenced imagery that can document the presence of species without the use of a human observer. We illustrate how geo-referenced data collected with UAV technology in combination with recently developed statistical models can improve our ability to estimate the distribution of organisms. To demonstrate the efficacy of this methodology, we conducted an experiment in which tennis balls were used as surrogates of organisms to be surveyed. We used a UAV to collect images of an experimental field with a known number of tennis balls, each of which had a certain probability of being hidden. We then applied spatially explicit occupancy models to estimate the number of balls and created precise distribution maps. We conducted three consecutive surveys over the experimental field and estimated the total number of balls to be 328 (95%CI: 312, 348). The true number was 329 balls, but simple counts based on the UAV pictures would have led to a total maximum count of 284. The distribution of the balls in the field followed a simulated environmental gradient. We also were able to accurately estimate the relationship between the gradient and the distribution of balls. Our experiment demonstrates how this technology can be used to create precise distribution maps in which discrete regions of the study area are assigned a probability of presence of an object. Finally, we discuss the applicability and relevance of this experimental study to the case study of Florida manatee distribution at power plants. PMID:22761712

  5. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.

  6. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    PubMed

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  8. Virological Sampling of Inaccessible Wildlife with Drones.

    PubMed

    Geoghegan, Jemma L; Pirotta, Vanessa; Harvey, Erin; Smith, Alastair; Buchmann, Jan P; Ostrowski, Martin; Eden, John-Sebastian; Harcourt, Robert; Holmes, Edward C

    2018-06-02

    There is growing interest in characterizing the viromes of diverse mammalian species, particularly in the context of disease emergence. However, little is known about virome diversity in aquatic mammals, in part due to difficulties in sampling. We characterized the virome of the exhaled breath (or blow) of the Eastern Australian humpback whale ( Megaptera novaeangliae ). To achieve an unbiased survey of virome diversity, a meta-transcriptomic analysis was performed on 19 pooled whale blow samples collected via a purpose-built Unmanned Aerial Vehicle (UAV, or drone) approximately 3 km off the coast of Sydney, Australia during the 2017 winter annual northward migration from Antarctica to northern Australia. To our knowledge, this is the first time that UAVs have been used to sample viruses. Despite the relatively small number of animals surveyed in this initial study, we identified six novel virus species from five viral families. This work demonstrates the potential of UAVs in studies of virus disease, diversity, and evolution.

  9. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  10. Project CHECO Southeast Asia Report. USAF Tactics Against Air & Ground Defenses in SEA, November 1968 - May 1970

    DTIC Science & Technology

    1970-09-25

    EB-66 Orbits for Drone Flight .......................... 50 16. ( EB-66 Orbits in Support of B-52 Mission ................ 50I 3 ix I~WI ’CNON.11...outmaneuver it. During the period of this report, while SAMs were fired at several USAF aircraft and shot down several drones , the USAF lost no manned...Oblique camaras had beendesigned to allow photography from a safe distance, but the heavy tree cover in Laos usually required vertical photography for

  11. Demystifying RPA Operations Post OEF: Now is the Time for the USAF ISR Team to Enhance Multilateral Partnership Across COCOMs and Reverse the Tide of Public Opinion Toward Intelligence Gathering and Kinetic RPA Strikes

    DTIC Science & Technology

    2013-04-03

    Drone Practices in Pakistan (September, 2012), http://livingunderdrones.org. V. 10 Ibid., 136 -137. 11 Ibid. 12 Baldor, Lolita C., “Military...http://cnn.com. 3. 31 Baldor, Lolita C., “Military Weighs Cutbacks, Shifts in Drone Programs,” adn.com, 02 Feb 2013, www.adn.com...Piloted ISR Aircraft.” Air and Space Power Journal, (Spring 2011): 45. 35 Ibid., 46. 36 Baldor, Lolita C., “Military Weighs Cutbacks, Shifts in

  12. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds

    NASA Astrophysics Data System (ADS)

    Ventura, Daniele; Bruno, Michele; Jona Lasinio, Giovanna; Belluscio, Andrea; Ardizzone, Giandomenico

    2016-03-01

    Acquiring seabed, landform or other topographic data in the field of marine ecology has a pivotal role in defining and mapping key marine habitats. However, accessibility for this kind of data with a high level of detail for very shallow and inaccessible marine habitats has been often challenging, time consuming. Spatial and temporal coverage often has to be compromised to make more cost effective the monitoring routine. Nowadays, emerging technologies, can overcome many of these constraints. Here we describe a recent development in remote sensing based on a small unmanned drone (UAVs) that produce very fine scale maps of fish nursery areas. This technology is simple to use, inexpensive, and timely in producing aerial photographs of marine areas. Both technical details regarding aerial photos acquisition (drone and camera settings) and post processing workflow (3D model generation with Structure From Motion algorithm and photo-stitching) are given. Finally by applying modern algorithm of semi-automatic image analysis and classification (Maximum Likelihood, ECHO and Object-based Image Analysis) we compared the results of three thematic maps of nursery area for juvenile sparid fishes, highlighting the potential of this method in mapping and monitoring coastal marine habitats.

  13. Fast and safe gas detection from underground coal fire by drone fly over.

    PubMed

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  15. Gastrointestinal symptoms resembling ulcerative proctitis caused by larvae of the drone fly Eristalis tenax.

    PubMed

    Desoubeaux, Guillaume; Gaillard, Julien; Borée-Moreau, Diane; Bailly, Éric; Andres, Christian R; Chandenier, Jacques

    2014-04-01

    We report a case of facultative intestinal myiasis due to larvae of the drone fly Eristalis tenax, also named the rat-tailed maggots. The development of larvae in the lower bowel was responsible for non-specific gastrointestinal symptoms that resembled ulcerative proctitis. The diagnosis was established upon the observation of four spontaneously excreted mobile larvae. The definite identification of the E. tenax species was made possible by scanning electron microscopy. The clinical outcome was satisfactory.

  16. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.

  17. Propulsion options for the HI SPOT long endurance drone airship. Final report, November 1978-August 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, W.L.; Hookway, R.O.

    1979-09-15

    Airbreathing, monofueled, stored-energy, and solar-rechargeable propulsion systems have been studied for the HI SPOT Long Endurance Drone Airship, providing constant-level electrical power as well as variable aerodynamic thrust to maintain position in winds varying from 15 to 100 knots at high altitude. A hydrogen fueled airbreathing engine is optimum for mission lengths up to 30 days or more.

  18. Real-time flutter analysis of an active flutter-suppression system on a remotely piloted research aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Edwards, J. W.

    1983-01-01

    Flight flutter-test results of the first aeroelastic research wing (ARW-1) of NASA's drones for aerodynamic and structural testing program are presented. The flight-test operation and the implementation of the active flutter-suppression system are described as well as the software techniques used to obtain real-time damping estimates and the actual flutter testing procedure. Real-time analysis of fast-frequency aileron excitation sweeps provided reliable damping estimates. The open-loop flutter boundary was well defined at two altitudes; a maximum Mach number of 0.91 was obtained. Both open-loop and closed-loop data were of exceptionally high quality. Although the flutter-suppression system provided augmented damping at speeds below the flutter boundary, an error in the implementation of the system resulted in the system being less stable than predicted. The vehicle encountered system-on flutter shortly after crossing the open-loop flutter boundary on the third flight and was lost. The aircraft was rebuilt. Changes made in real-time test techniques are included.

  19. The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honey bee (Apis mellifera) drones.

    PubMed

    Conlon, Benjamin H; Frey, Eva; Rosenkranz, Peter; Locke, Barbara; Moritz, Robin F A; Routtu, Jarkko

    2018-06-01

    The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  20. Environmental Assessment: Replacement of Subscale Drone Recovery Boat Dock at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2009-12-01

    Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person ...90 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98...Prescribed by ANSI Std Z39-18 Final Finding of No Significant Impact for Construction and Operation of an Alternate Drone Launch System at Tyndall

  1. Gastrointestinal symptoms resembling ulcerative proctitis caused by larvae of the drone fly Eristalis tenax

    PubMed Central

    Desoubeaux, Guillaume; Gaillard, Julien; Borée-Moreau, Diane; Bailly, Éric; Andres, Christian R; Chandenier, Jacques

    2014-01-01

    We report a case of facultative intestinal myiasis due to larvae of the drone fly Eristalis tenax, also named the rat-tailed maggots. The development of larvae in the lower bowel was responsible for non-specific gastrointestinal symptoms that resembled ulcerative proctitis. The diagnosis was established upon the observation of four spontaneously excreted mobile larvae. The definite identification of the E. tenax species was made possible by scanning electron microscopy. The clinical outcome was satisfactory. PMID:24766340

  2. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6, blast measurements. Part 3. Pressure near ground level. Section 4. Blast asymmetry from aerial photographs. Section 5. Ball-crusher-gauge measurements of peak pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switchesmore » by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.« less

  3. ED16-0042-06

    NASA Image and Video Library

    2016-02-08

    Vigilant Aerospace Systems CEO Kraettli Epperson, left, and NASA Armstrong Flight Research Center Director David McBride, sign the agreement for the company to commercialize a large drone communication system for the Federal Aviation Administration's aircraft tracking system called the Automatic Dependent Surveillance Broadcast. This communication system, which is to be mandated by the FAA for most aircraft in 2020, brings large, unmanned aircraft a step closer to flying in the National Airspace System.

  4. U.S. Unmanned Aerial Systems

    DTIC Science & Technology

    2012-01-03

    that time, they have been called drones, robot planes, pilotless aircraft, RPVs (remotely piloted vehicles), RPAs (remotely piloted aircraft) and...Paul Jackson, p. 728. OSD. UAS Roadmap 2005-2030. August, 2005, Section 2, p.10. 82 National Journal’s Congress Daily. “ Pilotless Aircraft Makers Seek...Eye Proposed by the Boeing Phantom Works, Phantom Eye would use hydrogen-fueled automobile engines to carry a 3,000-pound payload for ten days.195 A

  5. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  6. Raw drone milk of honeybees elicits uterotrophic effect in rats: evidence for estrogenic activity.

    PubMed

    Seres, Adrienn B; Ducza, Eszter; Báthori, Mária; Hunyadi, Attila; Béni, Zoltán; Dékány, Miklós; Gáspár, Róbert

    2013-05-01

    Numerous honeybee products are used in medicine, but the literature furnishes no information concerning the effects of the drone milk (DM), although drone brood, which is similar to DM, was reported to elicit a hormone-like strengthening effect. In certain countries, DM is traditionally used to treat infertility and to promote vitality in both men and women. The aim of this study was to determine the putative estrogen hormone-like effect of raw DM in rats and to identify the effective compounds. Uterotrophic assays revealed that DM increased the relative weight of the immature rat uterus. This effect was confirmed by reverse transcription polymerase chain-reaction and Western blot methods, in which the mRNA and protein expression of the estrogen-dependent peptide complement component C3 was determined. Column chromatography and uterotrophic assays were used to fractionate and check bioactivity, respectively. The active compound after the last fractionation was identified by the nuclear magnetic resonance and mass spectrometry techniques as E-dec-2-enedioic acid, which is very similar to the fatty acids with estrogenic activity that were previously isolated from royal jelly. These results lead us to suppose that E-dec-2-enedioic acid is responsible for the estrogen-like effect of DM. This appears to be the first report on the pharmacological effects of DM and E-dec-2-enedioic acid in mammals.

  7. New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen.

    PubMed

    Wegener, Jakob; May, Tanja; Kamp, Günter; Bienefeld, Kaspar

    2014-02-01

    Centrifugation of Apis mellifera L. drone semen is a necessary step in the homogenization of semen pools for the enlargement of the effective breeding population, as well as in the collection of semen by the so-called washing technique. It is also of interest for the removal of cryoprotectants after cryopreservation. The adoption of methods involving semen centrifugation has been hampered by their damaging effect to sperm. Here, we tested four new diluents as well as three additives (catalase, hen egg yolk, and a protease inhibitor), using sperm motility and dual fluorescent staining as indicators of semen quality. Three of the new diluents significantly reduced motility losses after centrifugation, as compared with the literature standard. Values of motility and propidium iodide negativity obtained with two of these diluents were not different from those measured with untreated semen. The least damaging diluent, a citrate-HEPES buffer containing trehalose, was then tested in an insemination experiment with centrifuged semen. Most queens receiving this semen produced normal brood, and the number of sperm reaching the storage organ of the queen was not significantly different from that in queens receiving untreated semen. These results could improve the acceptance of techniques involving the centrifugation of drone semen. The diluent used in the insemination experiment could also serve as semen extender for applications not involving centrifugation.

  8. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Precision Hawk pilot launches UAS Lancaster Mark 3, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.

  9. DAST Mated to B-52 in Flight - Close-up from Below

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  10. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.

    PubMed

    Hassanalian, M; Abdelmoula, H; Ben Ayed, S; Abdelkefi, A

    2017-05-01

    The thermal impact of the birds' color on their flight performance are investigated. In most of the large migrating birds, the top of their wings is black. Considering this natural phenomenon in the migrating birds, such as albatross, a thermal analysis of the boundary layer of their wings is performed during the year depending on the solar insulation. It is shown that the temperature difference between the bright and dark colored top wing surface is around 10°C. The dark color on the top of the wing increases the temperature of the boundary layer over the wing which consequently reduces the skin drag force over the wing. This reduction in the drag force can be considered as one of the effective factors for long endurance of these migrating birds. This research should lead to improved designs of the drones by applying the inspired colors which can help drones increase their endurance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Armed Drones and Targeted Killing: Policy Implications for Their Use in Deterring Violent Extremism

    DTIC Science & Technology

    2017-04-17

    launched some 200 pilotless balloons mounted with bombs against the city of Venice.”6 It was not until World War I, with the advent of radio...into World War II, weapons manufacturers began fitting them with bombs and explosives to give them a strike capability. Bombers, like the B-17...would release these “flying bombs ”, which were more akin to guided missiles, near a target area, and then a pilot would remotely guide the drone to its

  12. Department of Transportation

    MedlinePlus

    ... The Briefing Room Connect With Us FEATURED RESOURCES Aviation Consumer Protection Motor Carriers - Get a DOT Number ... of Drug & Alcohol Policy & Compliance Register your Unmanned Aircraft or Drone DOT Careers Disadvantaged Business Enterprise (DBE) ...

  13. Varroa destructor induces changes in the expression of immunity-related genes during the development of Apis mellifera worker and drone broods.

    PubMed

    Zaobidna, Ewa A; Żółtowska, Krystyna; Łopieńska-Biernat, Elżbieta

    2017-12-20

    The ectoparasitic mite Varroa destructor has emerged as the major pest of honeybees. Despite extensive research efforts, the pathogenesis of varroosis has not been fully explained. Earlier studies suggested that V. destructor infestation leads to the suppression of the host's immune system. The aim of this study was to analyze the immune responses of 14 genes in the Toll signal transduction pathways, including effector genes of antimicrobial peptides (AMPs), in developing Apis mellifera workers and drones infested with V. destructor. Four developmental stages (L5 larvae, prepupae, and 2 pupal stages) and newly emerged imagines were analyzed. In workers, the most significant changes were observed in L5 larvae in the initial stages of infestation. A significant increase in the relative expression of 10 of the 14 analyzed genes, including defensin-1 and defensin-2, was observed in infested bees relative to non-infested individuals. The immune response in drones developed at a slower rate. The expression of genes regulating cytoplasmic signal transduction increased in prepupae, whereas the expression of defensin-1 and defensin-2 effector genes increased in P3 pupae with red eyes. The expression of many immunity-related genes was silenced in successive life stages and in imagines, and it was more profound in workers than in drones. The results indicate that V. destructor significantly influences immune responses regulated by the Toll signal transduction pathway in bees. In infested bees, the observed changes in Toll pathway genes varied between life stages and the sexes.

  14. Remotely Piloted Aircraft Systems (RPAS) for high resolution topography and monitoring: civil protection purposes on hydrogeological contexts

    NASA Astrophysics Data System (ADS)

    Bertacchini, Eleonora; Castagnetti, Cristina; Corsini, Alessandro; De Cono, Stefano

    2014-10-01

    The proposed work concerns the analysis of Remotely Piloted Aircraft Systems (RPAS), also known as drones, UAV (Unmanned Aerial Vehicle) or UAS (Unmanned Aerial System), on hydrogeological contexts for civil protection purposes, underlying the advantages of using a flexible and relatively low cost system. The capabilities of photogrammetric RPAS multi-sensors platform were examined in term of mapping, creation of orthophotos, 3D models generation, data integration into a 3D GIS (Geographic Information System) and validation through independent techniques such as GNSS (Global Navigation Satellite System). The RPAS used (multirotor OktoXL, of the Mikrokopter) was equipped with a GPS (Global Positioning System) receiver, digital cameras for photos and videos, an inertial navigation system, a radio device for communication and telemetry, etc. This innovative way of viewing and understanding the environment showed huge potentialities for the study of the territory, and due to its characteristics could be well integrated with aircraft surveys. However, such characteristics seem to give priority to local applications for rigorous and accurate analysis, while it remains a means of expeditious investigation for more extended areas. According to civil protection purposes, the experimentation was carried out by simulating operational protocols, for example for inspection, surveillance, monitoring, land mapping, georeferencing methods (with or without Ground Control Points - GCP) based on high resolution topography (2D and 3D information).

  15. Merging science, engineering, and data with FUN: Recreational Drones in STEaM Education Activities and Science Fair Projects

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Mooney, M. E.; Dahlman, L. E.

    2016-12-01

    Recreational drones, also known as unmanned aerial vehicles (UAVs), provide an ideal platform for engaging students in science, technology, engineering, and math (STEM) investigations for science fair projects, after-school clubs, and in-class activities. UAVs are very popular (estimate of >1 million received as gifts this past year), relatively inexpensive (<$100), weigh less than 250g (don't require FAA registration), are modifiable, and can carry small instrument packages. Seeing the world from above can stimulate curiosity and give students a reason to engage in the Next Generation Science Standards (NGSS) process of science and engineering practices by designing and carrying out their own investigations. Using drones to facilitate experiments, students also participate in engineering design: they may choose off-the-shelf sensors or build DIY sensors to carry on their UAVs. Leveraging the learning potential of UAVs, the Federation of Earth Science Information Partners (ESIP) Education Committee has been developing an e-book of learning activities and investigation suggestions for secondary education students. The freely available download incorporates UAV civility and safety through a pre-flight checklist and flying guidelines, suggests science and flight team roles, and advocates robust data and metadata-collection practices. The ESIP team also worked with an engineer to build a 33-gram prototype environmental logger called SABEL (Shelley (Olds) and Bob's Environmental Logger). SABEL collects temperature, humidity, and GPS position assembled on an Arduino board. This presentation will elaborate upon the year-long process of working with educators via webinars and a 1-day workshop at the 2016 ESIP summer meeting and beyond. It will also provide examples of student-led investigations, instructions for building the SABEL sensor package, insights gleaned from workshop feedback - and - the status of the new e-book compilation of student-focused activities using

  16. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  17. Early sinkhole detection using a drone-based thermal camera and image processing

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ju; Shin, Sang Young; Ko, Byoung Chul; Chang, Chunho

    2016-09-01

    Accurate advance detection of the sinkholes that are occurring more frequently now is an important way of preventing human fatalities and property damage. Unlike naturally occurring sinkholes, human-induced ones in urban areas are typically due to groundwater disturbances and leaks of water and sewage caused by large-scale construction. Although many sinkhole detection methods have been developed, it is still difficult to predict sinkholes that occur in depth areas. In addition, conventional methods are inappropriate for scanning a large area because of their high cost. Therefore, this paper uses a drone combined with a thermal far-infrared (FIR) camera to detect potential sinkholes over a large area based on computer vision and pattern classification techniques. To make a standard dataset, we dug eight holes of depths 0.5-2 m in increments of 0.5 m and with a maximum width of 1 m. We filmed these using the drone-based FIR camera at a height of 50 m. We first detect candidate regions by analysing cold spots in the thermal images based on the fact that a sinkhole typically has a lower thermal energy than its background. Then, these regions are classified into sinkhole and non-sinkhole classes using a pattern classifier. In this study, we ensemble the classification results based on a light convolutional neural network (CNN) and those based on a Boosted Random Forest (BRF) with handcrafted features. We apply the proposed ensemble method successfully to sinkhole data for various sizes and depths in different environments, and prove that the CNN ensemble and the BRF one with handcrafted features are better at detecting sinkholes than other classifiers or standalone CNN.

  18. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly.

    PubMed

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-06-03

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.

  19. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly

    PubMed Central

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-01-01

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426

  20. Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor

    NASA Astrophysics Data System (ADS)

    Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso

    2018-04-01

    Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.

  1. Future Jet Technologies, Part C

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2013-06-01

    This updated, PART C REVIEW, covers the dangerous global spread of JS-stealth, drone technology [1-91], canard-free, stealth, new agile drones and the highly debated, 480 billion F-35 International Program as reported on March 13, 2013 to the U.S. Congress [92]. Due to serious design issues, spiraling high costs and years in delays, alternatives are analyzed here, depicted and proposed, mainly from the propulsion-design point of view. These include fleets of low-cost, stealth, jet-steered-drones mixed with non-stealthy, low-cost, ready-to-be-delivered, U.S. or European or Russian fighter aircraft. Can a few F-35s win against large fleets of stealth agile drones? To understand the dangers and critical issues involved, the author's own, past classified information is partly disclosed, while resorting to images in Figs. 2(a) and 2(b) taken from his book [2] and from Wikipedia, the "Free Encyclopedia", in all other images.

  2. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2017-05-01

    Recent progress in the development of unmanned aerial vehicles (UAVs) has led to more and more situations in which drones like quadrocopters or octocopters pose a potential serious thread or could be used as a powerful tool for illegal activities. Therefore, counter-UAV systems are required in a lot of applications to detect approaching drones as early as possible. In this paper, an efficient and robust algorithm is presented for UAV detection using static VIS and SWIR cameras. Whereas VIS cameras with a high resolution enable to detect UAVs in the daytime in further distances, surveillance at night can be performed with a SWIR camera. First, a background estimation and structural adaptive change detection process detects movements and other changes in the observed scene. Afterwards, the local density of changes is computed used for background density learning and to build up the foreground model which are compared in order to finally get the UAV alarm result. The density model is used to filter out noise effects, on the one hand. On the other hand, moving scene parts like moving leaves in the wind or driving cars on a street can easily be learned in order to mask such areas out and suppress false alarms there. This scene learning is done automatically simply by processing without UAVs in order to capture the normal situation. The given results document the performance of the presented approach in VIS and SWIR in different situations.

  3. 33 CFR 334.660 - Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...

  4. 33 CFR 334.660 - Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...

  5. 33 CFR 334.660 - Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...

  6. 33 CFR 334.660 - Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...

  7. 33 CFR 334.660 - Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...

  8. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    PubMed

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  9. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  10. DAST in Flight Showing Diverging Wingtip Oscillations

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than

  11. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  12. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  13. Breeding system and bumblebee drone pollination of an explosively pollen-releasing plant, Meliosma tenuis (Sabiaceae).

    PubMed

    Wong Sato, A A; Kato, M

    2018-05-01

    Explosive pollen release is a mechanism used by some angiosperms that serves to attach pollen to a pollinator's body. It is usually adopted by species with zygomorphic tubular flowers and pollinated by birds and bees. The tree genus Meliosma (Sabiaceae, Proteales) has unique disc-like flowers that are externally actinomorphic, but internally zygomorphic, and release pollen explosively. To elucidate the adaptive significance of explosive pollen release, we observed flowering behaviour, the breeding system and pollinator visits to flowers of the Japanese species Meliosma tenuis in a temperate forest. Flowers bloomed in June and were nectariferous and protandrous. Explosive pollen release was triggered by slight tactile stimuli to anther filaments or staminodes in male-stage flowers. Because pollen cannot come into contact with the pistils enclosed by staminodes, M. tenuis is functionally protandrous. Artificial pollination treatments revealed that M. tenuis is allogamous. The dominant flower visitors were nectar-seeking drones of the bumblebee species Bombus ardens (Apidae). The drones' behaviour, pollen attachment on their bodies and fruit set of visit-restricted flowers suggest that they are the only agent triggering the explosive pollen release mechanism, and are the main pollinator of M. tenuis. The finding that bumblebee workers rarely visit these flowers suggests that the explosive pollen release has another function, namely to discourage pollen-harvesting bumblebee workers. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  14. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    PubMed Central

    Lichtenstein, Leonie; Sommerlandt, Frank M. J.; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation. PMID:26230643

  15. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning.

    PubMed

    Lichtenstein, Leonie; Sommerlandt, Frank M J; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.

  16. LC/MS/MS analysis of α-tocopherol and coenzyme Q10 content in lyophilized royal jelly, beebread and drone homogenate.

    PubMed

    Hryniewicka, Marta; Karpinska, Agnieszka; Kijewska, Marta; Turkowicz, Monika Joanna; Karpinska, Joanna

    2016-11-01

    This study shows the results of application liquid chromatography-tandem mass spectrometry (LC/MS/MS) for assay of the content of α-tocopherol and coenzyme Q 10 in bee products of animal origin, i.e. royal jelly, beebread and drone homogenate. The biological matrix was removed using extraction with n-hexane. It was found that drone homogenate is a rich source of coenzyme Q 10 . It contains only 8 ± 1 µg/g of α-tocopherol and 20 ± 2 µg/g of coenzyme Q 10 . The contents of assayed compounds in royal jelly were 16 ± 3 and 8 ± 0.2 µg/g of α-tocopherol and coenzyme Q 10 , respectively. Beebread appeared to be the richest of α-tocopherol. Its level was 80 ± 30 µg/g, while the level of coenzyme Q 10 was only 11.5 ± 0.3 µg/g. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Experiment Configurations for the DAST

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic

  18. DAST Being Calibrated for Flight in Hangar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  19. Advanced aerodynamics and active controls. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.

  20. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  1. Roadrunner: a novel radar guidance concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelsey, J.R.

    1979-01-01

    Soviet breakthrough tactics require the movement of a large number of vehicles from assembly areas to the forward edge of the battle area. The time requirements of this tactic indicate that the road network must be used extensively, if not exclusively. This paper describes an exploratory development (technology demonstration) program aimed at demonstrating a novel radar navigation/guidance scheme which enables a small unmanned aircraft (drone) to follow roads. Since vehicles on the road can be easily detected, this aircraft could be used as either a strike vehicle itself or as a reconnaissance adjunct to another strike system. The guidance schememore » involves on-board radar measurements of the backscatter response of the terrain beneath the aircraft. The differences in reflectivity between road and roadside surfaces are processed by a small on-board computer to generate guidance commands to keep the vehicle over the road. Preliminary system definition includes a 17-GHz radar aboard a subsonic, propeller-driven unmanned aircraft. Estimated operational altitude and speed are 30 m and 100 km/h, respectively. The drone could be either ground or air launched, and would be expendable. Payload capabilities of 50 to 100 kg are envisioned, with an operational range of 50 to 100 km. 5 figures, 1 table.« less

  2. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  3. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    NASA Astrophysics Data System (ADS)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  4. Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Based Diagnostics for Mobile Health Care

    PubMed Central

    2016-01-01

    We introduce a portable biochemical analysis platform for rapid field deployment of nucleic acid-based diagnostics using consumer-class quadcopter drones. This approach exploits the ability to isothermally perform the polymerase chain reaction (PCR) with a single heater, enabling the system to be operated using standard 5 V USB sources that power mobile devices (via battery, solar, or hand crank action). Time-resolved fluorescence detection and quantification is achieved using a smartphone camera and integrated image analysis app. Standard sample preparation is enabled by leveraging the drone’s motors as centrifuges via 3D printed snap-on attachments. These advancements make it possible to build a complete DNA/RNA analysis system at a cost of ∼$50 ($US). Our instrument is rugged and versatile, enabling pinpoint deployment of sophisticated diagnostics to distributed field sites. This capability is demonstrated by successful in-flight replication of Staphylococcus aureus and λ-phage DNA targets in under 20 min. The ability to perform rapid in-flight assays with smartphone connectivity eliminates delays between sample collection and analysis so that test results can be delivered in minutes, suggesting new possibilities for drone-based systems to function in broader and more sophisticated roles beyond cargo transport and imaging. PMID:26898247

  5. DAST in Flight just after Structural Failure of Right Wing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  6. J85 Rejuvenation Through Technology Insertion

    DTIC Science & Technology

    2000-10-01

    and Sabre 75 business addition to military production, the J85 was jets . Number Model Produced Aircraft Type(s) Engine Type Thrust (lbs) J85-GE-4 740...REJUVENATION THROUGH TECHNOLOGY INSERTION T.A. Brisken, P.N. Howell, A.C. Ewing Military Engines Operation GE Aircraft Engines 1 Neumann Way Cincinnati...OH 45215, USA Summary thrust to weight ratio turbojet engines with potential application to early cruise missiles and drones. The history of the

  7. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  8. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  9. The Megabyte Will Always Get Through

    DTIC Science & Technology

    2012-05-17

    Curry , the commander of the Army Air Forces Tactical School, wanted the school at Maxwell Field to be a “clearing house where tactical ideas can flow...intelligence, spy satellites, drone aircraft, and manned bombers, could identify the target. This cyber attack once more demonstrated “the

  10. Exploiting Discrete Structure for Learning On-Line in Distributed Robot Systems

    DTIC Science & Technology

    2009-10-21

    accelerating rate over the next 20 years. Service robotics currently shares some important characteristics with the automobile industry in the early...Authorization Act for Fiscal Year 2001, S. 2549, Sec. 217). The same impact is expected for pilotless air and water vehicles, where drone aircraft for

  11. The drone ambulance [A-UAS]: golden bullet or just a blank?

    PubMed

    Van de Voorde, P; Gautama, S; Momont, A; Ionescu, C M; De Paepe, P; Fraeyman, N

    2017-07-01

    Defibrillation within the first minutes after sudden cardiac arrest can save many quality-adjusted life years. Yet, despite enormous investments, 'healthcare' is still unable to provide this for the majority of patients. Emergency Medical Services often have a too long mean response time and many issues surround Public Access Defibrillation programs. In this article we argument that AED-equipped drones could be the 'magic bullet'. They are easily deployed and fast, and have a relatively low operational cost. As such they could rapidly bring an AED next to the victim, irrespective of most geographical circumstances, give visual feedback and situational awareness to the EMS dispatcher and thus assist a bystander to provide better CPR. Although there are many real-life barriers to actual deployment, we argument these might all get solved once we have solved the described technological issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Estimation et validation des derivees de stabilite et controle du modele dynamique non-lineaire d'un drone a voilure fixe

    NASA Astrophysics Data System (ADS)

    Courchesne, Samuel

    Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a

  13. Research Pilot Milt Thompson in M2-F2 Aircraft Attached to B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  14. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  15. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    NASA Technical Reports Server (NTRS)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  16. Israel: Background and U.S. Relations in Brief

    DTIC Science & Technology

    2015-12-30

    Hezbollah drones, anti-aircraft missiles destroyed in alleged IAF attack, says Syrian opposition,” jpost.com, December 8, 2014. 16 Barbara Opall ...border,” Times of Israel, December 30, 2015. 23 Barbara Opall -Rome, “Israel Invests Billions in Border Barricades,” Defense News, September 7, 2015. 24

  17. The Impact of Unmanned Aerial Systems on Joint Operational Art

    DTIC Science & Technology

    2012-05-17

    Reconnaissance Drones (Fallbrook, CA: Aero Publishers, 1982), 53, 56-57. 13 Jack Raymond, "Pilotless Planers -Are They Effective Spies?" New York Times, 22...Press, 2001. Peebles, Curtis. Dark Eagles: A History ofTop Secret US Aircraft Programs. Novato, CA: Presidio, 1995. Raymond, Jack. "Pilotless Planers

  18. World commercial aircraft accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  19. Drones at the service for training on mass casualty incident

    PubMed Central

    Fernandez-Pacheco, Antonio Nieto; Rodriguez, Laura Juguera; Price, Mariana Ferrandini; Perez, Ana Belen Garcia; Alonso, Nuria Perez; Rios, Manuel Pardo

    2017-01-01

    Abstract Mass casualty incidents (MCI) are characterized by a large number of victims with respect to the resources available. In this study, we aimed to analyze the changes produced in the self-perception of students who were able to visualize aerial views of a simulation of a MCI. A simulation study, mixed method, was performed to compare the results from an ad hoc questionnaire. The 35 students from the Emergency Nursing Master from the UCAM completed a questionnaire before and after watching an MCI video with 40 victims in which they had participated. The main variable measured was the change in self-perception (CSP). The CSP occurred in 80% (28/35) of the students (P = .001). Students improved their individual (P = .001) and group (P = .006) scores. They also described that their personal performance had better results than the group performance (P = .047). The main conclusion of this study is that drones could lead to CSP and appraisal of the MCI simulation participants. PMID:28658106

  20. Drones for aerodynamic and structural testing /DAST/ - A status report

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.; Eckstrom, C. V.

    1978-01-01

    A program for providing research data on aerodynamic loads and active control systems on wings with supercritical airfoils in the transonic speed range is described. Analytical development, wind tunnel tests, and flight tests are included. A Firebee II target drone vehicle has been modified for use as a flight test facility. The program currently includes flight experiments on two aeroelastic research wings. The primary purpose of the first flight experiment is to demonstrate an active control system for flutter suppression on a transport-type wing. Design and fabrication of the wing are complete and after installing research instrumentation and the flutter suppression system, flight testing is expected to begin in early 1979. The experiment on the second research wing - a fuel-conservative transport type - is to demonstrate multiple active control systems including flutter suppression, maneuver load alleviation, gust load alleviation, and reduce static stability. Of special importance for this second experiment is the development and validation of integrated design methods which include the benefits of active controls in the structural design.

  1. Geomorphological mapping using drones into the eruptive summit of Turrialba volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Ruiz, P.; Mora, M.; Soto, G. J.; Vega, P.; Barrantes, R.

    2017-12-01

    We produced and compared two detailed topographic datasets of the SW active crater on the summit of Turrialba volcano (03/2016 and 06/2017). These datasets are based on hundreds of orthophotos obtained by low-height flights by drones (Phantom-3, and Inspire-1) to collect the aerial data, and ground control points from RTK-GPS surveys (for ground survey and control points, we used reflective marks and local stations). Photogrammetry software and GIS were used to processes the data for creating DEMs. Using these data, we have been able to document the geomorphological changes generated by eruptions. We have learned the processes involved in the crater evolution during an eruption period passing from a close-system to an open one. Turrialba has been erupting since 2010, when a phreatic explosion opened a small vent on the SW crater. Further minor phreatic eruptions occurred in 2011-2013 with a slow increase of juvenile content in its products, until it clearly evolved to phreatomagmatism in 2014 and an open-system in mid-2016. We recorded significant changes in the morphology of the active crater in the latest period of eruption. These changes are the result of stronger eruptions between 04/2016 and 01/2017, finally clearing the main conduit that opened the system and favored the rise of magma up to the surface. Lava now lies on the bottom of the crater, forming a small lava pool (25m x 15m). We found that in the 15-month period during the opening of the volcanic system, the active crater got 100 m deeper and wider at the bottom (in 06/2017, depth was 230 m, and the empty volume of the crater 2.5x106m3. These observations are consistent with the seismic records through the opening of the system and the eruption style. Aerial dataset from low-height flights by drones are a powerful tool to understand the evolution of volcanoes from close to open systems and for volcano hazard assessments.

  2. Tropical cyclones-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII): A research plan of typhoon aircraft observations in Japan

    NASA Astrophysics Data System (ADS)

    Tsuboki, Kazuhisa

    2017-04-01

    , aerosol sonde, and a drone to observe typhoon-associated clouds and precipitation. After a test flight in March 2017, typhoon observations will be made for next 4 years; 2017-2020. The main target area of observation is the south of Okinawa where a typhoon reaches the maximum intensity and often changes its moving direction. This research will advance aircraft observation technique of typhoon in Japan. The aircraft observation will be a breakthrough to improve typhoon intensity estimations. Assimilation of the aircraft observation data to the cloud-resolving model will improve intensity estimations and forecasts of typhoons. This is the first step for the future advanced aircraft observation and will contribute to prevention or reduction of typhoon disasters.

  3. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.

  4. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  5. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  6. Development of a drone equipped with optimized sensors for nuclear and radiological risk characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudergui, K.; Carrel, F.; Domenech, T.

    2011-07-01

    The MOBISIC project, funded by the Systematic Paris-Region cluster, is being developed in the context of local crisis (attack bombing in urban environment, in confined space such as an underground train tunnel etc.) or specific event securing (soccer world cup, political meeting etc.). It consists in conceiving, developing and experimenting a mobile, modular ('plug and play') and multi-sensors securing system. In this project, CEA LIST has suggested different solutions for nuclear risks detection and identification. It results in embedding a CZT sensor and a gamma camera in an indoor drone. This article first presents the different modifications carried out onmore » the UAV and different sensors, and focuses then on the experimental performances. (authors)« less

  7. Drone Aircraft Privacy and Transparency Act of 2013

    THOMAS, 113th Congress

    Sen. Markey, Edward J. [D-MA

    2013-11-04

    Senate - 11/04/2013 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry

    PubMed Central

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland. PMID:25955586

  9. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    PubMed

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  10. Drones in Automation - Secured Unmanned Aerial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  11. Drones in Automation - Secured Unmanned Aerial Systems

    DOE PAGES

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.; ...

    2017-05-01

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  12. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  13. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  14. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  15. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  16. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  17. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  18. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  19. Unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  20. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    MAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  1. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  2. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  3. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The new pylon for the X-38 following a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the

  4. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  5. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  6. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  7. Why aircraft disinsection?

    PubMed

    Gratz, N G; Steffen, R; Cocksedge, W

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described.

  8. Aircraft disinsection.

    PubMed

    Rayman, Russell B

    2006-07-01

    Aircraft disinsection has been an international practice since the 1920s, the purpose of which is to protect public health, the environment, agriculture, and livestock by the eradication of disease vectors. Although most nations of the world have discontinued this practice, about 20 continue with this requirement. Aircraft disinsection is sanctioned by international law with the World Health Organization (WHO) publishing general procedural guidelines in the International Health Regulations (IHR). There are currently four acceptable procedures: blocks away, top of descent, on arrival, and residual. A 2% pyrethrum solution, a naturally occurring substance found in the chrysanthemum flower, or several synthetic pyrethroids, are the recommended agents because they are extremely effective insecticides which pose minimal health risks. Although the use of insecticides for aircraft disinsection is controversial, national policies compelling this requirement must be respected. This paper will explore the background of aircraft disinsection, the procedures, the types of agents, and the toxicity. If aircraft disinsection is regulatory policy, it should be done in accordance with WHO procedures. Residual application is probably the most efficacious method. The use of air curtains or plastic strips should be explored as an alternative to the use of chemicals.

  9. Aircraft Survivability: UAVs and Manned Aircraft - Increasing Effectiveness and Survivability, Fall 2002

    DTIC Science & Technology

    2002-01-01

    techniques that interface with the composite structure to attach opaque armor(s) to compos- ite aircraft structure. Over a period of four years...2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Aircraft Survivability: UAVs and Manned Aircraft ...survivability concepts to UAV program offices and airframe manufacturers. 11 Aircraft Fire Protection Techniques—Application to UAVs by Ms. Ginger Bennett

  10. Monitoring of two rapidly changing glacier tongues in the Swiss Alps by new drone data and historical documents

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Samuel U.; Jörg, Philip C.; Gärtner-Roer, Isabelle; Rastner, Philipp; Ruff, Alexander; Steiner, Daniel; Vieli, Andreas; Zumbühl, Heinz J.

    2015-04-01

    Glaciers are considered among the most sensitive indicators of climate change. One of the most visually compelling examples of recent climate change is the retreat of glaciers in mountain regions, and knowledge about the past evolution of glacier fluctuations has been proven to be crucial for studying past decadal to century-scale climate variability. In this presentation, we evaluate the potential of a light fixed-wing UAV (unmanned aerial vehicle; drone) designed for surveying and remote sensing purposes, for monitoring glacier changes. We focus on the frontal zones of two well-known glaciers in the Swiss Alps: Unterer Grindelwaldgletscher in the Bernese Oberland, and Findelengletscher near Zermatt, Valais. We used a professional mapping drone (eBee by senseFly) to cover both frontal areas of the glaciers in the summer/autumn of 2014. We used a Canon IXUS 125HS RGB camera on-board the drone to collect overlapping nadir images for both study sites. For Unterer Grindelwaldgletscher (Findelengletscher), 187 (421) images were taken for a surveyed area of 3.2 km2 (2.9 km2) resulting in digital surface models and orthophotos with a very high spatial resolution of 0.16 m (0.11 m). The high number of images collected per area resulted in accurate elevation models and no detectable systematic horizontal shifts. Analysis of these images reveal in great detail the typical processes and features known for down-wasting and rapidly disintegrating Alpine glacier tongues: formation of (pro-)glacial lakes, dead ice, thermokarst phenomena, collapse of lateral moraines, and a complex interplay between many of those processes. Typically glacio-fluvial, gravitational, and periglacial processes occur in close vicinity and on different temporal scales (continuous, sporadic). We compare both glacier landscapes and address the important processes identified to be responsible for the glacier change at both sites. Finally, to set the observed geomorphological processes and the rapid

  11. Aircraft Inspection for the General Aviation Aircraft Owner.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is useful information for owners, pilots, student mechanics, and others with aviation interests. Part I of this booklet outlines aircraft inspection requirements, owner responsibilities, inspection time intervals, and sources of basic information. Part II is concerned with the general techniques used to inspect an aircraft. (Author/JN)

  12. Rating aircraft on energy

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1974-01-01

    Questions concerning the energy efficiency of aircraft compared to ground transport are considered, taking into account as energy intensity the energy consumed per passenger statute mile. It is found that today's transport aircraft have an energy intensity potential comparable to that of ground modes. Possibilities for improving the energy density are also much better in the case of aircraft than in the case of ground transportation. Approaches for potential reductions in aircraft energy consumption are examined, giving attention to steps for increasing the efficiency of present aircraft and to reductions in energy intensity obtainable by the introduction of new aircraft utilizing an advanced technology. The use of supercritical aerodynamics is discussed along with the employment of composite structures, advances in propulsion systems, and the introduction of very large aircraft. Other improvements in fuel economy can be obtained by a reduction of skin-friction drag and a use of hydrogen fuel.

  13. Directory of Aircraft Survivability Specialists and Their Affiliations

    DTIC Science & Technology

    1980-12-01

    AnalysisOps Research WILLIAMS RESEARCH CORP 2280 West Maple Rd Walled Lake, MT 48088 SCHNYDER, Sidney A. (313) 624-5200 Gas turbine droneSupervisor of...AAWP-3 (513) 255-5076 reduction PELTON , Dr. Edward AV 785-5076 Radar cross section AFWAL/AAWP-3 (513) 255-5076 Reduction technology SANDERSON, Dr...Aberdeen Proving Gd, MD 21005 AV 927-3902 AV 283-4643 (804) 878-3902 (301) 278-4643 PELTON , Dr. Edward PARKER, Preston L. AFWAL/AAWP-3 AD/SESS Air

  14. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  15. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Uden, Edward (Inventor); Bowers, Albion H. (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  16. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  17. Quantitative determination of juvenile hormone III and 20-hydroxyecdysone in queen larvae and drone pupae of Apis mellifera by ultrasonic-assisted extraction and liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Zhou, Jinhui; Qi, Yitao; Hou, Yali; Zhao, Jing; Li, Yi; Xue, Xiaofeng; Wu, Liming; Zhang, Jinzhen; Chen, Fang

    2011-09-01

    In this paper, a method for the rapid and sensitive analysis of juvenile hormone III (JH III) and 20-hydroxyecdysone (20E) in queen larvae and drone pupae samples was presented. Ultrasound-assisted extraction provided a significant shortening of the leaching time for the extraction of JH III and 20E and satisfactory sensitivity as compared to the conventional shake extraction procedure. After extraction, determination was carried out by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operating in electrospray ionization positive ion mode via multiple reaction monitoring (MRM) without any clean-up step prior to analysis. A linear gradient consisting of (A) water containing 0.1% formic acid and (B) acetonitrile containing 0.1% formic acid, and a ZORBAX SB-Aq column (100 mm × 2.1 mm, 3.5 μm) were employed to obtain the best resolution of the target analytes. The method was validated for linearity, limit of quantification, recovery, matrix effects, precision and stability. Drone pupae samples were found to contain 20E at concentrations of 18.0 ± 0.1 ng/g (mean ± SD) and JH III was detected at concentrations of 0.20 ± 0.06 ng/g (mean ± SD) in queen larvae samples. This validated method provided some practical information for the actual content of JH III and 20E in queen larvae and drone pupae samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  19. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  20. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aircraft exempt from the requirement for a civil aircraft landing permit. 855.6 Section 855.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft...

  1. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Aircraft exempt from the requirement for a civil aircraft landing permit. 855.6 Section 855.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft...

  2. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  3. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  4. Drones at the service for training on mass casualty incident: A simulation study.

    PubMed

    Fernandez-Pacheco, Antonio Nieto; Rodriguez, Laura Juguera; Price, Mariana Ferrandini; Perez, Ana Belen Garcia; Alonso, Nuria Perez; Rios, Manuel Pardo

    2017-06-01

    Mass casualty incidents (MCI) are characterized by a large number of victims with respect to the resources available. In this study, we aimed to analyze the changes produced in the self-perception of students who were able to visualize aerial views of a simulation of a MCI. A simulation study, mixed method, was performed to compare the results from an ad hoc questionnaire. The 35 students from the Emergency Nursing Master from the UCAM completed a questionnaire before and after watching an MCI video with 40 victims in which they had participated. The main variable measured was the change in self-perception (CSP). The CSP occurred in 80% (28/35) of the students (P = .001). Students improved their individual (P = .001) and group (P = .006) scores. They also described that their personal performance had better results than the group performance (P = .047). The main conclusion of this study is that drones could lead to CSP and appraisal of the MCI simulation participants.

  5. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  6. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  7. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  8. Brief Communication: Mapping river ice using drones and structure from motion

    NASA Astrophysics Data System (ADS)

    Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy

    2018-02-01

    In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.

  9. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  10. Soft-Ground Aircraft Arresting Systems.

    DTIC Science & Technology

    1987-08-01

    19 Rut Depth in Foam Arrestor Bed for Aircraft A. .. .... 30 20 Aircraft B Deceleration in Gravel Arrestor. ... .... 32 21Arrf u ephPoiei rvl retr...Bed Arrestment ....... ... ... ... ... .... 43 30 Aircraft D Deceleration in Gravel Bed .... ......... 44 31 Aircraft D Rut Depth Obtained in Gravel...The deceleration of Aircraft D is shown in Figure 30 . The peak deceleration was about 0.43 g’s. The initial part of the deceleration curve shows a

  11. Personal Flying Accident Rates of Selected Light Sport Aircraft Compared with General Aviation Aircraft.

    PubMed

    Mills, William D; DeJohn, Charles A

    2016-07-01

    The issue of expanding flight privileges that do not require medical oversight is currently an important topic, especially in the United States. We compared personal flying accident rates in aircraft with special light sport aircraft (SLSA) and experimental light sport aircraft (ELSA) airworthiness certificates to accident rates for personal flying in other general aviation (GA) aircraft. To calculate accident rates, personal flying hours were obtained from the annual FAA General Aviation and Part 135 Activity Surveys, and numbers of personal flying accidents were obtained from the NTSB accident database. Overall and fatal personal flying accident rates for the SLSA and ELSA groups and other GA aircraft were calculated and accident rates were compared. The overall personal flying accident rate for SLSA and ELSA was found to be 29.8 per 100,000 flight hours and the fatal accident rate was 5.2 per 100,000 flying hours. These are both significantly greater than the overall personal flying rate of 12.7 per 100,000 h and fatal rate of 2.6 per 100,000 h for other GA aircraft. Although this study has several limitations, the significantly higher accident rates in the sport pilot aircraft suggests caution when expanding sport pilot privileges to include larger, more complex aircraft. Mills WD, DeJohn CA. Personal flying accident rates of selected light sport aircraft compared with general aviation aircraft. Aerosp Med Hum Perform. 2016; 87(7):652-654.

  12. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  13. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  14. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  15. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  16. Middle infrared (wavelength range: 8 μm-14 μm) 2-dimensional spectroscopy (total weight with electrical controller: 1.7 kg, total cost: less than 10,000 USD) so-called hyperspectral camera for unmanned air vehicles like drones

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro

    2016-05-01

    We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.

  17. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  18. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Accidents or Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records... its regulations on the notification and reporting of aircraft accidents or incidents by adding a definition of ``unmanned aircraft accident'' and requiring that operators notify the NTSB of accidents...

  19. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  20. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  1. SEM studies on immature stages of the drone flies (diptera, syrphidae): Eristalis similis (Fallen, 1817) and Eristalis tenax (Linnaeus, 1758).

    PubMed

    Pérez-Bañón, Celeste; Hurtado, Pilar; García-Gras, Elena; Rojo, Santos

    2013-08-01

    Adult drone flies (Syrphidae: Eristalis spp.) resemble male honeybees in appearance. Their immature stages are commonly known as rat-tailed maggots due to the presence of a very long anal segment and a telescopic breathing tube. The larvae are associated with decaying organic material in liquid or semi-liquid media, as in the case of other saprophagous eristalines. Biological and morphological data were obtained from both laboratory cultures and sampling in the field. Drone flies are important pollinators for wild flowers and crops. In fact, mass rearing protocols of Eristalis species are being developed to be used as efficient alternative pollinators. However, deeper knowledge of larval morphology and biology is required to improve artificial rearing. The production quality control of artificial rearing must manage the consistency and reliability of the production output avoiding, for example contamination with similar species. This article presents the first description of the larva and puparium of E. similis, including a comparative morphological study of preimaginal stages of the anthropophilic and ubiquitous European hoverfly species E. tenax. Scanning electron microscopy has been used for the first time to describe larvae and puparia of both species. Moreover, the preimaginal morphology of E. similis has been compared with all known descriptions of the genus Eristalis. The main diagnostic characters of the preimaginal stages of E. similis are the morphology of the anterior spiracles (shape of clear area and arrangement of facets) and pupal spiracles (length, shape, and arrangement of tubercles). Copyright © 2013 Wiley Periodicals, Inc.

  2. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  3. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety. [77 FR 36381, June 18...

  4. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety. [77 FR 36381, June 18...

  5. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  6. Detectability of high power aircraft

    NASA Astrophysics Data System (ADS)

    Dettmar, Klaus Uwe; Kruse, Juergen; Loebert, Gerhard

    1992-05-01

    In addition to the measures aiming at improving the probability of survival for an aircraft, including aircraft performance, flight profile selection, efficient electronic warfare equipment, and self protection weapons, it is shown that an efficient measure consists of reducing aircraft signature (radar, infrared, acoustic, visual) in connection with the use of signature avionics. The American 'stealth' aircrafts are described as examples.

  7. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  8. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  9. Aircraft crashworthiness studies : findings in accidents involving an aerial application aircraft.

    DOT National Transportation Integrated Search

    1980-04-01

    Aircraft crashworthiness features are presented, as others have done, in terms of packaging principles. Modern aerial application aircraft are recognized as being the most crashworthy in the civil aviation fleet. Eighteen accidents involving an aeria...

  10. Wing and body kinematics of forward flight in drone-flies.

    PubMed

    Meng, Xue Guang; Sun, Mao

    2016-08-15

    Here, we present a detailed analysis of the wing and body kinematics in drone-flies in free flight over a range of speeds from hovering to about 8.5 m s(-1). The kinematics was measured by high-speed video techniques. As the speed increased, the body angle decreased and the stroke plane angle increased; the wingbeat frequency changed little; the stroke amplitude first decreased and then increased; the ratio of the downstroke duration to the upstroke duration increased; the mean positional angle increased at lower speeds but changed little at speeds above 3 m s(-1). At a speed above about 1.5 m s(-1), wing rotation at supination was delayed and that at pronation was advanced, and consequently the wing rotations were mostly performed in the upstroke. In the downstroke, the relative velocity of the wing increased and the effective angle of attack decreased with speed; in the upstroke, they both decreased with speed at lower speeds, and at higher speeds, the relative velocity became larger but the effective angle of attack became very small. As speed increased, the increasing inclination of the stroke plane ensured that the effective angle of attack in the upstroke would not become negative, and that the wing was in suitable orientations for vertical-force and thrust production.

  11. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  12. Proceedings of the USAF Logistics Capability Assessment Symposium LOGCAS 82 Held at USAF Academy, Colorado on 15-19 March 1982

    DTIC Science & Technology

    1982-05-01

    Ohio. General Merkling , fZ" and graduated from Hamilton High School, Los Angeles. He has a bachelor of science degree in mechanical engineering...navigation, navigation radar and doppler radar systems on bomber, cargo , fighter, and drone aircraft. He also performed duties as maintenance debriefer...measure supply support for those items. ihe model will also project future performance and provide a cost/support relationship. 11-13

  13. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  14. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  15. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 2: Aircraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study of the quiet turbofan STOL aircraft for short haul transportation was conducted. The objectives of the study were as follows: (1) to determine the relationships between STOL characteristics and economic and social viability of short haul air transportation, (2) to identify critical technology problems involving introduction of STOL short haul systems, (3) to define representative aircraft configurations, characteristics, and costs, and (4) to identify high payoff technology areas to improve STOL systems. The analyses of the aircraft designs which were generated to fulfill the objectives are summarized. The baseline aircraft characteristics are documented and significant trade studies are presented.

  16. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  17. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  18. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  19. Multibody aircraft study, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. G.

    1981-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  20. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  1. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  2. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  3. NASA and Industry Partners Co-sponsor 2015 Unmanned Aircraft Systems Traffic Management (UTM) Convention

    NASA Image and Video Library

    2015-08-07

    With issues about drones becoming front page news, NASA recently co-sponsored the 2015 Unmanned Aerial Systems Traffic Management Convention. Held at NASA’s Ames Research Center, the event brought together representatives from the public, from industry, academia, government and the international community to shape the future of low-altitude air traffic management.

  4. Aircraft operations classification system : technical summary.

    DOT National Transportation Integrated Search

    1999-07-01

    In this project, we consider the development and deployment of systems for measuring aircraft activity at airports. This would include determining the type of aircraft and the type of aircraft activity. The type of aircraft is a basic type such as he...

  5. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  6. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  7. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  8. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  9. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  10. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  11. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  12. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  13. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  14. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  15. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  16. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  17. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  18. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  19. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  20. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  1. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  2. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  3. FAA Registry - Aircraft - N-Number Inquiry

    Science.gov Websites

    Skip to page content Federal Aviation Administration Aircraft Inquiries N-number Serial Number -Number Online In Writing Reserved N-Number Renewal Online Request for Aircraft Records Online Help Main Menu Aircraft Registration Aircraft Downloadable Database Definitions N-Number Format Registrations at

  4. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  5. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  6. System for indicating fuel-efficient aircraft altitude

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  7. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  8. Aircraft Mechanics Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in aircraft mechanics. The guide outlines the tasks entailed in 24 different duties typically required of employees in the following occupations: airframe mechanic, power plant mechanic, aircraft mechanic, aircraft sheet metal worker, aircraft electrician,…

  9. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  10. Survival in Emergency Escape from Passenger Aircraft,

    DTIC Science & Technology

    ESCAPE SYSTEMS, *TRANSPORT AIRCRAFT, ESCAPE SYSTEMS, CIVIL AVIATION, STATISTICAL DATA, AIRCRAFT DOORS, EVACUATION, MORTALITY RATE, ADULTS , CHILDREN, SEX, AIRCRAFT FIRES, AIRCRAFT CABINS, FEMALES, BEHAVIOR.

  11. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  12. Aircraft of the future

    NASA Technical Reports Server (NTRS)

    Yeger, S.

    1985-01-01

    Some basic problems connected with attempts to increase the size and capacity of transport aircraft are discussed. According to the square-cubic law, the increase in structural weight is proportional to the third power of the increase in the linear dimensions of the aircraft when geomettric similarity is maintained, while the surface area of the aircraft increases according to the second power. A consequence is that the fraction of useful weight will decrease as aircraft increase in size. However, in flying-wing designs in which the whole load on the wing is proportional to the distribution of lifting forces, the total bending moment on the wing will be sharply reduced, enabling lighter construction. Flying wings may have an ultimate capacity of 3000 passengers.

  13. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  14. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  15. Aircraft Rollout Iterative Energy Simulation

    NASA Technical Reports Server (NTRS)

    Kinoshita, L.

    1986-01-01

    Aircraft Rollout Iterative Energy Simulation (ARIES) program analyzes aircraft-brake performance during rollout. Simulates threedegree-of-freedom rollout after nose-gear touchdown. Amount of brake energy dissipated during aircraft landing determines life expectancy of brake pads. ARIES incorporates brake pressure, actual flight data, crosswinds, and runway characteristics to calculate following: brake energy during rollout for up to four independent brake systems; time profiles of rollout distance, velocity, deceleration, and lateral runway position; and all aerodynamic moments on aircraft. ARIES written in FORTRAN 77 for batch execution.

  16. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  17. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  18. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  19. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  20. Meteodrones - Meteorological Planetary Boundary Layer Measurements by Vertical Drone Soundings

    NASA Astrophysics Data System (ADS)

    Lauer, Jonas; Fengler, Martin

    2017-04-01

    As of today, there is a gap in the operational data collection of meteorological observations in the Planetary Boundary Layer (PBL). This lack of spatially and temporally reliable knowledge of PBL conditions and energy fluxes with the surface causes shortcomings in the prediction of micro- and mesoscale phenomena such as convection, temperature inversions, local wind systems or fog. The currently used remote sensing instruments share the drawback of only partially covering necessary variables. To fill this data gap, since 2012, Meteomatics has been developing a drone measurement system, the Meteodrone, to measure the parameters wind speed, wind direction, dewpoint, temperature and air pressure of the PBL up to 1.5 km above ground. Both the data quality and the assimilation into a regional numerical weather model could be determined in several pilot studies. Besides, a project in cooperation with the NSSL (National Severe Storms Laboratory) was launched in October 2016 with the goal of capturing pre-convective conditions for improved severe storm forecasts in Oklahoma. Also, related measurements, such as air pollution measurements in the Misox valley to determine LDSP values, were successfully conducted. The main goal of the project is the operational data collection of PBL measurements and the assimilation of this data into regional numerical weather forecast models. Considering the high data quality indicated in all conducted studies as well as the trouble-free execution, this goal is both worthwhile and realistic.

  1. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  2. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an aircraft...

  3. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an aircraft...

  4. Aircraft Capability Management

    NASA Technical Reports Server (NTRS)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  5. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  6. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  7. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  8. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  9. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  10. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  11. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  12. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  13. 14 CFR 47.61 - Dealers' Aircraft Registration Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dealers' Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealers' Aircraft Registration Certificates. (a) The FAA issues a Dealers' Aircraft Registration Certificate, AC...

  14. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  15. New Acoustic Treatment For Aircraft Sidewalls

    NASA Technical Reports Server (NTRS)

    Vaicaitis, Rimas

    1988-01-01

    New aircraft-sidewall acoustic treatment reduces interior noise to acceptable levels and minimizes addition of weight to aircraft. Transmission of noise through aircraft sidewall reduced by stiffening device attached to interior side of aircraft skin, constrained-layer damping tape attached to stiffening device, porous acoustic materials of high resistivity, and relatively-soft trim panel isolated from vibrations of main fuselage structure.

  16. 75 FR 35329 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-driven fixed-wing aircraft heavier than air, that is supported in flight by the dynamic reaction of the... reporting of runway incursions: ``Any event in which an aircraft operated by an air carrier: (i) Lands or... during normal operations, such as those involving seaplanes, hot-air balloons, unmanned aircraft systems...

  17. Optimization in fractional aircraft ownership

    NASA Astrophysics Data System (ADS)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  18. 14 CFR 47.51 - Triennial aircraft registration report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Triennial aircraft registration report. 47... AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.51 Triennial aircraft... occurred within the preceding 36 calendar months, the holder of each Certificate of Aircraft Registration...

  19. Monitoring beach evolution using low-altitude aerial photogrammetry and UAV drones

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Casella, Elisa; Vacchi, Matteo; Mucerino, Luigi; Pedroncini, Andrea; Ferrari, Marco; Firpo, Marco

    2014-05-01

    Beach monitoring is essential in order to understand the mechanisms of evolution of soft coasts, and the rates of erosion. Traditional beach monitoring techniques involve topographic and bathymetric surveys of the beach, and/or aerial photos repeated in time and compared through geographical information systems. A major problem of this kind of approach is the high economic cost. This often leads to increase the time lag between successive monitoring campaigns to reduce survey costs, with the consequence of fragmenting the information available for coastal zone management. MIRAMar is a project funded by Regione Liguria through the PO CRO European Social Fund, and has two main objectives: i) to study and develop an innovative technique, relatively low-cost, to monitor the evolution of the shoreline using low-altitude Unmanned Aerial Vehicle (UAV) photogrammetry; ii) to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion using also the data collected by the UAV instrument. To achieve these aims we use a drone with its hardware and software suit, traditional survey techniques (bathymetric surveys, topographic GPS surveys and GIS techniques) and we implement a numerical modeling chain (coupling hydrodynamic, wave and sand transport modules) in order to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion.

  20. Aircraft-type dependency of contrail evolution

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Görsch, N.

    2014-12-01

    The impact of aircraft type on contrail evolution is assessed using a large eddy simulation model with Lagrangian ice microphysics. Six different aircraft ranging from the small regional airliner Bombardier CRJ to the largest aircraft Airbus A380 are taken into account. Differences in wake vortex properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice crystal number. Larger aircraft produce contrails with more ice crystals (assuming that the number of initially generated ice crystals per kilogram fuel is constant). These initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 min than those of small aircraft. A parameterization for the final vertical displacement of the wake vortex system is provided, depending only on the initial vortex circulation and stratification. Cloud resolving simulations are used to examine whether the aircraft-induced initial differences have a long-lasting mark. These simulations suggest that the synoptic scenario controls the contrail cirrus evolution qualitatively. However, quantitative differences between the contrail cirrus properties of the various aircraft remain over the total simulation period of 6 h. The total extinctions of A380-produced contrails are about 1.5 to 2.5 times higher than those from contrails of a Bombardier CRJ.

  1. Future Carrier-Based Tactical Aircraft Study

    DOT National Transportation Integrated Search

    1996-03-01

    This report describes an aircraft database which was developed to identify technology trends for several classes of tactical naval aircraft, including subsonic attack, supersonic fighter, and supersonic multimission aircraft classes. This study used ...

  2. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  3. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  4. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-05-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  5. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-12-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.

  6. Structural modeling of aircraft tires

    NASA Technical Reports Server (NTRS)

    Clark, S. K.; Dodge, R. N.; Lackey, J. I.; Nybakken, G. H.

    1973-01-01

    A theoretical and experimental investigation of the feasibility of determining the mechanical properties of aircraft tires from small-scale model tires was accomplished. The theoretical results indicate that the macroscopic static and dynamic mechanical properties of aircraft tires can be accurately determined from the scale model tires although the microscopic and thermal properties of aircraft tires can not. The experimental investigation was conducted on a scale model of a 40 x 12, 14 ply rated, type 7 aircraft tire with a scaling factor of 8.65. The experimental results indicate that the scale model tire exhibited the same static mechanical properties as the prototype tire when compared on a dimensionless basis. The structural modeling concept discussed in this report is believed to be exact for mechanical properties of aircraft tires under static, rolling, and transient conditions.

  7. World commercial aircraft accidents. Second edition, 1946--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  8. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  9. Ignition characteristics of some aircraft interior fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.

    1978-01-01

    Six samples of aircraft interior fabrics were evaluated with regard to resistance to ignition by radiant heat. Five samples were aircraft seat upholstery fabrics and one sample was an aircraft curtain fabric. The aircraft seat fabrics were 100% wool (2 samples), 83% wool/17% nylon, 49% wool/51% polyvinyl chloride, and 100% rayon. The aircraft curtain fabric was 92% modacrylic/8% polyester. The five samples of aircraft seat upholstery fabrics were also evaluated with regard to resistance to ignition by a smoldering cigarette. The four samples of wool-containing aircraft seat fabrics appeared to be superior to the sample of rayon seat fabric in resistance to ignition, both by radiant heat and by a smoldering cigarette.

  10. National plans for aircraft icing and improved aircraft icing forecasts and associated warning services

    NASA Technical Reports Server (NTRS)

    Pass, Ralph P.

    1988-01-01

    Recently, the United States has increased its activities related to aircraft icing in numerous fields: ice phobics, revised characterization of icing conditions, instrument development/evaluation, de-ice/anti-ice devices, simulated supercooled clouds, computer simulation and flight tests. The Federal Coordinator for Meteorology is involved in two efforts, one a National Plan on Aircraft Icing and the other a plan for Improved Aircraft Icing Forecasts and Associated Warning Services. These two plans will provide an approved structure for future U.S. activities related to aircraft icing. The recommended activities will significantly improve the position of government agencies to perform mandated activities and to enable U.S. manufacturers to be competitive in the world market.

  11. Quiet aircraft design and operational characteristics

    NASA Technical Reports Server (NTRS)

    Hodge, Charles G.

    1991-01-01

    The application of aircraft noise technology to the design and operation of aircraft is discussed. Areas of discussion include the setting of target airplane noise levels, operational considerations and their effect on noise, and the sequencing and timing of the design and development process. Primary emphasis is placed on commercial transport aircraft of the type operated by major airlines. Additionally, noise control engineering of other types of aircraft is briefly discussed.

  12. Topology Optimization of an Aircraft Wing

    DTIC Science & Technology

    2015-06-11

    Fraction VWT Virtual Wind Tunnel xvi TOPOLOGY OPTIMIZATION OF AN AIRCRAFT WING I. Introduction 1.1 Background Current aircraft wing design , which...ware in order to optimize the design of individual spars and wing-box structures for large commercial aircraft . They considered a hybrid global/local...weight in an aircraft by eliminating unnecessary material. An optimized approach has the potential to streamline the design process by allowing a

  13. A Sulfur Trigger for the 2017 Phreatomagmatic Eruption of Poás Volcano, Costa Rica? Insights from MultiGAS and Drone-based Gas Monitoring

    NASA Astrophysics Data System (ADS)

    de Moor, M. J.; Aiuppa, A.; Avard, G.; Diaz, J. A.; Corrales, E.; Rüdiger, J.; D´Arcy, F.; Fischer, T. P.; Stix, J.; Alan, A.

    2017-12-01

    In April 2017 Poás volcano entered its first magmatic eruption period of the 21st century. The initial explosive blasts produced eruption columns up to 4 km in height, destroyed the pre-existing dome that was emplaced during the last magmatic eruption in the 1950s, and showered the tourist observation deck with bombs. Over the following months, the hyperacid crater lake dried out and a transition from phreatomagmatic to strombolian activity was observed. Two vents now dominate the activity. The main vent (old dome site) produces gas, ash, and scoria. A second vent is located in the dried-out lake bed and produces a peculiar canary-yellow gas plume. A fixed MultiGAS instrument installed in the crater bottom recorded large changes in gas composition prior to the explosive eruptions. The station recorded a dramatic increase in SO2/CO2 from an average of 0.04 for March 2017 to an average of 7.4 the day before the first explosive eruption that occurred at 18:30 on 12 April. A simultaneous rapid decrease in H2S/SO2 from 2.7 to <0.01 was observed prior to the eruptions. The MultiGAS station stopped transmitting data after 2 days of explosive eruptions. We since developed new methods for measuring gas compositions and SO2 fluxes using drones, allowing continued gas monitoring despite dangerous conditions. Extremely high SO2/CO2 of 33 was measured with drone-based miniaturized MultiGAS ("miniGAS") in May 2017, and the ratio has since dropped to 3, which are more typical values of high temperature magmatic gases at Poás. The SO2 flux from Poás was at record low levels (< 5 T/d) in late 2016 and early 2017. Drone-based SO2 DOAS ("DROAS") measurements indicate high SO2 fluxes from Poas of >2000 T/d since the explosive eruptions, indicating a strong magmatic source and open conduits. We attribute the unusually S-rich gas compositions observed at Poás prior to and during the initial eruptions to combustion of previously deposited hydrothermal sulfur. The very low gas flux

  14. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  15. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  16. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  17. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  18. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  19. Aircraft production technology

    NASA Astrophysics Data System (ADS)

    Horne, Douglas Favel

    Current aircraft-production techniques are surveyed and illustrated with extensive drawings, diagrams, and photographs. The history of the British aircraft industry is reviewed, and individual chapters are devoted to Al alloys; steels, Ni alloys, and Ti alloys; metal-cutting machinery; welding and brazing; surface treatments; protective treatments; sheet-metal working; nonmetallic materials; assembly; inspection and testing; and production estimates, production planning, and CAD/CAM.

  20. 14 CFR 47.19 - FAA Aircraft Registry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 47.19 Section 47.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.19 FAA Aircraft Registry. Each application, request, notification, or other...