Science.gov

Sample records for drop ball tester

  1. NASA five-ball fatigue tester: Over 20 years of research

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Parker, R. J.; Anderson, W. J.

    1981-01-01

    Studies were conducted to determine the effect on rolling-element fatigue life of contact angle, material hardness, chemistry, heat treatment and processing, lubricant type and chemistry, elastohydrodynamic film thickness, deformation and wear, vacuum, and temperature as well as Hertzian and residual stresses. Correlation was established between the results obtained using the five-ball tester and those obtained with full scale rolling-element bearings.

  2. Design of High-speed Wear Lifetime Tester of the Instrument Ball Bearings

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Gu, J. M.; Sun, Y.; Chen, X. Y.

    2006-10-01

    The instrument ball bearings are the key components of movable components for various kinds of measuring and control instruments; they often operate in the environmental condition of high-speed and light preload. In general, the non metal, disposable oilimpregnated retainer material has been used for these kinds of high precision miniature bearing. The engineering practice shows that the common failure mode of them is the wear which appears under the condition of insufficient lubrication condition. As the results, the vibration and noise will be enlarged, so does the frictional torque, which makes the ball bearings to lose its original working accuracy. It is the lifetime test of bearings that can enable the designers and manufacturers to chose the material of the bearing properly, optimize the product structure, mend the manufacturing technique process, and to enhance the technical level of the bearing products significantly. In this paper, the wear lifetime tester has been designed according to the requirements of the life test for the instrument ball bearings, which consists of the main body of tester, electric system, drive unit and computer measure and control system, etc. The motor spindle has been selected to drive the device which is supported by the aerostatic bearing; frequency conversion speed adjustment mode, its scope of rotating speed is between 0 and 10,000 rpm. A pair of bearings can be tested under the pure axial preload condition, the maximum load is up to 50N, the control accuracy is ±2% the scope of temperature control is up to 200°C. The variation of frictional torque on the bearing couple will be measured by an online torque transducer. The variation of power dissipation can be monitored under arbitrary speed by use of an on-line high-precision power meter. The wear and quality situation of the contact surface of the bearings will be reflected on these two parameters. Meanwhile, the values of temperature and vibration will also be monitored

  3. Building micro-soccer-balls with evaporating colloidal fakir drops

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  4. Coefficient of restitution of sports balls: A normal drop test

    NASA Astrophysics Data System (ADS)

    Haron, Adli; Ismail, K. A.

    2012-09-01

    Dynamic behaviour of bodies during impact is investigated through impact experiment, the simplest being a normal drop test. Normally, a drop test impact experiment involves measurement of kinematic data; this includes measurement of incident and rebound velocity in order to calculate a coefficient of restitution (COR). A high speed video camera is employed for measuring the kinematic data where speed is calculated from displacement of the bodies. Alternatively, sensors can be employed to measure speeds, especially for a normal impact where there is no spin of the bodies. This paper compares experimental coefficients of restitution (COR) for various sports balls, namely golf, table tennis, hockey and cricket. The energy loss in term of measured COR and effects of target plate are discussed in relation to the material and construction of these sports balls.

  5. Measurements of fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay X.

    2016-05-01

    This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.

  6. Micro-ball lens structure fabrication based on drop on demand printing the liquid mold

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyang; Zhu, Li; Chen, Hejuan; Yang, Lijun; Zhang, Weiyi

    2016-01-01

    In this paper, we demonstrated a simple micro-ball lens array (MBLA) fabrication method using a drop-on-demand (DOD) droplet printing technique and liquid mold. The micro-ball droplet array on the hydrophobic surface is used as the liquid mold to fabricate the MBLA. The ultrahigh adhesion force between the micro-ball droplet and the substrate is ascribed to the Wenzel state of the micro-ball droplet, while the replication process with low position error is attributed to the ultrahigh adhesion force between the micro-ball droplet and the substrate and the high viscosity of the micro-ball droplet and polydimethylsiloxane (PDMS) liquid. The micro-ball lenses (MBLs) with a contact angle of 120° and 150° were fabricated and the important fabrication details were discussed. The optical performance and scanning electron microscope (SEM) data of the MBLs showed that the MBLs had high quality surface morphology and good optical performance.

  7. An undergraduate lab on measuring fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay

    2015-11-01

    I would like to describe measurement of fluid viscosity using a small ball drop device. It requires as little as 100 microliters of fluid. Each measurement can be performed in seconds. Through simple experimentation, students observe fluid flow confined in a thin cylindrical tube. They analyze forces and torques on a tiny ball falling and rolling down in an inclined tube. They gain practice in observing and identifying sources of errors and variability in their measurements beyond those indicated by standard error bars. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized fluids such as mixtures of glycerol and water. The technique is also useful in research and technological applications as the device is easy to assemble and it allows the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Work Partially Supported by the NSF Fluid Physics Program (Award number CBET 1438033).

  8. The Galileo bias: a naive conceptual belief that influences people's perceptions and performance in a ball-dropping task.

    PubMed

    Oberle, Crystal D; McBeath, Michael K; Madigan, Sean C; Sugar, Thomas G

    2005-07-01

    This research introduces a new naive physics belief, the Galileo bias, whereby people ignore air resistance and falsely believe that all objects fall at the same rate. Survey results revealed that this bias is held by many and is surprisingly strongest for those with formal physics instruction. In 2 experiments, 98 participants dropped ball pairs varying in volume and/or mass from a height of 10 m, with the goal of both balls hitting the ground simultaneously. The majority of participants in both experiments adopted a single strategy consistent with the Galileo bias, showing no improvement across trials. Yet, for participants reporting intentions of dropping both balls at the same time, the differences between release points were significantly greater than 0 ms. These findings support separate but interacting cognition and perception-action systems.

  9. Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity

    ERIC Educational Resources Information Center

    Set, Seng; Ford, David; Kita, Masakazu

    2015-01-01

    This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…

  10. The Galileo Bias: A Naive Conceptual Belief That Influences People's Perceptions and Performance in a Ball-Dropping Task

    ERIC Educational Resources Information Center

    Oberle, Crystal D.; McBeath, Michael K.; Madigan, Sean C.; Sugar, Thomas G.

    2005-01-01

    This research introduces a new naive physics belief, the Galileo bias, whereby people ignore air resistance and falsely believe that all objects fall at the same rate. Survey results revealed that this bias is held by many and is surprisingly strongest for those with formal physics instruction. In 2 experiments, 98 participants dropped ball pairs…

  11. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  12. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  13. Explosives tester

    DOEpatents

    Haas, Jeffrey S.; Howard, Douglas E.; Eckels, Joel D.; Nunes, Peter J.

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  14. Development of a new testing equipment that combines the working principles of both the split Hopkinson bar and the drop weight testers.

    PubMed

    Adas, Rateb; Haiba, Majed

    2016-01-01

    In the current work, a new high strain rate tensile testing equipment is proposed. The equipment uses a pendulum device to generate an impact load and a three-bar mechanism to bring that load to act upon a specially designed specimen. As the standard impact testing apparatus uses pendulum device and the well-known SHB high strain rate tester adopts the above-mentioned mechanism, the introduced equipment can be dealt with as an impact apparatus in which the base that supports the V-shape specimen is replaced with the three-bar configuration that the traditional SHB uses. In order to demonstrate the applicability of the new tester, virtual design tools were used to determine the most appropriate configuration for it. Then, a detailed design was created, and a full-scale prototype was produced, calibrated, instrumented and tested. The obtained results demonstrate that the new tester is capable of axially straining steel specimens up to failure at a maximum rate of about 250 s(-1), which is reasonable when compared with a more established high strain rate testers. PMID:27504253

  15. Cable Tester

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Tech Brief's provided Sonics Associates, Inc. with a method of saving many hours of testing time and money. James B. Cawthon, Sonics Vice-President, read about a device developed at Ames Research Center. Sonics adapted the device and produced an effective tester that uses a clocked shift register to apply a voltage to a cable under test. This is the active part of the Ames development, and the passive is a small box containing light emitting diodes (LEDs). When connected to the other end of the tested cable, the LEDs light in the same sequence as the generator. This procedure allows the technician to immediately identify a miswired cable.

  16. Hydrogen fracture toughness tester completion

    SciTech Connect

    Morgan, Michael J.

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  17. A High Temperature Hermetic Primer and a Variable Spring Tester

    SciTech Connect

    Begeal, D.R.

    1994-05-01

    Percussion primers are used at Sandia to ignite energetic components such as pyrotechnic actuators and thermal batteries. This report describes a High Temperature Hermetic Primer (HTHP) that was developed to replace a previous G16 Percussion Primer Subassembly (Gl6PPS). The ignition mix in these primers is the same as in the discontinued Remington 44G16 (KC1O{sub 3}, SbS{sub 3}, and Ca{sub 2}Si). The HTHP has nearly the same sensitivity as the 44G16 and a significantly lower sensitivity than the G16PPS. In parallel with the HTHP development, we also designed a Variable Spring Tester (VST) to determine percussion primer ignition sensitivity with firing pins that have the same mass as those used in field applications. The tester is capable of accelerating firing pins over a velocity range of 100 to 600 inches per second for pins weighing up to 6 grams. The desired impulse can be preselected with an accuracy of better than {plus_minus}1%. The actual impulse is measured on every shot. The VST was characterized using the WW42Cl primer, as well as with the G16PPS and the HTHP. Compared to data from conventional ball drop testers, we found that ignition sensitivities were lower and there was less scatter in the sensitivity data. Our experiments indicate that ignition sensitivity is not strictly energy dependent, but also depends on the rate of deposition, or firing pin velocity in this case. Development results for the HTHP and Variable Spring Tester are discussed and design details are shown.

  18. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  19. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  20. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  1. COPPERHEAD battery tester

    NASA Astrophysics Data System (ADS)

    Cruickshank, W. J.

    1983-06-01

    The development of a tester for the control section battery of the M712 Cannon-Launched Guided Projectile has fulfilled a requirement for the automatic testing of a series of batteries. The tester is a self-contained instrument that is used with a shock test system to rapidly perform complete tests after an initial setup.

  2. Computer Component Tester

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Carlos Horvath of the Burroughs Corporation, inspired by information published in NASA Tech Briefs, developed the AC/DC tester which checks out ECL (Emitter Coupled Logic) devices and their functionality within the computer. Each ECL device has a specific task in the computer's operation; the tester determines whether the device is performing that function properly. Horvath's invention allows rapid manual checking without extensive programming as it is required by other test methods; thus the ECL tester makes it easier to find out what is malfunctioning, and does the job faster.

  3. Explosives tester with heater

    SciTech Connect

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  4. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  5. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  6. Common tester platform concept.

    SciTech Connect

    Hurst, Michael James

    2008-05-01

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  7. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  8. Dropping the Ball and Falling Off the Care Wagon. Factors Correlating With Nonadherence to Secondary Fracture Prevention Programs.

    PubMed

    Chandran, Manju; Cheen, Mcvin; Ying, Hao; Lau, Tang Ching; Tan, Matthew

    2016-01-01

    Health care systems and hospitals in several countries have implemented Fracture Liaison Services (FLSs). Success rates of FLSs with regard to osteoporosis assessment and treatment, fracture reduction, and adherence to osteoporosis medications have been reported by several groups including ours. A significant drop-out rate among patients in these programs may occur. This has not been evaluated before. We explored the factors correlating with nonadherence among a multiethnic population of patients in the FLS at our institution, the largest tertiary teaching hospital in South East Asia. Our secondary objective was to explore whether patients who defaulted follow-up visits continued to be compliant with medications. A retrospective analysis of our FLS's computerized database was performed. Of 938 patients followed up more than 2 years, 237 defaulted at various time points. A significant percentage of patients who dropped out of the program opined that it was because the follow-up visits were too time consuming. Non-Chinese patients were more likely than Chinese (adjusted hazard ratio [aHR] = 1.98, 1.33-2.94), patients with primary school education and below were more likely than those with secondary school and above education (aHR = 1.65, 1.11-2.45) and those with nonvertebral and/or multiple fractures were more likely than those with spine fractures (aHR = 1.38, 1.06-1.81) to be nonadherent. A fraction of patients who defaulted continued to fill osteoporosis medication prescriptions. Median medication possession ratio among the patients who defaulted was 12.3% (interquartile range: 4.1%-36.7%) at 2 years. Persistence ranged from 15.1% to 20.8% and from 1.9% to 7.5% at 1 and 2 years, respectively after defaulting from the program. Our study, which to the best of our knowledge is the first of its kind, provides insight into the factors correlating with nonadherence to FLSs. Knowledge of the challenges faced by patients may be of help to health care providers

  9. Automated CCTV Tester

    2000-09-13

    The purpose of an automated CCTV tester is to automatically and continuously monitor multiple perimeter security cameras for changes in a camera's measured resolution and alignment (camera looking at the proper area). It shall track and record the image quality and position of each camera and produce an alarm when a camera is out of specification.

  10. Visual sensitivity tester

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A.

    1972-01-01

    Testing device uses closed loop film cassettes to project programmed visual stimuli on screen which the observer views through a lens making the stimuli appear to be at optical infinity. Tester is useful for determining changes in glautomatous visual field sensitivity.

  11. Inspection tester for explosives

    SciTech Connect

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2010-10-05

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  12. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  13. Dropping the Ball on Dropouts

    ERIC Educational Resources Information Center

    Phelps, Richard P.

    2009-01-01

    The U.S. Department of Education's National Center for Education Statistics (NCES) has measured various types of high school graduation, completion, and dropout rates for decades. In 2006, NCES was directed by senior managers in the Education Department to reduce use of its standard graduation and completion rate measures and instead promote the…

  14. Reflections on a Bouncing Ball

    NASA Astrophysics Data System (ADS)

    Rohr, Jim; Lopez, Veronica; Rohr, Tyler

    2014-12-01

    While observing the bounce heights of various kinds of sports balls dropped from different heights onto a variety of surfaces, we thought of the following question: Could measurements of drop and bounce heights of balls of different diameters, but of the same material, falling from different heights, but on the same surface, be expressed by a simple mathematical formula? Our objective was to provide a simple classroom ball-drop experiment that produced robust and interesting data sets from which students could address this question. With a suitable choice of variables, all the ball drop data could be collapsed to a single curve, so that given the mass and drop height of the ball, the bounce height could be reasonably estimated (±10% of measured values).

  15. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  16. Design review of fluid film bearing testers

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1993-01-01

    The designs of three existing testers (Hybrid Bearing Tester, OTV Bearing Tester, and Long Life Bearing Tester) owned by NASA were reviewed for their capability to serve as a multi-purpose cryogenic fluid film bearing tester. The primary tester function is the validation of analytical predictions for fluid film bearing steady state and dynamic performance. Evaluation criteria were established for test bearing configurations, test fluids, instrumentation, and test objectives. Each tester was evaluated with respect to these criteria. A determination was made of design improvements which would allow the testers to meet the stated criteria. The cost and time required to make the design changes were estimated. A recommendation based on the results of this study was made to proceed with the Hybrid Bearing Tester.

  17. Non-Intrusive Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.

  18. Multimodal Friction Ignition Tester

    NASA Technical Reports Server (NTRS)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  19. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  20. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  1. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b)...

  2. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b)...

  3. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b)...

  4. What Do Battery Testers Test?

    ERIC Educational Resources Information Center

    Chagnon, Paul

    1996-01-01

    Presents activities to determine whether it is better to test dry cells with an ammeter than with a voltmeter and how best to test alkaline batteries. Discusses classification of disposable testers as instruments. Concludes that a laboratory voltmeter gives a good indication of the condition of an alkaline cell while carbon batteries are best…

  5. 21 CFR 870.5325 - Defibrillator tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Defibrillator tester. 870.5325 Section 870.5325...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5325 Defibrillator tester. (a) Identification. A defibrillator tester is a device that is connected to the output of...

  6. Finger wear detection for production line battery tester

    SciTech Connect

    Depiante, Eduardo V.

    1997-01-01

    A method for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change.

  7. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, E.V.

    1997-11-18

    A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

  8. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  9. In-Place Filter Tester Instrument for Nuclear Material Containers.

    PubMed

    Brown, Austin D; Moore, Murray E; Runnels, Joel T; Reeves, Kirk

    2016-05-01

    A portable instrument was developed to determine filter clogging and container leakage of in-place nuclear material storage canisters. This paper describes the development of an in-place filter tester for determining the "as found" condition of unopened canisters. The U.S. Department of Energy uses several thousand canisters for nuclear material storage, and air filters in the canister lids allow gases to escape while maintaining an equilibrated pressure without release of radioactive contamination. Diagnosing the filter condition and canister integrity is important for ensuring worker and public safety. Customized canister interfaces were developed for suction clamping (during tests) to two of the canister types in use at Los Alamos National Laboratory. Experimental leakage scenarios included: O-rings fouled with dust, cracked O-rings, and loose canister lids. The prototype tester has a measurement range for air leakage rates from 8.2 × 10 mL s up to 3.0 × 10 mL s. This is sufficient to measure a leak rate of 3.4 × 10 mL s, which is the Los Alamos helium leak criterion for post-drop tested canisters. The In-Place-Filter-Tester cannot measure to the lower value of the helium leak criterion for pre-drop tested canisters (1.0 × 10 mL s). However, helium leak testing requires canister disassembly, while the new in-place filter tester is able to assess the assembled condition of as-found and in-situ canisters. PMID:27023152

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  11. Ball lightning

    NASA Astrophysics Data System (ADS)

    Stenhoff, Mark

    Ball lightning is alleged by some to be a rare atmospheric phenomenon usually associated with thunderstorms, while others hold that it does not exist. This controversy has continued for centuries. This study comprises a critical evaluation of evidence for the existence of ball lightning. An historical review of the controversy is first presented, giving a chronological account of developments in ball lightning theories and of important observations alleged to be of the phenomenon. Other phenomena which might be mistaken for ball lightning are then subjected to a more detailed study than has hitherto been published, and the means by which such misidentifications could be recognized areestablished. A discussion of psychological and perceptual aspects indicates that descriptions could not always be taken at face value, and that many accounts of alleged ball lightning would be expected to contain substantial inaccuracies. The original intention to evaluate cases of alleged ball lightning already published in scientific journals was abandoned because there was no standardisation of information content, and because the majority of reports contained insufficient information for evaluation. Many reports had been written in a style which indicated an assumption that ball lightning was the cause of the event. Approximately 200 unpublished reports were therefore collected and subjected to evaluation. It was found that the majority of reports of alleged ball lightning could be explained by other means, and there was only a very small residue of reports which could not easily be thus explained. A large proportion of the reports could be attributed to corona discharge effects such as St Elmo's fire, or by familiar effects of conventional linear lightning. The validity of many previously published statistical studies of ball lightning was shown to be doubtful. The thesis concludes with a comparitive discussion of the merits and demerits of some of the diverse physical models

  12. Enhanced Master Controller Unit Tester

    NASA Technical Reports Server (NTRS)

    Benson, Patricia; Johnson, Yvette; Johnson, Brian; Williams, Philip; Burton, Geoffrey; McCoy, Anthony

    2007-01-01

    The Enhanced Master Controller Unit Tester (EMUT) software is a tool for development and testing of software for a master controller (MC) flight computer. The primary function of the EMUT software is to simulate interfaces between the MC computer and external analog and digital circuitry (including other computers) in a rack of equipment to be used in scientific experiments. The simulations span the range of nominal, off-nominal, and erroneous operational conditions, enabling the testing of MC software before all the equipment becomes available.

  13. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  14. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  15. Hispanic Adolescent Pregnancy Testers: A Comparative Analysis of Negative Testers, Childbearers and Aborters.

    ERIC Educational Resources Information Center

    Berger, David K.; And Others

    1991-01-01

    Assessed differences between 20 negative and 36 positive pregnancy testers and evaluated pregnancy resolution decision-making process of positive testers. Subjects were Hispanic adolescents requesting pregnancy determination at outpatient clinic. Results indicated that negative and positive testers were similar, although positives were older and…

  16. NEW APPROACHES: The way balls bounce

    NASA Astrophysics Data System (ADS)

    Bridge, N. James

    1998-05-01

    The bounce of a ball is a good topic for investigation at either GCSE or A-level. At King's School Canterbury pupils have experimented with both squash balls and inflatable play balls, varying the drop height, pressure and temperature and measuring the effect on bounce height, contact area and contact time. Worthwhile predictions can be made from quite simple theory and the experimental results provide ample opportunities for discussion and evaluation.

  17. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  18. Golf Ball

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Ultra 500 Series golf balls, introduced in 1995 by Wilson Sporting Goods Company, has 500 dimples arranged in a pattern of 60 spherical triangles. The design employs NASA's aerodynamics technology analysis of air loads of the tank and Shuttle orbiter that was performed under the Space Shuttle External Tank program. According to Wilson, this technology provides 'the most symmetrical ball surface available, sustaining initial velocity longer and producing the most stable ball flight for unmatched accuracy and distance.' The dimples are in three sizes, shapes and depths mathematically positioned for the best effect. The selection of dimples and their placement optimizes the interaction of opposing forces of lift and drag. Large dimples reduce air drag, enhance lift, and maintain spin for distance. Small dimples prevent excessive lift that destabilizes the ball flight and the medium size dimples blend the other two.

  19. Holy balls!

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd; Belden, Jesse

    2011-11-01

    Why can some balls walk on water while others cannot? We investigate the rebound dynamics of elastic spheres impacting on a free-surface. Several variables determine whether or not a sphere will bounce when impacting a free-surface including velocity, impact angle, size and elasticity. Stiff elastic spheres, such as a racquetball, successfully skip at low impact angles and high velocities, but tend not to bounce when the impact angle becomes too large. However, the more compliant Waboba (WAter BOuncing BAll) bounces marvelously even at very high impact angles. Unlike a stiffer ball, the Waboba flattens out quickly as it is forming a cavity. The cavity lip forms a ramp and the flattened ball then skips off the water surface. We demonstrate how this phenomenon surprisingly resembles a skipping stone. Using high-speed video we explore the rebound dynamics for various values of elasticity, velocity, angle and size and determine when an object will bounce off the water surface.

  20. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  1. Tester-assisted built in test

    NASA Astrophysics Data System (ADS)

    Guntheroth, Kurt

    It is noted that board makers invest considerable time and money writing extensive self-tests and that this investment can be multiplied by selecting ATE (automatic test equipment) that complements and extends the power of the self-test. The tester can diagnose boards in situations where a fault prevents the self-test from running. If the tester monitors such resources as processor, memory, and I/O, confidence in test results is improved. The tester can be used during development of the self-test and to turn on prototypes before the self-test is complete. The author argues that emulative functional testers outperform other types of ATE on boards with BIST (built-in self-test) and lists features of emulative functional testers that are most important to users of BIST.

  2. The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2000-11-01

    A perfectly happy ball is one that bounces to its original height when dropped on a massive, rigid surface. A completely unhappy ball does not bounce at all. In the former case, the coefficient of restitution (COR) is unity. In the latter case, the COR is zero. It is shown that when an unhappy ball collides with a happy ball, the COR increases from zero to unity as the stiffness of the happy ball decreases from infinity to zero. The COR is independent of the mass of each ball. The implication of reducing the COR of a tennis ball, as a possible means of slowing the serve in tennis, is also considered. It is shown that (a) the COR for a collision with a racket varies with the impact point and is a maximum at the vibration node near the center of the strings, and (b) the serve speed is reduced by only about 20% if the COR for a bounce on the court is reduced to zero.

  3. Dynamic Hardness Tester and Cure Meter

    NASA Technical Reports Server (NTRS)

    Madigosky, Walter M.; Fiorito, Ralph B.

    1993-01-01

    The Shore hardness tester is used extensively throughout industry to determine the static modulus of materials. The new apparatus described here extends the capability of an indentor-type tester into the dynamic regime, and provides a measurement of the dynamic shear or Young's modulus and loss factor as a function of frequency. The instrument, model and data of typical rubber samples are given and compared to other dynamic measurements.

  4. Electric charge of a lightning ball

    NASA Astrophysics Data System (ADS)

    Grigor'ev, A. I.; Shiryaeva, S. O.; Petrushov, N. A.

    2016-09-01

    The electric charge of a lightning ball is found by comparing the electrohydrodynamic stabilities of a charged drop in an electrostatic suspension and a lightning ball floating in a superposition of the gravitational field and the surface electric field. It has been assumed that the electric field strength at the surface is limited by a breakdown value. For a lightning ball radius of 15 cm, its charge is estimated as several microcoulombs. Accordingly, the density of electrostatic energy accumulated in the lightning ball is on the order of one-hundredth of a joule per square centimeter. The density of the material that constitutes the lightning ball has been estimated for the case when the electric field strength at the site of its origination is several times higher than that in fine weather. The density of the lightning ball turns out to differ from that of air by only a few percents.

  5. Science of Ball Lightning (Fire Ball)

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yoshi-Hiko

    1989-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants

  6. Determination of Contact Time of Rubber Balls Using a Digital Oscilloscope

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2010-01-01

    We present a new method for determining the contact time of a rubber ball with the rebounding surface by using a sound-detecting electronic circuit and a digital storage oscilloscope. The rubber ball (a tennis ball or squash ball) is dropped from a known height onto a rigid surface and its contact time on first bounce is determined on the…

  7. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  8. Precise timing when hitting falling balls

    PubMed Central

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B. J.

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  9. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball.

  10. Measuring the rebound resilience of a bouncing ball

    NASA Astrophysics Data System (ADS)

    Wadhwa, Ajay

    2012-09-01

    Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property 'rebound resilience' and express it as the ratio of the rebound height to the initial drop height of the ball. We determine the rebound resilience for three different types of ball by calculating the coefficient of restitution of the ball-surface combination from the experimentally measurable physical quantities, such as initial drop height and time interval between successive bounces. Using these we also determine the contact time of balls with the surface of impact. For measurements we have used audio, motion and surface-temperature sensors that were interfaced through a USB port with a computer.

  11. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  12. (Quickly) Testing the Tester via Path Coverage

    NASA Technical Reports Server (NTRS)

    Groce, Alex

    2009-01-01

    The configuration complexity and code size of an automated testing framework may grow to a point that the tester itself becomes a significant software artifact, prone to poor configuration and implementation errors. Unfortunately, testing the tester by using old versions of the software under test (SUT) may be impractical or impossible: test framework changes may have been motivated by interface changes in the tested system, or fault detection may become too expensive in terms of computing time to justify running until errors are detected on older versions of the software. We propose the use of path coverage measures as a "quick and dirty" method for detecting many faults in complex test frameworks. We also note the possibility of using techniques developed to diversify state-space searches in model checking to diversify test focus, and an associated classification of tester changes into focus-changing and non-focus-changing modifications.

  13. Effects of turbulence on the drag force on a golf ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2016-09-01

    Measurements are presented of the drag force on a golf ball dropped vertically into a tank of water. As observed previously in air, the drag coefficient drops sharply when the flow becomes turbulent. The experiment would be suitable for undergraduate students since it can be undertaken at low ball speeds and since the effects of turbulence are easily observed on video film. A modified golf ball was used to show how a ball with a smooth and a rough side, such as a cricket ball, is subject to a side force when the ball surface itself is asymmetrical in the transverse direction.

  14. Fatigue life of high-speed ball bearings with silicon nitride balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. The five-ball fatigue tester was used to test 12.7-mm- diameter silicon nitride balls at maximum Hertz stresses ranging from 4.27 x 10 to the 9th power n/sq m to 6.21 x 10 to the 9th power n/sq m at a race temperature of 328K. The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.

  15. TESTER: A Computer Program to Produce Individualized Multiple Choice Tests.

    ERIC Educational Resources Information Center

    Hamer, Robert; Young, Forrest W.

    1978-01-01

    TESTER, a computer program which produces individualized objective tests from a pool of items, is described. Available in both PL/1 and FORTRAN, TESTER may be executed either interactively or in batch. (Author/JKS)

  16. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  17. New reaction tester accurate within 56 microseconds

    NASA Technical Reports Server (NTRS)

    Brown, H.

    1972-01-01

    Testing device measures simple and disjunctive reaction time of human subject to light stimuli. Tester consists of reaction key, logic card, panel mounted neon indicators, and interconnecting wiring. Device is used for determining reaction times of patients undergoing postoperative neurological therapy.

  18. Wind-simulation tester for solar modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1981-01-01

    Tester induces cyclic pressure loads across module surface, guaranteeing its mechanical integrity. Module to be tested is sandwiched between stiffened aluminum layers covered with rubber sheets. Automatic front and back pressure loading is cycled by pneumatic system on separate stand. Relief valves prevent overpressuring. Fixture operates at high speed, completing cycle in 5 seconds, and typically applies 2,400 pascals.

  19. A formula for comparison of selected sport ball compressibility.

    PubMed Central

    Dowell, L J; Krebs, G

    1991-01-01

    The purpose of this study was to develop a formula to determine and compare the compressibility of selected sport balls. Six balls (basketball, volleyball, soccer ball, baseball, handball, golf ball) were dropped ten times from each of four different heights onto a smooth solid surface overlaid with a white sheet of typing paper, overlaid with a sheet of carbon paper. The diameter of the area of contact of each ball imprinted onto the typing paper was measured in millimetres with calipers. From the data, the distance (d) that each ball compressed for each velocity (v) was calculated. It was found that a linear relationship existed between velocity at impact and the distance for each ball studied. The compressibility coefficient (c) for each ball was calculated and a formula was developed to determine the distance each ball would compress at a given velocity. When velocity is measured in metres per second and the distance a ball compresses is measured in millimetres, the formula to determine d for selected balls, in order of compressibility is: basketball d = 3.07v, volleyball d = 2.90v, soccer ball d = 2.80v, baseball d = 0.77v, handball d = 0.53v, and golf ball d = 0.17v. PMID:1913029

  20. A formula for comparison of selected sport ball compressibility.

    PubMed

    Dowell, L J; Krebs, G

    1991-03-01

    The purpose of this study was to develop a formula to determine and compare the compressibility of selected sport balls. Six balls (basketball, volleyball, soccer ball, baseball, handball, golf ball) were dropped ten times from each of four different heights onto a smooth solid surface overlaid with a white sheet of typing paper, overlaid with a sheet of carbon paper. The diameter of the area of contact of each ball imprinted onto the typing paper was measured in millimetres with calipers. From the data, the distance (d) that each ball compressed for each velocity (v) was calculated. It was found that a linear relationship existed between velocity at impact and the distance for each ball studied. The compressibility coefficient (c) for each ball was calculated and a formula was developed to determine the distance each ball would compress at a given velocity. When velocity is measured in metres per second and the distance a ball compresses is measured in millimetres, the formula to determine d for selected balls, in order of compressibility is: basketball d = 3.07v, volleyball d = 2.90v, soccer ball d = 2.80v, baseball d = 0.77v, handball d = 0.53v, and golf ball d = 0.17v. PMID:1913029

  1. A formula for comparison of selected sport ball compressibility.

    PubMed

    Dowell, L J; Krebs, G

    1991-03-01

    The purpose of this study was to develop a formula to determine and compare the compressibility of selected sport balls. Six balls (basketball, volleyball, soccer ball, baseball, handball, golf ball) were dropped ten times from each of four different heights onto a smooth solid surface overlaid with a white sheet of typing paper, overlaid with a sheet of carbon paper. The diameter of the area of contact of each ball imprinted onto the typing paper was measured in millimetres with calipers. From the data, the distance (d) that each ball compressed for each velocity (v) was calculated. It was found that a linear relationship existed between velocity at impact and the distance for each ball studied. The compressibility coefficient (c) for each ball was calculated and a formula was developed to determine the distance each ball would compress at a given velocity. When velocity is measured in metres per second and the distance a ball compresses is measured in millimetres, the formula to determine d for selected balls, in order of compressibility is: basketball d = 3.07v, volleyball d = 2.90v, soccer ball d = 2.80v, baseball d = 0.77v, handball d = 0.53v, and golf ball d = 0.17v.

  2. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat...

  3. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat...

  4. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat...

  5. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat...

  6. 21 CFR 886.1170 - Color vision tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Color vision tester. 886.1170 Section 886.1170...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1170 Color vision tester. (a) Identification. A color vision tester is a device that consists of various colored materials, such as colored...

  7. 21 CFR 886.1170 - Color vision tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Color vision tester. 886.1170 Section 886.1170...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1170 Color vision tester. (a) Identification. A color vision tester is a device that consists of various colored materials, such as colored...

  8. 21 CFR 886.1170 - Color vision tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Color vision tester. 886.1170 Section 886.1170...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1170 Color vision tester. (a) Identification. A color vision tester is a device that consists of various colored materials, such as colored...

  9. 21 CFR 886.1170 - Color vision tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Color vision tester. 886.1170 Section 886.1170...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1170 Color vision tester. (a) Identification. A color vision tester is a device that consists of various colored materials, such as colored...

  10. 21 CFR 886.1170 - Color vision tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Color vision tester. 886.1170 Section 886.1170...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1170 Color vision tester. (a) Identification. A color vision tester is a device that consists of various colored materials, such as colored...

  11. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  12. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  13. 21 CFR 882.1410 - Electroencephalograph electrode/lead tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electroencephalograph electrode/lead tester. 882... Electroencephalograph electrode/lead tester. (a) Identification. An electroencephalograph electrode/lead tester is a device used for testing the impedance (resistance to alternating current) of the electrode and...

  14. 21 CFR 882.1410 - Electroencephalograph electrode/lead tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalograph electrode/lead tester. 882... Electroencephalograph electrode/lead tester. (a) Identification. An electroencephalograph electrode/lead tester is a device used for testing the impedance (resistance to alternating current) of the electrode and...

  15. 21 CFR 882.1410 - Electroencephalograph electrode/lead tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalograph electrode/lead tester. 882... Electroencephalograph electrode/lead tester. (a) Identification. An electroencephalograph electrode/lead tester is a device used for testing the impedance (resistance to alternating current) of the electrode and...

  16. 21 CFR 882.1410 - Electroencephalograph electrode/lead tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electroencephalograph electrode/lead tester. 882... Electroencephalograph electrode/lead tester. (a) Identification. An electroencephalograph electrode/lead tester is a device used for testing the impedance (resistance to alternating current) of the electrode and...

  17. 21 CFR 882.1410 - Electroencephalograph electrode/lead tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalograph electrode/lead tester. 882... Electroencephalograph electrode/lead tester. (a) Identification. An electroencephalograph electrode/lead tester is a device used for testing the impedance (resistance to alternating current) of the electrode and...

  18. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  19. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  20. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  1. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which...

  2. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which...

  3. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  4. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  5. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which...

  6. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  7. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  8. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  9. Bouncing Balls that Spin

    ERIC Educational Resources Information Center

    Knipp, Peter

    2008-01-01

    When a ball bounces elastically against a floor, the vertical component (v[subscript y]) of the velocity of the ball's mass-center changes sign. This is a special case of the elastic collision of two balls (i.e., two objects, neither of which is much more massive than the other), in which case the balls' post-collision relative velocity (=…

  10. Bearing tester data compilation analysis, and reporting and bearing math modeling

    NASA Technical Reports Server (NTRS)

    Cody, J. C.

    1986-01-01

    Integration of heat transfer coefficients, modified to account for local vapor quality, into the 45 mm bearing model has been completed. The model has been evaluated with two flow rates and subcooled and saturated coolant. The evaluation showed that by increasing the flow from 3.6 to 7.0 lbs/sec the average ball temperature was decreased by 102 F, using a coolant temperature of -230 F. The average ball temperature was decreased by 63 F by decreasing the inlet coolant temperature from saturated to -230 F at a flow rate of 7.0 lbs/sec. Since other factors such as friction, cage heating, etc., affect bearing temperatures, the above bearing temperature effects should be considered as trends and not absolute values. The two phase heat transfer modification has been installed in the 57 mm bearing model and the effects on bearing temperatures have been evaluated. The average ball temperature was decreased by 60 F by increasing the flow rate from 4.6 to 9.0 lbs/sec for the subcooled case. By decreasing the inlet coolant temperature from saturation to -24 F, the average ball temperature was decreased 57 F for a flow rate of 9.0 lbs/sec. The technique of relating the two phase heat transfer coefficient to local vapor quality will be applied to the tester model and compared with test data.

  11. Rolling Motion of a Ball Spinning about a Near-Vertical Axis

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed [omega]. When v = R[omega], where R is the ball radius, the ball will start rolling and the friction force drops almost…

  12. Development of a second generation rolling contact fatigue tester

    NASA Astrophysics Data System (ADS)

    Deshmukh, Satyam U.

    Contact fatigue failure has been in research since the early twentieth century. The need for a second generation sliding-rolling contact fatigue tester was proposed by Gregory Dvorak and Dr. Marcellin Zahui. The first generation RCF tester was used for testing super finishing processes for gear surfaces. The second generation RCF tester was funded by the Advanced Engineering Materials lab of University of North Dakota. Verification of the second generation Rolling Contact Fatigue Tester will be discussed in this thesis including the design details, assembly and testing procedure and to discuss its different parameters. The tester will have the capability of testing hollow specimens using a bobbin eddy current testing probe. This tester will allow a wide range of experiments and is not built for one specific purpose. An eddy current device is used for detecting cracks. The loading force is applied using hydraulic cylinders and a hydraulic power unit. Before testing began, the machine was run for some time at full speed. A lot of minor problems were detected and fixed. Three specimens of AISI 8620 were tested in this tester. All tests gave results matching with some of the other well-known RCF testers. These tests were performed to evaluate mechanical limits of the tester and to evaluate the software performance of the tester.

  13. Ball valve extractor

    DOEpatents

    Herndon, Charles; Brown, Roger A.

    2002-01-01

    An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.

  14. Having a Ball with Fitness Balls

    ERIC Educational Resources Information Center

    McNulty, Betty

    2011-01-01

    Fitness programs can be greatly enhanced with the addition of fitness balls. They are a fun, challenging, economical, and safe way to incorporate a cardiovascular, strength, and stretching program for all fitness levels in a physical education setting. The use of these balls has become more popular during the last decade, and their benefits and…

  15. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  16. The Goldenrod Ball Gall

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1974-01-01

    The paper presents a generalized life history of the goldenrod ball gall, a ball-shaped swelling found almost exclusively on the Canada goldenrod, Solidago canadensis, and caused by a peacock fly know as Eurosta soldiaginis. (KM)

  17. Small-Bolt Torque-Tension Tester

    NASA Technical Reports Server (NTRS)

    Posey, Alan J.

    2009-01-01

    The device described here measures the torque-tension relationship for fasteners as small as #0. The small-bolt tester consists of a plate of high-strength steel into which three miniature load cells are recessed. The depth of the recess is sized so that the three load cells can be shimmed, the optimum height depending upon the test hardware. The three miniature load cells are arranged in an equilateral triangular configuration with the test bolt aligned with the centroid of the three. This is a kinematic arrangement.

  18. Rotordynamic analysis of a bearing tester

    NASA Technical Reports Server (NTRS)

    Zalik, Richard A.

    1988-01-01

    The properties of the solutions of a system of four coupled nonlinear differential equations that model the behavior of the rotating shaft of a bearing tester are studied. In particular, it is shown how the bounds for the rotations of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solution, the approach to the stability boundary can also be predicted. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots.

  19. Determination of contact time of rubber balls using a digital oscilloscope

    NASA Astrophysics Data System (ADS)

    Wadhwa, Ajay

    2010-11-01

    We present a new method for determining the contact time of a rubber ball with the rebounding surface by using a sound-detecting electronic circuit and a digital storage oscilloscope. The rubber ball (a tennis ball or squash ball) is dropped from a known height onto a rigid surface and its contact time on first bounce is determined on the oscilloscope. Using the known value of the coefficient of restitution (COR) of the ball-surface combination, we also determine the value of air pressure inside the ball.

  20. Ball Screw Actuator Including a Compliant Ball Screw Stop

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2015-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  1. Fizz-Ball Fizzics

    ERIC Educational Resources Information Center

    Moinester, Murray; Gerland, Lars; Liger-Belair, Gerard; Ocherashvili, Aharon

    2012-01-01

    We describe the fluid dynamics principles governing the up-down oscillatory cycling of a bubble-covered, low-density, low-mass ball of material (referred to henceforth as a "fizz-ball") immersed inside a glass of bubbling (super-saturated) carbonated liquid. The bubbles serve to desaturate the liquid of excess CO[subscript 2]. The fizz-ball acts…

  2. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  3. Flexible resistive heat battery tester and holder

    SciTech Connect

    Parker, R.

    1988-02-23

    A battery tester for dry cell batteries, particularly adapted for ''button-type'' batteries, in which the passage of electrical current from an associated battery being tested causes color change in the tester proportional to the electrical energy of the battery being tested, is described comprising: a flexible substrate having a body section and a pair of oppositely located outwardly extending wing sections having a different width than the body section, a pattern of electrically conductive material positioned on the substrate and which extends across the body section of the substrate and has a terminal end point on each of the pair of wing sections of the substrate, and a quantity of cholesteric liquid crystal material positioned on the body section and in alignment with a section of the pattern of electrically conductive material. Upon bending at least the pair of wing sections of the substrate and placing the terminal end points of the pattern of electrically conductive material on opposite terminals of an associated battery to be tested, electrical current flows through the conductive material causing a heating and color change of the liquid crystal material proportional to the electrical energy of an associated battery being tested.

  4. Balls on the Lawn

    NASA Astrophysics Data System (ADS)

    Mallows, Colin L.; Shapiro, Lou

    1999-03-01

    In the "tennis ball" problem we are given successive pairs of balls numbered (1,2), (3,4),... At each stage we throw one ball out of the window. After n stages some set of n balls is on the lawn. We find a generating function and a closed formula for the sequence 3, 23, 131, 664, 3166, 14545, 65187, 287060, 1247690,..., the n-th term of which gives the sum over all possible arrangements of the total of the numbers on the balls on the lawn. The problem has connections with "bicolored Motzkin paths" and the ballot problem.

  5. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  6. Perceptual elements in Penn & Teller's "Cups and Balls" magic trick.

    PubMed

    Rieiro, Hector; Martinez-Conde, Susana; Macknik, Stephen L

    2013-01-01

    Magic illusions provide the perceptual and cognitive scientist with a toolbox of experimental manipulations and testable hypotheses about the building blocks of conscious experience. Here we studied several sleight-of-hand manipulations in the performance of the classic "Cups and Balls" magic trick (where balls appear and disappear inside upside-down opaque cups). We examined a version inspired by the entertainment duo Penn & Teller, conducted with three opaque and subsequently with three transparent cups. Magician Teller used his right hand to load (i.e. introduce surreptitiously) a small ball inside each of two upside-down cups, one at a time, while using his left hand to remove a different ball from the upside-down bottom of the cup. The sleight at the third cup involved one of six manipulations: (a) standard maneuver, (b) standard maneuver without a third ball, (c) ball placed on the table, (d) ball lifted, (e) ball dropped to the floor, and (f) ball stuck to the cup. Seven subjects watched the videos of the performances while reporting, via button press, whenever balls were removed from the cups/table (button "1") or placed inside the cups/on the table (button "2"). Subjects' perception was more accurate with transparent than with opaque cups. Perceptual performance was worse for the conditions where the ball was placed on the table, or stuck to the cup, than for the standard maneuver. The condition in which the ball was lifted displaced the subjects' gaze position the most, whereas the condition in which there was no ball caused the smallest gaze displacement. Training improved the subjects' perceptual performance. Occlusion of the magician's face did not affect the subjects' perception, suggesting that gaze misdirection does not play a strong role in the Cups and Balls illusion. Our results have implications for how to optimize the performance of this classic magic trick, and for the types of hand and object motion that maximize magic misdirection.

  7. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in...

  8. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in...

  9. Operating manual for the miniservo-control tester

    USGS Publications Warehouse

    Rapp, W.L.

    1986-01-01

    Ever since the implementation of servo-control units (regular and minimodels) with manometers at U. S. Geological Survey streamflow stations, the need for an effective and efficient servo-control unit tester has been paramount among field personnel. In numerous cases, servo-control unit failures were blamed on battery failures and vice versa. There was no valid instrument to definitively identify cause of failure, let alone properly diagnose the servo-control/manometer system. In 1983, two servo-control unit testers were developed and fabricated. One was mechanical in fabrication, operation, and serviceability; the other was electronic. The testers were extensively used and evaluated in Maine, Ohio, Kansas, and Louisiana under a wide range of environmental conditions. The consensus to integrate the best aspects of both testers into one instrument allowed the Survey to finally solve its long-time need for an effective, efficient servo-control unit tester. (USGS)

  10. Sixty-four-Channel Inline Cable Tester

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.

  11. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2012-01-01

    A stemless ball valve comprising: a right flange; left flange; ball with an axis pin and two travel pins; ball seal on either side of the ball; guide sleeve with inner walls comprising two channels; cartridge guide holder; inner magnetic cartridge; and outer magnetic cartridge. The ball is situated inside of the guide sleeve, and a travel pin is located in each of the two channels. The guide sleeve is situated inside of the cartridge guide holder, which is located adjacent to and outside of the inner magnetic cartridge and secured to the inner magnetic cartridge such that when the inner magnetic cartridge rotates, the cartridge guide holder also rotates. The cartridge guide holder is secured to the guide sleeve such that when the cartridge guide holder rotates, the travel pins move within the channels in the inner walls of the guide sleeve, thereby causing the ball to rotate.

  12. The bounce of a ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    1999-03-01

    In this paper, the dynamics of a bouncing ball is described for several common ball types having different bounce characteristics. Results are presented for a tennis ball, a baseball, a golf ball, a superball, a steel ball bearing, a plasticene ball, and a silly putty ball. The plasticene ball was studied as an extreme case of a ball with a low coefficient of restitution (in fact zero, since the collision is totally inelastic) and the silly putty ball was studied because it has unusual elastic properties. The first three balls were studied because of their significance in the physics of sports. For each ball, a dynamic hysteresis curve is presented to show how energy is lost during and after the collision. The measurement technique is quite simple, it is suited for undergraduate laboratory experiments, and it may provide a useful method to test and approve balls for major sporting events.

  13. Physics of ball sports

    NASA Astrophysics Data System (ADS)

    Cohen, C.; Clanet, C.

    2016-06-01

    Ball sports have been part of human history for thousands of years [1]. Nowadays, 13 of them are part of the Olympic games (badminton, basketball, beach volley, football/soccer, golf, handball, hockey, rugby, table tennis, tennis, volleyball, water polo, ice hockey). All these games differ by launcher (hand, club, racket, bat), ball (size, shape and mass), pitch size and number of players. These differences induce different ball velocities. Apart from the velocities and the way to maximize them, we discuss in this article the ball trajectories and their impact on the size of sports fields.

  14. Ball Bearing Mechanics

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Load-deflection relationships for different types of elliptical contacts such as those found in a ball bearing are developed. Simplified expressions that allow quick calculations of deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented. Ball bearings subjected to radial, thrust and combined ball loads are analyzed. A design criterion for fatigue life of ball bearings is developed. The section of a satisfactory lubricant, as well as describing systems that provide a constant flow of lubricant to the contact, is considered.

  15. Birth of ball lightning

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Smith, D.; Nelson, K. E.; Crompton, R. W.; Murphy, A. B.

    2012-10-01

    Many observations of ball lightning report a ball of light, about 10 cm in diameter, moving at about walking speed, lasting up to 20 s and frequently existing inside of houses and even aeroplanes. The present paper reports detailed observations of the initiation or birth of ball lightning. In two cases, navigation crew of aircraft saw ball lightning form at the windscreen inside the cockpit of their planes. In the first case, the ball lightning occurred during a thunderstorm, with much lightning activity outside of the plane. In the second case, large "horns" of electrical corona were seen outside of the plane at the surface of the radome, just prior to the formation of the ball lightning. A third case reports ball lightning formed inside of a house, during a thunderstorm, at a closed glass window. It is proposed, based on two-dimensional calculations of electron and ion transport, that ball lightning in these cases is driven and formed by atmospheric ions impinging and collecting on the insulating surface of the glass or Perspex windows. This surface charge can produce electric fields inside of the cockpit or room sufficient to sustain an electric discharge. Charges of opposite sign to those outside of the window accumulate on the inside surface of the glass, leaving a ball of net charge moving inside of the cockpit or room to produce a pulsed discharge on a microsecond time scale.

  16. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  17. The dynamic behavior of squash balls

    NASA Astrophysics Data System (ADS)

    Lewis, Gareth J.; Arnold, J. Cris; Griffiths, Iwan W.

    2011-03-01

    The behavior of a squash ball constitutes an excellent case study of the dynamic behavior of rubbery materials. It is shown that the complex viscoelastic behavior of rubber can be investigated using simple drop bounce tests and compression tests. The drop tests show that the coefficient of restitution increases as the ball temperature increases. The compression tests show that as the speed of compression increases or as the ball temperature decreases, the compressive force and the energy loss both increase. These effects are due to the viscoelastic nature of the rubber and are an excellent example of the time-temperature equivalence of polymers. Compression tests were performed on balls with small holes at the base to separate the effects of the internal air pressure from the material deformation. It was found that the internal air pressure contributed about one-third to the compressive force, but contributed little to energy loss. This behavior shows that the rubber material dominates the rebound behavior and that the normal warming up process at the start of a squash game is important to raise the temperature of the rubber rather than to increase the internal air pressure.

  18. The Rocketdyne Multifunction Tester. Part 1: Test Method

    NASA Technical Reports Server (NTRS)

    Murphy, Brian T.; Scharrer, Joseph K.; Sutton, Robert F.

    1991-01-01

    The Rocketdyne Multifunction Tester is a general purpose test apparatus which utilizes axial and radial magnetic bearings as shaft excitation devices. The tester is modular in design so that different seal and bearing packages can be tested on the same test stand. The tester will be used for rotordynamic coefficient extraction, as well as life and fluid/material compatibility evaluations. Use of a magnetic bearing as a shaft excitation device opens up many possibilities for shaft excitation and rotordynamic coefficient extraction. In addition to describing the basic apparatus, some of the excitation and extraction methods are described. Some of the excitation methods to be discussed include random, aperiodic, harmonic, impulse and chirp.

  19. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  20. Great balls of fire

    NASA Astrophysics Data System (ADS)

    Stenhoff, Mark; reader01; jjherrera

    2014-03-01

    In reply to the physicsworld.com news article “Burning soil fuels ball lightning” (9 January, http://ow.ly/tl8aO) on evidence that a burning core of soil acts as an energy source for ball lightning.

  1. The Hobart Time Ball and Time Gun: a Critical Review

    NASA Astrophysics Data System (ADS)

    Kinns, Roger

    2011-07-01

    Discussion at the Royal Society in Hobart in 1865 and acoustic experiments in 1868 led to a combined time ball and time gun service in Hobart from March 1875. Complaints from residents led to relocation of the gun a month later, but it was then fired from Queen's Battery in the Domain for half a century. The drop of the ball at Battery Point was always the master signal; the gun was fired when the ball was seen to drop. During the early years, private citizens in Hobart provided the time reference. From September 1886, an electric telegraph signal from Hobart Observatory was used to provide correct time to the ball operator, but signals were of questionable accuracy. During February 1910, the source of the telegraph signal was changed from Hobart Observatory to Melbourne Observatory, but the service was still unreliable and there was pressure to re-equip Hobart Observatory. Finally, automatic dropping of the time ball by telegraph from Melbourne was introduced in November 1910. The time ball service ended in February 1927. The time gun had probably ceased to operate by the end of 1923, but before that date there were sometimes long gaps in the time gun service, particularly on Sundays.

  2. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2011-01-01

    A stemless ball valve comprising two flanges and a ball with a channel, two axis pins and two travel pins. One end of each axis and travel pin is fixedly attached to the ball, and the other end of each axis pin is lodged into a notch in the first or second flange such that the axis pin is allowed to rotate in the notch. The guide sleeve comprises two channels, and one end of each travel pin is situated within one of the two channels in the guide sleeve. An outer magnetic cartridge causes the inner magnetic cartridge and guide sleeve to rotate, and when the guide sleeve rotates, the travel pins move up and down within the channels in the guide sleeve. The movement of the travel pins within the channels in the guide sleeve causes the ball to rotate, thereby opening and closing the ball valve.

  3. Portable Optical Sensor Tester (POST) Calibration Technique

    NASA Astrophysics Data System (ADS)

    Levine, Michael A.; Randolph, Clyde A.

    1983-09-01

    The Portable Optical Sensor Tester (POST) is a low background, long wavelength infrared test and calibration chamber used for evaluation and calibration of developmental LWIR sensors. It is operated by Rockwell International for the Ballistic Missile Defense Advanced Technology Center (BMDATC). The POST system generates a collimated output IR beam from a working blackbody source for test and calibration of LWIR sensors. Internal scan mirrors are used to scan the output beam to simulate flight sensor scanning. The optical path has eleven reflective surfaces making a spectral calibration of the output beam necessary. This calibration is accomplished by utilizing an NBS calibrated blackbody with a calibration accuracy of 4.2% (la quadrature accuracy = 2.0%) as a reference standard. In situ calibration of the output beam is accomplished by sampling part of the output beam and comparing it spectrally, point by point, with the output from the reference blackbody. A grating cube spectroradiometer resident in POST is used to make the spectral comparison. By careful analysis of the diffraction effects at the reference blackbody source and the utilization of a single reflective optical element to direct the reference source energy to the spectroradiometer, the calibration uncertainties are minimized.

  4. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.4 Tolerances for dockage testers. The maintenance tolerances...

  5. Happy Balls, Unhappy Balls, and Newton's Cradle

    ERIC Educational Resources Information Center

    Kagan, David

    2010-01-01

    The intricacies of Newton's Cradle are well covered in the literature going as far back as the time of Newton! These discussions generally center on the highly elastic collisions of metal spheres. Thanks to the invention of happy and unhappy balls, you can build and study the interaction of less elastic systems (see Fig. 1).

  6. Happy Balls, Unhappy Balls, and Newton's Cradle

    NASA Astrophysics Data System (ADS)

    Kagan, David

    2010-03-01

    The intricacies of Newton's Cradle are well covered in the literature2-4 going as far back as the time of Newton!5 These discussions generally center on the highly elastic collisions of metal spheres. Thanks to the invention of happy and unhappy balls,6 you can build and study the interaction of less elastic systems (see Fig. 1).

  7. A Cheap, Semiquantitative Hand-Held Conductivity Tester.

    ERIC Educational Resources Information Center

    Zawacky, Susan K. S.

    1995-01-01

    Describes a design for a hand-held conductivity tester powered by a 9V battery that gives semi-quantitative results for aqueous electrolyte solutions of concentrations ranging from 0.001 M to 0.1 M. The tester uses a bar-graph LED driven by an LM3914 integrated circuit to indicate the level of conductivity. A list of parts, procedures, and results…

  8. A proposal for dynamic calibration of brake tester

    NASA Astrophysics Data System (ADS)

    Ferreira, Paulo L. S.; Couto, Paulo R. G.; Cabral, Luiz C.; Reis, Ronaldo G.; Zillner, Marcos

    2015-10-01

    In Brazil there are about 400 security inspection lines carrier operating in Inspection Bodies accredited by Cgcre Inmetro [1]. The equipment in this proposal is a Brake Tester that measure vehicle braking forces and it is a component of an inspection line. This paper proposes a dynamic Brake Tester calibration using a reference torque transducer. This article can also be the basis for future discussions of the revised standard manufacturing of vehicle inspection line according to ABNT NBR 14040 [2].

  9. Evaluation of load-life relation with ball bearings at 500 F

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.; Bamberger, E. N.

    1973-01-01

    A survey of the literature suggests that a stress-life exponent of approximately 12 is typical of vacuum-processed steels for ball bearings rather than the exponent of 9 which has been generally accepted by the bearing industry and bearing users. Tests run with vacuum-degassed AISI 52100 balls in the five-ball fatigue tester at four maximum Hertz stress levels in the range from 650,000 to 875,000 psi showed good agreement with the literature. However, tests run with consumable-electrode vacuum melted AISI M-50 steel angular-contact ball bearings at 500 F at three thrust loads did not show significant deviation from the accepted ninth power stress-life relation.

  10. Compact Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.

    2016-07-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  11. Solving ball lightning—A reply to Stefan and Massey (2008)

    NASA Astrophysics Data System (ADS)

    Coleman, Peter Francis

    2009-06-01

    Comments are made on the ball lightning paper of Stephan and Massey [Stefan, K.D., Massey, N., 2008. Burning molten metallic sphere: One class of ball lightning? Journal of Atmospheric and Solar-Terrestrial Physics 70, 1589-1596] that describes their [`]welding drop' theory. An alternative theory is offered based on combustion inside an atmospheric vortex. The [`]vortex fireball' hypothesis has good explanatory capability in regard to published ball lightning properties.

  12. Inserts Automatically Lubricate Ball Bearings

    NASA Technical Reports Server (NTRS)

    Hager, J. A.

    1983-01-01

    Inserts on ball-separator ring of ball bearings provide continuous film of lubricant on ball surfaces. Inserts are machined or molded. Small inserts in ball pockets provide steady supply of lubricant. Technique is utilized on equipment for which maintenance is often poor and lubrication interval is uncertain, such as household appliances, automobiles, and marine engines.

  13. Super Ball Bot

    NASA Video Gallery

    Tensegrity Robot: Child's Play or Space Tech? Super Ball Bot is an all-in-one landing and mobility platform based on tensegrity structures, allowing for lower-cost, and more reliable planetary miss...

  14. Introduction to ball bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    The purpose of a ball bearing is to provide a relative positioning and rotational freedom while transmitting a load between two structures, usually a shaft and a housing. For high rotational speeds (e.g., in gyroscope ball bearings) the purpose can be expanded to include rotational freedom with practically no wear in the bearing. This condition can be achieved by separating the bearing parts with a coherent film of fluid known as an elastohydrodynamic film. This film can be maintained not only when the bearing carries the load on a shaft, but also when the bearing is preloaded to position the shaft to within micro- or nano-inch accuracy and stability. Background information on ball bearings is provided, different types of ball bearings and their geometry and kinematics are defined, bearing materials, manufacturing processes, and separators are discussed. It is assumed, for the purposes of analysis, that the bearing carries no load.

  15. Passive Ball Capture Joint

    NASA Technical Reports Server (NTRS)

    Cloyd, Richard A. (Inventor); Bryan, Thomas C. (Inventor)

    2003-01-01

    A passive ball capture joint has a sleeve with a plurality of bores distributed about a circumference thereof and formed therethrough at an acute angle relative to the sleeve's longitudinal axis. A spring-loaded retainer is slidingly fitted in each bore and is biased such that, if allowed, will extend at least partially into the sleeve to retain a ball therein. A ring, rotatably mounted about the bores, has an interior wall defining a plurality of shaped races that bear against the spring-loaded retainers. A mechanized rotational force producer is coupled to the ring. The ring can be rotated from a first position (that presses the retainers into the sleeve to lock the ball in place) to a second position (that allows the retainers to springback out of the sleeve to release the ball).

  16. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  17. Impact behavior of hollow balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2014-03-01

    Measurements are presented of the force acting on ping-pong and squash balls impacting on a force plate. Both ball types are hollow and have the same diameter but deform in very different ways. Ping pong balls are relatively stiff and buckle inwards at high impact speeds, while squash balls are softer and tend to squash or flatten. The buckling process generates a large-amplitude, high-frequency oscillation of the force acting on a ping-pong ball. Squash balls are initially very stiff before they soften, with the result that the force on the ball rises to about half its maximum value in the first 20 μs. Ping-pong balls have a high coefficient of restitution (COR), while squash balls have a low COR. Results for both ball types are interpreted in terms of additional experimental observations.

  18. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  19. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  20. Ball lightning burn.

    PubMed

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications.

  1. Ball lightning burn.

    PubMed

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications. PMID:12792547

  2. Hex ball torque test

    NASA Technical Reports Server (NTRS)

    Robinson, B. A.; Foster, C. L.

    1986-01-01

    A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying capability of this device. The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would wear-in after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.

  3. A remote tester for surge arresters: Final report

    SciTech Connect

    Shaw, J.H.

    1986-12-01

    Laboratory studies show that the most probable indication that a surge arrester is failing is electromagnetic energy emission. In field trials by eight utilities, a tester designed to detect radiofrequency emissions located defective arresters, but stray emissions in the environment limited its performance.

  4. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720...

  5. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720...

  6. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  7. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  8. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in the mobility of the tympanic membrane due to stiffness, flaccidity, or the presence of fluid in the middle...

  9. Balls and Spheres

    ERIC Educational Resources Information Center

    Szekely, George

    2011-01-01

    This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…

  10. Inter-tester Agreement in Refractive Error Measurements

    PubMed Central

    Huang, Jiayan; Maguire, Maureen G.; Ciner, Elise; Kulp, Marjean T.; Quinn, Graham E.; Orel-Bixler, Deborah; Cyert, Lynn A.; Moore, Bruce; Ying, Gui-Shuang

    2014-01-01

    Purpose To determine the inter-tester agreement of refractive error measurements between lay and nurse screeners using the Retinomax Autorefractor (Retinomax) and the SureSight Vision Screener (SureSight). Methods Trained lay and nurse screeners measured refractive error in 1452 preschoolers (3- to 5-years old) using the Retinomax and the SureSight in a random order for screeners and instruments. Inter-tester agreement between lay and nurse screeners was assessed for sphere, cylinder and spherical equivalent (SE) using the mean difference and the 95% limits of agreement. The mean inter-tester difference (lay minus nurse) was compared between groups defined based on child’s age, cycloplegic refractive error, and the reading’s confidence number using analysis of variance. The limits of agreement were compared between groups using the Brown-Forsythe test. Inter-eye correlation was accounted for in all analyses. Results The mean inter-tester differences (95% limits of agreement) were −0.04 (−1.63, 1.54) Diopter (D) sphere, 0.00 (−0.52, 0.51) D cylinder, and −0.04 (1.65, 1.56) D SE for the Retinomax; and 0.05 (−1.48, 1.58) D sphere, 0.01 (−0.58, 0.60) D cylinder, and 0.06 (−1.45, 1.57) D SE for the SureSight. For either instrument, the mean inter-tester differences in sphere and SE did not differ by the child’s age, cycloplegic refractive error, or the reading’s confidence number. However, for both instruments, the limits of agreement were wider when eyes had significant refractive error or the reading’s confidence number was below the manufacturer’s recommended value. Conclusions Among Head Start preschool children, trained lay and nurse screeners agree well in measuring refractive error using the Retinomax or the SureSight. Both instruments had similar inter-tester agreement in refractive error measurements independent of the child’s age. Significant refractive error and a reading with low confidence number were associated with worse inter-tester

  11. Detonator-activated ball shutter

    DOEpatents

    McWilliams, R.A.; Holle, W.G. von.

    1983-08-16

    A detonator-activated ball shutter for closing an aperture in about 300[mu] seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture. 3 figs.

  12. Detonator-activated ball shutter

    DOEpatents

    McWilliams, Roy A.; von Holle, William G.

    1983-01-01

    A detonator-activated ball shutter for closing an aperture in about 300.mu. seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture.

  13. Visual Skills: Watch the Ball?

    ERIC Educational Resources Information Center

    Moen, Sue

    1989-01-01

    In tennis as well as in other racket/paddle sports, simply watching the ball does not guarantee success in hitting the ball to the desired location. Teachers and coaches should teach players to integrate available visual, spatial, and kinesthetic information. Several drills for good ball contact are outlined. (IAH)

  14. Stemless Ball Valve

    NASA Technical Reports Server (NTRS)

    Burgess, Robert K.; Yakos, David; Walthall, Bryan

    2012-01-01

    This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.

  15. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  16. Ball Lightning Investigations

    NASA Astrophysics Data System (ADS)

    Bychkov, V. L.; Nikitin, A. I.; Dijkhuis, G. C.

    Ball lightning (BL) researches' review and theoretical models of three different authors are presented. The general review covers investigations from 1838 until the present day, and includes a discussion on observation data, experimental modeling, and theoretical approaches. Section 6.1 is written by Bychkov and Nikitin; authors of the sections 6.2, 6.3 and 6.4 are, respectively, Bychkov, Nikitin and Dijkhuis.

  17. Water ball collision

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.

    1986-01-01

    What happens if a stainless steel ball hits a water ball in the weightless space ot the Universe? In other words, it was the objective of our experiments in the Space to observe the surface tension of liquid by means of making a solid collide with a liquid. Place a small volume of water between 2 glass sheets to make a thin water membrane: the 2 glass sheets cannot be separated unless an enormous force is applied. It is obvious from this phenomenom that the surface tension of water is far greater than presumed. On Earth, however, it is impossible in most cases to observe only the surface tension of liquid, because gravity always acts on the surface tension. Water and stainless steel balls were chosen the liquid and solids for the experiments. Because water is the liquid most familiar to us, its properties are well known. And it is also of great interest to compare its properties on the Earth with those in the weightless space.

  18. Great (Flame) Balls of Fire! Structure of Flame Balls at Low Lewis-number-2 (SOFBALL-2)

    NASA Technical Reports Server (NTRS)

    Ronney, Paul; Weiland, Karen J.; Over, Ann (Technical Monitor)

    2002-01-01

    Everyone knows that an automobile engine wastes fuel and energy when it runs with a fuel-rich mixture. 'Lean' burning, mixing in more air and less fuel, is better for the environment. But lean mixtures also lead to engine misfiring and rough operation. No one knows the ultimate limits for lean operation, for 'weak' combustion that is friendly to the environment while still moving us around. This is where the accidental verification of a decades-old prediction may have strong implications for designing and running low-emissions engines in the 21st century. In 1944, Soviet physicist Yakov Zeldovich predicted that stationary, spherical flames are possible under limited conditions in lean fuel-air mixtures. Dr. Paul Ronney of the University of Southern California accidentally discovered such 'flame balls' in experiments with lean hydrogen-air mixtures in 1984 during drop-tower experiments that provided just 2.2 seconds of near weightlessness. Experiments aboard NASA's low-g aircraft confirmed the results, but a thorough investigation was hampered by the aircraft's bumpy ride. And stable flame balls can only exist in microgravity. The potential for investigating combustion at the limits of flammability, and the implications for spacecraft fire safety, led to the Structure of Flame Balls at Low Lewis-number (SOFBALL) experiment flown twice aboard the Space Shuttle on the Microgravity Sciences Laboratory-1 (MSL-1) in 1997. Success there led to the planned reflight on STS-107. Flame balls are the weakest fires yet produced in space or on Earth. Typically each flame ball produced only 1 watt of thermal power. By comparison, a birthday candle produces 50 watts. The Lewis-number measures the rate of diffusion of fuel into the flame ball relative to the rate of diffusion of heat away from the flame ball. Lewis-number mixtures conduct heat poorly. Hydrogen and methane are the only fuels that provide low enough Lewis-numbers to produce stable flame balls, and even then only for

  19. Dynamic characterization of a new accelerated heart valve tester.

    PubMed

    Menzler, F; Haubold, A D; Hwang, N H

    1997-01-01

    This paper presents a new accelerated prosthetic heart valve tester prototype that incorporates a camshaft and poppet valves. A three element Windkessel system is used to mimic the afterload of the human systemic circulation. The device is capable of testing eight valves simultaneously at a rate up to 1,250 cycles/min, while the flow rate, the pressure, and the valve loading can be monitored and adjusted individually. The tester was characterized and calibrated using a set of eight Carpentier-Edwards bioprostheses at a flow rate varying between 3 and 5 L/min. The experiment was carried out with the pressure difference across the closed heart valve maintained between 140 and 190 mmHg. Smooth and complete opening and closing of the valve leaflets was achieved at all cycling rates. This confirms that the velocity profiles approaching the test valves were uniform, an important factor that allows the test valves to open and close synchronously each time.

  20. Non-Intrusive Impedance-Based Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A non-intrusive electrical cable tester determines the nature and location of a discontinuity in a cable through application of an oscillating signal to one end of the cable. The frequency of the oscillating signal is varied in increments until a minimum, close to zero voltage is measured at a signal injection point which is indicative of a minimum impedance at that point. The frequency of the test signal at which the minimum impedance occurs is then employed to determine the distance to the discontinuity by employing a formula which relates this distance to the signal frequency and the velocity factor of the cable. A numerically controlled oscillator is provided to generate the oscillating signal, and a microcontroller automatically controls operation of the cable tester to make the desired measurements and display the results. The device is contained in a portable housing which may be hand held to facilitate convenient use of the device in difficult to access locations.

  1. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  2. Rolling-element fatigue lives of AISI 52100 steel balls with several synthetic lubricants

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1976-01-01

    Rolling-element fatigue tests were run with three synthetic lubricants with and without antiwear additives and with a paraffinic mineral oil at race temperatures of 336 to 353 K (146 146 to 175 F). The five-ball fatigue tester was used with steel balls to evaluate the relative fatigue lives with each of six lubricant-additive combinations. The tests were run at 5,520 MPa (800,000psi) maximum Hertz stress, 10,000 rpm shaft speed, and 30 deg contact angle. The lubricants tested have similar kinetic viscosities at 372 K (210 F) ranging from 0.034 to 0.089 sq cm/sec (3.4 to 8.9 cS). At these conditions, the mode of failure in the five-ball fatigue tester was classical subsurface rolling-element fatigue. The baseline for comparison of fatigue life was the paraffinic mineral oil without additives. The effects of the synthetic lubricants and their additives, which are useful for boundary lubrication, oxidation or foam inhibition, were evaluated.

  3. Polyurethane retainers for ball bearings

    NASA Technical Reports Server (NTRS)

    Christy, R. I.

    1973-01-01

    Evaluation of a new ball bearing retainer material is reported. A special composite polyurethane foam ball retainer has been developed that has virtually zero wear, is chemically inert to hydrocarbon lubricants, and stores up to 60 times as much lubricant per unit volume as the most commonly used retainer material, cotton phenolic. This new retainer concept shows promise of years of ball bearing operation without reoiling, based on life testing in high vacuum.

  4. Physics in a Glitter Ball

    ERIC Educational Resources Information Center

    Trikosko, Walter

    2011-01-01

    Maui Toys' Water Bouncer (Fig. 1) is a water-filled ball containing glitter. Buy one and put it on your desk and students can't keep their hands off of it. Pitch the ball in the air giving it a quick spin. When you catch it you will see a sparkling vortex. Twist the ball around different ways and the angular momentum of the fluid keeps the axis of…

  5. PEPC LRU: Ball Support Assembly

    SciTech Connect

    Alger, T

    1999-05-14

    The PEPC LRU upper ball support assembly consists of a ball and a pneumatic air cylinder/conical seat latching mechanism to be attached to the optics support frame,and a ball attached to the PEPC LRU. Both components are designed to allow manual positioning in three axes. Upon insertion of the PEPC LRU into the structure, the upper pneumatic cylinder is actuated to latch the two assemblies together through the conical seat device to grab the lower ball to support the LRU weight. To be conservative, the design load for the assembly is 1500 pounds (the prototype PEPC LRU weight was measured to be near 1380 pounds).

  6. The "Policy Cycle": A Ball by Ball Account.

    ERIC Educational Resources Information Center

    Hatcher, Richard; Troyna, Barry

    1994-01-01

    Concerned with Stephen Ball's theoretical and empirical contribution to contemporary "education policy sociology," this article examines the efficacy of his theoretical eclecticism, highlighting incompatibilities in his interpretation and application of certain social and political theorists. Ball's representation of the policy cycle, as applied…

  7. Surface phenomena: Contact time of a bouncing drop

    NASA Astrophysics Data System (ADS)

    Richard, Denis; Clanet, Christophe; Quéré, David

    2002-06-01

    When a liquid drop lands on a solid surface without wetting it, it bounces with remarkable elasticity. Here we measure how long the drop remains in contact with the solid during the shock, a problem that was considered by Hertz for a bouncing ball. Our findings could help to quantify the efficiency of water-repellent surfaces (super-hydrophobic solids) and to improve water-cooling of hot solids, which is limited by the rebounding of drops as well as by temperature effects.

  8. Holy Balls!: Part Deux

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Jandron, Michael; Truscott, Tadd

    2012-11-01

    A Waboba® (WAter BOuncing BAll) demonstrates remarkable water skipping behavior, even at relatively large impact angles. The highly compliant nature of these elastic spheres results in significant deformation into a disk-like shape upon impact. The increased wetted area and force coefficient generates a large hydrodynamic force that more readily lifts the ball off the water surface. However, elasticity introduces some surprising phenomena, such as material waves that propagate on the sphere and interact with the water cavity. Depending upon impact conditions, material waves may propagate in various directions combining to create multiple modes of deformation and complicated fluid-structure interactions. Furthermore, the timescales of deformation and wave propagation depend on the material properties and impact conditions. In this talk, we will discuss skipping regimes in terms of impact parameters and material properties and relate failed skipping behavior to the structure-fluid interaction caused by deformation. The critical timescales for deformation, wave propagation and collision will be related to the relevant physical parameters of the problem.

  9. Atmospheric Ball Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Wurden, C. J. V.; Wurden, G. A.

    2008-11-01

    Free-floating atmospheric pressure copper hydroxyl ball plasmas have been studied in air and helium atmospheres, using still and high speed photography (up to 20,000 fps), collimated photodiodes, and spectroscopy. A fine boundary layer between the greenish Cu-OH cloud, and the air, is orange in color. However, when the discharge is initiated into a helium atmosphere, the boundary layer is no longer visible, suggesting that the visible boundary was caused by interactions with oxygen. We have studied scaling of the 10-cm diameter ball plasmas with both the size of the water bucket, and the applied discharge voltage, over the range of 500-5000 volts. When looking at the initial spider-leg breakdown above the water surface, the ratio of H-alpha to H-beta lines suggests a temperature of ˜0.3 eV. This is also consistent with the presence of molecular lines of OH, and perhaps CuOH2 in the rising cloud. The cloud is affected by, but can penetrate through an aluminum window screen mesh.

  10. Behaviour of a Bouncing Ball

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    The bounce of a ball is a seemingly innocuous event that can be used to illustrate many aspects of elementary and even advanced mechanics. Both normal and oblique bounces on a rigid surface are considered in this article, emphasizing qualitative features of the bounce process. If the ball bounces at an oblique angle then it can slide throughout…

  11. High-Performance Ball Bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.

    1995-01-01

    High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.

  12. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  13. Dilating Eye Drops

    MedlinePlus

    ... Conditions Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ... Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ...

  14. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  15. Structure of laboratory ball lightning.

    PubMed

    Ito, Tsuyohito; Tamura, Tomoya; Cappelli, Mark A; Hamaguchi, Satoshi

    2009-12-01

    Trajectories of self-sustained laboratory ball lightning, generated by arc discharges with silicon, are investigated for understanding the possibility of buoyant flight. Extremely low apparent densities are found, nearly approaching that of standard air. The freely buoyant balls are observed to survive for about 0.1 s, with significantly buoyant balls surviving for several seconds. These ball lightning objects are found to have a density and size that can easily allow them to be carried by a gentle breeze of a few meters per second. The results are interpreted by a model that is an extension of that first proposed by Abrahamson and Dinniss [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)]. The buoyant behavior of ball lightning seen in our experiments is believed to arise as a result of the formation of a nanoparticle oxide network growing from a molten silicon core.

  16. Structure of laboratory ball lightning

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Tamura, Tomoya; Cappelli, Mark A.; Hamaguchi, Satoshi

    2009-12-01

    Trajectories of self-sustained laboratory ball lightning, generated by arc discharges with silicon, are investigated for understanding the possibility of buoyant flight. Extremely low apparent densities are found, nearly approaching that of standard air. The freely buoyant balls are observed to survive for about 0.1 s, with significantly buoyant balls surviving for several seconds. These ball lightning objects are found to have a density and size that can easily allow them to be carried by a gentle breeze of a few meters per second. The results are interpreted by a model that is an extension of that first proposed by Abrahamson and Dinniss [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)]. The buoyant behavior of ball lightning seen in our experiments is believed to arise as a result of the formation of a nanoparticle oxide network growing from a molten silicon core.

  17. Structure of laboratory ball lightning.

    PubMed

    Ito, Tsuyohito; Tamura, Tomoya; Cappelli, Mark A; Hamaguchi, Satoshi

    2009-12-01

    Trajectories of self-sustained laboratory ball lightning, generated by arc discharges with silicon, are investigated for understanding the possibility of buoyant flight. Extremely low apparent densities are found, nearly approaching that of standard air. The freely buoyant balls are observed to survive for about 0.1 s, with significantly buoyant balls surviving for several seconds. These ball lightning objects are found to have a density and size that can easily allow them to be carried by a gentle breeze of a few meters per second. The results are interpreted by a model that is an extension of that first proposed by Abrahamson and Dinniss [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)]. The buoyant behavior of ball lightning seen in our experiments is believed to arise as a result of the formation of a nanoparticle oxide network growing from a molten silicon core. PMID:20365306

  18. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  19. The ISOLDE Silicon Ball

    SciTech Connect

    Fraile, L.M.

    2003-09-16

    The investigation of weakly bound nuclei close to the particle driplines makes necessary the development of new spectroscopy devices with the capability of detecting charged particles and precisely determining their energy, angular distribution and nature. With this aim the ISOLDE Silicon Ball is under construction. It is a charged particle spectroscopy device with the requirements of high geometrical efficiency and broad energy range coverage, designed for the investigation of the exotic nuclei produced at ISOLDE and at other similar facilities. In order to allow for particle identification the simultaneous use of the Time of Flight (TOF) and Pulse Shape Discrimination (PSD) techniques is intended. Recoil tagging capabilities, suitable for transfer reactions to be performed at REX-ISOLDE, should be foreseen for a future development. The design and realization of the first prototype, together with the first tests are reported.

  20. Cracked cue ball

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The latest images sent by the Galileo spacecraft reveal that the surface of Jupiter's moon Europa may have contained a layer of “warm ice” or even liquid water. In fact, planetologists are wondering if perhaps it still does.Photos taken earlier this summer show Europa to have a crust of smooth white and brown-tinted ice scarred by long, jagged cracks; some scientists have said the moon looks like a cracked cue ball. “The scale of fracture patterns—extending a distance equivalent to the width of the western United States—dwarf the San Andreas fault in length and width,” said Ronald Greeley, a geologist from Arizona State University and a member of the Galileo imaging team. The cracks are believed to have been caused by the stress of tidal forces created by Jupiter's gravity. Warmth generated by tidal heating also may have been sufficient to soften or liquefy some of the ice.

  1. Rolling-element fatigue life of AISI M-50 and 18-4-1 balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1978-01-01

    Rolling element fatigue studies were conducted with AISI M-50, EFR 18-4-1, and VAR 18-4-1. Groups of 12.7 mm (1/2-in) diameter balls of each material were tested in the five ball fatigue tester. Test conditions included a load of 1540 N (347 lbf) giving a maximum Hertz stress of 5520 MPa (800 000 psi), a shaft speed of 10,700 rpm, and a contact angle of 30 deg. Tests were run at a race temperature of 339 K (150 F) with a type 2 ester lubricant. The rolling element fatigue life of AISI M-50 was not significantly different from that of EFR 18-4-1 or VAR 18-4-1 based on a statistical comparison of the test results.

  2. The MSP430-based control system for automatic ELISA tester

    NASA Astrophysics Data System (ADS)

    Zhao, Xinghua; Zhu, Lianqing; Dong, Mingli; Lin, Ting; Niu, Shouwei

    2006-11-01

    This paper introduces the scheme of a control system for a fully automatic ELISA (Enzyme-linked Immunosorbent Assay) tester. This tester is designed to realize the movement and positioning of the robotic arms and the pipettors and to complete the functions of pumping, reading, washing, incubating and so on. It is based on a MSP430 flash chip, a 16-bit MCU manufactured by TI Co, with very low power consumption and powerful functions. This chip is adopted in all devices of the workstation to run the controlling program, to store involved parameters and data, and to drive stepper motors. To the MCUs, motors, sensors, valves and fans are extended. A personal computer (PC) is employed to communicate with the instrument through an interface board. Relevant hardware circuits are provided. Two programs, one running in PC performs users' operation about assay options and results, the other running in MCU initiates the system and waits for commands to drive the mechanisms, are developed. Through various examinations, this control system is proved to be reliable, efficient and flexible.

  3. Portable tester for determining gas content within a core sample

    DOEpatents

    Garcia, Jr., Fred; Schatzel, Steven J.

    1998-01-01

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

  4. Portable tester for determining gas content within a core sample

    DOEpatents

    Garcia, F. Jr.; Schatzel, S.J.

    1998-04-21

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

  5. Unsolved Mystery of Ball Lightning

    NASA Astrophysics Data System (ADS)

    Bychkov, V. L.

    Ball lightning is an unusual phenomenon always drawing attention of people. There are still questions about its origination, features, interaction with environment, and phenomena related to it. On a way of studying this phenomenon, there are a lot of difficulties, the basic of them is insufficiency of authentic, scientific data. The chapter sets as the purpose to interest the reader in the problem, to describe conditions of ball lightning occurrence, theories, and its hypotheses explanation, to include readers in a circle of experimental searches in creation of a ball lightning and its analogues, and to describe fascination of a problem and difficulty of its solution.

  6. Experimental Analysis of Damping and Tribological Characteristics of Nano-CuO Particle Mixed Lubricant in Ball Bearings

    NASA Astrophysics Data System (ADS)

    Prakash, E.; Sivakumar, K.

    2015-12-01

    Experimental analysis of damping capacity and tribological characteristics of nano CuO added Servosystem 68 lubricant is attempted. CuO nano particles were synthesized by aqueous precipitation method and characterized. Prior to dispersion into lubricant, CuO nano particles were coated with 0.2 wt.% surfactant (Span-80) to stabilize the nano fluid. Tribological characteristics of particle added lubricant were tested in ASTM D 4172 four ball wear tester. Scanning electron microscopy test results of worn surfaces of nano CuO particle added lubricant were smoother than base lubricant. The particle added lubricant was applied in a new ball bearing and three defected ball bearings. When particle added lubricant was used, the ball defected bearing's vibration amplitude was reduced by 21.94% whereas it was 16.46% for new bearing and was ≤ 11% for other defected bearings. The formation of protection film of CuO over ball surface and regime of full film lubrication near the ball zone were observed to be reason for improved damping of vibrations.

  7. Rolling Motion of a Ball Spinning About a Near-Vertical Axis

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed ω. When v = Rω, where R is the ball radius, the ball will start rolling and the friction force drops almost to zero since the contact point at the bottom of the ball comes to rest on the surface. The coefficient of rolling friction is much smaller than that for sliding friction. A different situation arises if the ball is projected forward while it is spinning about a vertical or near vertical axis. The latter situation arises in many ball sports. It arises if a player attempts to curve a ball down a bowling alley, or when a billiards player imparts sidespin or "English" to a ball,2 and it can arise in golf if a player strikes a ball with a putter at a point well away from the middle of the putter head. The situation also arises in the game of curling,3 although in that case the object that is projected is a cylindrical rock rather than a spherical ball, and it arises in tennis when a ball lands on the court spinning about a near vertical axis, as it does in both a slice serve and a kick serve. In a slice serve, the axis is almost vertical. In a kick serve, the axis is tilted about 30 degrees away from the vertical in order to increase the amount of topspin.4

  8. Enhancing the Bounce of a Ball

    ERIC Educational Resources Information Center

    Cross, Rod

    2010-01-01

    In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of…

  9. Behaviour of a bouncing ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2015-05-01

    The bounce of a ball is a seemingly innocuous event that can be used to illustrate many aspects of elementary and even advanced mechanics. Both normal and oblique bounces on a rigid surface are considered in this article, emphasizing qualitative features of the bounce process. If the ball bounces at an oblique angle then it can slide throughout the bounce, or just at the start of the bounce, and may even slide backwards at the end of the bounce. A ball can also grip the surface after a short sliding phase, or it can grip right from the start. When the ball grips, static friction rather than sliding friction determines the rebound speed, spin and angle.

  10. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Abe, Mayumi

    2012-01-01

    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  11. History of ball bearings

    NASA Technical Reports Server (NTRS)

    Dowson, D.; Hamrock, B. J.

    1981-01-01

    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements.

  12. MODIFIED BALL AND SOCKET COUPLING

    DOEpatents

    Kalen, D.D.

    1961-05-23

    A ball and socket coupling arrangement is described in which the male and female members may be engaged or disengaged without visual aid. The female member has an internal spherical seat through which slots are provided to accommodate appropriately arranged and shaped ribs in the ball member. After engagement of the members, one or both are rotated to lock them together to prevent accidental disengagement. (AEC)

  13. Modified Ball and Socket Coupling

    DOEpatents

    Conley, Jr, W. R.; Pitman, R. W.

    1961-05-23

    A ball and socket coupling arrangement is given in which the male and female members may be engaged or disengaged without visual aid. The female member has an internal spherical seat through which slots are provided to accommodate appropriately arranged and shaped ribs in the male ball member. After engagement of the members, one or both are rotated to lock them together to prevent accidental disengagement.

  14. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  15. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  16. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  17. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  18. Microprocessor tester for the treat upgrade reactor trip system

    SciTech Connect

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.

  19. A multicommutated tester of bioreactors for flow analysis.

    PubMed

    Pokrzywnicka, Marta; Kamiński, Jacek; Michalec, Michał; Koncki, Robert; Tymecki, Łukasz

    2016-11-01

    Enzymes are often used in the modern analytical procedures allowing selective recognition and conversion of target analytes into easily detected products. In flow analysis systems, enzymes are predominantly applied in the immobilized forms as flow-through bioreactors. In this research the multicommutated flow analysis (MCFA) system for evaluation and comparison of analytical parameters of bioreactors has been developed. The MCFA manifold allows simultaneous testing up to four bioreactors, but if necessary their number can be easily increased. The system allows comparison of several parameters of tested bioreactors including activity, repeatability, reproducibility, operational and storage stability. The performance of developed bioreactor tester is presented using urea-urease model system based on plastic open-tubular bioreactor with covalently immobilized enzyme. Product of enzymatic reaction is detected using two different chemical methods and by dedicated optoelectronic ammonium detectors. Moreover, the utility of developed MCFA manifold for evaluation of other enzyme bioreactors is demonstrated. PMID:27591609

  20. Heat flux measurement in SSME turbine blade tester

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  1. Predicting brain acceleration during heading of soccer ball

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Hasnun Arif Hassan, Mohd; Azri Aris, Mohd; Anuar, Zulfika

    2013-12-01

    There has been a long debate whether purposeful heading could cause harm to the brain. Studies have shown that repetitive heading could lead to degeneration of brain cells, which is similarly found in patients with mild traumatic brain injury. A two-degree of freedom linear mathematical model was developed to study the impact of soccer ball to the brain during ball-to-head impact in soccer. From the model, the acceleration of the brain upon impact can be obtained. The model is a mass-spring-damper system, in which the skull is modelled as a mass and the neck is modelled as a spring-damper system. The brain is a mass with suspension characteristics that are also defined by a spring and a damper. The model was validated by experiment, in which a ball was dropped from different heights onto an instrumented dummy skull. The validation shows that the results obtained from the model are in a good agreement with the brain acceleration measured from the experiment. This findings show that a simple linear mathematical model can be useful in giving a preliminary insight on what human brain endures during a ball-to-head impact.

  2. The Automated Bicron Tester: Automated electronic instrument diagnostic, testing, and alignment system with records generation

    SciTech Connect

    Rao, G.S.; Maddox, S.R.; Turner, G.W.; Vandermolen, R.I.

    1995-11-01

    The Bicron Surveyor MX is a portable radiation monitoring instrument used by the Office of Radiation Protection at Oak Ridge National Laboratory. This instrument must be calibrated in order to assure reliable operation. A manual calibration procedure was developed, but it was time consuming and repetitive. Therefore, an automated tester station that would allow the technicians to calibrate the instruments faster and more reliably was developed. With the automated tester station, calibration records and accountability could be generated and maintained automatically. This allows the technicians to concentrate on repairing defective units. The Automated Bicron Tester consists of an operator interface, an analog board, and a digital controller board. The panel is the user interface that allows the technician to communicate with the tester. The analog board has an analog-to-digital converter (ADC) that converts the signals from the instrument into digital data that the tester can manipulate. The digital controller board contains the circuitry to perform the test and to communicate the results to the host personal computer (PC). The tester station is connected to the unit under test through a special test harness that attaches to a header on the Bicron. The tester sends pulse trains to the Bicron and measures the resulting meter output. This is done to determine if the unit is functioning properly. The testers are connected to the host PC through an RS-485 serial line. The host PC polls all the tester stations that are connected to it and collects data from those that have completed a calibration. It logs these data and stores the record in a format ready for export to the Maintenance, Accountability, Jobs, and Inventory Control (MAJIC) database. It also prints a report. The programs for the Automated Bicron Tester and the host are written in the C language.

  3. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  4. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  5. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  6. Sessile Rayleigh drop instability

    NASA Astrophysics Data System (ADS)

    Steen, Paul; Bostwick, Josh

    2012-11-01

    Rayleigh (1879) determined the mode shapes and frequencies of the inviscid motion of a free drop held by surface tension. We study the inviscid motions of a sessile Rayleigh drop - a drop which rests on a planar solid and whose contact-line is free to move. Linear stability analysis gives the modes and frequencies of the droplet motions. In this talk, we focus on the ``walking instability,'' an unstable mode wherein the drop moves across a planar substrate in an inviscid rocking-like motion. The mode shape is non-axisymmetric. Although the experimental literature has hinted at such a mode, this is the first prediction from linear stability analysis, as far as we are aware. The ``walking instability'' of the drop converts energy stored in the liquid shape into the energy of liquid motion - which represents a heretofore unknown pathway of energy conversion of potentially wide significance for a broad range of applications.

  7. Enhancing the Bounce of a Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2010-10-01

    In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of restitution (COR) and the spin of a golf ball, I conducted several experiments to see what would happen when a 45-g, 42.8-mm diameter golf ball bounced on: (a) a 58-mm diameter, 103-g Super Ball®; (b) an 8-mm thick, 56-mm diameter circular disk of Super Ball material cut from a large Super Ball and glued to a 3.4-kg lead brick; and (c) a 3-mm thick sheet of rubber glued to a 3.4-kg lead brick. (See Fig. 1.)

  8. Drops in Space: Super Oscillations and Surfactant Studies

    NASA Technical Reports Server (NTRS)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; Coleman, Catherine; Leslie, Fred W.; Matthiesen, David H.

    1996-01-01

    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  9. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  10. Dynamics of a bouncing ball

    NASA Astrophysics Data System (ADS)

    Chastaing, J.-Y.; Bertin, E.; Géminard, J.-C.

    2015-06-01

    We describe an experiment dedicated to the study of the trajectories of a ball bouncing on a vibrating plate. Using an experimental device of our own design, it is possible to impose arbitrary trajectories on the plate and we show that the entire trajectory of the ball can be reconstructed solely from measurement of the times the ball hits the plate. In this paper, we make use of our apparatus to introduce the notion of dissipative collisions and to propose three different ways to measure the associated restitution coefficient. We then report on correlations in the chaotic regime and theoretically discuss the complex patterns that are exhibited in the case of a sinusoidal vibration. Lastly, we show that the use of an aperiodic driving vibration makes it possible to minimize part of these correlations.

  11. Tester Board for testing mass-produced SMB modules for CMS Preshower

    NASA Astrophysics Data System (ADS)

    Velikzhanin, Y. S.; Chou, C. H.; Hsiung, Y. B.; Lee, Y. J.; Shiu, J. G.; Sun, C. D.; Wang, Y. Z.

    2007-09-01

    We have developed a Tester Board to test the electrical characteristics of the System Motherboard (SMB) for the CMS Preshower detector at CERN. The board is designed to test input resistances, output resistances, connections, interconnections and possible short- circuits of a module having up to 640 connector pins. The Tester Board is general-purpose in nature: it could be used to test any electronic module or cable by using dedicated cable sets. The module can detect a variety of problems not detected by either functional tests or the "flying probes" technique. The design, algorithms and results of using the Tester Board during mass production of CMS Preshower SMBs are presented.

  12. Imaging characteristics of ball lens

    NASA Astrophysics Data System (ADS)

    Li, Qinghui; Shao, Xiaopeng

    2014-05-01

    In most digital imaging applications, high-resolution imaging or videos are usually desired for later processing and analysis. The desire for high-resolution stems from two principal application areas: improvement of pictorial information for human interpretation, and helping representation for automatic machine preception. While the image sensors limit the spatial resolution of the image, the image details are also limited by the optical system, due to diffraction, and aberration1. Monocentric lens are an attractive option for gigapixel camera because the symmetrical design focuses light identically coming from any direction. Marks and Brady proposed a monocentric lens design imaging 40 gigapixels with an f-number of 2.5 and resolving 2 arcsec over a 120 degrees field of view2. Recently, Cossairt, Miau, and Nayer proposed a proof-of-concept gigapixel computational camera consisting of a large ball lens shared by several small planar sensors coupled with a deblurring step3. The design consists of a ball element resulting in a lens that is both inexpensive to produce and easy to align. Because the resolution of spherical lens is fundamentally limited by geometric aberrations, the imaging characteristics of the ball lens is expressed by the geometrical aberrations, in which the general equations for the primary aberration of the ball lens are given. The effect of shifting the stop position on the aberrations of a ball lens is discussed. The variation of the axial chromatic aberration with the Abbe V-number when the refraction index takes different values is analyzed. The variation of the third-order spherical aberration ,the fifth-order spherical aberration and the spherical aberration obtained directly from ray tracing with the f-number is discussed. The other imaging evaluation merits, such as the spot diagram, the modulation transfer function(MTF) and the encircled energy are also described. Most of the analysis of the ball lens is carried out using OSLO optics

  13. Ball lightning risk to aircraft

    NASA Astrophysics Data System (ADS)

    Doe, R.; Keul, A.

    2009-04-01

    Lightning is a rare but regular phenomenon for air traffic. Aircraft are designed to withstand lightning strikes. Research on lightning and aircraft can be called detailed and effective. In the last 57 years, 18 reported lightning aviation disasters with a fatality figure of at least 714 persons occurred. For comparison, the last JACDEC ten-year average fatality figure was 857. The majority encountered lightning in the climb, descent, approach and/or landing phase. Ball lightning, a metastable, rare lightning type, is also seen from and even within aircraft, but former research only reported individual incidents and did not generate a more detailed picture to ascertain whether it constitutes a significant threat to passenger and aircraft safety. Lacking established incident report channels, observations were often only passed on as "air-travel lore". In an effort to change this unsatisfactory condition, the authors have collected a first international dataset of 38 documented ball lightning aircraft incidents from 1938 to 2001 involving 13 reports over Europe, 13 over USA/Canada, and 7 over Russia. 18 (47%) reported ball lightning outside the aircraft, 18 (47%) inside, 2 cases lacked data. 8 objects caused minor damage, 8 major damage (total: 42%), only one a crash. No damage was reported in 18 cases. 3 objects caused minor crew injury. In most cases, ball lightning lasted several seconds. 11 (29%) incidents ended with an explosion of the object. A cloud-aircraft lightning flash was seen in only 9 cases (24%) of the data set. From the detailed accounts of air personnel in the last 70 years, it is evident that ball lightning is rarely, but consistently observed in connection with aircraft and can also occur inside the airframe. Reports often came from multiple professional witnesses and in several cases, damages were investigated by civil or military authorities. Although ball lightning is no main air traffic risk, the authors suggest that incident and accident

  14. Billiard-ball echo model

    NASA Astrophysics Data System (ADS)

    Beach, R.; Hartmann, S. R.; Friedberg, R.

    1982-05-01

    Photon echoes in gaseous media are explained with the use of a simple heuristic model in which the atoms behave like composite billiard balls. The laser providing the excitation pulses becomes an atom smasher which "splits" the atoms and then by judicious programming puts them back together again. The most general photon-echo reordering process is explained without recourse to formal analysis so that an intuitive feeling is obtained which works equally well for the ordinary two-pulse photon echo, the Raman echo, the trilevel echo, the grating echo, etc. A formal analysis of the billiard-ball echo model is presented in its support.

  15. Liquid Metal Drop Impingement

    NASA Astrophysics Data System (ADS)

    Che, Judy; Han, Jaehoon; Tryggvason, Gretar; Ceccio, Steven

    1996-11-01

    "Ballistic Partical Manufacturing" is a process in which individual drops are layered to form a part. We examine how metal drops deform and solidify, and how the solidification rate affects the material microstructure using both numerical simulations and experiments. A single set of equations governing the conservation of mass, energy, and momentum are written for all phases involved, and the phase boundary is treated as an imbedded interface by adding the appropriate source terms. We have simulated single drops colliding with a surface using a simple model which assumes that a melt solidifies below the melting point. Although simple, this model captures many aspects of the fluid flow and solidification. The experimental apparatus creates a single drop of prescribed size and propels it toward a cooled substrate. Favorable comparisons of experimental and numerical results have been achieved.

  16. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  17. Explosive component acceptance tester using laser interferometer technology

    NASA Technical Reports Server (NTRS)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  18. Visual Scanning Hartmann Optical Tester (VSHOT) Uncertainty Analysis (Milestone Report)

    SciTech Connect

    Gray, A.; Lewandowski, A.; Wendelin, T.

    2010-10-01

    In 1997, an uncertainty analysis was conducted of the Video Scanning Hartmann Optical Tester (VSHOT). In 2010, we have completed a new analysis, based primarily on the geometric optics of the system, and it shows sensitivities to various design and operational parameters. We discuss sources of error with measuring devices, instrument calibrations, and operator measurements for a parabolic trough mirror panel test. These help to guide the operator in proper setup, and help end-users to understand the data they are provided. We include both the systematic (bias) and random (precision) errors for VSHOT testing and their contributions to the uncertainty. The contributing factors we considered in this study are: target tilt; target face to laser output distance; instrument vertical offset; laser output angle; distance between the tool and the test piece; camera calibration; and laser scanner. These contributing factors were applied to the calculated slope error, focal length, and test article tilt that are generated by the VSHOT data processing. Results show the estimated 2-sigma uncertainty in slope error for a parabolic trough line scan test to be +/-0.2 milliradians; uncertainty in the focal length is +/- 0.1 mm, and the uncertainty in test article tilt is +/- 0.04 milliradians.

  19. Electric pulp tester conductance through various interface media.

    PubMed

    Mickel, André K; Lindquist, Kimberly A D; Chogle, Sami; Jones, Jefferson J; Curd, Francis

    2006-12-01

    A conducting media is necessary when using an electric pulp tester (EPT). The objective of this study was to observe differences in conductance through various media. We hypothesized that variations in current conductance through different media exist. The pulp chamber of a freshly extracted premolar was exposed, and the cathode of a voltmeter was inserted into the pulpal tissue. The anode was coupled to the EPT handpiece. The measurement taken during dry (no interface media) EPT tip-to-tooth contact was 0 V, which served as negative control. EPT tip directly touching the cathode measured 3.9V and served as positive control. A number of media readily available in the dental office were tested. Data was analyzed using single factor ANOVA. Listerine (3.3) conducted the most voltage (p<0.5). Of nonliquids, K-Y Brand UltraGel and Crest Baking Soda & Peroxide Whitening Tartar Control toothpaste recorded significantly (p<0.05) higher voltage readings (1.4 V). PMID:17174677

  20. Electric pulp tester conductance through various interface media.

    PubMed

    Mickel, André K; Lindquist, Kimberly A D; Chogle, Sami; Jones, Jefferson J; Curd, Francis

    2006-12-01

    A conducting media is necessary when using an electric pulp tester (EPT). The objective of this study was to observe differences in conductance through various media. We hypothesized that variations in current conductance through different media exist. The pulp chamber of a freshly extracted premolar was exposed, and the cathode of a voltmeter was inserted into the pulpal tissue. The anode was coupled to the EPT handpiece. The measurement taken during dry (no interface media) EPT tip-to-tooth contact was 0 V, which served as negative control. EPT tip directly touching the cathode measured 3.9V and served as positive control. A number of media readily available in the dental office were tested. Data was analyzed using single factor ANOVA. Listerine (3.3) conducted the most voltage (p<0.5). Of nonliquids, K-Y Brand UltraGel and Crest Baking Soda & Peroxide Whitening Tartar Control toothpaste recorded significantly (p<0.05) higher voltage readings (1.4 V).

  1. Dropping the Devil's Advocate: One Novice Language Tester's Shifting Interactional Practices across a Series of Speaking Tests

    ERIC Educational Resources Information Center

    Leyland, Christopher; Greer, Tim; Rettig-Miki, Ellen

    2016-01-01

    This study employs longitudinal Conversation Analysis (CA) to examine one TA's follow-up contributions in a series of EFL group discussion tests. By tracking the TA's interactional practices across 18 groups, we observe how she adapts her turn design by increasingly aligning towards that of the novice English speakers. The TA initially attempts to…

  2. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  3. 2012 Problem 15: Frustrating Golf Ball

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Zhu, Zheyuan; Gao, Wenli; Wang, Sihui

    2015-10-01

    This paper studies the condition for a golf ball to escape from a hole. The two determining factors are the ball's initial velocity v0 and its deviation from the center of the hole d. There is a critical escaping velocity vc for every deviation d. The ball's motion is analyzed by calculating the change of velocity whenever the ball collides with the hole. The critical conditions predicted by our theory are verified through experiment.

  4. Silicon Nitride Balls For Cryogenic Bearings

    NASA Technical Reports Server (NTRS)

    Butner, Myles F.; Ng, Lillian W.

    1990-01-01

    Resistance to wear greater than that of 440C steel. Experiments show lives of ball bearings immersed in liquid nitrogen or liquid oxygen increased significantly when 440C steel balls (running on 440C steel races) replaced by balls of silicon nitride. Developed for use at high temperatures, where lubrication poor or nonexistent. Best wear life of any bearing tested to date and ball material spalls without fracturing. Plans for future tests call for use of liquid oxygen as working fluid.

  5. Pulse shaping techniques for a high-g shock tester based on collision principle

    NASA Astrophysics Data System (ADS)

    Duan, Zhengyong; Tang, Chuansheng; Li, Yang; Han, Junliang; Wu, Guoxiong

    2016-09-01

    Pulse shaping techniques are discussed in this paper for the practicability of a developed high-g shock tester. The tester is based on collision principle where there is a one-level velocity amplifier. A theoretical and experimental study of pulse shaping techniques is presented. A model was built and theoretical formulae were deduced for the shock peak acceleration and its duration. Then theoretical analysis and some experiments were conducted. The test results verify the validity of theoretical model and show that the shock tester can generate the expected high-g shock pulses by integrated usage of different impact velocities and pulse shapers made from different materials. This is important in practical applications where the items under test can be shown to excite specific resonances at predetermined acceleration levels using the shock tester.

  6. Instruction manual for installation, operation, and maintenance of the Q-250 LLNL filter-life tester

    SciTech Connect

    Foote, K.L.; da Roza, R.A.

    1990-12-21

    This manual describes the installation, operation, and maintenance of the LLNL, filter-life tester Q-250. This apparatus is designed to determined the gas life of a variety of chemical filters, such as M10-A1, M11, M13-A2, C2, and similar filters. The LLNL filter-life tester can generate isopropymethylphosphonoflouridate (GB) or dimethyl methylphosphonate (DMMP) vapors in air at flow rates of up to 50 1pm. These filters and their specifications are listed in Appendix A. CAUTION: Personnel performing operations with this tester must be completely familiar with the contents of this manual, knowledgeable in system operation, and knowledgeable of materials used in operation of the LLNL filter-life tester.

  7. Does Ease to Block a Ball Affect Perceived Ball Speed? Examination of Alternative Hypotheses

    ERIC Educational Resources Information Center

    Witt, Jessica K.; Sugovic, Mila

    2012-01-01

    According to an action-specific account of perception, the perceived speed of a ball can be a function of the ease to block the ball. Balls that are easier to stop look like they are moving slower than balls that are more difficult to stop. This was recently demonstrated with a modified version of the classic computer game Pong (Witt & Sugovic,…

  8. Secrets of the Crystal Ball

    ERIC Educational Resources Information Center

    Croucher, John S.

    2007-01-01

    This article describes how a crystal ball known as "The Flash Mind Reader" is played. "The Flash Mind Reader" is a mathematics game in which the player is invited to select any-two digit number and then subtract the sum of these two digits from the original number. A chart is provided in which the (adjusted) number they obtained will have a symbol…

  9. Laboratory-produced ball lightning

    NASA Astrophysics Data System (ADS)

    Golka, Robert K., Jr.

    1994-05-01

    For 25 years I have actively been searching for the true nature of ball lightning and attempting to reproduce it at will in the laboratory. As one might expect, many unidentified lights in the atmosphere have been called ball lightning, including Texas Maffa lights (automobile headlights), flying saucers (UFOs), swamp gas in Ann Arbor, Michigan, etc. For 15 years I thought ball lightning was strictly a high-voltage phenomenon. It was not until 1984 when I was short-circuiting the electrical output of a diesel electric railroad locomotive that I realized that the phenomenon was related more to a high current. Although I am hoping for some other types of ball lightning to emerge such as strictly electrostatic-electromagnetic manifestations, I have been unlucky in finding laboratory provable evidence. Cavity-formed plasmodes can be made by putting a 2-inch burning candle in a home kitchen microwave oven. The plasmodes float around for as long as the microwave energy is present.

  10. The correct "ball bearings" data.

    PubMed

    Caroni, C

    2002-12-01

    The famous data on fatigue failure times of ball bearings have been quoted incorrectly from Lieblein and Zelen's original paper. The correct data include censored values, as well as non-fatigue failures that must be handled appropriately. They could be described by a mixture of Weibull distributions, corresponding to different modes of failure.

  11. Idea Bank: Wiffle Ball Physics

    ERIC Educational Resources Information Center

    Lancor, Rachael

    2009-01-01

    Projectile motion, a cornerstone topic of introductory physics, is usually a student's first exposure to the problem-solving techniques used in this subject. Often, this is an inactive learning experience--students work with pencil and paper to read and solve projectile motion problems (e.g., diagrams and descriptions of balls being hit, kicked,…

  12. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  13. Eddy-Current Inspection of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Bankston, B.

    1985-01-01

    Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.

  14. Playing Ball in a Space Station

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2006-01-01

    How does artificial gravity affect the path of a thrown ball? This paper contrasts ball trajectories on the Little Prince's asteroid planet B-612 and Arthur C. Clarke's rotating-drum spacecraft of 2001, and demonstrates curve balls with multiple loops in the latter environment.

  15. High irradiance UV/condensation testers allow faster accelerated weathering test results

    SciTech Connect

    Brennan, P.J.; Fedor, G.R.

    1993-12-31

    Because outdoor exposures are so time consuming, accelerated laboratory testing is used extensively by industry. One of the more popular laboratory weathering testers is the ASTM G53 UV/Condensation device, also known as the QUV. This paper examines an enhancement to the G53 weather tester that allows precise control of light output and higher than previous light intensity levels. Data is presented on the accelerating effect of higher irradiance on several common polymers.

  16. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  17. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  18. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. PMID:26052107

  19. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair.

  20. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  1. How to catch a cricket ball.

    PubMed

    Dienes, Z; McLeod, P

    1993-01-01

    A cricket or baseball fielder can run so as to arrive at just the right place at just the right time to catch a ball. It is shown that if the fielder runs so that d2(tan alpha)/dt2 = 0, where alpha is the angle of elevation of gaze from fielder to ball, then the ball will generally be intercepted before it hits the ground. This is true whatever the aerodynamic drag experienced by the ball. The only exception is if the ball is not approaching the fielder before he starts to run.

  2. Fate of thermal log type Q balls

    SciTech Connect

    Chiba, Takeshi; Kamada, Kohei; Kasuya, Shinta; Yamaguchi, Masahide

    2010-11-15

    We study time evolution of the Q ball in thermal logarithmic potential using lattice simulations. As the temperature decreases due to the cosmic expansion, the thermal logarithmic term in the potential is eventually overcome by a mass term, and we confirm that the Q ball transforms from the thick-wall type to the thin-wall type for a positive coefficient of radiative corrections to the mass term, as recently suggested. Moreover, we find that the Q ball finally ''melts down'' when the Q-ball solution disappears. We also discuss the effects of this phenomenon on the detectability of gravitational waves from the Q-ball formation.

  3. Drum drop test report

    SciTech Connect

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  4. Ceramic Rail-Race Ball Bearings

    NASA Technical Reports Server (NTRS)

    Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.

    2010-01-01

    Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls

  5. Polymer-composite ball lightning.

    PubMed

    Bychkov, V L

    2002-01-15

    Investigations into the state of ball lightning (BL) have been made, and both theory and experiments, related to so-called "polymer-composite" ball lightning, are presented. The properties of such a polymeric BL have been described and are that of a long-lived object capable of storing high energy. Results of experiments, starting with polymeric components in erosive gas discharge experiments, are described and discussed. The model of BL as a highly charged polymer-dielectric structure is described. According to this model BL appears as the result of the aggregation of natural polymers, such as lignin and cellulose, soot, polymeric silica and other natural dust particles. Its ability to glow is explained by the appearance over its perimeter of gas discharges near the highly charged BL surface, and electrical breakdown of some regions on the surface, consisting of polymerized and aggregated threads.

  6. Polymer-composite ball lightning.

    PubMed

    Bychkov, V L

    2002-01-15

    Investigations into the state of ball lightning (BL) have been made, and both theory and experiments, related to so-called "polymer-composite" ball lightning, are presented. The properties of such a polymeric BL have been described and are that of a long-lived object capable of storing high energy. Results of experiments, starting with polymeric components in erosive gas discharge experiments, are described and discussed. The model of BL as a highly charged polymer-dielectric structure is described. According to this model BL appears as the result of the aggregation of natural polymers, such as lignin and cellulose, soot, polymeric silica and other natural dust particles. Its ability to glow is explained by the appearance over its perimeter of gas discharges near the highly charged BL surface, and electrical breakdown of some regions on the surface, consisting of polymerized and aggregated threads. PMID:16210170

  7. Keeping your eyes continuously on the ball while running for catchable and uncatchable fly balls.

    PubMed

    Postma, Dees B W; den Otter, A Rob; Zaal, Frank T J M

    2014-01-01

    When faced with a fly ball approaching along the sagittal plane, fielders need information for the control of their running to the interception location. This information could be available in the initial part of the ball trajectory, such that the interception location can be predicted from its initial conditions. Alternatively, such predictive information is not available, and running to the interception location involves continuous visual guidance. The latter type of control would predict that fielders keep looking at the approaching ball for most of its flight, whereas the former type of control would fit with looking at the ball during the early part of the ball's flight; keeping the eyes on the ball during the remainder of its trajectory would not be necessary when the interception location can be inferred from the first part of the ball trajectory. The present contribution studied visual tracking of approaching fly balls. Participants were equipped with a mobile eye tracker. They were confronted with tennis balls approaching from about 20 m, and projected in such a way that some balls were catchable and others were not. In all situations, participants almost exclusively tracked the ball with their gaze until just before the catch or until they indicated that a ball was uncatchable. This continuous tracking of the ball, even when running close to their maximum speeds, suggests that participants employed continuous visual control rather than running to an interception location known from looking at the early part of the ball flight. PMID:24670972

  8. Keeping Your Eyes Continuously on the Ball While Running for Catchable and Uncatchable Fly Balls

    PubMed Central

    Postma, Dees B. W.; den Otter, A. Rob; Zaal, Frank T. J. M.

    2014-01-01

    When faced with a fly ball approaching along the sagittal plane, fielders need information for the control of their running to the interception location. This information could be available in the initial part of the ball trajectory, such that the interception location can be predicted from its initial conditions. Alternatively, such predictive information is not available, and running to the interception location involves continuous visual guidance. The latter type of control would predict that fielders keep looking at the approaching ball for most of its flight, whereas the former type of control would fit with looking at the ball during the early part of the ball's flight; keeping the eyes on the ball during the remainder of its trajectory would not be necessary when the interception location can be inferred from the first part of the ball trajectory. The present contribution studied visual tracking of approaching fly balls. Participants were equipped with a mobile eye tracker. They were confronted with tennis balls approaching from about 20 m, and projected in such a way that some balls were catchable and others were not. In all situations, participants almost exclusively tracked the ball with their gaze until just before the catch or until they indicated that a ball was uncatchable. This continuous tracking of the ball, even when running close to their maximum speeds, suggests that participants employed continuous visual control rather than running to an interception location known from looking at the early part of the ball flight. PMID:24670972

  9. How to create ball lightning

    NASA Technical Reports Server (NTRS)

    Golka, Robert K., Jr.

    1991-01-01

    Procedures are given on how to produce ball lightning. Necessary equipment includes a transformer of 150,000 watts capable of providing approximately 10,000 amperes at 15 volts, 60 cycles; thick one inch cables of stranded wire leading into a 3 by 4 by 1 foot plastic tank; a quarter inch thick 4 by 6 inch aluminum plate to be used as one of the discharge electrodes; and another electrode of heavy copper wire with the insulation stripped back 6 inches.

  10. Falling Sticks and Falling Balls

    NASA Astrophysics Data System (ADS)

    Bacon, M. E.; Harpst, Michael R.; Nakazawa, Ryohei

    2002-09-01

    The behavior of a falling stick, pivoted at one end, and a ball released from the same height as the end of the stick, is investigated theoretically and experimentally. The study is made possible through the use of the computer to perform the numerical computations and analysis of the experimental data. The study provides undergraduates with an opportunity to carry out a relatively simple project with interesting results.

  11. 2013 Problem 3: Bouncing Ball

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Du, Li; Wang, Sihui; Gao, Wenli

    2015-10-01

    In this solution, we study the rebound of a liquid-filled Ping-Pong ball after a free-fall motion. We classify the collision into "rigid-like motion" or "liquid-involved" motion. The most significant parameter is the amount of water. The rebounding height is suppressed most as the amount of water is about half of the total volume, exhibiting a typical "liquid-involved" motion. As the amount of water increases further, the rebounding height gradually recovers, and the ball becomes rigid again. We build a theoretical model to interpret the phenomenon. The model describes the formation of the flow field during the collision stage based on the momentum propagation and flux conservation of the liquid. An effective mass is introduced to describe the confinement effect on water by the sphere. Our model successfully predicts the bouncing height with respect to the amount of water. Releasing height is also an important parameter in determining the "nature of collision". As the releasing height increases, the whole system tends to become more and more "rigid". We classify the nature of collision above a certain releasing height as "rigid-like" regardless of the amount of water inside the ball.

  12. A finger-like hardness tester based on the contact electromechanical impedance of a piezoelectric bimorph cantilever

    NASA Astrophysics Data System (ADS)

    Fu, Ji; Li, Faxin

    2015-10-01

    We proposed a finger-like hardness tester based on the electromechanical impedance of a piezoelectric bimorph cantilever. A Vickers indenter was fabricated to the free end of the bimorph to contact the sample. The contact force was monitored by a strain gauge and the contact area was obtained by tracking the bimorph's resonance frequency. The bimorph-sample contact system was modeled by the electromechanical equivalent circuit method. Verification experiments on standard hardness samples were conducted and the measured hardness values agreed well with those given by a conventional Vickers hardness tester. Further hardness measurement on a gear wheel showed that the proposed hardness tester is very adaptive and can be used for inner surface testing or in situ testing, where other hardness testers may not be applicable. The proposed hardness tester can be regarded as an improved ultrasonic hardness tester.

  13. Ball Screw Actuator Including a Stop with an Integral Guide

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  14. Grease test system for improved life of ball and roller bearings

    SciTech Connect

    Kleinlein, E. )

    1992-12-01

    An earlier developed system (FE9) for mechanodynamical testing of lubricating greases for ball and rolling bearings was used to assess, at temperatures between 100 and 200 C, grease lives of the following lubricating greases used in this test system: a standard grease, lithium soap, NLGI class 3 grease, a special grease for high temperatures, and a special grease not suitable for high temperatures. The paper describes the design of FE9 tester, the test rig, the test procedure, and the results of evaluation. It was found that lowering the test temperature led to a steeper increase of the grease life. Starved lubrication was found to be the major cause of failure at moderate temperatures, especially at the areas of sliding motion, such as betweeen cage and the rolling element. 9 refs.

  15. Numerical Simulations of Drop Collisions

    NASA Technical Reports Server (NTRS)

    Nobari, M. R. H.; Tryggvason, G.

    1994-01-01

    Three-dimensional simulations of the off-axis collisions of two drops are presented. The full Navier-Stokes equations are solved by a Front-Tracking/Finite-Difference method that allows a fully deformable fluid interface and the inclusion of surface tension. The drops are accelerated towards each other by a body force that is turned off before the drops collide. Depending on whether the interface between the drops is ruptured or not, the drops either bounce or coalesce. For drops that coalesce, the impact parameter, which measures how far the drops are off the symmetry line, determines the eventual outcome of the collision. For low impact parameters, the drops coalesce permanently, but for higher impact parameters, a grazing collision, where the drops coalesce and then stretch apart again is observed. The results are in agreement with experimental observations.

  16. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  17. Fluid Mechanics of Cricket and Tennis Balls

    NASA Astrophysics Data System (ADS)

    Mehta, Rabindra D.

    2009-11-01

    Aerodynamics plays a prominent role in defining the flight of a ball that is struck or thrown through the air in almost all ball sports. The main interest is in the fact that the ball can often deviate from its initial straight path, resulting in a curved, or sometimes an unpredictable, flight path. It is particularly fascinating that that not all the parameters that affect the flight of a ball are always under human influence. Lateral deflection in flight, commonly known as swing, swerve or curve, is well recognized in cricket and tennis. In tennis, the lateral deflection is produced by spinning the ball about an axis perpendicular to the line of flight, which gives rise to what is commonly known as the Magnus effect. It is now well recognized that the aerodynamics of sports balls are strongly dependent on the detailed development and behavior of the boundary layer on the ball's surface. A side force, which makes a ball curve through the air, can also be generated in the absence of the Magnus effect. In one of the cricket deliveries, the ball is released with the seam angled, which trips the laminar boundary layer into a turbulent state on that side. The turbulent boundary layer separates relatively late compared to the laminar layer on the other side, thereby creating a pressure difference and hence side force. The fluid mechanics of a cricket ball become very interesting at the higher Reynolds numbers and this will be discussed in detail. Of all the round sports balls, a tennis ball has the highest drag coefficient. This will be explained in terms of the contribution of the ``fuzz" drag and how that changes with Reynolds number and ball surface wear. It is particularly fascinating that, purely through historical accidents, small disturbances on the ball surface, such as the stitching on cricket balls and the felt cover on tennis balls are all about the right size to affect boundary layer transition and development in the Reynolds numbers of interest. The fluid

  18. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  19. Encapsulating Ellipsoids in Drops

    NASA Astrophysics Data System (ADS)

    Norton, Michael; Brugarolas, Teresa; Chou, Jonathan; Bau, Haim; Lee, Daeyeon

    2012-11-01

    Large aspect ratio particles were produced by embedding spherical polystyrene particles within a polymer film and subsequently heating and stretching the film. Particles were released by dissolving the film. Using a flow-focusing device, the elongated particles were partially encapsulated within droplets of fluid A, such as water, surrounded by an immiscible fluid B, such as oil. Drop volumes were controlled by adjusting the flow rates of fluids A and B. The contact angle was adjusted indirectly by varying the amount of surfactant adsorbed to the particle surface. The encapsulation process was visualized with a high-speed video camera. We observed cases ranging from partial to complete encapsulation and examined experimentally and theoretically the shape of the interface between fluid A and fluid B as a function of the drop volume. The numerically predicted position of the pinning line and the shape of the drop were compared to experimentally produced conformations and agreed favorably. This work was supported by ITMAT (UL1RR024134 from the NCRR) and the Penn MRSEC (NSF DMR-1120901).

  20. OH Radical and a Drizzling Water Jet Production from the Ball-Lightning Discharge in Water

    NASA Astrophysics Data System (ADS)

    Maeyama, Mitsuaki; Tanaka, Yasutomo

    The ball lightning, or fireball discharge using the typical electrode configuration was reported to produce a long-living spherical plasmoid with radius exceed 10 cm at atmospheric pressure. In this study, we investigated the relationship between a optical output emitted from OH radicals and discharge conditions of the ball-lightning electrode configuration, and discussed its possibility to the water treatment process. As a results, in both polarity cases of the charged voltage V0, a ball-lightning discharge and the optical emission from OH radicals as a major radiation can be generated on the condition |V0| > 4 kV in tap water. Furthermore, an intensive upward water jet from the rod electrode is observed in case of positive polarity and in 0.2% NaCl solution, which is composed of drizzling water drops near the rod electrode.

  1. Structural dynamic analysis of a ball joint

    NASA Astrophysics Data System (ADS)

    Hwang, Seok-Cheol; Lee, Kwon-Hee

    2012-11-01

    Ball joint is a rotating and swiveling element that is typically installed at the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckle. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested responses is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness, focusing on the response of the displacement of a ball stud. Also, the optimum design is suggested through case studies.

  2. Adiabatic invariance of oscillons/I -balls

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki

    2015-11-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.

  3. Multifractal properties of ball milling dynamics

    SciTech Connect

    Budroni, M. A. Pilosu, V.; Rustici, M.; Delogu, F.

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  4. System architecture of a gallium arsenide one-gigahertz digital IC tester

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.; Johnson, John M.; Butner, Steven E.; Long, Stephen I.

    1987-01-01

    The design for a 1-GHz digital integrated circuit tester for the evaluation of custom GaAs chips and subsystems is discussed. Technology-related problems affecting the design of a GaAs computer are discussed, with emphasis on the problems introduced by long printed-circuit-board interconnect. High-speed interface modules provide a link between the low-speed microprocessor and the chip under test. Memory-multiplexer and memory-shift register architectures for the storage of test vectors are described in addition to an architecture for local data storage consisting of a long chain of GaAs shift registers. The tester is constructed around a VME system card cage and backplane, and very little high-speed interconnect exists between boards. The tester has a three part self-test consisting of a CPU board confidence test, a main memory confidence test, and a high-speed interface module functional test.

  5. PCB tester selection for future systems. Volume 1. Final report, August 1989-June 1991

    SciTech Connect

    Schmitt, W.

    1992-06-01

    This report describes a computer program (to run on an IBM compatible PC) designed to aid in the selection of a PCB tester, given the characteristics of the PC board to be tested. The program contains a limited data base of PCB testers, and others may be added easily. This report also provides a specification for a limited family of PCB testers to fill the gap between what the U.S. Air Force is expected to need and what is expected to be available within the next four to six years. The parameters used in the computer program and the specification are based on a survey of military and commercial PCBs - both those now available and those expected to come on line within the next four to six years. The results of the survey are covered in volume 2 - available from DTIC. Automatic Test Equipment, Technology Forecast, Air Force Avionics.

  6. PCB tester selection for future systems. Volume 2. Final report, August 1989-June 1991

    SciTech Connect

    Schmitt, W.

    1992-06-01

    This report describes a computer program (to run on an IBM compatible PC) designed to aid in the selection of a PCB tester, given the characteristics of the PC board to be tested. The program contains a limited data base of PCB testers, and others may be added easily. This report also provides a specification for a limited family of PCB testers to fill the gap between what the U.S. Air Force is expected to need and what is expected to be available within the next four to six years. The parameters used in the computer program and the specification are based on a survey of military and commercial PCBs - both those now available and those expected to come on line within the next four to six years. The results of the survey are covered in volume 2 - available from DTIC. Automatic Test Equipment, Technology Forecast, Air Force Avionics.

  7. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering.

    PubMed

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-09-15

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 °C, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase.

  8. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering.

    PubMed

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-01-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 °C, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase. PMID:26369360

  9. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-09-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 oC, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase.

  10. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering

    PubMed Central

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-01-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 oC, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase. PMID:26369360

  11. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1982-03-15

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.

  12. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1984-03-13

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.

  13. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, James B.

    1984-01-01

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out. Two gage balls (10, 12) are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit (14) and a rigid member (16, 18, 20, 22, 24). One gage ball (10) is secured by a magnetic socket knuckle assembly (34) which fixes its center with respect to the machine being tested. The other gage ball (12) is secured by another magnetic socket knuckle assembly (38) which is engaged or held by the machine in such manner that the center of that ball (12) is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball (10). As the moving ball (12) executes its trajectory, changes in the radial distance between the centers of the two balls (10, 12) caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly (50, 52, 54, 56, 58, 60) actuated by the parallel reed flexure unit (14). Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball (10) locations, thereby determining the accuracy of the machine.

  14. Analysis and experiment of random ball test

    NASA Astrophysics Data System (ADS)

    Lu, Liming; Wu, Fan; Hou, Xi; Zhang, Can

    2012-10-01

    Robert E.Parks from National Institute of Standards and Technology (NIST), America, first reported Random Ball Test (RBT), which is used to measure the absolute error of the reference surface of the interferometer. The basic course of this technology as followed: first, assemble the Random Ball in the confocal position of the interferometer system; then, measure the surface of the Random Ball and record the result; rotate the Random Ball to another position, meanwhile make sure that the Random Ball is in the confocal position all the time; In the new position, measure the surface of the Random Ball and record it again; repeat enough times as above, calculate the mean result of the measuring results, and this mean result is just the absolute error of the reference surface of the interferometer. Since 1998, other scholars have continued Robert E.Parks's research, and created a new type of the RBT. In this new technology, Random Ball is sustained by high pressure airflow, suspending in the air, and rotating around sphere center. This technology is called Dynamic Random Ball Test (DRBT), because the Random Ball is rotating during measurement. This article mainly reported the experiment study about the DRBT.

  15. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  16. The Soccer-Ball Problem

    NASA Astrophysics Data System (ADS)

    Hossenfelder, Sabine

    2014-07-01

    The idea that Lorentz-symmetry in momentum space could be modified but still remain observer-independent has received quite some attention in the recent years. This modified Lorentz-symmetry, which has been argued to arise in Loop Quantum Gravity, is being used as a phenomenological model to test possibly observable effects of quantum gravity. The most pressing problem in these models is the treatment of multi-particle states, known as the 'soccer-ball problem'. This article briefly reviews the problem and the status of existing solution attempts.

  17. Two-ball Newton's cradle

    NASA Astrophysics Data System (ADS)

    Glendinning, Paul

    2011-12-01

    Newton's cradle for two balls with Hertzian interactions is considered as a hybrid system, and this makes it possible to derive return maps for the motion between collisions in an exact form despite the fact that the three-halves interaction law cannot be solved in closed form. The return maps depend on a constant whose value can only be determined numerically, but solutions can be written down explicitly in terms of this parameter, and we compare this with the results of simulations. The results are in fact independent of the details of the interaction potential.

  18. A portable wheel tester for tyre-road friction and rolling resistance determination

    NASA Astrophysics Data System (ADS)

    Pytka, J.; Budzyński, P.; Tarkowski, P.; Piaskowski, M.

    2016-09-01

    The paper describes theory of operation, design and construction as well as results from primarily experiments with a portable wheel tester that has been developed by the authors as a device for on-site determination of tyre-road braking/driving friction and rolling resistance. The paper includes schematics, drawings, descriptions as well as graphical results form early tests with the presented device. It is expected that the tester can be useful in road accident reconstruction applications as well as in vehicle dynamics research.

  19. An improved evaluation of surface finish with a three dimensional tester

    NASA Technical Reports Server (NTRS)

    GRANDADAM; PREBET; RIOUT

    1980-01-01

    The design and programming of an automated three dimensional surface finish tester is described. The device produces a three dimensional image of the microscopic texture of the examined surface. The surface finish tester presents the following advantages over conventional profilometry: (1) more complete exploration of surface texture by successive probe sweeps; (2) automation of measuring and calculating; (3) more accurate representation of the derived parameters; (4) analysis of the degree of homogeneity of the surface; (5) three dimensional graphic representation accurately depicting the state of the surface; (6) detection of local imperfections; and (7) detection of scoring that occurred during machining.

  20. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  1. Liquid drops impacting superamphiphobic coatings.

    PubMed

    Deng, Xu; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2013-06-25

    The dynamics of liquid drops impacting superamphiphobic coatings is studied by high-speed video microscopy. Superamphiphobic coatings repel water and oils. The coating consists of a fractal-like hydrophobized silica network. Mixtures of ethanol-water and glycerin-water are chosen to investigate the influence of interfacial tension and viscosity on spreading and retraction dynamics. Drop spreading is dominated by inertia. At low impact velocity, the drops completely rebound. However, the contact time increases with impact velocity, whereas the restitution coefficient decreases. We suggest that the drop temporarily impales the superamphiphobic coating, although the drop completely rebounds. From an estimate of the pressure, it can be concluded that impalement is dominated by depinning rather than sagging. With increasing velocity, the drops partially pin, and an increasing amount of liquid remains on the coating. A time-resolved study of the retraction dynamics reveals two well-separated phases: a fast inertia-dominated phase followed by a slow decrease of the contact diameter of the drop. The crossover occurs when the diameter of the retracting drop matches the diameter of the drop before impact. We suggest that the depth of impalement increases with impact velocity, where impalement is confined to the initial impact zone of the drop. If the drop partially pins on the coating, the depth of impalement exceeds a depth, preventing the whole drop from being removed during the retraction phase.

  2. Coalescence of Liquid Drops

    NASA Technical Reports Server (NTRS)

    Yao, Wei-Jun

    2003-01-01

    When two liquid drops come into contact, a neck forms between them and grows rapidly. We are interested in the very early stage of the coalescence process, which can be characterized by the time dependence of the radius of the neck. The functional dependence of the size of the neck on time depends on the properties of the liquid. Experimentally, we are investigating a liquid in Stokes flow regime where the viscosity provides the principal retarding force to the surface tension. Recently, it has been predicted that the neck radius should change as t ln|t| in this regime. Theoretically, we have studied the situation when the velocity at each point on the surface is proportional to the local curvature and directed normal to the surface. This is the case that should be applicable to superfluid helium at low temperature when the mean free path of the thermal excitations are comparable to the size of liquid drops. For this system, the radius of the neck is found to be proportional to t(sup 1/3). We are able to find a simple expression for the shape of the interface in the vicinity of the neck.

  3. Mechanically-Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Bostwick, Joshua; Daniel, Susan; Steen, Paul

    2010-11-01

    The volume and contact-line mobility of a sessile drop determine the frequency response of the drop to mechanical excitation. A useful signature of the drop is its response to a sweep of frequency. At particular frequencies the drop exhibits standing wave patterns of different mode numbers and/or azimuthal, spinning motion. We report observations of the spectrum of standing wave patterns and compare to predictions of a linear stability theory. On the side of application, the results suggest how to tune the pinning-unpinning of a sessile drop in order to maximize its translation.

  4. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  5. Using Ruby Balls As Fiducial Marks

    NASA Technical Reports Server (NTRS)

    Painter, Nance M.

    1990-01-01

    Combination of basic and advanced techniques yields new capability for inspection. In new technique, surface first inspected with fluorescent penetrant dye to reveal flaws. Ruby ball of known diameter placed near flaw having to be measured. Flaw and ball observed through magnifying video system that can "freeze" image.

  6. NCI and Leidos Play Ball | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer The ping of an aluminum bat off a ball or the thump of a pop-up fly ball caught in a glove are two sounds familiar to baseball fans. Slow-pitch softball sounds—like those in the August game between mixed teams of NCI and Leidos Biomedical Research (formerly SAIC-Frederick) players—are similar.

  7. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951

  8. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard...

  9. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard...

  10. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard...

  11. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard...

  12. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard...

  13. 77 FR 64588 - Highway Safety Programs; Conforming Products List of Calibrating Units for Breath Alcohol Testers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... calibrating units for breath alcohol testers to Model Specifications for such devices (49 FR 48865) and to... found to conform to the 1994 amended Model Specifications (59 FR 67377) when tested at alcohol... Products List (CPL) published in the Federal Register on June 25, 2007 (72 FR 34747) for devices...

  14. 49 CFR 180.409 - Minimum qualifications for inspectors and testers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of less than 13,250 L (3,500 gallons) used exclusively for flammable liquid petroleum fuels, is not... tests on a permanently mounted non-bulk tank, owned or operated by that person, for petroleum products... Avenue, SE., Washington, DC 20590; and (3) The employer retains a copy of the tester's...

  15. [The abdominal drop flap].

    PubMed

    Bodin, F; Liverneaux, P; Seigle-Murandi, F; Facca, S; Bruant-Rodier, C; Dissaux, C; Chaput, B

    2015-08-01

    The skin between the mastectomy scar and the future infra-mammary fold may be managed in different ways in delayed breast reconstruction using a DIEP (deep inferior epigastric perforator). Conserving this skin and positioning the flap skin paddle in the middle of the breast usually highlights skin color disparity because of two visible transition zones. Resection of the entire skin under the scar may be more aesthetic but limits direct closure possibility in case of flap failure. In order to benefit from both aesthetic result and safe surgical method, we propose the abdominal drop flap. The inferior thoracic skin flap is detached from the thoracic wall beyond the future infra-mammary fold, preserved and pushed under the breast.

  16. Ready for the Cosmic Ball

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Something appears to be peering through a shiny red mask, in this new false-colored image from NASA's Spitzer Space Telescope. The mysterious blue eyes are actually starlight from the cores of two merging galaxies, called NGC 2207 and IC 2163. The mask is the galaxies' dusty spiral arms.

    NGC 2207 and IC 2163 recently met and began a sort of gravitational tango about 40 million years ago. The two galaxies are tugging at each other, stimulating new stars to form. Eventually, this cosmic ball will come to an end, when the galaxies meld into one. The dancing duo is located 140 million light-years away in the Canis Major constellation.

    The Spitzer image reveals that the galactic mask is adorned with strings of pearl-like beads. These dusty clusters of newborn stars, called 'beads on a string' by astronomers, appear as white balls throughout the arms of both galaxies. They were formed when the galaxies first interacted, forcing dust and gas to clump together into colonies of stars.

    This type of beading has been seen before in other galaxies, but it took Spitzer's infrared eyes to identify them in NGC 2207 and IC 2163. Spitzer was able to see the beads because the stars inside heat up surrounding dust, which then radiates with infrared light.

    The biggest bead lighting up the left side of the mask is also the densest. In fact, some of its central stars might have merged to form a black hole. (Now, that would be quite the Mardi Gras mask!)

    This picture, taken by Spitzer's infrared array camera, is a four-channel composite. It shows light with wavelengths of 3.6 microns (blue); 4.5 microns (green); and 5.8 and 8.0 microns (red). The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8- and 8-micron channels to enhance the visibility of the dust features.

  17. Development of a Low-Cost and High-speed Single Event Effects Testers based on Reconfigurable Field Programmable Gate Arrays (FPGA)

    NASA Technical Reports Server (NTRS)

    Howard, J. W.; Kim, H.; Berg, M.; LaBel, K. A.; Stansberry, S.; Friendlich, M.; Irwin, T.

    2006-01-01

    A viewgraph presentation on the development of a low cost, high speed tester reconfigurable Field Programmable Gata Array (FPGA) is shown. The topics include: 1) Introduction; 2) Objectives; 3) Tester Descriptions; 4) Tester Validations and Demonstrations; 5) Future Work; and 6) Summary.

  18. Dolphin underwater bait-balling behaviors in relation to group and prey ball sizes.

    PubMed

    Vaughn-Hirshorn, Robin L; Muzi, Elisa; Richardson, Jessica L; Fox, Gabriella J; Hansen, Lauren N; Salley, Alyce M; Dudzinski, Kathleen M; Würsig, Bernd

    2013-09-01

    We characterized dusky dolphin (Lagenorhynchus obscurus) feeding behaviors recorded on underwater video, and related behaviors to variation in prey ball sizes, dolphin group sizes, and study site (Argentina versus New Zealand, NZ). Herding behaviors most often involved dolphins swimming around the side or under prey balls, but dolphins in Argentina more often swam under prey balls (48% of passes) than did dolphins in NZ (34% of passes). This result may have been due to differences in group sizes between sites, since groups are larger in Argentina. Additionally, in NZ, group size was positively correlated with proportion of passes that occurred under prey balls (p<0.001). Prey-capture attempts most often involved capturing fish from the side of prey balls, but dolphins in Argentina more often swam through prey balls (8% of attempts) than did dolphins in NZ (4% of attempts). This result may have been due to differences in prey ball sizes between sites, since dolphins fed on larger prey balls in Argentina (>74m(2)) than in NZ (maximum 33m(2)). Additionally, in NZ, dolphins were more likely to swim through prey balls to capture fish when they fed on larger prey balls (p=0.025).

  19. Numerical simulation of ball-racket impact

    NASA Astrophysics Data System (ADS)

    Yu, Yingpang

    The collision of a ball with a tennis racket is usually modeled in terms of rigid body dynamics or an elastic system involving only a few springs. In this paper, we study the impact between a tennis ball and racket, by modeling the tennis ball in two different yaws. One method models the tennis ball as a Hertz elastic body and the other one models the ball by a more accurate finite element analysis. In the first model, we assume that the elastic properties of the ball obeys Hertz's law. In the finite element model, we consider the tennis ball as a shell witch is a elastic system constructed out of many isotropic small linear flat, elements, witch have both elastic and damping properties. The damping in each way is approximated as viscous term. In both methods, we study the static condition of deformation against a rigid surface before applying these models to dynamical processes. We compare these two methods and eventually determine how the racket parameters effect the performance of the racket, using numerical simulations. Comparison with experiment are show to confirm the general conclusion of the model.

  20. Viscoelastic modelling of tennis ball properties

    NASA Astrophysics Data System (ADS)

    Sissler, L.; Jones, R.; Leaney, P. G.; Harland, A.

    2010-06-01

    An explicit finite element (FE) tennis ball model which illustrates the effects of the viscoelastic materials of a tennis ball on ball deformation and bounce during normal impacts is presented. A tennis ball is composed of a rubber core and a fabric cover comprised of a wool-nylon mix which exhibit non-linear strain rate properties during high velocity impacts. The rubber core model was developed and validated using low strain rate tensile tests on rubber samples as well as high velocity normal impacts of pressurised cores at velocities ranging from 15 m/s to 50 m/s. The impacts were recorded using a high speed video (HSV) camera to determine deformation, impact time and coefficient of restitution (COR). The material properties of the core model were tuned to match the HSV results. A two component anisotropic fabric model was created which included artificial Rayleigh damping to account for hysteresis effects, and the core model 'tuning' process was used to refine the cloth layer. The ball model's parameters were in good agreement with experimental data at all velocities for both cores and complete balls, and a time sequenced comparison of HSV ball motion and FE model confirmed the validity of the model.

  1. Cricket Ball Aerodynamics: Myth Versus Science

    NASA Technical Reports Server (NTRS)

    Mehta, Rabindra D.; Koga, Demmis J. (Technical Monitor)

    2000-01-01

    Aerodynamics plays a prominent role in the flight of a cricket ball released by a bowler. The main interest is in the fact that the ball can follow a curved flight path that is not always under the control of the bowler. ne basic aerodynamic principles responsible for the nonlinear flight or "swing" of a cricket ball were identified several years ago and many papers have been published on the subject. In the last 20 years or so, several experimental investigations have been conducted on cricket ball swing, which revealed the amount of attainable swing, and the parameters that affect it. A general overview of these findings is presented with emphasis on the concept of late swing and the effects of meteorological conditions on swing. In addition, the relatively new concept of "reverse" swing, how it can be achieved in practice and the role in it of ball "tampering", are discussed in detail. A discussion of the "white" cricket ball used in last year's World Cup, which supposedly possesses different swing properties compared to a conventional red ball, is also presented.

  2. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  3. Horizontal stability of a bouncing ball

    NASA Astrophysics Data System (ADS)

    McBennett, Brendan G.; Harris, Daniel M.

    2016-09-01

    We present an investigation of a partially elastic ball bouncing on a vertically vibrated concave parabolic surface in two dimensions. In particular, we demonstrate that simple vertical motion, wherein the ball bounces periodically at the parabola's vertex, is unstable to horizontal perturbations when the parabolic coefficient defining the surface shape exceeds a critical value. The result is a new periodic solution where the ball bounces laterally over the vertex. As the parabola is further steepened, this new solution also becomes unstable which gives rise to other complex periodic and chaotic bouncing states, all characterized by persistent lateral motion.

  4. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  5. Apfel's superheated drop detector

    NASA Astrophysics Data System (ADS)

    D'Errico, Francesco

    2001-05-01

    The introduction of new approaches for radiation dosimetry is rare. A similar breakthrough occurred in 1979, when Robert Apfel invented the superheated drop detector, a miniature relative of the bubble chamber. A fundamental in high-energy particle physics, the bubble chamber utilizes a liquid briefly brought to a transient, radiation-sensitive superheated state by reducing its pressure. Mass boiling of the liquid is prevented by cyclic pressurization, drastically limiting the detection efficiency. In Apfel's detector, the liquid is kept in a steady superheated state by fractionating it into droplets and dispersing them in an immiscible host fluid, a perfectly smooth and clean container. The approach extends the lifetime of the metastable droplets to the point that practical application in radiation dosimetry is possible. Bubble formation is measured from the volume of vapor or by detecting individual vaporizations acoustically. Various halocarbons are employed and this permits a wide range of applications. Moderately superheated halocarbons are used for neutron measurements, since they are only nucleated by energetic neutron recoil particles. Highly superheated halocarbons nucleate with much smaller energy deposition and are used to detect photons and electrons. This paper reviews the radiation physics of superheated emulsions and their manifold applications.

  6. Production of Ball-Lightning-Like Luminous Balls by Electrical Discharges in Silicon

    NASA Astrophysics Data System (ADS)

    Paiva, Gerson Silva; Pavão, Antonio Carlos; Alpes de Vasconcelos, Elder; Mendes, Odim, Jr.; Felisberto da Silva, Eronides, Jr.

    2007-01-01

    We performed electric arc discharges in pure Si to generate luminous balls with lifetime in the order of seconds and several properties usually reported for natural ball lightning. This simple experiment does not rely on energy sources and excitation mechanisms that are improbable in the natural phenomenon and clearly demonstrates the role of vaporization and oxidation of Si, as proposed by the Abrahamson-Dinniss theory for ball-lightning formation.

  7. Production of ball-lightning-like luminous balls by electrical discharges in silicon.

    PubMed

    Paiva, Gerson Silva; Pavão, Antonio Carlos; Alpes de Vasconcelos, Elder; Mendes, Odim; da Silva, Eronides Felisberto

    2007-01-26

    We performed electric arc discharges in pure Si to generate luminous balls with lifetime in the order of seconds and several properties usually reported for natural ball lightning. This simple experiment does not rely on energy sources and excitation mechanisms that are improbable in the natural phenomenon and clearly demonstrates the role of vaporization and oxidation of Si, as proposed by the Abrahamson-Dinniss theory for ball-lightning formation.

  8. Production of ball-lightning-like luminous balls by electrical discharges in silicon.

    PubMed

    Paiva, Gerson Silva; Pavão, Antonio Carlos; Alpes de Vasconcelos, Elder; Mendes, Odim; da Silva, Eronides Felisberto

    2007-01-26

    We performed electric arc discharges in pure Si to generate luminous balls with lifetime in the order of seconds and several properties usually reported for natural ball lightning. This simple experiment does not rely on energy sources and excitation mechanisms that are improbable in the natural phenomenon and clearly demonstrates the role of vaporization and oxidation of Si, as proposed by the Abrahamson-Dinniss theory for ball-lightning formation. PMID:17358820

  9. Flexible timing of eye movements when catching a ball.

    PubMed

    López-Moliner, Joan; Brenner, Eli

    2016-01-01

    In ball games, one cannot direct ones gaze at the ball all the time because one must also judge other aspects of the game, such as other players' positions. We wanted to know whether there are times at which obtaining information about the ball is particularly beneficial for catching it. We recently found that people could catch successfully if they saw any part of the ball's flight except the very end, when sensory-motor delays make it impossible to use new information. Nevertheless, there may be a preferred time to see the ball. We examined when six catchers would choose to look at the ball if they had to both catch the ball and find out what to do with it while the ball was approaching. A catcher and a thrower continuously threw a ball back and forth. We recorded their hand movements, the catcher's eye movements, and the ball's path. While the ball was approaching the catcher, information was provided on a screen about how the catcher should throw the ball back to the thrower (its peak height). This information disappeared just before the catcher caught the ball. Initially there was a slight tendency to look at the ball before looking at the screen but, later, most catchers tended to look at the screen before looking at the ball. Rather than being particularly eager to see the ball at a certain time, people appear to adjust their eye movements to the combined requirements of the task.

  10. Flexible timing of eye movements when catching a ball.

    PubMed

    López-Moliner, Joan; Brenner, Eli

    2016-01-01

    In ball games, one cannot direct ones gaze at the ball all the time because one must also judge other aspects of the game, such as other players' positions. We wanted to know whether there are times at which obtaining information about the ball is particularly beneficial for catching it. We recently found that people could catch successfully if they saw any part of the ball's flight except the very end, when sensory-motor delays make it impossible to use new information. Nevertheless, there may be a preferred time to see the ball. We examined when six catchers would choose to look at the ball if they had to both catch the ball and find out what to do with it while the ball was approaching. A catcher and a thrower continuously threw a ball back and forth. We recorded their hand movements, the catcher's eye movements, and the ball's path. While the ball was approaching the catcher, information was provided on a screen about how the catcher should throw the ball back to the thrower (its peak height). This information disappeared just before the catcher caught the ball. Initially there was a slight tendency to look at the ball before looking at the screen but, later, most catchers tended to look at the screen before looking at the ball. Rather than being particularly eager to see the ball at a certain time, people appear to adjust their eye movements to the combined requirements of the task. PMID:26982371

  11. Improve pumping efficiency with PSZ ceramic balls

    SciTech Connect

    Brothers, J. )

    1989-04-01

    partially stabilized zirconia (PSZ) ceramic balls used today in downhole pumps improve both the efficiency and run time of sucker rod pumping systems. Recent field tests showed the balls increased the average run time of downhole pumps by 440%. While there are other types of stabilizers, only magnesia PSZ is appropriate for downhole pumps. The more commonly found alloy balls and carbide balls have been found to deform and not seal under these conditions. PSZ is most notable for its resistance to breaking from impact. A nonductile material, it will make a perfect seal on the seat despite any impact, enhancing its use in fluid pound situations. Other PSZ applications in downhole pumps and related equipment include plunger inserts, discharge inserts, plunger rings, choke parts, pressure relief valve components, and triplex pump plungers.

  12. Laryngeal Fracture Caused by a Lacrosse Ball.

    PubMed

    Trinidade, Aaron; Shakeel, Muhammad; Stickle, Brian; Ah-See, Kim W

    2015-11-01

    Neck injuries in lacrosse are rare and mostly involve the musculoskeletal system. The lacrosse ball is a solid rubber ball of approximately 20 cm in diameter and the fastest shot recorded in professional lacrosse is over 100 mph. Despite wearing full protection, the neck remains prone to blunt trauma by this ball. A 23-year man sustained a direct blow to his left neck by a lacrosse ball during play, resulting in immediate aphonia and stridor. CT scan confirmed a left thyroid lamina fracture. The patient was treated conservatively and his airway was monitored for 24 hours. He made a full recovery. It is important that lacrosse players should be aware of this potential injury and appropriate precautions should be taken to avoid this trauma.

  13. Laryngeal Fracture Caused by a Lacrosse Ball.

    PubMed

    Trinidade, Aaron; Shakeel, Muhammad; Stickle, Brian; Ah-See, Kim W

    2015-11-01

    Neck injuries in lacrosse are rare and mostly involve the musculoskeletal system. The lacrosse ball is a solid rubber ball of approximately 20 cm in diameter and the fastest shot recorded in professional lacrosse is over 100 mph. Despite wearing full protection, the neck remains prone to blunt trauma by this ball. A 23-year man sustained a direct blow to his left neck by a lacrosse ball during play, resulting in immediate aphonia and stridor. CT scan confirmed a left thyroid lamina fracture. The patient was treated conservatively and his airway was monitored for 24 hours. He made a full recovery. It is important that lacrosse players should be aware of this potential injury and appropriate precautions should be taken to avoid this trauma. PMID:26577976

  14. Reexamination of Ball-Race Conformity Effects on Ball Bearing Life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.

    2007-01-01

    The analysis in this report considers the life of the ball set as well as the respective lives of the races to reassess the effect of ball-race conformity on ball bearing life. The related changes in ball bearing life are incorporated in life factors that can be used to modify the bearing predicted life using the Lundberg-Palmgren equations and the ANSI/ABMA and ISO Standards. Two simple algebraic relationships were established to calculate life factors LF(sub c) to determine the effect of inner- and outer-race conformity combinations on bearing L(sub 10) life for deepgroove and angular-contact ball bearings, respectively. Depending on the bearing type and series as well as conformity combinations, the calculated life for deep-groove ball bearings can be over 40 percent less than that calculated by the Lundberg-Palmgren equations. For angular-contact ball bearings, the life can vary between +16 and -39 percent from that calculated by the Lundberg-Palmgren equations. Comparing the two ball bearing types, the life factors LF(sub c) for the deep-groove bearings can be as much as 40 percent lower than that for angular-contact ball bearings.

  15. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  16. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  17. Bouncing ball problem: numerical behavior characterization

    NASA Astrophysics Data System (ADS)

    Macau, E. E. N.; Carneiro, M. V.; Barroso, J. J.

    2010-09-01

    This paper gives an overview of the simple yet fundamental bouncing ball problem, which consists of a ball bouncing vertically on a sinusoidally vibrating table under the action of gravity. The dynamics is modeled on the basis of a discrete map of difference equations, which numerically solved fully reveals a rich variety of nonlinear behaviors, encompassing irregular non-periodic orbits, subharmonic and chaotic motions, chattering mechanisms, and also unbounded non-periodic orbits.

  18. Gravitational waves from Q-ball formation

    SciTech Connect

    Chiba, Takeshi; Kamada, Kohei; Yamaguchi, Masahide

    2010-04-15

    We study the detectability of the gravitational waves (GWs) from the Q-ball formation associated with the Affleck-Dine (AD) mechanism, taking into account both the dilution effects due to Q-ball domination and to finite temperature. The AD mechanism predicts the formation of nontopological solitons, Q-balls, from which GWs are generated. Q-balls with large conserved charge Q can produce a large amount of GWs. On the other hand, the decay rate of such Q-balls is so small that they may dominate the energy density of the Universe, which implies that GWs are significantly diluted and that their frequencies are redshifted during the Q-ball dominated era. Thus, the detectability of the GWs associated with the formation of Q-balls is determined by these two competing effects. We find that there is a finite but small parameter region where such GWs may be detected by future detectors such as DECIGO or BBO, only in the case when the thermal logarithmic potential dominates the potential of the AD field. Otherwise GWs from Q-balls would not be detectable even by these futuristic detectors: {Omega}{sub GW}{sup 0}<10{sup -21}. Unfortunately, for such parameter region the present baryon asymmetry of the Universe can hardly be explained unless one fine-tunes A-terms in the potential. However the detection of such a GW background may give us an information about the early Universe, for example, it may suggest that the flat directions with B-L=0 are favored.

  19. Fractal aggregates in tennis ball systems

    NASA Astrophysics Data System (ADS)

    Sabin, J.; Bandín, M.; Prieto, G.; Sarmiento, F.

    2009-09-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the images of the cluster of balls, following Forrest and Witten's pioneering studies on the aggregation of smoke particles, to estimate their fractal dimension.

  20. Effects of bushings characteristics on suspension ball joint travels

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo

    2011-02-01

    In this paper, a short-long arm type front suspension is represented using multi-body dynamics model established with ADAMS®, where the suspension bushings modelled as linear and nonlinear elements, respectively, are integrated with a flexible cradle and other suspension components. A ball joint travel, defined as the angular displacement between the two parts connected with the ball joint, is calculated, where the measured wheel loads and spindle accelerations from a proving ground severe durability test schedule serve as the input data. The ball joints considered in this study include lower ball joints, upper ball joints, outer tierod ball joints, and inner tierod ball joints. The results clearly illustrate that the bushing stiffness and nonlinearity are important for an accurate prediction of ball joint travels and the ball joint travel sensitivities to considered design variables are important for engineers to understand and ensure reliable designs of ball joints.

  1. Binary drop coalescence in liquids

    NASA Astrophysics Data System (ADS)

    Kim, Jungyong

    Experiments on binary drop collisions within an index-matched liquid were conducted for Weber numbers (We) of 1-50 and collision angles of 15-80° below the horizontal. Drop pairs of water/glycerin mixture were injected into silicone oil and, due to gravitational effects, traveled on downward trajectories before colliding. A dual-field high-speed PIV measurement system was employed to quantify drop trajectories and overall collision conditions while simultaneously examining detailed velocity fields near the collision interface. In the We range examined, for equal size drops, both rebounding and coalescing behavior occurred. The drops coalesced for We > 10 and rebounded for We < 10, and this boundary was found to be insensitive to collision angle. Coalescence was found to result from a combination of vortical flow within drops and strong drop deformation characteristic of higher We. Flow through the centers of opposing ring vortices, strengthened by drop deformation, enhanced drainage of the thin film in the impact region, leading to film rupture and coalescence. The collision angle affected the eventual location of film rupture, with the rupture location moving higher in the thin film region as the collision angle increased. The film rupture location correlated closely with the location of maximum downward velocity in the thin film. The time between collision and rupture increases with We until We = 30. For We > 30, the time decreases as We increases. Unequal size drop collisions with drop size ratios (Ds/D L) of 0.7 and 0.5 were also examined. Coalescence occurs above We* = 11 similar to equal size drops. As drop size ratio decreases, the intervening film deforms more. If the velocity ratio uL/u s < 1, the deformed interface becomes flat before coalescence. The rupture location varies due to the asymmetry of the drops. As collision offset increases (B > 0), the film rupture time is shortened and mixing of the fluid from both drops is enhanced after coalescence

  2. Head position control on quasi-static read/write tester

    NASA Astrophysics Data System (ADS)

    Kusumi, Takayuki; Yamakawa, Kiyoshi; Ouchi, Kazuhiro

    2005-02-01

    To develop high-density magnetic recording systems, a simple feedback system without servo writing was applied to a quasi-static read/write tester in which a medium reciprocates against a stand-still head. The head position signal in cross-track direction during the scanning is fed back to the high-precision piezoelectric actuator of the media stage. The stage is controlled so as to make the head/medium alignment error zero. A contact head slider assembled on a parallel-link suspension was used to evaluate the feedback system. The tester shows an accuracy of 1.5 nm in cross-track direction which is preferable for the read/write tests at future high recording densities.

  3. Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers

    PubMed Central

    Baykal, D.; Siskey, R.S.; Haider, H.; Saikko, V.; Ahlroos, T.; Kurtz, S.M.

    2013-01-01

    The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their predictive in vivo wear behavior. However, there are still uncertainties regarding POD test parameters for facilitating clinically relevant wear mechanisms of UHMWPE. Studies on the development of POD testing were briefly summarized. We systematically reviewed wear rate data of UHMWPE generated by POD testers. To determine if POD testing was capable of correctly ranking bearings and if test parameters outlined in ASTM F732 enabled differentiation between wear behavior of various formulations, mean wear rates of non-irradiated, conventional (25–50 kGy) and highly crosslinked (≥90 kGy) UHMWPE were grouped and compared. The mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 7.03, 5.39 and 0.67 mm3/MC. Based on studies that complied with the guidelines of ASTM F732, the mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 0.32, 0.21 and 0.04 mm3/km, respectively. In both sets of results, the mean wear rate of highly crosslinked UHMPWE was smaller than both conventional and non-irradiated UHMWPEs (p<0.05). Thus, POD testers can compare highly crosslinked and conventional UHMWPEs despite different test parameters. Narrowing the allowable range for standardized test parameters could improve sensitivity of multi-axial testers in correctly ranking materials. PMID:23831149

  4. Use of the standard rubber ball as an impact source with heavyweight concrete floors.

    PubMed

    Jeon, Jin Yong; Lee, Pyoung Jik; Sato, Shin-ichi

    2009-07-01

    To select an appropriate standard floor impact source to simulate real floor impacts, objective and subjective evaluations of the floor impact sounds were conducted in a box-frame-type structure with reinforced concrete slab floors. The sounds simulated in the test were those that would result from an adult walking barefoot, children running and jumping (represented by a heavy-weight impact source, such as a bang machine or an impact ball), as well as those of a person walking in high-heels or a lightweight object being dropped (represented by a tapping machine). Similarity tests between human-made impact sounds and standard heavy-weight impact sounds were performed. Sound quality (SQ) metrics were used to predict the results of the similarity tests. These results showed that the impact sound of an impact ball is more similar to a human-made impact sound than the sound of a bang machine. A multiple regression analysis showed that loudness and roughness are significant factors describing the results of similarity judgment among SQ metrics. Much of the data from the standard impact sources, measured in reinforced concrete floors with rigid floor coverings, have been collected. An empirical relationship was established to convert the impact pressure sound level from the bang machine or tapping machine to that from the impact ball. This study indicates that the use of an impact ball is reliable for simulating human impact sounds. PMID:19603874

  5. The ball SITE sign: Ball sports-induced targetoid erythema in a racquetball player

    PubMed Central

    Cohen, Philip R.

    2015-01-01

    Background: Cutaneous injury following impact of a high velocity ball to the skin may result in either erythema or purpura or both. The lesion typically appears as an annular ring of erythema with or without accompanying ecchymosis when the skin is contacted by a paintball, a ping pong ball, a racquetball or a squash ball. Purpose: To describe a girl with targetoid erythema following impact of a racquetball on her flank and back and to review other sports associated with this response to skin injury. Methods: PubMed was used to search the following terms, separately and in combination: ball, erythema, paint, ping pong, purpura, racquetball, sign, site, sports, squash, targetoid. All papers were reviewed and relevant manuscripts, along with their reference citations, were evaluated. Results: A 13-year-old girl developed an annular red ring surrounding a central area of normal appearing skin on her right flank and upper back where a racquetball traveling at a high velocity contacted her skin. Similar appearing lesions of targetoid erythema have been described at the cutaneous impact sites of either paintballs, ping pong balls, squash balls; in addition to erythema, purpura may also concurrently appear or subsequently develop at the contact location of the ball with the skin. Conclusions: Targetoid erythema is a pathognomonic cutaneous presentation resulting from the impact of either a paintball, ping pong ball, racquetball or squash ball—that is traveling at a high velocity—with a sport participant’s skin. The ball SITE (sports-induced targetoid erythema) sign is suggested as a unifying nomenclature to designate this unique, ball sport-associated, cutaneous dermatosis in athletes participating in sports in which high velocity impact of the ball with the skin may occur. PMID:26336625

  6. Gas-pressurized dispersive powder flow tester for low volume sample characterization.

    PubMed

    Majid, Ainnur Marlyana Abd; Wong, Tin Wui

    2013-05-01

    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.

  7. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    PubMed

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers. PMID:26724193

  8. High concentration (2500 suns), high throughput, automated flash tester with calibrated color balance and intensity control

    NASA Astrophysics Data System (ADS)

    Ludowise, Michael; Taylor, Sean; Lucow, Ewelina; Chan, Hing

    2008-08-01

    SolFocus has designed and built a flexible and adaptable solar flash tester capable of reaching in excess of 2500x suns flux using a commercially available Xenon flash and power supply. Using calibrated isotype cells and photodetectors, the intensity and color balance of the flash are controlled through software algorithms that compensate for tube aging and thermal drift. The data acquisition system dynamically normalizes each of the 1600 I-V data pairs to the lamp intensity during each flash. Up to 32 cells can be measured simultaneously, with a flash re-cycle time of 3 seconds. The dynamic current range is 100μA to 10A over 0 to 5V. Test ranges are limited by user input through a modern GUI screen. The system is mated to a commercially available probe station tester which allows automated testing of up to 150mm diameter wafers, and is capable of testing a 4000 cell wafer in less than 8 minutes. The core software and optical components are easily adaptable to receiver and full panel testing as well. Data on the calibration and performance of the flash tester, the dynamic range achieved in test, and throughputs obtained during operation are presented.

  9. The design and analysis of single flank transmission error tester for loaded gears

    NASA Technical Reports Server (NTRS)

    Bassett, Duane E.; Houser, Donald R.

    1987-01-01

    To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement.

  10. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    PubMed

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers.

  11. Analysis of the slider force calibration procedure for the British Pendulum Skid Resistance Tester

    NASA Astrophysics Data System (ADS)

    Hiti, Miha; Ducman, Vilma

    2014-02-01

    British Pendulum Skid Resistance Testers are being used for the determination of the slip/skid resistance of surfaces by laboratories all around the world in different fields. The instrument itself can give reproducible results; however, the comparison of results obtained by different instruments can show large deviations. This paper presents a comparison of the performance of four pendulum testers, the investigation of requirements in international standards and the analysis of the calibration procedure for the determination of the slider force/deflection characteristics. The slider force/deflection characteristics were measured manually and also automatically with a uniaxial tensile/compression testing machine using different techniques. The results highlight the importance of the slider force/deflection characteristic shape and its influence on the results indicated by the pendulum tester and outline inconsistencies in different international standards describing the same device and its requirements. Presented results show good reproducibility and comparability of the pendulum test results when calibration is performed with the assembled pendulum either manually or automatically, provided the stricter slider force characteristic envelope requirements are taken into consideration. The actual slider force should be stable from 1.5 mm deflection onwards.

  12. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  13. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  14. Electrokinetics of isolated electrified drops.

    PubMed

    Pillai, Rohit; Berry, Joseph D; Harvie, Dalton J E; Davidson, Malcolm R

    2016-04-14

    Using a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh. For small values of electric field, the deformation behaviour of a drop is shown to be accurately described by a simple analytical expression. At large electric fields, the drops are unstable and eject progeny drops. Depending on Oh and κ this occurs via dripping or jetting; the regime transitions are shown by a Oh-κ phase map. In contrast to previous studies, we find universal scaling relations to predict size and charge of progeny drops. Our simulations suggest charge transport plays a significant role in drop dynamics for 0.1 ≤ Oh ≤ 10, a parameter range of interest in microscale flows.

  15. Aerodynamic drag of modern soccer balls.

    PubMed

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  16. Ball machine usage in tennis: movement initiation and swing timing while returning balls from a ball machine and from a real server.

    PubMed

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-05-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers' movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key pointsPlayers have shorter initial move time when they are facing the ball machine.Using the ball machine results in different swing timing and movement coordination.The use of the ball machine should be limited.

  17. Ball machine usage in tennis: movement initiation and swing timing while returning balls from a ball machine and from a real server.

    PubMed

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-05-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers' movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key pointsPlayers have shorter initial move time when they are facing the ball machine.Using the ball machine results in different swing timing and movement coordination.The use of the ball machine should be limited. PMID:24790483

  18. Ball Machine Usage in Tennis: Movement Initiation and Swing Timing While Returning Balls from a Ball Machine and from a Real Server

    PubMed Central

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-01-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers’ movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key points Players have shorter initial move time when they are facing the ball machine. Using the ball machine results in different swing timing and movement coordination. The use of the ball machine should be limited. PMID:24790483

  19. Prospective versus predictive control in timing of hitting a falling ball.

    PubMed

    Katsumata, Hiromu; Russell, Daniel M

    2012-02-01

    Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not

  20. The dynamic impact characteristics of tennis balls with tennis rackets.

    PubMed

    Haake, S J; Carré, M J; Goodwill, S R

    2003-10-01

    The dynamic properties of six types of tennis balls were measured using a force platform and high-speed digital video images of ball impacts on rigidly clamped tennis rackets. It was found that the coefficient of restitution reduced with velocity for impacts on a rigid surface or with a rigidly clamped tennis racket. Pressurized balls had the highest coefficient of restitution, which decreased by 20% when punctured. Pressureless balls had a coefficient of restitution approaching that of a punctured ball at high speeds. The dynamic stiffness of the ball or the ball-racket system increased with velocity and pressurized balls had the highest stiffness, which decreased by 35% when punctured. The characteristics of pressureless balls were shown to be similar to those of punctured balls at high velocity and it was found that lowering the string tension produced a smaller range of stiffness or coefficient of restitution. It was hypothesized that players might consider high ball stiffness to imply a high coefficient of restitution. Plots of coefficient of restitution versus stiffness confirmed the relationship and it was found that, generally, pressurized balls had a higher coefficient of restitution and stiffness than pressureless balls. The players might perceive these parameters through a combination of sound, vibration and perception of ball speed off the racket. PMID:14620027

  1. Flight trajectory of a rotating golf ball with grooves

    NASA Astrophysics Data System (ADS)

    Baek, Moonheum; Kim, Jooha; Choi, Haecheon

    2014-11-01

    Dimples are known to reduce drag on a sphere by the amount of 50% as compared to a smooth surface. Despite the advantage of reducing drag, dimples deteriorate the putting accuracy owing to their sharp edges. To minimize this putting error but maintain the same flight distance, we have devised a grooved golf ball (called G ball hereafter) for several years. In this study, we modify the shape and pattern of grooves, and investigate the flow characteristics of the G ball by performing wind-tunnel experiments at the Reynolds numbers of 0 . 5 ×105 - 2 . 5 ×105 and the spin ratios (ratio of surface velocity to the free-stream velocity) of 0 - 0.6 that include the real golf-ball velocity and rotational speed. We measure the drag and lift forces on the rotating G ball and compare them with those of a smooth ball and two well-known dimpled balls. The lift-to-drag ratio of the G ball is much higher than that of a smooth ball and is in between those of the two dimpled balls. The trajectories of flying golf balls are computed. The flight distance of G ball is almost the same as that of one dimpled ball but slightly shorter than that of the other dimpled ball. The fluid-dynamic aspects of these differences will be discussed at the talk. Supported by 2011-0028032, 2014M3C1B1033980.

  2. Leidenfrost drops: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Brandenbourger, M.; Sobac, B.; Biance, A.-L.; Colinet, P.; Dorbolo, S.

    2015-04-01

    A specific experimental set-up has been installed in a large centrifuge facility in order to study different aspects of Leidenfrost drops under high-gravity conditions (5, 10, 15 and 20 times the Earth gravity). In particular, the drop lifetime and more precisely the variations of drop diameter vs. time have shown to be in good agreement with previous experiments and scaling analysis (Biance A.-L. et al., Phys. Fluids, 15 (2003) 1632). Moreover, so-called chimneys are expectedly observed in the large puddles, the distance between two chimneys depending linearly on the capillary length. Finally, the Leidenfrost point, i.e. the temperature above which the Leidenfrost effect takes place, was unexpectedly found to increase slightly with gravity. A qualitative explanation based on a refined model (Sobac B. et al., Phys. Rev. E, 90 (2014) 053011) recognizing the non-trivial shape of the vapor film under the drop is proposed to explain this observation.

  3. Orion Capsule Mockup is Dropped

    NASA Video Gallery

    An Orion capsule mockup is dropped from a plane 25,000 feet above the Arizona desert to test its parachute design. Orion will return to Earth at speeds faster than previous human spacecraft, and wi...

  4. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  5. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  6. Role of visual information in ball catching.

    PubMed

    Rosengren, K S; Pick, H L; von Hofsten, C

    1988-06-01

    The present study is concerned with the perceptual information about the body and space underlying the act of catching a ball. In a series of four experiments, subjects were asked to catch a luminous ball under various visual conditions. In general, catching in a normally illuminated room was contrasted with catching the luminous ball in an otherwise completely dark room. In the third and fourth experiments, intermediate conditions of visual information were included. The results suggest that it is possible to catch a ball with one hand when only the ball is visible, but performance is better when the subject has the benefit of a rich visual environment and two hands. The second experiment indicated that subject performance does improve with practice in the dark, but time spent in the darkened room itself doesn't result in a significant decrement in performance. Results of the third study suggest that vision of one's hand does not aid in the performance of this task whereas the presence of a minimal visual frame appears to aid performance. The final study examined the relation between catching performance and body sway under similar visual conditions. Results of this experiment imply that persons who exhibit relatively little postural sway in full-room lighting performed better at this catching task.

  7. Computational analysis of drop-on-demand drop formation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Basaran, Osman A.

    2007-10-01

    Motivated by the desire to improve the theoretical understanding of drop-on-demand (DOD) ink-jet printing, a computational analysis is carried out to simulate the formation of liquid drops of incompressible Newtonian fluids from a simple capillary tube by imposing a transient flow rate upstream of the nozzle exit. Since the flow in a typical ink-jet nozzle is toward the nozzle outlet during part of the time and away from the nozzle outlet at other times, an inflow rate is adopted here that captures the essential physics and is given in dimensionless form by Q =(π√We /2)sinΩt, where We is the Weber number (inertial/surface tension force), Ω is the frequency, and t is time. The dynamics are studied as functions of We, Ω, and the Ohnesorge number Oh (viscous/surface tension force). For a common ink forming from a nozzle of 10μm radius, Oh =0.1. For this typical case, a phase or operability diagram in (We,Ω)-space is developed that shows that three regimes of operation are possible. In the first regime, where We is low, breakup does not occur, and drops remain pendant from the nozzle and undergo time periodic oscillations. Thus, the simulations show that fluid inertia, and hence We, must be large enough if a DOD drop is to form, in accord with intuition. A sufficiently large We causes both drop elongation and onset of drop necking, but flow reversal is also necessary for the complete evacuation of the neck and capillary pinching. In the other two regimes, at a given Ω, We is large enough to cause drop breakup. In the first of these two regimes, where Wec1drops do form but have negative velocities, i.e., they would move toward the nozzle upon breakup, which is undesirable. In the second breakup regime, where We >Wec2, not only are DOD drops formed, but they do so with positive velocities.

  8. Relativistic-microwave theory of ball lightning.

    PubMed

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  9. Relativistic-microwave theory of ball lightning.

    PubMed

    Wu, H-C

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  10. Electrostatic charge bounds for ball lightning models

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.

    2008-03-01

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings.

  11. On the energy characteristics of ball lightning.

    PubMed

    Bychkov, A V; Bychkov, V L; Abrahamson, John

    2002-01-15

    A compilation of 17 observations of ball lightning showing the most energetic effects is presented along with estimates of their energy content. These observations were chosen from several thousand for the much stronger interaction of each ball lightning on its surroundings, and the method of energy estimation outlined. The case is put that some of the observations show a higher energy than self-contained chemical energy could provide. Comments have been added to the paper, arguing that the energy estimations themselves should be consistent with whatever model is used for ball lightning. For example, the presence of reacting nanoparticles releasing chemical energy may bring about the same observed effects with lower estimated energy.

  12. Randomness in the bouncing ball dynamics

    NASA Astrophysics Data System (ADS)

    Giusepponi, S.; Marchesoni, F.; Borromeo, M.

    2005-06-01

    The dynamics of a vibrated bouncing ball is studied numerically in the reduced impact representation, where the velocity of the bouncing ball is sampled at each impact with the plate (asynchronous sampling). Its random nature is thus fully revealed: (i) the chattering mechanism, through which the ball gets locked on the plate, is accomplished within a limited interval of the plate oscillation phase, and (ii) is well described in impact representation by a special structure of looped, nested bands and (iii) chattering trajectories and strange attractors may coexist for appropriate ranges of the parameter values. Structure and substructure of the chattering bands are well explained in terms of a simple impact map rule. These results are of potential application to the analysis of high-temperature vibrated granular gases.

  13. On the energy characteristics of ball lightning.

    PubMed

    Bychkov, A V; Bychkov, V L; Abrahamson, John

    2002-01-15

    A compilation of 17 observations of ball lightning showing the most energetic effects is presented along with estimates of their energy content. These observations were chosen from several thousand for the much stronger interaction of each ball lightning on its surroundings, and the method of energy estimation outlined. The case is put that some of the observations show a higher energy than self-contained chemical energy could provide. Comments have been added to the paper, arguing that the energy estimations themselves should be consistent with whatever model is used for ball lightning. For example, the presence of reacting nanoparticles releasing chemical energy may bring about the same observed effects with lower estimated energy. PMID:16210173

  14. Relativistic-microwave theory of ball lightning

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  15. The bouncing ball through a geometrical series

    NASA Astrophysics Data System (ADS)

    Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin

    2008-10-01

    The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.

  16. Relativistic-microwave theory of ball lightning

    PubMed Central

    Wu, H.-C.

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  17. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  18. Drag Crisis of Gyro-Balls

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiyuki; Miyazaki, Takeshi; Himeno, Ryutaro

    2007-11-01

    Using a high-speed video camera, we measured the trajectory and the rotation of a hard baseball thrown by a pitching machine which can launch Gyro-Balls (rifle spinning balls). We determined the drag- and lift- coefficients by analyzing the video images. The measurements were performed in the range of 0.6x10^5ball with SP=0.12,0.23 and 0.35, decreases gradually with Re. However, the drag coefficient of a 2-seam gyro-ball with SP=0.12 decreases in two steps, i.e. in the ranges 0.8x10^5Ball with SP=0.23,0.35 are almost constant below Re=1.6x10^5 and Re=1.3x10^5, respectively. Their minima are attained at Re=1.8x10^5 and Re=1.6x10^5, respectively. These findings confirm the occurrence of the drag crisis for Gyro-Balls. The different Re-dependencies are due to the different seam patterns.

  19. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  20. Ocular injuries from liquid golf ball cores.

    PubMed Central

    Lucas, D R; Dunham, A C; Lee, W R; Weir, W; Wilkinson, F C

    1976-01-01

    Tissue removed from nine new cases from 18 hours to 20 weeks after injury by a golf ball contained crystalline and other foreign material to which there was a mild inflammatory reaction followed by macrophagic activity and fibrosis. Optical and electron probe analysis showed that the crystalline material was crushed barytes containing small quantities of muscovite as is typical in natural deposits. The centres of several golf balls were shown to contain essentially identical material. By contrast with previous reports, no zinc sulphide was found. The form and frequent location of the deposits in the conjunctiva as compared with cornea and eyelid is related to the structure of these tissues. Images PMID:1009050

  1. Tenderness Tester

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Space telemetry has been transferred to food processing in the Armour;Tenderorneter, an instrument that predicts the tenderness of meat. The space component of the instrument is a sensitive, highly reliable strain gage originally produced for NASA's Surveyor lunar lander and other space programs by BLH Electronics, Waltham, Mass. Several years ago Armour & Co. began to develop a method of testing a hanging carcass to predict how tender the meat would be after cooking; no such method then existed. After considerable experimentation, Armour came up with a manifold-mounted group of-needle-like probes, which when stuck into a carcass, could measure the degree to which the meat resisted penetration. This provided a basis for predicting tenderness, but the development required one more . step; a device that could translate meat resistance into an electrical readout. Armour found it in the BLH strain gage. The resulting Tenderometer, now a standard and important part of Armour's meat processing operation, includes a large, 10-pronged fork which is plunged into a carcass and a cable-connected, handheld electronic device that translates the sensings of the prongs into a tenderness reading on a dial. The instrument is used by Armour to select and guarantee a premium line of beef known as TesTender, whose annual sales run into tens of millions of pounds.

  2. Teletype Tester

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the United States, more than 12,000 homes of deaf people are equipped with a system that enables the deaf to communicate by telephone. It consists of a teletype machine hooked up to an "acoustic coupler." The deaf person taps out a message on the teletype keyboard and the acoustic coupler converts teletype pulses into audio signals that can be sent over phone lines. At the other end, another coupler reconverts the signals to activate the teletype's printer and provide a readable message. Though a boon to the deaf, the system presents a problem when something goes wrong. It is difficult to pinpoint the trouble because of the multiple units involved-the teletype's keyboard or its printer, the coupler's sending circuit or its receiving circuit. Finding the trouble is time-consuming and it usually involves removing the equipment from service, leaving the deaf person temporarily without communication. Seeking an answer to this difficulty, NASA's Biomedical Applications Team at Research Triangle Institute, North Carolina, circulated a problem statement to NASA field centers. Langley Research Center responded by developing a compactly-packaged portable Teletype Test Unit.

  3. Solidification of Drops in the MSFC Drop Tube

    NASA Technical Reports Server (NTRS)

    Brush, Lucien N.

    1998-01-01

    Silver drops (99.9%, 7 mm diameter) were levitated, melted, and released to fall through the Marshall Space Flight Center's 105 m drop tube in an He-6% H atmosphere at 170 degrees superheat. The extent of solidification during the approx. 4.6 s of free fall time prior to impact was measured experimentally and computed numerically using a newly developed solidification heat transfer model. Comparison of the experimental observation of the fraction of liquid transformed with the numerical solutions showed reasonable agreement. Possible modifications of the model, in an attempt to close the gap between the experiment and the model comparison are discussed.

  4. Review on drop towers and long drop tubes

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Hofmeister, W. H.; Robinson, M. B.

    1987-01-01

    A drop tube is an enclosure in which a molten sample can be solidified while falling; three such large tubes are currently in existence, all at NASA research facilities, and are engaged in combustion and fluid physics-related experiments rather than in materials research. JPL possesses smaller tubes, one of which can be cryogenically cooled to produce glass and metal microshells. A new small drop tube will soon begin operating at NASA Lewis that is equipped with four high-speed two-color pyrometers spaced equidistantly along the column.

  5. Ball motion and sliding friction in an arched outer race ball bearing

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1973-01-01

    The motion of the ball and sliding friction in an arched outer race ball bearing under thrust loads is determined. Fatigue life evaluations were made. The analysis is applied to a 150 millimeter bore ball bearing. The results indicated that for high speed-light load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be an optimal. For an arched bearing it was also found that a considerable amount of spinning occurs at the outer race contacts.

  6. Ball motion and sliding friction in an arched outer-race ball bearing

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1974-01-01

    The motion of the ball and sliding friction in an arched outer-race ball bearing under thrust load is analyzed. Fatigue life evaluations were made. The analysis is applied to a 150-millimeter-bore ball bearing. The results indicated that for high-speed light-load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be optimal. Also, for an arched bearing a considerable amount of spinning occurs at the outer-race contacts.

  7. New live line tester for porcelain suspension insulators on high-voltage power lines

    SciTech Connect

    Vaillancourt, G.H.; St-Jean, M. ); Bellerive, J.P. ); Jean, C. )

    1994-01-01

    Suspension insulator assemblies known as insulator strings are used in overhead power transmission lines to mechanically support high-voltage conductors while providing adequate insulation to withstand switching and lightning overvoltages. Since the useful life in service of the individual insulator elements making up these strings is hard to predict, they must be verified periodically to insure that adequate line reliability is maintained at all times. Over the years many testing methods have been used for this purpose, each one with its own advantages and disadvantages. Until now at Hydro-Quebec, porcelain insulators had been tested by the buzz method which simply consists of applying a short-circuit to each insulator in a string and listening for a buzz-like sound indicating a good insulator. However, safety considerations that preclude short-circuiting insulators and other disadvantages of that method have led Hydro-Quebec to undertake and complete the development of a new insulator tester. The working principle of this new device is based on the automatic measurement and recording of the electric field along the insulator string which decreases considerably in front of an internally-shorted insulator. The tester is slid along the string while the insulators are counted automatically. The information from tests on up to 200 strings can be stored in the device to be later transferred in a host computer for interpretation and/or permanent storage. The new tester also gives information on voltage distribution along the insulator strings which can be useful for the design of future power transmission lines.

  8. MorphoTester: An Open Source Application for Morphological Topographic Analysis

    PubMed Central

    Winchester, Julia M.

    2016-01-01

    The increased prevalence and affordability of 3D scanning technology is beginning to have significant effects on the research questions and approaches available for studies of morphology. As the current trend of larger and more precise 3D datasets is unlikely to slow in the future, there is a need for efficient and capable tools for high-throughput quantitative analysis of biological shape. The promise and the challenge of implementing relatively automated methods for characterizing surface shape can be seen in the example of dental topographic analysis. Dental topographic analysis comprises a suite of techniques for quantifying tooth surfaces and component features. Topographic techniques have provided insight on mammalian molar form-function relationships and these methods could be applied to address other topics and questions. At the same time implementing multiple complementary topographic methods can have high time and labor costs, and comparability of data formats and approaches is difficult to predict. To address these challenges I present MorphoTester, an open source application for visualizing and quantifying topography from 3D triangulated polygon meshes. This application is Python-based and is free to use. MorphoTester implements three commonly used dental topographic metrics–Dirichlet normal energy, relief index, and orientation patch count rotated (OPCR). Previous OPCR algorithms have used raster-based grid data, which is not directly interchangeable with vector-based triangulated polygon meshes. A 3D-OPCR algorithm is provided here for quantifying complexity from polygon meshes. The efficacy of this metric is tested in a sample of mandibular second molars belonging to four species of cercopithecoid primates. Results suggest that 3D-OPCR is at least as effective for quantifying complexity as previous approaches, and may be more effective due to finer resolution of surface data considered here. MorphoTester represents an advancement in the automated

  9. MorphoTester: An Open Source Application for Morphological Topographic Analysis.

    PubMed

    Winchester, Julia M

    2016-01-01

    The increased prevalence and affordability of 3D scanning technology is beginning to have significant effects on the research questions and approaches available for studies of morphology. As the current trend of larger and more precise 3D datasets is unlikely to slow in the future, there is a need for efficient and capable tools for high-throughput quantitative analysis of biological shape. The promise and the challenge of implementing relatively automated methods for characterizing surface shape can be seen in the example of dental topographic analysis. Dental topographic analysis comprises a suite of techniques for quantifying tooth surfaces and component features. Topographic techniques have provided insight on mammalian molar form-function relationships and these methods could be applied to address other topics and questions. At the same time implementing multiple complementary topographic methods can have high time and labor costs, and comparability of data formats and approaches is difficult to predict. To address these challenges I present MorphoTester, an open source application for visualizing and quantifying topography from 3D triangulated polygon meshes. This application is Python-based and is free to use. MorphoTester implements three commonly used dental topographic metrics-Dirichlet normal energy, relief index, and orientation patch count rotated (OPCR). Previous OPCR algorithms have used raster-based grid data, which is not directly interchangeable with vector-based triangulated polygon meshes. A 3D-OPCR algorithm is provided here for quantifying complexity from polygon meshes. The efficacy of this metric is tested in a sample of mandibular second molars belonging to four species of cercopithecoid primates. Results suggest that 3D-OPCR is at least as effective for quantifying complexity as previous approaches, and may be more effective due to finer resolution of surface data considered here. MorphoTester represents an advancement in the automated

  10. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure.

  11. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure. PMID:27385506

  12. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  13. STS-44 Pilot Henricks uses Visual Function Tester (VFT) on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Pilot Terence T. Henricks tests his visual acuity with the Visual Function Tester 1 (VFT-1) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. VFT-1 measures changes in the vision of an astronaut in microgravity. It is a hand-held, battery-powered device with a binocular eyepiece that uses controlled illumination to present a variety of visual targets for testing primarily visual acuity and eye interaction effects, such as stereopsis and eye dominance. This experiment is being conducted in conjunction with the Military Man in Space activities.

  14. Seeding Cracks Using a Fatigue Tester for Accelerated Gear Tooth Breaking

    NASA Technical Reports Server (NTRS)

    Nenadic, Nenad G.; Wodenscheck, Joseph A.; Thurston, Michael G.; Lewicki, David G.

    2011-01-01

    This report describes fatigue-induced seeded cracks in spur gears and compares them to cracks created using a more traditional seeding method, notching. Finite element analysis (FEA) compares the effective compliance of a cracked tooth to the effective compliance of a notched tooth where the crack and the notch are of the same depth. In this analysis, cracks are propagated to the desired depth using FRANC2D and effective compliances are computed in ANSYS. A compliance-based feature for detecting cracks on the fatigue tester is described. The initiated cracks are examined using both nondestructive and destructive methods. The destructive examination reveals variability in the shape of crack surfaces.

  15. Levitation of an iron ball in midair without active control

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yagi, I.; Murakami, M.

    2004-02-01

    An iron ball floats in midair in a plastic box when several iron balls were attracted by a permanent magnet. A complex interaction between magnetized sphere materials and a lifting magnet enabled the suspension of an iron ball. The balls in the first row are simply attracted by the lifting magnet. The ball in the second row is also attracted by the lifting magnet, however, due to the repulsive forces exerted from the balls sitting above, it can float in midair. We also found that there are two stable positions for the ball to float. The floating ball could be transported from one equilibrium position to another by simply rotating the lifting magnet. This will make it possible to construct a noncontact load transport device.

  16. A Momentum Transfer Demonstration with "Happy/Unhappy" Balls.

    ERIC Educational Resources Information Center

    Bucheit, Fred

    1994-01-01

    Describes a simple setup and procedure that uses "happy/unhappy" balls (two balls with different degrees of elasticity) to lead students into a discussion of momentum transfer involving elastic and inelastic collisions. (ZWH)

  17. Tennis ball fuzziness: assessing textile surface roughness using digital imaging

    NASA Astrophysics Data System (ADS)

    Steele, C.; Jones, R.; Leaney, P. G.

    2006-06-01

    Wear plays an important role in the game of tennis as it affects both ball performance and player perceived ball quality. Visual appearance can be used in ball differentiation, but has so far been limited to subjective assessments used to estimate ball wear and performance characteristics. A metric for ball surface condition will allow performance and perception data from varied testing set-ups to be objectively compared and analysed. A versatile new method of assessing surface roughness using digital imaging has been developed to allow the quantitative assessment of tennis ball condition. This metric allows manufacturers and researchers to predict ball performance and player perception from worn ball samples, developing acceptable wear limits. In the successful implementation of this metric, several key factors, including lighting, image thresholding, algorithm implementation and camera specifications, were identified to aid future alternative implementations.

  18. Calibration of industrial CT using two forest-balls

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Song, Xu; Li, Shi; Li, Wei; Li, Qi; Chen, Siwen; Shen, Fei; Song, Xiaoping; Gao, Sitian

    2015-02-01

    A small forest-ball was manufactured and calibrated using CMM F25. An industrial CT called Metrotom1500 was calibrated by the small forest-ball and another big forest-ball produced by Carl Zeiss. These two forest-balls were separately measured at two different magnifications of the industrial CT, and the measurement results could meet the maximum permissible error of Metrotom1500.

  19. Computed Tomography Analysis of NASA BSTRA Balls

    SciTech Connect

    Perry, R L; Schneberk, D J; Thompson, R R

    2004-10-12

    Fifteen 1.25 inch BSTRA balls were scanned with the high energy computed tomography system at LLNL. This system has a resolution limit of approximately 210 microns. A threshold of 238 microns (two voxels) was used, and no anomalies at or greater than this were observed.

  20. Spherical polytropic balls cannot mimic black holes

    NASA Astrophysics Data System (ADS)

    Saida, Hiromi; Fujisawa, Atsuhito; Yoo, Chul-Moon; Nambu, Yasusada

    2016-04-01

    The so-called black hole shadow is a dark region which is expected to appear in a fine image of optical observation of black holes. It is essentially an absorption cross section of the black hole, and the boundary of shadow is determined by unstable circular orbits of photons (UCOP). If there exists a compact object possessing UCOP but no black hole horizon, it can provide us with the same shadow image as black holes, and detection of a shadow image cannot be direct evidence of black hole existence. This paper examines whether or not such compact objects can exist under some suitable conditions. We investigate thoroughly the static spherical polytropic ball of perfect fluid with single polytrope index, and then investigate a representative example of a piecewise polytropic ball. Our result is that the spherical polytropic ball which we have investigated cannot possess UCOP, if the speed of sound at the center is subluminal (slower than light). This means that, if the polytrope treated in this paper is a good model of stellar matter in compact objects, the detection of a shadow image can be regarded as good evidence of black hole existence. As a by-product, we have found the upper bound of the mass-to-radius ratio of a polytropic ball with single index, M_{ast }/R_{ast } < 0.281, under the condition of subluminal sound speed.

  1. Introducing a High Bounce Ball Unit

    ERIC Educational Resources Information Center

    Bernardo, Pat

    2004-01-01

    Those growing up in the 1950s, 60s or 70s are familiar with how physically active children were before computers and video games were introduced. Each neighborhood had its own version of the various games that were played. Many of these games involved a pink rubber ball called a Spaldeen. They were everywhere and almost everyone had one. These…

  2. Exploring the Mathematics of Bouncing Balls

    ERIC Educational Resources Information Center

    Vinogradova, Natalya; Blaine, Larry G.

    2010-01-01

    A common textbook problem asks students to calculate the total distance traveled by a bouncing ball, from its initial release until it comes to rest, under the assumption that the height of each bounce is some fixed proportion "r" of the height of the previous bounce. The solution is found by inserting information about "r" and the height from…

  3. Heat-balling wasps by honeybees

    NASA Astrophysics Data System (ADS)

    Ken, Tan; Hepburn, H. R.; Radloff, S. E.; Yusheng, Yu; Yiqiu, Liu; Danyin, Zhou; Neumann, P.

    2005-10-01

    Defensiveness of honeybee colonies of Apis cerana and Apis mellifera (actively balling the wasps but reduction of foraging) against predatory wasps, Vespa velutina, and false wasps was assessed. There were significantly more worker bees in balls of the former than latter. Core temperatures in a ball around a live wasp of A. cerana were significantly higher than those of A. mellifera, and also significantly more when exposed to false wasps. Core temperatures of bee balls exposed to false wasps were significantly lower than those exposed to V. velutina for both A. cerana and for A. mellifera. The lethal thermal limits for V. velutina, A. cerana and A. mellifera were significantly different, so that both species of honeybees have a thermal safety factor in heat-killing such wasp predators. During wasps attacks at the hives measured at 3, 6 and 12 min, the numbers of Apis cerana cerana and Apis cerana indica bees continuing to forage were significantly reduced with increased wasp attack time. Tropical lowland A. c. indica reduced foraging rates significantly more than the highland A. c. cerana bees; but, there was no significant effect on foraging by A. mellifera. The latency to recovery of honeybee foraging was significantly greater the longer the duration of wasp attacks. The results show remarkable thermal fine-tuning in a co-evolving predator prey relationship.

  4. Department of Natural Resources, Ball State University.

    ERIC Educational Resources Information Center

    Hibbs, Clyde W.

    1987-01-01

    Describes the environmental education programs of Ball State University's Department of Natural Resources. Focusing on natural resource science and technology, the program has thrusts in resource conservation, environmental protection, and environmental education. Outlines the program goals, courses, curricular patterns, graduate programs, and…

  5. 4. pi. physics with the plastic ball

    SciTech Connect

    Gutbrod, H.H.; Loehner, H.; Poskanzer, A.M.; Renner, T.; Riedesel, H.; Ritter, H.G.; Warwick, A.; Weik, F.; Wieman, H.

    1982-10-01

    4 ..pi.. data taken with the Plastic Ball show that cluster production in relativistic nuclear collisions depends on both the size of the participant volume and the finite size of the cluster. The measurement of the degree of thermalization and the search for collective flow will permit the study of the applicability of macroscopic concepts such as temperature and density.

  6. When Two Balls Are Just One

    ERIC Educational Resources Information Center

    Kulp, Christopher W.; Biermann, Mark L.; Howard, Timothy; Klingenberg, Kurtis; Ramsey, Paul

    2008-01-01

    A camcorder can be a powerful tool in pedagogical settings, such as in an introductory physics course or in introducing undergraduates to data collection. In this paper, we discuss our experience using a Panasonic PV-GS150 digital camcorder to analyze the motion of a falling steel ball, with the goal of determining the acceleration due to gravity,…

  7. Construction of the noncommutative complex ball

    SciTech Connect

    Wang, Zhituo

    2014-09-15

    We describe the construction of the noncommutative complex ball whose commutative analog is the Hermitian symmetric space D = SU(m, 1)/U(m), with the method of coherent state quantization. In the commutative limit, we obtain the standard manifold. We also consider a quantum field theory model on the noncommutative manifold.

  8. Two experimental investigations of ball lightning

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Parameswaran, Sriram; Grace, Michael

    2004-11-01

    We have carried out two experiments that appear to produce ball lightning in the laboratory. The first set of observations were made at the Holifield high voltage accelerator at the Oak Ridge National Laboratory (1). In these experiments at very high voltage, closed current loops were photographed in high voltage sparkovers. These may be current loops sustained by the enclosed magnetic field. In the second set of experiments, a pulsed electric arc in a zero - gravity environment produced orange balls in atmospheric - pressure air that persisted for over 1/2 second after power turn - off (2). These balls were photographed with a high - speed 16 mm movie camera. Photos and movies of these experiments will be presented. 1. "Observation of Closed Loops in High-Voltage Discharges: A Possible Precursor of Magnetic Flux Trapping", Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, December 1992, pp.669 - 671: ``Possible Precursors of Ball Lightning--Observation of Closed Loops in High- Voltage Discharges,'' Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, pp 271 - 273 2. I. Alexeff et. al., Invited paper at The International Conference on Plasma Science, Preceedings of the Conference, Baltimore, Md., June 2004.

  9. CFD analysis of a ball check microvalve

    NASA Astrophysics Data System (ADS)

    Cǎlimǎnescu, Ioan; Dumitrache, Constantin L.; Grigorescu, Lucian

    2015-02-01

    The microvalves with balls as seen before are used in many applications and their behaviour in terms of fluid dynamics mainly at their opening time (when as demonstrated the ball is bouncing up and down altering the flow parameters) is of a paramount importance. The present study is focused on a micro check ball valve circulating a fluid air-like (with the same constant proprieties). The CFD model is taking into account a transitory zone of functioning from zero time when the pressure inside a "tank" is reaching the opening pressure of the valve, to the final step 0.05 seconds when the ball is stabilizing after bouncing up and down. The geometry of the valve with dimensions in μm is given below (the model is comprising a "slice" of 5 μm thickness extracted from the entire valve. In this paper by using advanced numeric techniques, the behavior of the valve in its transitory opening stage was studied with credible and useful results for further optimisation studies.

  10. Sharpening ball-nose mill cutters

    NASA Technical Reports Server (NTRS)

    Burch, C. F.

    1977-01-01

    Economical attachment allows faster, more precise grinding. Vibrationless and rigid relation between grinding wheel and cutter allows for extremely high finish and accurate grinding. Leveling device levels flutes with respect to toolholder rotation that generates ball-nose radius. Constant relief around entire profile of cutting edge produces longer tool life.

  11. Fractal Aggregates in Tennis Ball Systems

    ERIC Educational Resources Information Center

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  12. Crystal Ball results on tau decays

    SciTech Connect

    Lowe, S.T.

    1987-10-01

    This report reviews measurements and upper limit determinations for a number of exclusive 1-prong tau decay modes using the Crystal Ball detector. These results are important input to the apparent discrepancy between the topological and sum-of-exclusive branching fractions in 1-prong tau decays.

  13. Recent results from the Crystal Ball experiment

    SciTech Connect

    Lowe, S.T.

    1986-12-01

    Several recent analyses from the Crystal Ball collaboration are reviewed. The major topics discussed are the search for new states in radiative UPSILON(1S) decays, the search for lepton number-violating and inclusive eta decay modes of the tau, and results from ..gamma gamma.. physics.

  14. Interrelation between ball lightning and optically induced forces

    NASA Astrophysics Data System (ADS)

    Torchigin, V. P.; Torchigin, A. V.

    2013-09-01

    Optically induced forces are considered as a key factor for explaining the phenomenon of ball lightning. They can provide not only the existence of ball lightning in the form of self-confined intense white light circulating in a spherical shell of air strongly compressed by the light but also the anomalous motion of ball lightning in the terrestrial atmosphere.

  15. Validity and Reliability of a Medicine Ball Explosive Power Test.

    ERIC Educational Resources Information Center

    Stockbrugger, Barry A.; Haennel, Robert G.

    2001-01-01

    Evaluated the validity and reliability of a medicine ball throw test to evaluate explosive power. Data on competitive sand volleyball players who performed a medicine ball throw and a standard countermovement jump indicated that the medicine ball throw test was a valid and reliable way to assess explosive power for an analogous total-body movement…

  16. Measuring the Rebound Resilience of a Bouncing Ball

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2012-01-01

    Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property "rebound resilience" and express it as the ratio of the rebound height to…

  17. Magnetically Operated Holding Plate And Ball-Lock Pin

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr.

    1992-01-01

    Magnetically operated holding plate and ball-locking-pin mechanism part of object attached to, or detached from second object. Mechanism includes tubular housing inserted in hole in second object. Plunger moves inside tube forcing balls to protrude from sides. Balls prevent tube from sliding out of second object. Simpler, less expensive than motorized latches; suitable for robotics applications.

  18. METHODOLOGICAL NOTES: Energy density calculations for ball-lightning-like luminous silicon balls

    NASA Astrophysics Data System (ADS)

    Paiva, Gerson S.; Ferreira, Joacy V.; Bastos, Cristiano C.; dos Santos, Marcus V.; Pavão, Antonio C.

    2010-05-01

    The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m-3, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model.

  19. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties.

    PubMed

    Shen, Laifa; Yu, Le; Wu, Hao Bin; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David

    2015-03-23

    While the synthesis of hollow structures of transition metal oxides is well established, it is extremely challenging to fabricate complex hollow structures for mixed transition metal sulfides. Here we report an anion exchange method to synthesize a complex ternary metal sulfides hollow structure, namely nickel cobalt sulfide ball-in-ball hollow spheres. Uniform nickel cobalt glycerate solid spheres are first synthesized as the precursor and subsequently chemically transformed into nickel cobalt sulfide ball-in-ball hollow spheres. When used as electrode materials for electrochemical capacitors, these nickel cobalt sulfide hollow spheres deliver a specific capacitance of 1,036 F g(-1) at a current density of 1.0 A g(-1). An asymmetric supercapacitor based on these ball-in-ball structures shows long-term cycling performance with a high energy density of 42.3 Wh kg(-1) at a power density of 476 W kg(-1), suggesting their potential application in high-performance electrochemical capacitors.

  20. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties.

    PubMed

    Shen, Laifa; Yu, Le; Wu, Hao Bin; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David

    2015-01-01

    While the synthesis of hollow structures of transition metal oxides is well established, it is extremely challenging to fabricate complex hollow structures for mixed transition metal sulfides. Here we report an anion exchange method to synthesize a complex ternary metal sulfides hollow structure, namely nickel cobalt sulfide ball-in-ball hollow spheres. Uniform nickel cobalt glycerate solid spheres are first synthesized as the precursor and subsequently chemically transformed into nickel cobalt sulfide ball-in-ball hollow spheres. When used as electrode materials for electrochemical capacitors, these nickel cobalt sulfide hollow spheres deliver a specific capacitance of 1,036 F g(-1) at a current density of 1.0 A g(-1). An asymmetric supercapacitor based on these ball-in-ball structures shows long-term cycling performance with a high energy density of 42.3 Wh kg(-1) at a power density of 476 W kg(-1), suggesting their potential application in high-performance electrochemical capacitors. PMID:25798849

  1. Development of a tester for evaluation of prototype thermal cells and batteries

    SciTech Connect

    Guidotti, R.A.

    1994-10-01

    A tester was developed to evaluate prototype thermal cells and batteries--especially high-voltage units--under a wide range of constant-current and constant-resistance discharge conditions. Programming of the steady-state and pulsing conditions was by software control or by hardware control via an external pulse generator. The tester was assembled from primarily Hewlett-Packard (H-P) instrumentation and was operated under H-P`s Rocky Mountain Basic (RMB). Constant-current electronic loads rated up to 4 kW (400 V at up to 100 A) were successfully used with the setup. For testing under constant-resistance conditions, power metal-oxide field-effect transistors (MOSFETs) controlled by a programmable pulse generator were used to switch between steady-state and pulse loads. The pulses were digitized at up to a 50 kHz rate (20 {mu} s/pt) using high-speed DVMs; steady-state voltages were monitored with standard DVMs. This paper describes several of the test configurations used and discusses the limitations of each. Representative data are presented for a number of the test conditions.

  2. Bearing Tester Data Compilation Analysis, and Reporting and Bearing Math Modeling

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The magnitude and direction of fluid induced torques and forces on the 57 mm bearing cage is considered to be a contributing factor in possible cage instabilities that can produce intermittent high heating in the bearing. Analyses of the fluid forces and torques are presented. Heat generated by viscous fluid work was estimated for two flow diverter configurations and a coolant flow of 10 lbs/sec to support the thermal evaluation of the LOX Bearing Materials Tester. Results of the analysis of the LOX turbopump turbine end bearings are discussed. Coolant velocities for the no. 4 LOX turbopump turbine end bearings were estimated as a function of shaft speed and coolant flow rate. Contact angles and track width data were developed for the 57 mm bearing as functions of shaft speed, and axial and radial loads. The Advanced Dynamics of Rolling Elements (ADORE) computer program was installed on the MSFC UNIVAC 1100 and a test case successfully run. Both the text output and the plotting output were verified. The Bearing Seal and Materials Tester - Test Condition Data Base was developed. The parametric analysis of the operating characteristics of the LOX turbopump pump end bearing using the 45 mm bearing thermal model was begun.

  3. Development of a tester for evaluation of prototype thermal cells and batteries

    NASA Astrophysics Data System (ADS)

    Guidotti, Ronald A.

    A tester was developed to evaluate prototype thermal cells and batteries--especially high-voltage units--under a wide range of constant-current and constant-resistance discharge conditions. Programming of the steady-state and pulsing conditions was by software control or by hardware control via an external pulse generator. The tester was assembled from primarily Hewlett-Packard (H-P) instrumentation and was operated under H-P's Rocky Mountain Basic (RMB). Constant-current electronic loads rated up to 4 kW (400 V at up to 100 A) were successfully used with the setup. For testing under constant-resistance conditions, power metal-oxide field-effect transistors (MOSFET's) controlled by a programmable pulse generator were used to switch between steady-state and pulse loads. The pulses were digitized at up to a 50 kHz rate (20 microseconds/pt) using high-speed DVM's; steady-state voltages were monitored with standard DVM's. This paper describes several of the test configurations used and discusses the limitations of each. Representative data are presented for a number of the test conditions.

  4. Detection and classification of mutagens: a set of base-specific Salmonella tester strains.

    PubMed Central

    Gee, P; Maron, D M; Ames, B N

    1994-01-01

    A detection and classification system for mutagens has been developed that identifies the six possible base-pair substitution mutations. A set of six Salmonella typhimurium (TA7001 to TA7006) strains has been constructed, each of which carries a unique missense mutation in the histidine biosynthetic operon. In addition to the his mutation, these strains carry different auxiliary features that enhance the mutability of the target his mutation. These include the R factor pKM101, which has the SOS-inducible mucAB system; a deletion of the uvrB component of excision repair; and rfa mutations to increase the accessibility of bulky chemicals to the bacteria. Another set of strains (TA7041 to TA7046) contain a wild-type rfa gene. Reversion via the base substitution unique to each strain was verified by sequence analyses of > 800 revertants obtained from different types of mutagens. The strains have considerably lower spontaneous reversion frequencies and detect a variety of mutagens at a sensitivity comparable to the Salmonella tester strains TA100, TA102, and TA104. The low spontaneous frequency of reversion of a mixture of the six tester strains (approximately 10 revertants per plate) enables a single mutation assay with the mixture that is followed by classification of the type of mutation with the individual strains. PMID:7972111

  5. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be...

  6. 49 CFR 178.1045 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to...

  7. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960....

  8. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point...

  9. From Playroom to Lab: Tough Stretchable Electronics Analyzed with a Tabletop Tensile Tester Made from Toy‐Bricks

    PubMed Central

    Kettlgruber, Gerald; Siket, Christian M.; Drack, Michael; Graz, Ingrid M.; Cakmak, Umut; Major, Zoltan; Kaltenbrunner, Martin; Bauer, Siegfried

    2016-01-01

    Toy bricks are an ideal platform for the cost‐effective rapid prototyping of a tabletop tensile tester with measurement accuracy on par with expensive, commercially available laboratory equipment. Here, a tester is presented that is not only a versatile demonstration device in mechanics, electronics, and physics education and an eye‐catcher on exhibitions, but also a powerful tool for stretchable electronics research. Following the “open‐source movement” the build‐up of the tester is described and all the details for easy reproduction are disclosed. A a new design of highly conformable all‐elastomer based graded rigid island printed circuit boards is developed. Tough bonded to this elastomer substrate are imperceptible electronic foils bearing conductors and off‐the‐shelf microelectronics, paving the way for next generation smart electronic appliances. PMID:27588259

  10. Getting the Drop on Sediment

    ERIC Educational Resources Information Center

    Galindez, Peter

    1977-01-01

    In this exercise, students examine Aristotle's weight hypothesis by testing variously shaped marble chips. These chips are weighed and dropped down a water tube. Average fall times and weights are recorded and graphed. Students are asked to apply this information to rock and soil deposition by streams. (MA)

  11. Egg Drop: An Invention Workshop

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1973-01-01

    Describes an activity designed to stimulate elementary and junior high students to become actively engaged in thinking creatively rather than only analytically, convergently, or repetitively. The activity requires students to devise means of dropping an egg from a height without it breaking. (JR)

  12. ``Quantum'' interference with bouncing drops

    NASA Astrophysics Data System (ADS)

    Bohr, Tomas; Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens

    2013-11-01

    In a series of recent papers (most recently) Yves Couder and collaborators have explored the dynamics of walking drops on the surface of a vibrated bath of silicon oil and have demonstrated a close analogy to quantum phenomena. The bouncing drop together with the surface wave that it excites seems to be very similar to the pilot wave envisaged by de Broglie for quantum particles. In particular, have studied a double slit experiment with walking drops, where an interference pattern identical to the quantum version is found even though it is possible to follow the orbits of the drops and unambigously determine which slit it goes through, something which in quantum mechanics would be ruled out by the Heisenberg uncertainly relations. We have repeated the experiment and present a somewhat more complicated picture. Theoretically, we study a Schrödinger equation with a source term originating from a localised ``particle'' being simultaneously guided by the wave. We present simple solutions to such a field theory and discuss the fundamental difficulties met by such a theory in order to comply with quantum mechanics.

  13. Comparison of Models for Ball Bearing Dynamic Capacity and Life

    NASA Technical Reports Server (NTRS)

    Gupta, Pradeep K.; Oswald, Fred B.; Zaretsky, Erwin V.

    2015-01-01

    Generalized formulations for dynamic capacity and life of ball bearings, based on the models introduced by Lundberg and Palmgren and Zaretsky, have been developed and implemented in the bearing dynamics computer code, ADORE. Unlike the original Lundberg-Palmgren dynamic capacity equation, where the elastic properties are part of the life constant, the generalized formulations permit variation of elastic properties of the interacting materials. The newly updated Lundberg-Palmgren model allows prediction of life as a function of elastic properties. For elastic properties similar to those of AISI 52100 bearing steel, both the original and updated Lundberg-Palmgren models provide identical results. A comparison between the Lundberg-Palmgren and the Zaretsky models shows that at relatively light loads the Zaretsky model predicts a much higher life than the Lundberg-Palmgren model. As the load increases, the Zaretsky model provides a much faster drop off in life. This is because the Zaretsky model is much more sensitive to load than the Lundberg-Palmgren model. The generalized implementation where all model parameters can be varied provides an effective tool for future model validation and enhancement in bearing life prediction capabilities.

  14. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  15. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  16. The strange flight behaviour of slowly spinning soccer balls

    NASA Astrophysics Data System (ADS)

    Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki

    2013-05-01

    The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights.

  17. The strange flight behaviour of slowly spinning soccer balls.

    PubMed

    Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki

    2013-01-01

    The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights. PMID:23695000

  18. The strange flight behaviour of slowly spinning soccer balls

    PubMed Central

    Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki

    2013-01-01

    The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights. PMID:23695000

  19. The Moment of Inertia of a Tennis Ball

    NASA Astrophysics Data System (ADS)

    Brody, Howard

    2005-11-01

    The moment of inertia of a tennis ball about its center of mass is one of the physical properties that determine how the ball reacts in play, yet there is no measurement of this parameter found in the literature nor is it mentioned in the Rules of Tennis. The moment of inertia determines how much spin the ball acquires for a given angular impulse applied by the racket's strings and also how the ball behaves when it bounces. When a ball bounces, the friction between the ball and the court surface produces a substantial torque. For a given torque, the magnitude of the moment of inertia determines whether the ball slides throughout the bounce or goes into the rolling mode, and if it does roll, the moment of inertia determines the ratio of final horizontal velocity to initial horizontal velocity.

  20. Determination of ball bearing dynamic stiffness

    NASA Technical Reports Server (NTRS)

    Beatty, R. F.; Rowan, B. F.

    1982-01-01

    The dynamic radial stiffness characteristics of rolling element bearings are currently determined by analytical methods that have not been experimentally verified. These bearing data are vital to rotating machinery design integrity because accurate critical speeds and rotor stability predictions are highly dependent on the bearing stiffness. A tester was designed capable of controlling the bearing axial preload, speed, and rotor unbalance. The rotor and support structures were constructed to permit critical speeds that are predominantly determined by a 57 mm test bearing. A curve of calculated critical speed versus stiffness was used to determine the actual bearing stiffness from the empirical data. The results of extensive testing are used to verify analytical predictions, increase confidence in existing bearing computer programs, and to serve as a data base for efforts to correct these programs.

  1. Relative locality and the soccer ball problem

    SciTech Connect

    Amelino-Camelia, Giovanni; Freidel, Laurent; Smolin, Lee; Kowalski-Glikman, Jerzy

    2011-10-15

    We consider the behavior of macroscopic bodies within the framework of relative locality [G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1101.0931]. This is a recent proposal for Planck scale modifications of the relativistic dynamics of particles which are described as arising from deformations in the geometry of momentum space. We consider and resolve a common objection against such proposals, which is that, even if the corrections are small for elementary particles in current experiments, they are huge when applied to composite systems such as soccer balls, planets, and stars, with energies E{sub macro} much larger than M{sub P}. We show that this soccer ball problem does not arise within the framework of relative locality because the nonlinear effects for the dynamics of a composite system with N elementary particles appear at most of order E{sub macro}/N{center_dot}M{sub P}.

  2. Symmetric States on the Octonionic Bloch Ball

    NASA Astrophysics Data System (ADS)

    Graydon, Matthew

    2012-02-01

    Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.

  3. The Stability of Two Connected Pendant Drops

    NASA Technical Reports Server (NTRS)

    Slobozhanin, Lev A.; Alexander, J. Iwan

    2004-01-01

    The stability of an equilibrium system of two drops suspended from circular holes is examined. The drop surfaces are disconnected surfaces of a connected liquid body. For holes of equal radii and identical pendant drops axisymmetric perturbations are always the most dangerous. The stability region for two identical drops differs considerably from that for a single drop. Loss of stability leads to a transition from a critical system of identical drops to a stable system of axisymmetric non-identical. This system of non-identical drops reaches its own stability limit (to isochoric or non-isochoric paturbations). For non-identical drops, loss of stability results in dripping or streaming from the holes. Critical volumes for non-identical drops have been calculated as functions of the Bond number, B. For unequal hole radii, stability regions have been constructed for a set of hole radius, K. The dependence of critical volumes on K and B is analyzed.

  4. Drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  5. Gravitational effects on critical Q-balls

    NASA Astrophysics Data System (ADS)

    Metaxas, D.

    2007-04-01

    In a cosmological phase transition in theories that admit Q-balls there is a value of the soliton charge above which the soliton becomes unstable and expands, converting space to the true vacuum, much like a critical bubble in the case of ordinary tunneling. Here I consider the effects of gravity on these solitons and I calculate the lowest gravitational corrections to the critical radius and charge.

  6. Testing general relativity using a bouncing ball

    NASA Astrophysics Data System (ADS)

    Liang, Shiuan-Ni; Lan, Boon Leong

    In a recent article (Liang and Lan, (2011)), we showed that the trajectories predicted by general-relativistic and Newtonian mechanics from the same parameters and initial conditions for a low-speed weak-gravity bouncing ball system will rapidly disagree completely if the trajectories are chaotic. Here, we determine how accurate the parameters and initial conditions of the system must be known so that the two different calculated chaotic trajectories are sufficiently accurate for an empirical test.

  7. Ball-thrower's fracture of the humerus.

    PubMed

    Callaghan, Eric B; Bennett, D Lee; El-Khoury, Georges Y; Ohashi, Kenjirou

    2004-06-01

    A relatively rare case of ball-thrower's fracture of the humerus is presented. Severe muscular action is an uncommon cause of humeral fractures but has been well documented in the orthopedic literature. To our knowledge, this fracture has not been described in the radiology literature, and awareness of this entity could preclude further unnecessary workup. The mechanism of injury and its typical radiographic appearance is described.

  8. Free-floating atmospheric pressure ball plasmas

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Ticos, C.; Wang, Z.; Wurden, C. J. V.

    2007-11-01

    A long-lived (0.3 second, 10-20 cm diameter) ball plasma floating in the air above a water surface has been formed and studied in the laboratory. A 0.4 - 1 mF capacitor is charged to 4-5 kV, and subsequently discharged (30-60 Amps, 20-50 msec duration) into central copper cathode held fixed just below the surface of a bucket of water (with a weak solution of various salts in distilled water, such as CuSO4 or CuCl2, LiCl or NaCl). An underwater ring anode completes the circuit. A bubble of hot vapor from the water surface rises up in the first few milliseconds, and changes from a mushroom cloud with stalk, to a detached quasi-spherical object, finally evolving into a vortex ring. The plasma consists of ionized water vapor, with positive salts and OH- radicals, as well as molecular species, and it completely excludes nitrogen or oxygen from the rising plasma structure. A fine boundary layer is visible in orange, in contrast to a green ball interior when using Cu/CuSO4, and filamentary structures are visible at late times. Finally, a whisp of smoke ring is observed as a residue. A variety of visible and infrared imaging (both video and still cameras) are used, along with 200-800 nm time & space resolved spectroscopy, to identify features of this laboratory analog to ball lightning. Possible applications include a windowless ball- plasma powered pulsed copper vapor laser operating at 510 nm.

  9. Low-Wear Ball-Bearing Separator

    NASA Technical Reports Server (NTRS)

    Hawkinson, Elden L.

    1991-01-01

    Proposed ball-bearing separator for use in cryogenic pump stronger and more resistant to wear. Consists of molded plastic-and-metal composite ring imbued with solid lubricant and containing embedded metal ring. Obtains combination of strength and lubricity. Before molding and machining, ring includes tooling portion for handling and indexing. Molded composite blend of PTFE and fluorinated ethylene/propylene (FEP) filled with brass and bronze powder and molybdenum disulfide powder.

  10. Searching for Q-balls with HAWC

    NASA Astrophysics Data System (ADS)

    Karn, Peter

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a gamma-ray experiment currently under construction at Sierra Negra in the state of Puebla, Mexico. Once completed, it will consist of a 20,000 square meter array of 300 water Cherenkov detectors. Although the HAWC Observatory is designed to study gamma rays from galactic and extra-galactic sources, the large instrumented volume of water gives the opportunity to search for more exotic species. One such target, predicted by several varieties of supersymmetric theory, is the Q-ball. Q-balls are very massive, sub-relativistic particles that can have a large baryon number, and can be stable since their creation in the early universe. They are also an appealing candidate for the dark matter of the universe, but their large masses must mean that their flux is very low. The data acquisition system of the HAWC Observatory is flexible enough that, with a dedicated trigger algorithm for non-relativistic particles, it allows the search for Q-balls traversing the detector. The trigger algorithm and preliminary analysis will be presented.

  11. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  12. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  13. Relation between Hertz Stress-Life Exponent, Ball-Race Conformity, and Ball Bearing Life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.

    2006-01-01

    ANSI/ABMA and ISO standards based on Lundberg-Palmgren bearing life theory are normalized for ball bearings having inner- and outer-race conformities of 52 percent (0.52) and made from pre-1940 bearing steel. The Lundberg-Palmgren theory incorporates an inverse 9th power relation between Hertz stress and fatigue life for ball bearings. The effect of race conformity on ball set life independent of race life is not incorporated into the Lundberg-Palmgren theory. In addition, post-1960 vacuum-processed bearing steel exhibits a 12th power relation between Hertz stress and life. The work reported extends the previous work of Zaretsky, Poplawski, and Root to calculate changes in bearing life, that includes the life of the ball set, caused by race conformity, Hertz stress-life exponent, ball bearing type and bearing series. The bearing fatigue life in actual application will usually be equal to or greater than that calculated using the ANSI/ABMA and ISO standards that incorporate the Lundberg-Palmgren theory. The relative fatigue life of an individual race is more sensitive to changes in race conformity for Hertz stress-life exponent n of 12 than where n = 9. However, when the effects are combined to predict actual bearing life for a specified set of conditions and bearing geometry, the predicted life of the bearing will be greater for a value of n = 12 than n = 9.

  14. Relation Between Hertz Stress-Life Exponent, Ball-Race Conformity, and Ball Bearing Life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.

    2008-01-01

    ANSI/ABMA and ISO standards based on Lundberg-Palmgren bearing life theory are normalized for ball bearings having inner- and outerrace conformities of 52 percent (0.52) and made from pre-1940 bearing steel. The Lundberg-Palmgren theory incorporates an inverse 9th power relation between Hertz stress and fatigue life for ball bearings. The effect of race conformity on ball set life independent of race life is not incorporated into the Lundberg-Palmgren theory. In addition, post-1960 vacuum-processed bearing steel exhibits a 12th power relation between Hertz stress and life. The work reported extends the previous work of Zaretsky, Poplawski, and Root to calculate changes in bearing life--that includes the life of the ball set--caused by race conformity, Hertz stress-life exponent, ball bearing type and bearing series. The bearing fatigue life in actual application will usually be equal to or greater than that calculated using the ANSI/ABMA and ISO standards that incorporate the Lundberg-Palmgren theory. The relative fatigue life of an individual race is more sensitive to changes in race conformity for Hertz stress-life exponent n of 12 than where n = 9. However, when the effects are combined to predict actual bearing life for a specified set of conditions and bearing geometry, the predicted life of the bearing will be greater for a value of n = 12 than n = 9.

  15. Ignition Quality Tester (IQT): An Alternative for Characterizing the Combustion Kinetics of Low Volatility Fuels

    SciTech Connect

    Osecky, E.; Bogin, G.; Ratcliff, M.; Luecke, J.; Chen, J. Y.; Zigler, B. T.

    2013-01-01

    The Ignition Quality Tester (IQT) is a constant volume spray combustion system that can be heated and pressurized to conditions that are similar to a diesel engine at top dead center. With no moving parts and the ability to handle low volatility fuels, the IQT can be a bridge between engines and traditional methods for studying chemical kinetics. By comparing experimental data with model predictions, the IQT has been used to validate skeletal kinetic models of ignition. CFD modeling of the IQT using KIVA-3V was used to predict ignition of n-heptane accurately. Operating the IQT in a regime where chemical kinetics dominates (long ignition delays) allowed NTC behavior to be observed for some isomers of heptane. Experimental results with the low volatility fuel heptamethylnonane also show NTC behavior. At long ignition delays, experimental results can be compared with 0-D detailed chemical mechanisms.

  16. Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Foote, John; Litchford, Ron

    2006-01-01

    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  17. Macroscopic anisotropy characterization of SiFe using a rotational single sheet tester

    SciTech Connect

    Nencib, N.; Spornic, S.; Kedous-Lebouc, A.; Cornut, B.

    1995-11-01

    Macroscopic magnetic anisotropy of two electrical steel samples of GO and NO SiFe materials are characterized thanks to a rotational single sheet tester. This nonstandard set up allows one to perform magnetic measurements under both a rotating excitation field and an alternating one applied along any direction of the sheet plane. The anisotropy of the magnetic losses and of the exciting field of each material quality is discussed. As expected, the GOSS texture of the GO SiFe is well pointed out with its very easy magnetization rolling direction. The hard magnetization axis at 55{degree} emerges as the induction increases and replaces the transverse direction. The NO SiFe shows closely similar magnetic characteristics but remains anisotropic. The vectorial aspect of B(H) law is also highlighted. Such characteristics will be useful in many fields e.g. material elaboration, magnetic law behavior modeling and construction of electrical machines.

  18. Automatic ball bar for a coordinate measuring machine

    DOEpatents

    Jostlein, H.

    1997-07-15

    An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined. 5 figs.

  19. Automatic ball bar for a coordinate measuring machine

    DOEpatents

    Jostlein, Hans

    1997-01-01

    An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined.

  20. Aerodynamics in the classroom and at the ball park

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-04-01

    Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.

  1. Novel in situ mechanical testers to enable integrated metal surface micro-machines.

    SciTech Connect

    Follstaedt, David Martin; de Boer, Maarten Pieter; Kotula, Paul Gabriel; Hearne, Sean Joseph; Foiles, Stephen Martin; Buchheit, Thomas Edward; Dyck, Christopher William

    2005-10-01

    The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science-based infrastructure to

  2. Glitch Game Testers: The Design and Study of a Learning Environment for Computational Production with Young African American Males

    ERIC Educational Resources Information Center

    DiSalvo, Elizabeth Betsy

    2012-01-01

    The implementation of a learning environment for young African American males, called the Glitch Game Testers, was launched in 2009. The development of this program was based on formative work that looked at the contrasting use of digital games between young African American males and individuals who chose to become computer science majors.…

  3. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION...

  4. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION...

  5. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION...

  6. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION...

  7. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION...

  8. Salmonella typhimurium mutagenicity tester strains that overexpress oxygen-insensitive nitroreductases nfsA and nfsB.

    PubMed

    Carroll, C C; Warnakulasuriyarachchi, D; Nokhbeh, M R; Lambert, I B

    2002-04-25

    We have designed and constructed a series of plasmids that contain the major and/or minor Escherichia coli nitroreductase genes, nfsA and nfsB, in different combinations with R plasmid mucA/B genes and the Salmonella typhimurium OAT gene. The plasmid encoded gene products are necessary for both the metabolic activation of a range of structurally diverse nitrosubstituted compounds, and for mutagenic translation bypass. Introduction of these plasmids into S. typhimurium TA1538 and TA1535 has created several new tester strains which exhibit an extremely high mutagenic sensitivity and a broad substrate specificity towards a battery of nitrosubstituted test compounds that included 4-nitroquinoline-1-oxide (4-NQO), nitrofurazone (NF), 1-nitropyrene (1-NP), 2-nitronaphthalene (2-NN), 2-nitrofluorene (2-NF), and 1,6-dinitropyrene (1,6-DNP). Our studies show that the nfsA gene encodes a product that is extremely effective in the metabolic activation of a range of structurally diverse nitrosubstituted compounds. Several of the new tester strains are more than two orders of magnitude more sensitive to nitrosubstituted compounds than the Ames tester strains TA100 or TA98. In addition to enhancing mutagenic sensitivity, plasmids encoding both metabolic and mutagenesis functions on a single plasmid provide considerable flexibility for future mechanistic studies or tester strain development, in which it may be necessary to introduce additional plasmids containing different antibiotic resistance markers. PMID:11934440

  9. Biomechanics of heading a soccer ball: implications for player safety.

    PubMed

    Babbs, C F

    2001-08-08

    To better understand the risk and safety of heading a soccer ball, the author created a set of simple mathematical models based upon Newton's second law of motion to describe the physics of heading. These models describe the player, the ball, the flight of the ball before impact, the motion of the head and ball during impact, and the effects of all of these upon the intensity and the duration of acceleration of the head. The calculated head accelerations were compared to those during presumably safe daily activities of jumping, dancing, and head nodding and also were related to established criteria for serious head injury from the motor vehicle crash literature. The results suggest heading is usually safe but occasionally dangerous, depending on key characteristics of both the player and the ball. Safety is greatly improved when players head the ball with greater effective body mass, which is determined by a player"s size, strength, and technique. Smaller youth players, because of their lesser body mass, are more at risk of potentially dangerous headers than are adults, even when using current youth size balls. Lower ball inflation pressure reduces risk of dangerous head accelerations. Lower pressure balls also have greater "touch" and "playability", measured in terms of contact time and contact area between foot and ball during a kick. Focus on teaching proper technique, the re-design of age-appropriate balls for young players with reduced weight and inflation pressure, and avoidance of head contact with fast, rising balls kicked at close range can substantially reduce risk of subtle brain injury in players who head soccer balls.

  10. Intermittent chaos and sliding window symbol sequence statistics-based early fault diagnosis for hydraulic pump on hydraulic tube tester

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Jia, Mingxing; Wang, Fuli; Wang, Shu

    2009-07-01

    To ensure the safety, continuity of production, make a reasonable maintenance plan, save the cost of maintenance for hydraulic tube tester, it is needed to quickly identify an assignable cause of a fault. This paper is concerned with early fault diagnosis of hydraulic pump which are the heart of hydraulic tube tester. Considering that the signal of the hydraulic pump early fault is a periodic weak signal, an intermittent chaos, sliding window symbol sequence statistics-based method is proposed to detect the early fault of one single piston loose shoes of hydraulic pump on a hydraulic tube tester. The approach presented is based on the insight that the phase transition of chaos oscillator, for example, the Duffing oscillator, is very sensitive to a periodic weak signal having little angular frequency difference with the referential signal of the oscillator. While observing the intermittent chaos phenomenon through figure is not easy for computer, a sliding window symbol sequence statistics is developed to realize real-time computer observation of this phenomenon. Rather more, this paper takes a trick to decreasing the computational complexity of the sliding window symbol sequence statistics method, also analyzes the influences of different window size, depths of the symbol tree on the information entropy. At last, a control limit is introduced to realize automatic early fault alarm. The resultant approach is experimented with data simulated from an AMESim model of hydraulic tube tester. The results indicate that the proposed approach is capable of detecting the signal of hydraulic pump early fault on hydraulic tube tester.

  11. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  12. Experimental evaluation of 150-millimeter bore ball bearing to 3 million DN using either solid or drilled balls

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Munson, H. E.

    1973-01-01

    Seven 150-mm bore ball bearings were run under 8900 Newton (2000 lb) thrust load at speeds from 6670 to 20,000 rpm (1 to 3 million DN). Four of the bearings had conventional solid balls and three bearing had drilled (cylindrically hollow) balls with 50 percent mass reduction. The bearings were under-race cooled and slot-lubricated with Type 2 ester oil at flow rates from 4.35 to 5.80 liters per minute (1.15 to 1.57 gal min). Friction torque and temperatures were measured on all bearings. No significant difference in torque was noted, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800 Newtons (4000 lb) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball and cracks appeared in two other balls as the result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.

  13. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

  14. Magnetohydrodynamics equilibrium of a self-confined elliptical plasma ball

    SciTech Connect

    Wu, H. P. O. Box 8730, Beijing 100080 and Institute of Mechanics, Academia Sinica, Beijing, People's Republic of China ); Oakes, M.E. )

    1991-08-01

    A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.

  15. Burning molten metallic spheres: One class of ball lightning?

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.; Massey, Nathan

    2008-08-01

    Abrahamson and Dinniss [2000. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403, 519-521] proposed a theory of ball lighting in which silicon nanoparticles undergo slow oxidation and emit light. Paiva et al. [2007. Production of ball-lightning-like luminous balls by electrical discharges in silicon. Physical Review Letters 98, 048501] reported that an electric arc to silicon produced long-lasting luminous white spheres showing many characteristics of ball lightning. We show experimentally that these consist of burning molten silicon spheres with diameters in the 0.1-1 mm range. The evidence of our experiments leads us to propose that a subset of ball lightning events may consist of macro-scale molten spheres of burning metallic materials likely to be ejected from a conventional lightning strike to earth.

  16. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion. PMID:21474863

  17. Rigid plastic balls as enrichment devices for captive chimpanzees.

    PubMed

    Bloomsmith, M A; Finlay, T W; Merhalski, J J; Maple, T L

    1990-05-01

    The use of rigid, plastic balls as enrichment devices for 16 captive chimpanzees was studied at The University of Texas M.D. Anderson Cancer Center chimpanzee colony. After the subjects were presented with balls, 10 hours of data were collected for each subject using a scan-sampling technique. The mean percentage of ball-use time for all subjects during the study was 7.1%. There was no sex difference in ball use. Age and housing effects were obtained, with younger animals and those housed in more barren environments exhibiting higher levels of ball use. It is concluded that the balls were worthwhile additions to the chimpanzee environments with use stabilizing at a mean of 2.5% of the subjects' time.

  18. Drag and drop display & builder

    SciTech Connect

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  19. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  20. 14 CFR 91.15 - Dropping objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Dropping objects. 91.15 Section 91.15... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.15 Dropping objects. No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in...

  1. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  2. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  3. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  4. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  5. Impact of a ball on a surface with tangential compliance

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2010-07-01

    A simple model is presented to explain how the spin of a ball can be enhanced when the ball is incident obliquely on a flexible surface. The mechanism involves tangential distortion of the surface and a return of the elastic energy stored in the surface via the action of the static friction force on the ball. As an example, we consider the enhancement of the spin that is possible using an appropriate type of tennis racquet string.

  6. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-14 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  7. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-20 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  8. Interpolating sliding mode observer for a ball and beam system

    NASA Astrophysics Data System (ADS)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  9. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    NASA Astrophysics Data System (ADS)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  10. Structure of Flame Balls at Low Lewis Number (SOFBALL) Video

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Structure of Flame Balls at Low Lewis (SOFBALL) experiment, was run on Space Shuttle Columbia in 2003 for STS-107. The experiment tested various fuel-oxygen-inert gas mixtures in microgravity to produce flame balls, which are spherical steady flames that reveal combustion processes hidden by the volatile effects of gravity on Earth. In this video, a hydrogen-oxygen-sulfur hexafluoride gas mixture produced nine flame balls, the most ever created at once, one of which lasted 81 minutes making it the longest lasting flame ball ever burned in space.

  11. Spherical microwave confinement and ball lightning

    NASA Astrophysics Data System (ADS)

    Robinson, William Richard

    This dissertation presents the results of research done on unconventional energy technologies from 1995 to 2009. The present civilization depends on an infrastructure that was constructed and is maintained almost entirely using concentrated fuels and ores, both of which will run out. Diffuse renewable energy sources rely on this same infrastructure, and hence face the same limitations. I first examined sonoluminescence directed toward fusion, but demonstrated theoretically that this is impossible. I next studied Low Energy Nuclear Reactions and developed methods for improving results, although these have not been implemented. In 2000, I began Spherical Microwave Confinement (SMC), which confines and heats plasma with microwaves in a spherical chamber. The reactor was designed and built to provide the data needed to investigate the possibility of achieving fusion conditions with microwave confinement. A second objective was to attempt to create ball lightning (BL). The reactor featured 20 magnetrons, which were driven by a capacitor bank and operated in a 0.2 s pulse mode at 2.45 GHz. These provided 20 kW to an icosahedral array of 20 antennas. Video of plasmas led to a redesign of the antennas to provide better coupling of the microwaves to the plasma. A second improvement was a grid at the base of the antennas, which provided corona electrons and an electric field to aid quick formation of plasmas. Although fusion conditions were never achieved and ball lightning not observed, experience gained from operating this basic, affordable system has been incorporated in a more sophisticated reactor design intended for future research. This would use magnets that were originally planned. The cusp geometry of the magnetic fields is suitable for electron cyclotron resonance in the same type of closed surface that in existing reactors has generated high-temperature plasmas. Should ball lightning be created, it could be a practical power source with nearly ideal

  12. Low compression tennis balls and skill development.

    PubMed

    Hammond, John; Smith, Christina

    2006-01-01

    Coaching aims to improve player performance and coaches have a number of coaching methods and strategies they use to enhance this process. If new methods and ideas can be determined to improve player performance they will change coaching practices and processes. This study investigated the effects of using low compression balls (LCBs) during coaching sessions with beginning tennis players. In order to assess the effectiveness of LCBs on skill learning the study employed a quasi-experimental design supported by qualitative and descriptive data. Beginner tennis players took part in coaching sessions, one group using the LCBs while the other group used standard tennis balls. Both groups were administered a skills at the beginning of a series of coaching sessions and again at the end. A statistical investigation of the difference between pre and post-test results was carried out to determine the effect of LCBs on skill learning. Additional qualitative data was obtained through interviews, video capture and the use of performance analysis of typical coaching sessions for each group. The skill test results indicated no difference in skill learning when comparing beginners using the LCBs to those using the standard balls. Coaches reported that the LCBs appeared to have a positive effect on technique development, including aspects of technique that are related to improving power of the shot. Additional benefits were that rallies went on longer and more opportunity for positive reinforcement. In order to provide a more conclusive answer to the effects of LCBs on skill learning and technique development recommendations for future research were established including a more controlled experimental environment and larger sample sizes across a longer period of time. Key PointsLCB may aid skill learning in tennis.Qualitative indicators.Statistical evidence not conclusive.Further studies of larger groups recommended. PMID:24357952

  13. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations. PMID:27300985

  14. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  15. The fate of electrospray drops

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Collins, Robert; Sambath, Krishnaraj; Harris, Michael

    2015-11-01

    Drops subjected to strong electric fields emit thin fluid jets from conical structures (Taylor cones) that form at their surfaces. Such behavior has practical, e.g. electrospray mass spectrometry, and fundamental, e.g. raindrops in thunderclouds, implications. Theoretical analysis of the temporal development of such EHD tip-streaming phenomena is challenging given the large disparity in length scales between the macroscopic drops and the microscopic jets. Furthermore, there exist conflicting theories and measurements on the size and charge of these small electrospray droplets. We use theory and simulation to show that conductivity can be tuned to yield three scaling regimes for droplet radius and charge, a finding missed by previous studies. The amount of charge Q that electrospray droplets carry determines whether they are coulombically stable and charged below the Rayleigh limit of stability R or are unstable and hence prone to further explosions once formed. Previous experiments reported droplet charge values ranging from 1/10th to in excess of R. Simulations unequivocally show that electrospray droplets are coulombically stable at the instant they are created and that there exists a universal scaling law for droplet charge, Q=0.44 R.

  16. Small drops from large nozzles

    NASA Astrophysics Data System (ADS)

    Castrejon-Pita, Alfonso Arturo; Said Mohamed, Ahmed; Castrejon-Pita, Jose Rafael; Herrada, Miguel Angel

    2015-11-01

    We report experimental and numerical results of the generation of drops which are significantly smaller than the nozzle from which they are generated. The system consists of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with a small orifice in its centre which acts as the nozzle. The other end consists of a piston which moves by the action of an elecromechanical actuator which in turn is driven by sine-shape pull-mode pulses. The meniscus (formed at the nozzle) is thus first overturned, forming a cavity. This cavity collapses and a thin and fast jet emerges from its centre. Under appropriate conditions the tip of this jet breaks up and produces a single diminutive drop. A good agreement between the experimental and numerical results was found. Also, a series of experiments were performed in order to study the effects that the pulse amplitude and width, together with variations in the liquid properties, have over the final size of the droplet. Based on these experiments, a predictive law for the droplet size has been derived. This work was funded by the Royal Society (University Research Fellowship and Research Grant), the John Fell Fund (Oxford University Press), the Ministry of Science and Education (DPI2013-46485 Spain), and the Junta de Andalucia (P08-TEP-31704128 Spain).

  17. When Two Balls Are Just One

    NASA Astrophysics Data System (ADS)

    Kulp, Christopher W.; Biermann, Mark L.; Howard, Timothy; Klingenberg, Kurtis; Ramsey, Paul

    2008-03-01

    A camcorder can be a powerful tool in pedagogical settings, such as in an introductory physics course or in introducing undergraduates to data collection. In this paper, we discuss our experience using a Panasonic PV-GS150 digital camcorder to analyze the motion of a falling steel ball, with the goal of determining the acceleration due to gravity, g = 9.80 m/s2. When performing this simple experiment, an interesting technical issue arose that led to an excellent teaching opportunity that is based on an unexpected and intriguing method of computing g.

  18. Charmonium studies with the crystal ball

    SciTech Connect

    Oreglia, M.

    1980-06-01

    The Crystal Ball detector at SPEAR is used to analyze the decays psi' ..-->.. ..gamma gamma..psi and psi' ..-->.. ..gamma..chi,chi ..-->.. ..gamma gamma... Values are obtained for the branching ratios of psi' ..-->.. eta/..mu../sup 0/psi and psi' ..-->.. ..gamma..chi,chi ..-->.. ..gamma..psi. No evidence is found for a 2/sup 1/S/sub 0/(eta'c) state in the mass range 3129 ..-->.. 3644 MeV/c/sup 2/. Analysis of the angular distributions in the cascade chi decays yields spin and multipole assignments for the chi(3.51) and chi(3.55).

  19. Are Perytons Signatures of Ball Lightning?

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Fisch, N. J.

    2014-10-01

    The enigmatic downchirped signals, called "perytons," that are detected by radio telescopes in the GHz frequency range may be produced by an atmospheric phenomenon known as ball lightning (BL). If BLs act as nonstationary radio frequency cavities, their characteristic emission frequencies and evolution timescales are consistent with peryton observations, and so are general patterns in which BLs are known to occur. Based on this evidence, testable predictions are made that can confirm or rule out a causal connection between perytons and BLs. In either case, how perytons are searched for in observational data may warrant reconsideration because existing procedures may be discarding events that have the same nature as known perytons.

  20. Routh symmetry in the Chaplygin's rolling ball

    NASA Astrophysics Data System (ADS)

    Kim, Byungsoo

    2011-12-01

    The Routh integral in the symmetric Chaplygin's rolling ball has been regarded as a mysterious conservation law due to its interesting form of sqrt {I_1 I_3 + m< {I_s ,s} rangle } Ω _3 . In this paper, a new form of the Routh integral is proposed as a Noether's pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.