Sample records for drop formation process

  1. Preparatory studies of zero-g cloud drop coalescence experiment

    NASA Technical Reports Server (NTRS)

    Telford, J. W.; Keck, T. S.

    1979-01-01

    Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.

  2. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  3. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    PubMed Central

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  4. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  5. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  6. Water evaporation on highly viscoelastic polymer surfaces.

    PubMed

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  7. Pinch-off Scaling Law of Soap Bubbles

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  8. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  9. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  10. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  11. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  12. Deformation and breakup of liquid-liquid threads, jets, and drops

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj

    The formation and breakup of two-fluid jets and drops find application in various industrially important processes like microencapsulation, inkjet printing, dispersion and emulsion formation, micro fluidics. Two important aspects of these problems are studied in this thesis. The first regards the study of the dynamics of a two-fluid jet issuing out of a concentric nozzle and breaking into multiple liquid drops. The second aspect concerns the study of the dynamics of liquid-liquid interface rupture. Highly robust and accurate numerical algorithms based on the Galerkin finite element method (G/FEM) and elliptic mesh generation technique are developed. The most important results of this research are the prediction of compound drop formation and volume partitioning between primary drop and satellite drops, which are of critical importance for microencapsulation technology. Another equally important result is computational and experimental demonstration of a self-similar behavior for the rupture of liquid-liquid interface. The final focus is the study of the pinch-off dynamics of generalized-Newtonian fluids with deformation-rate-dependent rheology using asymptotic analysis and numerical computation. A significant result is the first ever prediction of self-similar pinch-off of liquid threads of generalized Newtonian fluids.

  13. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    USGS Publications Warehouse

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  14. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).

    PubMed

    Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith

    2016-05-15

    Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Formation of liquid-metal jets in a vacuum arc cathode spot: Analogy with drop impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.

    2018-01-01

    Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.

  16. Containerless processing of undercooled melts

    NASA Technical Reports Server (NTRS)

    Shong, D. S.; Graves, J. A.; Ujiie, Y.; Perepezko, J. H.

    1987-01-01

    Containerless drop tube processing allows for significant levels of liquid undercooling through control of parameters such as sample size, surface coating and cooling rate. A laboratory scale (3 m) drop tube has been developed which allows the undercooling and solidification behavior of powder samples to be evaluated under low gravity free-fall conditions. The level of undercooling obtained in an InSb-Sb eutectic alloy has been evaluated by comparing the eutectic spacing in drop tube samples with a spacing/undercooling relationship established using thermal analysis techniques. Undercoolings of 0.17 and 0.23 T(e) were produced by processing under vacuum and He gas conditions respectively. Alternatively, the formation of an amorphous phase in a Ni-Nb eutectic alloy indicates that undercooling levels of approximately 500 C were obtained by drop tube processing. The influence of droplet size and gas environment on undercooling behavior in the Ni-Nb eutectic was evaluated through their effect on the amorphous/crystalline phase ratio. To supplement the structural analysis, heat flow modeling has been developed to describe the undercooling history during drop tube processing, and the model has been tested experimentally.

  17. Drop impact onto a thin film: Miscibility effect

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, H.; Amirfazli, A.

    2017-09-01

    In this work a systematic experimental study was performed to understand the process of liquid drop impact onto a thin film made of a different liquid from drop. The drop and film liquids can be miscible or immiscible. Three general outcomes of deposition, crown formation without splashing, and splashing, were observed in the advancing phase of the drop impact onto a solid surface covered by either a miscible or an immiscible thin film. However, for a miscible film, a larger Weber number and film thickness are needed for the formation of a crown and splashing comparing with immiscible cases. The advancing phase of drop impact onto a thin immiscible film with a large viscosity is similar to that of drop impact onto a dry surface; for a miscible film viscous film, the behavior is far from that of a dry surface. The behavior of liquid lamella in the receding phase of drop impact onto a thin miscible film is reported for the first time. The results show that immiscibility is not a necessary condition for the existence of a receding phase. The existence of a receding phase is highly dependent on the interfacial tension between the drop and the film. The miscibility can significantly affect the receding morphology as it will cause mixing of the two liquids.

  18. Evaporation of oil-water emulsion drops when heated at high temperature

    NASA Astrophysics Data System (ADS)

    Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.

    2017-10-01

    An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.

  19. Drop impact into a deep pool: vortex shedding and jet formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.

    2015-02-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine themore » transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.« less

  20. Capillary Thinning of Particle-laden Drops

    NASA Astrophysics Data System (ADS)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  1. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.

    PubMed

    Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza

    2007-07-01

    This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.

  2. Salt dissolution and sinkhole formation: Results of laboratory experiments

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Eyal, Shalev; Yoseph, Yechieli; Ittai, Gavrieli; Elad, Levanon; Haim, Gvirtzman

    2016-10-01

    The accepted mechanism for the formation of thousands of sinkholes along the coast of the Dead Sea suggests that their primary cause is dissolution of a salt layer by groundwater undersaturated with respect to halite. This is related to the drop in the Dead Sea level, which caused a corresponding drop of the freshwater-saltwater interface, resulting in fresher groundwater replacing the brines that were in contact with the salt layer. In this study we used physical laboratory experiments to examine the validity of this mechanism by reproducing the full dynamic natural process and to examine the impact of different hydrogeological characteristics on this process. The experimental results show surface subsidence and sinkhole formation. The stratigraphic configurations of the aquifer, together with the mechanical properties of the salt layer, determine the dynamic patterns of the sinkhole formation (instantaneous versus gradual formation). Laboratory experiments were also used to study the potential impact of future stratification in the Dead Sea, if and when the "Red Sea-Dead Sea Canal" project is carried out, and the Dead Sea level remains stable. The results show that the dissolution rates are slower by 1 order of magnitude in comparison with a nonstratified saltwater body, and therefore, the processes of salt dissolution and sinkhole formation will be relatively restrained under these conditions.

  3. Coalescence of Drops of a Power-law Fluid

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Basaran, Osman

    2014-11-01

    Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .

  4. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  5. Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate.

    PubMed

    Pham, Jonathan T; Paven, Maxime; Wooh, Sanghyuk; Kajiya, Tadashi; Butt, Hans-Jürgen; Vollmer, Doris

    2017-10-13

    The contact between liquid drops and hot solid surfaces is of practical importance for industrial processes, such as thermal spraying and spray cooling. The contact and bouncing of solid spheres is also an important event encountered in ball milling, powder processing, and everyday activities, such as ball sports. Using high speed video microscopy, we demonstrate that hydrogel drops, initially at rest on a surface, spontaneously jump upon rapid heating and continue to bounce with increasing amplitudes. Jumping is governed by the surface wettability, surface temperature, hydrogel elasticity, and adhesion. A combination of low-adhesion impact behavior and fast water vapor formation supports continuous bouncing and trampolining. Our results illustrate how the interplay between solid and liquid characteristics of hydrogels results in intriguing dynamics, as reflected by spontaneous jumping, bouncing, trampolining, and extremely short contact times.Drops of liquid on a hot surface can exhibit fascinating behaviour such as the Leidenfrost effect in which drops hover on a vapour layer. Here Pham et al. show that when hydrogel drops are placed on a rapidly heated plate they bounce to increasing heights even if they were initially at rest.

  6. The Illustrated Topology of Liquid Drops during Formation

    ERIC Educational Resources Information Center

    Libii, Josue Njock

    2004-01-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  7. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  8. Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops.

    PubMed

    Agthe, Michael; Plivelic, Tomás S; Labrador, Ana; Bergström, Lennart; Salazar-Alvarez, German

    2016-11-09

    Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.

  9. Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing

    NASA Astrophysics Data System (ADS)

    Turkoz, Emre; Perazzo, Antonio; Kim, Hyoungsoo; Stone, Howard A.; Arnold, Craig B.

    2018-02-01

    Understanding jet formation from non-Newtonian fluids is important for improving the quality of various printing and dispensing techniques. Here, we use a laser-based nozzleless method to investigate impulsively formed jets of non-Newtonian fluids. Experiments with a time-resolved imaging setup demonstrate multiple regimes during jet formation that can result in zero, single, or multiple drops per laser pulse. These regimes depend on the ink thickness, ink rheology, and laser energy. For optimized printing, it is desirable to select parameters that result in a single-drop breakup; however, the strain-rate dependent rheology of these inks makes it challenging to determine these conditions a priori. Rather, we present a methodology for characterizing these regimes using dimensionless parameters evaluated from the process parameters and measured ink rheology that are obtained prior to printing and, so, offer a criterion for a single-drop breakup.

  10. "Self-Shaping" of Multicomponent Drops.

    PubMed

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  11. Removal mechanisms of dew via self-propulsion off the gecko skin

    PubMed Central

    Watson, Gregory S.; Schwarzkopf, Lin; Cribb, Bronwen W.; Myhra, Sverre; Gellender, Marty; Watson, Jolanta A.

    2015-01-01

    Condensation resulting in the formation of water films or droplets is an unavoidable process on the cuticle or skin of many organisms. This process generally occurs under humid conditions when the temperature drops below the dew point. In this study, we have investigated dew conditions on the skin of the gecko Lucasium steindachneri. When condensation occurs, we show that small dew drops, as opposed to a thin film, form on the lizard's scales. As the droplets grow in size and merge, they can undergo self-propulsion off the skin and in the process can be carried away a sufficient distance to freely engage with external forces. We show that factors such as gravity, wind and fog provide mechanisms to remove these small droplets off the gecko skin surface. The formation of small droplets and subsequent removal from the skin may aid in reducing microbial contact (e.g. bacteria, fungi) and limit conducive growth conditions under humid environments. As well as providing an inhospitable microclimate for microorganisms, the formation and removal of small droplets may also potentially aid in other areas such as reduction and cleaning of some surface contaminants consisting of single or multiple aggregates of particles. PMID:25762647

  12. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.

    2014-12-01

    Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic effects, non-uniform solidification, surface wrinkling (Schlieren), and rapid separation/fission of dumb-bells via the Rayleigh-Plateau instability. [1] M. R. Stauffer and S. L. Butler, Earth Moon Planets, 107, 169 (2009). [2] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).

  13. Origin and dynamics of vortex rings in drop splashing

    DOE PAGES

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; ...

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  14. Origin and dynamics of vortex rings in drop splashing.

    PubMed

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  15. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  16. Flow structure of natural dehumidification over a horizontal finned-tube

    NASA Astrophysics Data System (ADS)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  17. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production

    PubMed Central

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E.; Mathews, Sarah

    2016-01-01

    Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus. The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen–ovule recognition. PMID:27045089

  18. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  19. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  20. Metastable phase formation in undercooled Fe-Co melts under terrestrial and parabolic flight conditions

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Löser, W.; Lindenkreuz, H. G.; Yang-Bitterlich, W.; Mickel, Ch.; Diefenbach, A.; Schneider, S.; Dreier, W.

    2007-12-01

    Soft magnetic Fe-Co alloys display primary fcc phase solidification for>19,5 at% Co in conventional near-equilibrium solidification processes. Undercooled Fe-Co melt drops within the composition range of 30 to 50 at% Co have been investigated with the electromagnetic levitation technique. The solidification kinetics was measured in situ using a high-resolution Siphotodiode. Melt drops were undercooled up to 263 K below the liquidus temperature and subsequently quenched onto a chill substrate in order to characterize the solidification sequence and microstructure. The transition from stable fcc phase to metastable bcc primary phase solidification has been observed after reaching a critical undercooling level. The critical undercooling increases with rising Co content. The growth velocity drops obviously after transition to metastable bcc phase formation. Parabolic flight experiments were performed in order to study the phase selection under reduced gravity conditions. Under microgravity conditions, a much smaller critical undercooling and an increased life time of the metastable bcc phase were obtained. This result was validated with TEM investigations. The appearance of Fe-O particles gives an indirect hint for an intermediate fcc phase formation from the metastable bcc phase at elevated temperature.

  1. Method For Screening Microcrystallizations For Crystal Formation

    DOEpatents

    Santarsiero, Bernard D. , Stevens, Raymond C. , Schultz, Peter G. , Jaklevic, Joseph M. , Yegian, Derek T. , Cornell, Earl W. , Nordmeyer, Robert A.

    2003-10-07

    A method is provided for performing array microcrystallizations to determine suitable crystallization conditions for a molecule, the method comprising: forming an array of microcrystallizations, each microcrystallization comprising a drop comprising a mother liquor solution whose composition varies within the array and a molecule to be crystallized, the drop having a volume of less than 1 microliter; storing the array of microcrystallizations under conditions suitable for molecule crystals to form in the drops in the array; and detecting molecule crystal formation in the drops by taking images of the drops.

  2. Removal mechanisms of dew via self-propulsion off the gecko skin.

    PubMed

    Watson, Gregory S; Schwarzkopf, Lin; Cribb, Bronwen W; Myhra, Sverre; Gellender, Marty; Watson, Jolanta A

    2015-04-06

    Condensation resulting in the formation of water films or droplets is an unavoidable process on the cuticle or skin of many organisms. This process generally occurs under humid conditions when the temperature drops below the dew point. In this study, we have investigated dew conditions on the skin of the gecko Lucasium steindachneri. When condensation occurs, we show that small dew drops, as opposed to a thin film, form on the lizard's scales. As the droplets grow in size and merge, they can undergo self-propulsion off the skin and in the process can be carried away a sufficient distance to freely engage with external forces. We show that factors such as gravity, wind and fog provide mechanisms to remove these small droplets off the gecko skin surface. The formation of small droplets and subsequent removal from the skin may aid in reducing microbial contact (e.g. bacteria, fungi) and limit conducive growth conditions under humid environments. As well as providing an inhospitable microclimate for microorganisms, the formation and removal of small droplets may also potentially aid in other areas such as reduction and cleaning of some surface contaminants consisting of single or multiple aggregates of particles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    PubMed

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Influence of solidification on the impact of supercooled water drops onto cold surfaces

    NASA Astrophysics Data System (ADS)

    Li, Hai; Roisman, Ilia V.; Tropea, Cameron

    2015-06-01

    This study presents an experimental investigation of the impact of a supercooled drop onto hydrophilic and superhydrophobic substrates. The aim is to better understand the process of airframe icing caused by supercooled large droplets, which has been recently identified as a severe hazard in aviation. The Weber number and Reynolds number of the impinging drop ranged from 200 to 300 and from 2600 to 5800, respectively. Drop impact, spreading, and rebound were observed using a high-speed video system. The maximum spreading diameter of an impacting drop on hydrophilic surfaces was measured. The temperature effect on this parameter was only minor for a wide range of the drop and substrate temperatures. However, ice/water mixtures emerged when both the drop and substrate temperatures were below 0 °C. Similarly, drop rebound on superhydrophobic substrates was significantly hindered by solidification when supercooled drop impacted onto substrates below the freezing point. The minimum receding diameter and the speed of ice accretion on the substrate were measured for various wall temperatures. Both parameters increased almost linearly with decreasing wall temperature, but eventually leveled off beyond a certain substrate temperature. The rate of ice formation on the substrate was significantly higher than the growth rate of free ice dendrites, implying that multiple nucleation sites were present.

  5. Crystal Nucleation and Growth in Undercooled Melts of Pure Zr, Binary Zr-Based and Ternary Zr-Ni-Cu Glass-Forming Alloys

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan

    2018-03-01

    Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.

  6. Drop Ejection From an Oscillating Rod

    NASA Technical Reports Server (NTRS)

    Wilkes, E. D.; Basaran, O. A.

    1999-01-01

    The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  8. Computational analysis of drop formation before and after the first singularity: the fate of free and satellite drops during simple dripping and DOD drop formation

    NASA Astrophysics Data System (ADS)

    Chen, Alvin U.; Basaran, Osman A.

    2000-11-01

    Drop formation from a capillary --- dripping mode --- or an ink jet nozzle --- drop-on-demand (DOD) mode --- falls into a class of scientifically challenging yet practically useful free surface flows that exhibit a finite time singularity, i.e. the breakup of an initially single liquid mass into two or more fragments. While computational tools to model such problems have been developed recently, they lack the accuracy needed to quantitatively predict all the dynamics observed in experiments. Here we present a new finite element method (FEM) based on a robust algorithm for elliptic mesh generation and remeshing to handle extremely large interface deformations. The new algorithm allows continuation of computations beyond the first singularity to track fates of both primary and any satellite drops. The accuracy of the computations is demonstrated by comparison of simulations with experimental measurements made possible with an ultra high-speed digital imager capable of recording 100 million frames per second.

  9. Drop-out phagemid vector for switching from phage displayed affinity reagents to expression formats.

    PubMed

    Pershad, Kritika; Sullivan, Mark A; Kay, Brian K

    2011-05-15

    Affinity reagents that are generated by phage display are typically subcloned into an expression vector for further biochemical characterization. This insert transfer process is time consuming and laborious especially if many inserts are to be subcloned. To simplify the transfer process, we have constructed a "drop-out" phagemid vector that can be rapidly converted to an expression vector by a simple restriction enzyme digestion with MfeI (to "drop-out" the gene III coding sequence), which generates alkaline phosphatase (AP) fusions of the affinity reagents on religation. Subsequently, restriction digestion with AscI drops out the AP coding region and religation generates affinity reagents with a C-terminal six-histidine tag. To validate the usefulness of this vector, four different human single chain Fragments of variable regions (scFv) were tested, three of which show specific binding to three zebrafish (Danio rerio) proteins, namely suppression of tumorigenicity 13, recoverin, and Ppib and the fourth binds to human Lactoferrin protein. For each of the constructs tested, the gene III and AP drop-out efficiency was between 90% and 100%. This vector is especially useful in speeding up the downstream screening of affinity reagents and bypassing the time-consuming subcloning experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Nonlinear Dynamics of Formation of Drops of Non-Newtonian Liquids from Capillaries: Satellite Formation and Flow Transitions

    NASA Astrophysics Data System (ADS)

    Yildirim, Ozgur E.; Basaran, Osman A.

    1999-11-01

    Drop formation from capillaries, and the often undesired phenomenon of satellite generation, play a central role in diverse applications including ink-jet printing, biochip processors, and spray coating, where the working fluid is usually non-Newtonian. Although some work has been done in related areas, the phenomenon of formation of drops of non--Newtonian fluids from capillaries has remained largely unexplored. Here a theoretical approach is adopted to study the dripping of axisymmetric drops of non--Newtonian liquids from capillaries. The constitutive equation used accounts for both shear thinning and strain hardening. First, regular perturbation theory is utilized to reduce the spatial dimension of the governing equations to one. The computations rely on Galerkin/finite element analysis with adaptive finite differencing for time integration. The dynamics are followed beyond the first breakup to investigate conditions for occurrence of satellites. Effect of increasing flow rate is also studied to uncover transitions that occur as one moves from a regime of periodic drop formation to one of jetting.

  11. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  12. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  13. Bimetallic clustered thin films with variable electro-optical properties

    NASA Astrophysics Data System (ADS)

    Antipov, A.; Bukharov, D.; Arakelyan, S.; Osipov, A.; Lelekova, A.

    2018-01-01

    The drop deposition of colloidal nanoparticles was performed from water-based colloidal solutions. The proposed procedure is based on the agglomeration of colloidal particles in laser-assisted evaporation processes. The evaporation process was resulted in the formation of clustered thin films on a glass substrate. In the experiments with bimetallic Au:Ag solutions, the clustered films are grown, the formation of the clustered films with the average height of 100 nm was achieved. Optical properties of the deposited structures were investigated experimentally. It is shown that the obtained films may become transparent and its properties are defined by its morphology.

  14. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    NASA Astrophysics Data System (ADS)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  15. Scaling during capillary thinning of particle-laden drops

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  16. Idealized simulation of the Colorado hailstorm case: comparison of bulk and detailed microphysics

    NASA Astrophysics Data System (ADS)

    Geresdi, I.

    One of the purposes of the Fourth Cloud Modeling Workshop was to compare different microphysical treatments. In this paper, the results of a widely used bulk treatment and five versions of a detailed microphysical model are presented. Sensitivity analysis was made to investigate the effect of bulk parametrization, ice initiation technique, CCN concentration and collision efficiency of rimed ice crystal-drop collision. The results show that: (i) The mixing ratios of different species of hydrometeors calculated by bulk and one of the detailed models show some similarity. However, the processes of hail/graupel formation are different in the bulk and the detailed models. (ii) Using different ice initiation in the detailed models' different processes became important in the hail and graupel formation. (iii) In the case of higher CCN concentration, the mixing ratio of liquid water, hail and graupel were more sensitive to the value of collision efficiency of rimed ice crystal-drop collision. (iv) The Bergeron-Findeisen process does not work in the updraft core of a convective cloud. The vapor content was always over water saturation; moreover, the supersaturation gradually increased after the appearance of precipitation ice particles.

  17. Effects of hanging drop culture conditions on embryoid body formation and neuronal cell differentiation using mouse embryonic stem cells: optimization of culture conditions for the formation of well-controlled embryoid bodies.

    PubMed

    Ohnuki, Yoshitsugu; Kurosawa, Hiroshi

    2013-05-01

    Hanging drop (HD) cultures were carried out with a drop volume of either 20 or 30 μl. An incubation period of 3 days was determined to be appropriate for the formation of well-controlled embryoid bodies (EBs), and the initial cell number was identified as the most critical factor in the growth and neuronal cell differentiation of EBs. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    PubMed Central

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801

  19. Melt spinning study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Thomas

    1993-01-01

    Containerless processing of materials provides an excellent opportunity to study nucleation phenomena and produce unique materials, primarily through the formation of metastable phases and deep undercoolings. Deep undercoolings can be readily achieved in falling drops of molten material. Extended solute solubilities and greatly refined microstructures can also be obtained in containerless processing experiments. The Drop Tube Facility at Marshall Space Flight Center has played an important role in enhancing that area of research. Previous experiments performed in the Drop Tube with refractory metals has shown very interesting microstructural changes associated with deep undercoolings. It is apparent also that the microstructure of the deep undercooled species may be changing due to the release of the latent heat of fusion during recalescence. For scientific purposes, it is important to be able to differentiate between the microstructures of the two types of metallic species. A review of the literature shows that although significant advances have been made with respect to the engineering aspects of rapid solidification phenomena, there is still much to be learned in terms of understanding the basic phenomena. The two major ways in which rapid solidification processing provides improved structures and hence improved properties are: (1) production of refined structures such as fine dendrites and eutectics, and (2) production of new alloy compositions, microstructures, and phases through extended solid solubility, new phase reaction sequences, and the formation of metallic-glass microstructures. The objective of this work has been to determine the optimal methodology required to extract this excess energy without affecting the thermo-physical parameters of the under-cooled melt. In normal containerless processing experiments recalescence occurs as the melt returns toward the melting point in order to solidify. A new type of experiment is sought in which the resultant microstructure of the undercooled species is frozen in without going through the melting point regime and subsequent near equilibrium solidification of the remaining liquid. This experimental approach entails the design of an appropriate melt spinning system which is compatible with Drop Tube operations and processing constraints. That work is the goal of this study.

  20. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.

    PubMed

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young

    2017-01-01

    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and 13 C nuclear magnetic resonance ( 13 C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Air cushioning in drop impact

    NASA Astrophysics Data System (ADS)

    de Ruiter, Jolet; Oh, Jung; van den Ende, Dirk; Mugele, Frieder

    2011-11-01

    Liquid drops impacting on solid surfaces deform under the influence of the ambient gas that needs to be squeezed out before a true solid-liquid contact can be established. We demonstrate experimentally the existence of this theoretically predicted air layer and follow its evolution with time for moderate impact speeds (We ~ 1 ... 10) using reflection interference microscopy with a thickness resolution of approximately 10nm. For a wide range of fluid properties (ρ, γ, η) we find a very robust generic behavior that includes the predicted formation of a dimple in the center of the drop with a local minimum of the air film thickness at its boundary. Depending on We as well as the fluid properties, a skating layer of more or less constant thickness as well as a second local minimum of the air film thickness farther away from the drop center develop in time. Eventually, solid-liquid contact is generated via random nucleation event. The nucleation spot spreads across the drop-substrate interface within a few milliseconds. This process can lead to the entrapment of an air bubble.

  2. Impact of the Formulation Pathway on the Colloidal State and Crystallinity of Poly-ε-caprolactone Particles Prepared by Solvent Displacement.

    PubMed

    Pucci, Carlotta; Cousin, Fabrice; Dole, François; Chapel, Jean-Paul; Schatz, Christophe

    2018-02-20

    The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity. Two distinct composition maps representing the Ouzo domain characteristic of the presence of metastable nanoparticles have been established for each mixing method. Polymer nanoparticles are formed in the Ouzo domain according to a nucleation and growth (or aggregation) mechanism. The fast addition promotes a larger nucleation rate, thus favoring the formation of small and uniform particles. For the drop-by-drop addition, for which the polymer solubility gradually decreases, the composition trajectories systematically cross an intermediate unstable region between the solubility limit of the polymer and the Ouzo domain. This leads to heterogeneous nucleation as shown by the formation of larger and less stable particles. Particles formed in the Ouzo domain have semi-crystalline properties. The PCL melting point is decreased with the THF fraction trapped in particles in accordance with Flory's theory for melt crystallization. On the other hand, the degree of crystallinity is constant, around 20% regardless of the THF fraction. No difference between fast and slow addition could be detected on the semi-crystalline properties of the particles which emphasize that thermodynamic rather than kinetic factors drive the polymer crystallization in particles. The recovery of bulk PCL crystallinity after the removal of THF from particles tends to confirm this hypothesis.

  3. Magnetic drops in a soft-magnetic cylinder

    NASA Astrophysics Data System (ADS)

    Hertel, Riccardo; Kirschner, Jürgen

    2004-07-01

    Magnetization reversal in a cylindrical ferromagnetic particle seems to be a simple textbook problem in magnetism. But at a closer look, the magnetization reversal dynamics in a cylinder is far from being trivial. The difficulty arises from the central axis, where the magnetization switches in a discontinuous fashion. Micromagnetic computer simulations allow for a detailed description of the evolution of the magnetic structure on the sub-nanosecond time scale. The switching process involves the injection of a magnetic point singularity (Bloch point) into the cylinder. Further point singularities may be generated and annihilated periodically during the reversal process. This results in the temporary formation of micromagnetic drops, i.e., isolated, non-reversed regions. This surprising feature in dynamic micromagnetism is due to different mobilities of domain wall and Bloch point.

  4. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Modification of biological objects in water media by CO2-laser radiation

    NASA Astrophysics Data System (ADS)

    Baranov, G. A.; Belyaev, A. A.; Onikienko, S. B.; Smirnov, S. A.; Khukharev, V. V.

    2005-09-01

    The modification of biological objects (polysaccharides and cells) by CO2-laser radiation in water added drop by drop into the interaction region is studied theoretically and experimentally. Calculations are performed by using the models describing gas-dynamic and heterogeneous processes caused by absorption of laser radiation by water drops. It is found experimentally that the laser modification of polysaccharides leads to the formation of low-molecular derivatives with immunostimulating properties. A dose of the product of laser activation of the yeast culture Saccharamyces cerevisiae prevented the development of a toxic emphysema in mice and protected them against lethal grippe and also prevented a decrease of survival rate, increased the average life, and prevented the development of metabolic and immune disorders in mice exposed to sublethal gamma-radiation doses.

  5. Nanomechanics of slip avalanches in amorphous plasticity

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  6. Crater Formation Above Salt Caverns: Piston vs Hour-glass

    NASA Astrophysics Data System (ADS)

    Berest, P.

    2016-12-01

    Conditions leading to crater formation above salt caverns are discussed. In most cases, at the end of leaching, the cavern roof had reached the top of the salt formation, allowing direct contact between brine and marl (or argillite) layers that compose the overburden of the salt formation. These layers are prone to weathering when in contact with saturated brine. Stoping takes place, and the cavern roof rises through the overburden. This process may be several years or dozens of years long. In Lorraine salt formations, stoping stops when the rising cavern top reaches a competent layer, the Beaumont Dolomite. Operators then lower cavern-brine pressure to trigger collapse. A rigid cylinder of rock (a "piston") drops into the cavern, and a crater whose initial edges are vertical is created. Cavern drop is more abrupt when the cavern top is filled partly with air. The contour of the piston is circular, as a circle is the shape such that the ratio between perimeter and area is minimal. In other cases, for instance in Kansas, the cavern rises until the uppermost keystone in the bedrock at shallow depth is breached, permitting loose materials to flow into the cavern through a relatively narrow hole at the bottom of the sink hole, as in an hour glass.

  7. Fine structure of acoustic signals caused by a drop falling onto the surface of water

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2015-08-01

    The temporal structure of sound radiation upon a drop falling onto a free liquid surface is investigated experimentally by high-resolution high-speed videorecording synchronized with a broad-band measurement of the acoustic pressure. Groups of short and relatively prolonged sound packets with frequency filling from 2 to 50 kHz and the corresponding flow patterns including the simultaneous formation of resonating bubbles and their interaction processes with an originating cavern are isolated. The temporal dependence of the determining parameter, i.e., the Weber number, which is stably reproduced in a series of experiments by a power function with a fractional index, is constructed.

  8. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  9. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.

    PubMed

    Deng, Nan-Nan; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Weitz, David A; Chu, Liang-Yin

    2013-10-21

    Multiple emulsions, which are widely applied in a myriad of fields because of their unique ability to encapsulate and protect active ingredients, are typically produced by sequential drop-formations and drop-encapsulations using shear-induced emulsification. Here we report a qualitatively novel method of creating highly controlled multiple emulsions from lower-order emulsions. By carefully controlling the interfacial energies, we adjust the spreading coefficients between different phases to cause drops of one fluid to completely engulf other drops of immiscible fluids; as a result multiple emulsions are directly formed by simply putting preformed lower-order emulsion drops together. Our approach has highly controllable flexibility. We demonstrate this in preparation of both double and triple emulsions with a controlled number of inner drops and precisely adjusted shell thicknesses including ultra-thin shells. Moreover, this controllable drop-engulfing-drop approach has a high potential in further investigations and applications of microfluidics. Importantly, this innovative approach opens a window to exploit new phenomena occurring in fluids at the microscale level, which is of great significance for developing novel microfluidics.

  10. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  11. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  12. Formation of Carbon Nanotubes in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2001-01-01

    Even though nanotube science has become one of the worlds most rapidly advancing areas of research, very little is known about the processes involved in nanotube synthesis. To study the formation of carbon nanotubes in an environment unhindered by the buoyancy induced flows generated by the high temperatures necessary to vaporize carbon and grow nanotubes, we have designed a miniature carbon arc apparatus that can produce carbon nanotubes under microgravity conditions. During the first phase of this project, we designed, built, and successfully tested the mini carbon arc in both 1g and 2.2 sec drop tower microgravity conditions. We have demonstrated that microgravity can eliminate the strong convective flows from the carbon arc and we have successfully produced single-walled carbon nanotubes in microgravity. We believe that microgravity processing will allow us to better understand the nanotube formation process and eventually allow us to grow nanotubes that are superior to ground-based production.

  13. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    PubMed

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  14. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    PubMed

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  15. In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions

    NASA Astrophysics Data System (ADS)

    Tobler, Dominique J.; Benning, Liane G.

    2013-08-01

    Detailed knowledge of the reaction kinetics of silica nanoparticle formation in cooling supersaturated waters is fundamental to the understanding of many natural processes including biosilicifcation, sinter formation, and silica diagenesis. Here, we quantified the formation of silica nanoparticles from solution as it would occur in geothermal waters. We used an in situ and real-time approach with silica polymerisation being induced by fast cooling of a 230 °C hot and supersaturated silica solution. Experiments were carried out using a novel flow-through geothermal simulator system that was designed to work on-line with either a synchrotron-based small angle X-ray scattering (SAXS) or a conventional dynamic light scattering (DLS) detector system. Our results show that the rate of silica nanoparticle formation is proportional to the silica concentration (640 vs. 960 ppm SiO2), and the first detected particles form spheres of approximately 3 nm in diameter. These initial nanoparticles grow and reach a final particle diameter of approximately 7 nm. Interestingly, neither variations in ionic strength (0.02 vs. 0.06) nor temperature (reactions at 30 to 60 °C, mimicking Earth surface values) seem to affect the formation kinetics or the final size of the silica nanoparticles formed. Comparing these results with our previous data from experiments where silica polymerisation and nanoparticle formation was induced by a drop in pH from 12 to near neutral (pH-induced, Tobler et al., 2009) showed that (a) the mechanisms and kinetics of silica nanoparticle nucleation and growth were unaffected by the means to induce silica polymerisation (T drop or pH drop), both following first order reactions kinetics coupled with a surface controlled reaction mechanism. However, the rates of the formation of silica nanoparticles were substantially (around 50%) slower when polymerisation was induced by fast cooling as opposed to pH change. This was evidenced by the occurrence of an induction period, the formation of larger critical nuclei, and the absence of particle aggregation in the T-induced experiments.

  16. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  17. Bag breakup of low viscosity drops in the presence of a continuous air jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, V., E-mail: vkulkarn@purdue.edu; Sojka, P. E.

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by themore » Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 < We < ∼16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.« less

  18. Combustion of Unconfined Droplet Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.

    2001-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.

  19. Bag breakup of low viscosity drops in the presence of a continuous air jet

    NASA Astrophysics Data System (ADS)

    Kulkarni, V.; Sojka, P. E.

    2014-07-01

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ˜12 < We < ˜16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We = 12( {1 + 2/3 Oh^2 } ), is found to match well with experimental data {[L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545-560 (1995)] and [R. S. Brodkey, "Formation of drops and bubbles," in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]}. An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  20. 25 CFR 542.3 - How do I comply with this part?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... provide for drop/count observations, inclusive of hard drop/count, soft drop/count and currency acceptor... observations would be unexpected, the hard count and soft count rooms may be entered simultaneously... should be included in the Agreed-Upon Procedures report transmitted to the Commission. (4) Report Format...

  1. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  2. Bubble migration inside a liquid drop in a space laboratory

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Shankar, N.; Cole, R.; Subramanian, R. S.

    1982-01-01

    The design of experiments in materials processing for trials on board the Shuttle are described. Thermocapillary flows will be examined as an aid to mixing in the formation of glasses. Acoustically levitated molten glass spheres will be spot heated to induce surface flow away from the hot spot to induce mixing. The surface flows are also expected to cause internal convective motion which will drive entrained gas bubbles toward the hot spot, a process also enhanced by the presence of thermal gradients. The method is called fining, and will be augmented by rotation of the sphere to cause bubble migration toward the axes of rotation to form one large bubble which is more easily removed. Centering techniques to fix the maximum centering accuracy will also be tried. Ground-based studies of bubble migration in a rotating liquid and in a temperature gradient in a liquid drop are reviewed.

  3. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  4. Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts.

    PubMed

    Anitua, E; de la Fuente, M; Muruzabal, F; Riestra, A; Merayo-Lloves, J; Orive, G

    2015-06-01

    Autologous serum (AS) eye drops was the first blood-derived product used for the treatment of corneal pathologies but nowadays PRGF arises as a novel interesting alternative to this type of diseases. The purpose of this study was to evaluate and compare the biological outcomes of autologous serum eye drops or Plasma rich in growth factors (PRGF) eye drops on corneal stromal keratocytes (HK) and conjunctival fibroblasts (HConF). To address this, blood from healthy donors was collected and processed to obtain autologous serum (AS) eye drops and plasma rich in growth factors (PRGF) eye drops. Blood-derivates were aliquoted and stored at -80°C until use. PDGF-AB, VEGF, EGF, FGFb and TGF-β1 were quantified. The potential of PRGF and AS in promoting wound healing was evaluated by means of proliferation and migration assays in HK and HConF. Fibroblast cells were induced to myofibroblast differentiation after treatment with 2.5ng/mL of TGF-β1. The capability of PRGF and AS to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results showed significant higher levels of all growth factors analyzed in PRGF eye drops compared to AS. Moreover, PRGF eye drops enhanced significantly the biological outcomes of both HK and HConF, and reduced TGF-β1-induced myofibroblast differentiation in contrast to autologous serum eye drops (AS). In summary, these results suggest that PRGF exerts enhanced biological outcomes than AS. PRGF may improve the treatment of ocular surface wound healing minimizing the scar formation compared to AS. Results obtained herein suggest that PRGF protects and reverses the myofibroblast phenotype while promotes cell proliferation and migration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution

    NASA Astrophysics Data System (ADS)

    Derby, Brian

    2010-08-01

    Inkjet printing is viewed as a versatile manufacturing tool for applications in materials fabrication in addition to its traditional role in graphics output and marking. The unifying feature in all these applications is the dispensing and precise positioning of very small volumes of fluid (1-100 picoliters) on a substrate before transformation to a solid. The application of inkjet printing to the fabrication of structures for structural or functional materials applications requires an understanding as to how the physical processes that operate during inkjet printing interact with the properties of the fluid precursors used. Here we review the current state of understanding of the mechanisms of drop formation and how this defines the fluid properties that are required for a given liquid to be printable. The interactions between individual drops and the substrate as well as between adjacent drops are important in defining the resolution and accuracy of printed objects. Pattern resolution is limited by the extent to which a liquid drop spreads on a substrate and how spreading changes with the overlap of adjacent drops to form continuous features. There are clearly defined upper and lower bounds to the width of a printed continuous line, which can be defined in terms of materials and process variables. Finer-resolution features can be achieved through appropriate patterning and structuring of the substrate prior to printing, which is essential if polymeric semiconducting devices are to be fabricated. Low advancing and receding contact angles promote printed line stability but are also more prone to solute segregation or “coffee staining” on drying.

  6. Electrohydrodynamic instabilities of viscous drops*

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia M.

    2016-10-01

    A classic result due to Taylor is that a weakly conducting drop bearing zero net charge placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. Here I overview some intriguing symmetry-breaking instabilities occurring in strong applied dc fields: Quincke rotation resulting in drop steady tilt or tumbling, and pattern formation on the surface of a particle-coated drop.

  7. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  8. Dynamic formation and magnetic support of loop or arcade prominences

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard; Mok, Y.; Drake, J. F.

    1992-01-01

    The results of model dynamic simulations of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of a confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of a normal polarity Kippenhahn-Schlueter type) is formed, which supports the prominence at or near the field apex.

  9. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    PubMed

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p < 0.05), but large inter-individual differences could be observed. Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p < 0.05). Calcium-phosphate-osteopontin particles may represent a new therapeutic approach to caries control and aim at directly targeting virulence factors involved in the caries process. Further studies are required to determine the effect of particle treatment on more acidogenic/aciduric biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  10. Spontaneous formation of linearly arranged microcraters on sol-gel-derived silica-poly(vinylpyrrolidone) hybrid films induced by Bénard-Marangoni convection.

    PubMed

    Uchiyama, Hiroaki; Mantani, Yuto; Kozuka, Hiromitsu

    2012-07-10

    Complex, sophisticated surface patterns on micrometer and nanometer scales are obtained when solvent evaporates from solutions containing nonvolatile solutes dropped on a solid substrate. Such evaporation-driven pattern formation has been utilized as a fabrication process of highly ordered patterns in thin films. Here, we suggested the spontaneous pattern formation induced by Bénard-Marangoni convection triggered by solvent evaporation as a novel patterning process of sol-gel-derived organic-inorganic hybrid films. Microcraters of 1.0-1.5 μm in height and of 100-200 μm in width were spontaneously formed on the surface of silica-poly(vinylpyrrolidone) hybrid films prepared via temperature-controlled dip-coating process, where the surface patterns were linearly arranged parallel to the substrate withdrawal direction. Such highly ordered micropatterns were achieved by Bénard-Marangoni convection activated at high temperatures and the unidirectional flow of the coating solution on the substrate during dip-coating.

  11. Study on bi-directional pedestrian movement using ant algorithms

    NASA Astrophysics Data System (ADS)

    Sibel, Gokce; Ozhan, Kayacan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity-density and flux-density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones.

  12. Structural and evaporative evolutions in desiccating sessile drops of blood

    NASA Astrophysics Data System (ADS)

    Sobac, B.; Brutin, D.

    2011-07-01

    We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is driven by convection, diffusion, and gelation in a liquid phase, whereas the second, with a much slower rate of evaporation, is characterized by the mass transport of the liquid left over in the gellified biocomponent matter. A diffusion model of the drying process allows a prediction of the transition between these two regimes of evaporation. Moreover, the formation of cracks and other events occurring during the drying are examined and shown to be driven by critical solid mass concentrations.

  13. An Iron-Rain Model for Core Formation on Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2016-01-01

    Asteroid 4 Vesta is differentiated into a crust, mantle, and core, as demonstrated by studies of the eucrite and diogenite meteorites and by data from NASA's Dawn spacecraft. Most models for the differentiation and thermal evolution of Vesta assume that the metal phase completely melts within 20 degrees of the eutectic temperature, well before the onset of silicate melting. In such a model, core formation initially happens by Darcy flow, but this is an inefficient process for liquid metal and solid silicate. However, the likely chemical composition of Vesta, similar to H chondrites with perhaps some CM or CV chondrite, has 13-16 weight percent S. For such compositions, metal-sulfide melting will not be complete until a temperature of at least 1350 degrees Centigrade. The silicate solidus for Vesta's composition is between 1100 and 1150 degrees Centigrade, and thus metal and silicate melting must have substantially overlapped in time on Vesta. In this chemically and physically more likely view of Vesta's evolution, metal sulfide drops will sink by Stokes flow through the partially molten silicate magma ocean in a process that can be envisioned as "iron rain". Measurements of eucrites show that moderately siderophile elements such as Ni, Mo, and W reached chemical equilibrium between the metal and silicate phases, which is an important test for any Vesta differentiation model. The equilibration time is a function of the initial metal grain size, which we take to be 25-45 microns based on recent measurements of H6 chondrites. For these sizes and reasonable silicate magma viscosities, equilibration occurs after a fall distance of just a few meters through the magma ocean. Although metal drops may grow in size by merger with other drops, which increases their settling velocities and decreases the total core formation time, the short equilibration distance ensures that the moderately siderophile elements will reach chemical equilibrium between metal and silicate before metal drop merger becomes important. In this model, there must be at least 30 percent melting of the silicate phase when metal melting is complete, corresponding to a crust thickness of at least 30 kilometers on Vesta, consistent with Dawn gravity observations. Greater degrees of silicate melting and a correspondingly thicker crust are possible if Vesta accreted sufficiently rapidly.

  14. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  15. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  16. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  17. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    PubMed

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  18. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    NASA Astrophysics Data System (ADS)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  19. Diagnostic techniques in deflagration and detonation studies.

    PubMed

    Proud, William G; Williamson, David M; Field, John E; Walley, Stephen M

    2015-12-01

    Advances in experimental, high-speed techniques can be used to explore the processes occurring within energetic materials. This review describes techniques used to study a wide range of processes: hot-spot formation, ignition thresholds, deflagration, sensitivity and finally the detonation process. As this is a wide field the focus will be on small-scale experiments and quantitative studies. It is important that such studies are linked to predictive models, which inform the experimental design process. The stimuli range includes, thermal ignition, drop-weight, Hopkinson Bar and Plate Impact studies. Studies made with inert simulants are also included as these are important in differentiating between reactive response and purely mechanical behaviour.

  20. Pharmaceutical-grade oral films as substrates for printed medicine.

    PubMed

    Wimmer-Teubenbacher, M; Planchette, C; Pichler, H; Markl, D; Hsiao, W K; Paudel, A; Stegemann, S

    2018-05-18

    In contact-less printing, such as piezo-electric drop on demand printing used in the study, the drop formation process is independent of the substrate. This means that having developed a printable formulation, printed pharmaceutical dosage forms can be obtained on any pharmaceutical grade substrate, such as polymer-based films. In this work we evaluated eight different oral films based on their suitability as printing substrates for sodium picosulfate. The different polymer films were compared regarding printed spot morphology, chemical stability and dissolution profile. The morphology of printed sodium picosulfate was investigated with scanning electron microscopy and optical coherence tomography. The spreading of the deposited drops was found to be governed by the contact angle of the ink with the substrate. The form of the sodium picosulfate drops changed on microcrystalline cellulose films at ambient conditions over 8 weeks and stayed unchanged on other tested substrates. Sodium picosulfate remained amorphous on all substrates according to small and wide angle X-ray scattering, differential scanning calorimetry and polarized light microscopy measurements. The absence of chemical interactions between the drug and substrates, as indicated by infrared spectroscopy, makes all tested substrates suitable for printing sodium picosulfate onto them. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Ring-Sheared Drop (RSD): Microgravity Module for Containerless Flow Studies

    NASA Astrophysics Data System (ADS)

    Gulati, Shreyash; Raghunandan, Aditya; Rasheed, Fayaz; McBride, Samantha A.; Hirsa, Amir H.

    2017-02-01

    Microgravity is potentially a powerful tool for investigating processes that are sensitive to the presence of solid walls, since fluid containment can be achieved by surface tension. One such process is the transformation of protein in solution into amyloid fibrils; these are protein aggregates associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. In addition to solid walls, experiments with gravity are also subject to influences from sedimentation of aggregates and buoyancy-driven convection. The ring-sheared drop (RSD) module is a flow apparatus currently under development to study formation of amyloid fibrils aboard the International Space Station (ISS). A 25 mm diameter drop of protein solution will be contained by surface tension and constrained by a pair of sharp-edged tubes, forming two contact rings. Shear can be imparted by rotating one ring with the other ring kept stationary. Here we report on parabolic flights conducted to test the growth and pinning of 10 mm diameter drops of water in under 10 s of microgravity. Finite element method (FEM) based fluid dynamics computations using a commercial package (COMSOL) assisted in the design of the parabolic flight experiments. Prior to the parabolic flights, the code was validated against experiments in the lab (1 g), on the growth of sessile and pendant droplets. The simulations show good agreement with the experiments. This modeling capability will enable the development of the RSD at the 25 mm scale for the ISS.

  2. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and levitated prior to ignition. Therefore, the droplets will begin to vaporize in the acoustic field thus forming the "initial conditions" for the combustion process. Understanding droplet vaporization in the acoustic field of this levitator is a necessary step that will help to interpret the experimental results obtained in low-gravity.

  3. Tharsis Formation by Chemical Plume Due to Giant Impact Event

    NASA Astrophysics Data System (ADS)

    Fleck, J.; Weeraratne, D. S.; Olson, P.

    2014-12-01

    Tharsis formed early in the history of Mars, likely during the Noachian but later than the hemispheric crustal dichotomy that it partially overprints (Johnson and Phillips, 2005; Solomon et al., 2005; Wenzel et al., 2004). It has been suggested that the crustal dichotomy may have been formed by a giant impact (Andrews-Hanna et al., 2008; Marinova et al., 2008; Nimmo et al., 2008). Several models have been proposed to explain a localized orogeny, but predict multiple, evenly-spaced plumes or have instability growth and rise times which are longer than Tharsis formation. We use fluid dynamic experiments to model the differentiation process during Mars accretion using low viscosity glucose syrup solutions and an emulsion of liquid gallium for the metal-rich magma ocean and a high viscosity glucose syrup for the mantle. Our experiments demonstrate the formation of metal-silicate diapirs from metal emulsion drops that form a pond at the base of the magma ocean. The diapirs descend through the underlying mantle with trailing conduit of low viscosity silicate material. The silicate material is buoyant and eventually ascends back through the conduit. Remaining emulsion drops that do not adhere with the diapir fall through the conduit, forcing the buoyant molten silicate material to exit the conduit laterally and ascend along a new trajectory. The time elapsed between diapir formation and ascent of the chemical plume in experiments scales with the time between the formation of the crustal dichotomy on Mars and the formation of Tharsis. Our model offers an explanation for the rapid formation of Tharsis on the edge of the crustal dichotomy via a single large upwelling event followed by smaller upwellings producing and the late stages of effusive volcanism observed in the Tharsis region.

  4. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  5. Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution

    NASA Astrophysics Data System (ADS)

    Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn

    2014-07-01

    We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.

  6. Photoelectron Effects on the Self-Consistent Potential in the Collisionless Polar Wind

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Moore, T. E.

    1997-01-01

    The presence of unthermalized photoelectrons in the sunlit polar cap leads to an enhanced ambipolar potential drop and enhanced upward ion acceleration. Observations in the topside ionosphere have led to the conclusion that large-scale electrostatic potential drops exist above the spacecraft along polar magnetic field lines connected to regions of photoelectron production. A kinetic approach is used for the O(+), H(+), and photoelectron (p) distributions, while a fluid approach is used to describe the thermal electrons (e) and self-consistent electric field (E(sub II)) electrons are allowed to carry a flux that compensates for photoelectron escape, a critical assumption. Collisional processes are excluded, leading to easier escape of polar wind particles and therefore to the formation of the largest potential drop consistent with this general approach. We compute the steady state electric field enhancement and net potential drop expected in the polar wind due to the presence of photoelectrons as a function of the fractional photoelectron content and the thermal plasma characteristics. For a set of low-altitude boundary conditions typical of the polar wind ionosphere, including 0.1% photoelectron content, we found a potential drop from 500 km to 5 R(sub E) of 6.5 V and a maximum thermal electron temperature of 8800 K. The reasonable agreement of our results with the observed polar wind suggests that the assumptions of this approach are valid.

  7. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  8. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  9. Time-Dependent Effects of Chlorhexidine Soaks on Grossly Contaminated Bone

    DTIC Science & Technology

    2012-10-01

    decontaminate . Methods: Fifty four bone segments were harvested from fresh frozen porcine legs. Each specimen was dropped onto a Mueller Hinton medium that was...P, 0.0001) and no difference between the 2%CHLand 4%CHLgroups. Conclusions: This study provides new data supporting the use of CHL to decontaminate ...bone may expedite the process of biofilm formation.1,6,7 Therefore, grossly contaminated bone seg- ments should be decontaminated with effective

  10. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  11. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    NASA Astrophysics Data System (ADS)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  12. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  13. Formation and Levitation of Unconfined Droplet Clusters

    NASA Technical Reports Server (NTRS)

    Liu, S.; Ruff, G. A.

    1999-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.

  14. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  15. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.

    PubMed

    Martinez, Inigo; Elvenes, Jan; Olsen, Randi; Bertheussen, Kjell; Johansen, Oddmund

    2008-01-01

    The main purpose of this work has been to establish a new culturing technique to improve the chondrogenic commitment of isolated adult human chondrocytes, with the aim of being used during cell-based therapies or tissue engineering strategies. By using a rather novel technique to generate scaffold-free three-dimensional (3D) structures from in vitro expanded chondrocytes, we have explored the effects of different culture environments on cartilage formation. Three-dimensional chondrospheroids were developed by applying the hanging-drop technique. Cartilage tissue formation was attempted after combining critical factors such as serum-containing or serum-free media and atmospheric (20%) or low (2.5%) oxygen tensions. The quality of the formed microtissues was analyzed by histology, immunohistochemistry, electron microscopy, and real-time PCR, and directly compared with native adult cartilage. Our results revealed highly organized, 3D tissue-like structures developed by the hanging-drop method. All culture conditions allowed formation of 3D spheroids; however, cartilage generated under low oxygen tension had a bigger size, enhanced matrix deposition, and higher quality of cartilage formation. Real-time PCR demonstrated enhanced expression of cartilage-specific genes such us collagen type II and aggrecan in 3D cultures when compared to monolayers. Cartilage-specific matrix proteins and genes expressed in hanging-drop-developed spheroids were comparable to the expression obtained by applying the pellet culture system. In summary, our results indicate that a combination of 3D cultures of chondrocytes in hanging drops and a low oxygen environment represent an easy and convenient way to generate cartilage-like microstructures. We also show that a new specially tailored serum-free medium is suitable for in vitro cartilage tissue formation. This new methodology opens up the possibility of using autogenously produced solid 3D structures with redifferentiated chondrocytes as an attractive alternative to the currently used autologous chondrocyte transplantation for cartilage repair.

  16. The stopped-drop method: a novel setup for containment-free and time-resolved measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Seifert, Soenke; Magerl, Andreas

    2016-03-01

    A novel setup for containment-free time-resolved experiments at a free-hanging drop is reported. Within a dead-time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small-angle X-ray scattering study on the formation mechanism of EDTA-stabilized CdS both at a synchrotron and a laboratory X-ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.

  17. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    DOE PAGES

    Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew

    2009-01-01

    Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less

  18. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew

    Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less

  19. Apparatus for providing directional permeability measurements in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.

  20. Drop formation in shear-thickening granular suspensions.

    PubMed

    Pan, Zhongcheng; Louvet, Nicolas; Hennequin, Yves; Kellay, Hamid; Bonn, Daniel

    2015-11-01

    We study droplet formation in granular suspensions by systematically varying the volume fractions (φ) and particle diameters (d). For suspensions with water as the suspending liquid, we find three different regimes. For dilute suspensions (φ≤45%), drop formation follows the predictions for inertial breakup and exhibits identical dynamics to that of pure water. The breakup is strongly asymmetrical in this case. Only for more concentrated suspensions (φ>45%) does the presence of particles change the dynamics and two other regimes, a symmetrical inertial regime and a Bagnoldian regime, are uncovered. We construct and discuss a phase diagram that allows us to understand and predict the breakup behavior in granular suspensions.

  1. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.

    PubMed

    Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka

    2018-04-01

    Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires

    PubMed Central

    Li, G. Z.; Sumption, M. D.; Collings, E. W.

    2015-01-01

    Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431

  3. Noctilucent cloud formation and the effects of water vapor variability on temperatures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.

  4. Sickling of red blood cells through rapid oxygen exchange in microfluidic drops.

    PubMed

    Abbyad, Paul; Tharaux, Pierre-Louis; Martin, Jean-Louis; Baroud, Charles N; Alexandrou, Antigoni

    2010-10-07

    We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.

  5. Asymmetric or symmetric bilayer formation during oblique drop impact depends on rheological properties of saturated and unsaturated lipid monolayers.

    PubMed

    Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero

    2011-02-01

    Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Carbonate formation on Mars: Latest experiments

    NASA Technical Reports Server (NTRS)

    Stephens, S. K.; Stevenson, D. J.; Rossman, G. R.; Keyser, L. F.

    1993-01-01

    Laboratory simulations of Martian CO2 storage address whether carbonate formation could have reduced CO2 pressure from a hypothetical greater than 1 bar to the present 7 mbar in less than or equal to 3 to 4 billion years. This problem is addressed with experiments and analysis designed to verify and improve previous kinetic measurements, reaction mechanisms, and product characterizations, with the goal of improving existing models of Martian CO2 history. A sensitive manometer monitored the pressure drop of CO2 due to uptake by powdered silicate for periods of 3 to 100+ days. Pressure drops for diopside 1 and basalt show rapid short-term (approximately one day) CO2 uptake and considerably slower long-term pressure drops. Curves for diopside 2, olivine 1, and olivine 2 are qualitatively similar to those for diopside 1, whereas quartz and plagioclase show near-zero short-term pressure drops and very slow long-term signals, indistinguishable from a leak (less than 10(exp 11) mol/sq m/s).

  7. A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian;  Gasparovic, Richard F.;  Pockalny, Robert A.

    2000-08-01

    A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

  8. A hydrodynamic mechanism for spontaneous formation of ordered drop arrays in confined shear flow

    NASA Astrophysics Data System (ADS)

    Singha, Sagnik; Zurita-Gotor, Mauricio; Loewenberg, Michael; Migler, Kalman; Blawzdziewicz, Jerzy

    2017-11-01

    It has been experimentally demonstrated that a drop monolayer driven by a confined shear flow in a Couette device can spontaneously arrange into a flow-oriented parallel chain microstructure. However, the hydrodynamic mechanism of this puzzling self-assembly phenomenon has so far eluded explanation. In a recent publication we suggested that the observed spontaneous drop ordering may arise from hydrodynamic interparticle interactions via a far-field quadrupolar Hele-Shaw flow associated with drop deformation. To verify this conjecture we have developed a simple numerical-simulation model that includes the far-field Hele-Shaw flow quadrupoles and a near-field short-range repulsion. Our simulations show that an initially disordered particle configuration self-organizes into a system of particle chains, similar to the experimentally observed drop-chain structures. The initial stage of chain formation is fast; subsequently, microstructural defects in a partially ordered system are removed by slow annealing, leading to an array of equally spaced parallel chains with a small number of defects. The microstructure evolution is analyzed using angular and spatial order parameters and correlation functions. Supported by NSF Grants No. CBET 1603627 and CBET 1603806.

  9. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  10. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  11. Formation of Antarctic Intermediate Water during the Plio-Pleistocene

    NASA Astrophysics Data System (ADS)

    Karas, C.; Goldstein, S. L.; deMenocal, P. B.

    2017-12-01

    Antarctic Intermediate Water (AAIW) plays a fundamental role in modern climate change. It is an important sink for anthropogenic CO2, it represents an important source water in several (sub)tropical upwelling regions and it is the coldwater route from the Southern Hemisphere to the North Atlantic Ocean replacing North Atlantic Deep Water (NADW). During the last 4 million years, which marks the transition from the warm Pliocene climate towards icehouse conditions, the formation of this watermass is still largely unknown. We here present a multi-proxy approach using neodymium isotopes (ɛNd) on Fe-Mn encrusted foraminifera and coupled benthic Mg/Ca and stable isotopes from South Atlantic Site 516, within AAIW, to reconstruct its variability. Our data show that the modern formation of AAIW started about 3 million years ago, indicated by a distinct drop of ɛNd by 1.5, a cooling and freshening of benthic TMg/Ca by 8°C and a drop in benthic d13C values towards modern times. We interpret these changes as a reduced inflow of Pacific waters into the South Atlantic and the onset of modern deep vertical mixing at the source regions of AAIW near the polar front. These processes had significant effects on the CO2 storage of the ocean that supported global cooling and the intensification of the Northern Hemisphere Glaciation.

  12. Influence of Electrification of Droplet on Hydrophobicity Reduction of Polymer Material during a Dynamic Drop Test

    NASA Astrophysics Data System (ADS)

    Haji, Kenichi; Shiibara, Daiki; Arata, Yoshihiro; Sakoda, Tatsuya; Otsubo, Masahisa

    The dynamic drop test was proposed as a method to evaluate hydrophobicity reduction of polymer materials. In this test, the formation change of a water channel was confirmed, and thereafter, the remained droplets and the dropped droplets on the sampled surface were repulsed each other. The distributions of electrification on the droplet and the sample surface were measured. The influence of the electrified droplet on the hydrophobicity reduction was examined. The results showed that the polarity on the sample surface changed by the dropped droplet, leading to the hydrophobicity loss.

  13. The incept of ejection from a fresh Taylor cone and subsequent evolution

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Jose M.; Ganan-Calvo, Alfonso

    2017-11-01

    Within a certain range of applied voltages, a pendant drop suddenly subject to an intense electric field develops a cusp from which a fast liquid ligament issues. The incept of this process has common roots with other related phenomena like the Worthington jets, the jet issued after surface bubble bursting or the impact of a drop on a liquid pool. This is experimentally and numerically demonstrated. However, given the electrohydrodynamic nature of the driver in the formation of a Taylor cone, a number of electrokinetic processes take place in the rapid tapering flow, whose characteristic times should be carefully compared to the ones of the flow. As a result, universal scaling laws for the size and charge of the top drop have been obtained. Subsequently, sustaining the applied electric field, the ejection continues and the issuing liquid ligament releases a train of droplets of varying size and charge. Under appropriate conditions and if the liquid suctioned by the electric field is replenished, the system reaches a (quasi)steady state asymptotically. The degree of compliance of the size and charge of those subsequent droplets with previously proposed scaling laws of steady Taylor cone-jets has been studied. Computational code Gerris and an extended electrokinetic module is used. This work was supported by the Ministerio de Economia y Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  14. Mechanisms of Exhaust Pollutants and Plume Formation in Continuous Combustion.

    DTIC Science & Technology

    1984-11-30

    drop swirler. A swirled air inlet decreased flame length . Two modes of operation were observed. At higher fuel loadings, reaction could be initiated...and maintained in the recirculation zone in the shadow of the step. The net result was a shorter overall flame length . The low-pressure drop swirler...yielded a shorter flame length relative to the higher pressure drop devices. - • u mmm m -m~amkn Jm• ml AM mmmmm TABLE OF CONTENTS Section Title Page

  15. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.

  16. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    NASA Astrophysics Data System (ADS)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  17. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  18. Fundamental Processes of Atomization in Fluid-Fluid Flows

    NASA Technical Reports Server (NTRS)

    McCready, M. J.; Chang, H.-C.; Leighton, D. T.

    2001-01-01

    This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.

  19. Fundamentals of Mold Free Casting: Experimental and Computational Studies

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Ceccio, Steven

    1997-01-01

    Researchers are developing the technology of 'Ballistic Particle Manufacturing' (BPM) in which individual drops are precisely layered onto a substrate, and the drops are deposited so as to prevent splatting. These individual drops will ultimately be combined to form a net-shape, three-dimensional object. Our understanding of controlled drop deposition as applied to BPM is far from complete. Process parameters include the size and temperature of the liquid metal drop, its impact velocity and trajectory, and the condition and temperature of the substrate. Quantitative knowledge of the fluid mechanics and heat transfer of drop deposition and solidification are necessary to fully optimize the manufacturing process and to control the material microstructure of the final part. The object of this study is to examine the dynamics of liquid metal drops as they impinge upon a solid surface and solidify under conditions consistent with BPM (i.e. conditions which produce non-splatting drops). A program of both numerical simulations and experiments will be conducted. Questions this study will address include the following: How do the deformation and solidification of the drop depend on the properties of the fluid drop and the solid substrate? How does the presence of previously deposited drops affect the impingement and solidification process? How does the impingement of the new drop affect already deposited material? How does the cooling rate and solidification of the drops influence the material microstructure?

  20. Technical activities report: Heat, water, and mechanical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, W.K.

    1951-10-04

    Topics in the heat studies section include: front and rear face reflector shields at the C-pile; process tube channel thermocouples; water temperature limits for horizontal rods; slug temperature and thermal conductivity calculations; maximum slug-end cap temperature; boiling consideration studies; scram time limit for Panellit alarm; heat transfer test; slug stresses; thermal insulation of bottom tube row at C-pile; flow tests; present pile enrichment; electric analog; and measurement of thermal contact resistance. Topics in the water studies section include: 100-D flow laboratory; process water studies; fundamental studies on film formation; coatings on tip-offs; can difference tests; slug jacket abrasion at highmore » flow rates; corrosion studies; front tube dummy slugs; metallographic examination of tubes from H-pile; fifty-tube mock-up; induction heating facility; operational procedures and standards; vertical safety rod dropping time tests; recirculation; and power recovery. Mechanical development studies include: effect of Sphincter seal and lubricant VSR drop time; slug damage; slug bubble tester; P-13 removal; chemical slug stripper; effect of process tube rib spacing and width; ink facility installation; charging and discharging machines; process tube creep; flapper nozzle assembly test; test of single gun barrel assembly; pigtail fixture test; horizontal rod gland seal test; function test of C-pile; and intermediate test of Ball 3-X and VSR systems.« less

  1. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.

  2. Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures.

    PubMed

    Cerdan, Chantal; Hong, Seok Ho; Bhatia, Mickie

    2007-10-01

    The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.

  3. Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.

    2015-10-01

    A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.

  4. Air Entrapment for Liquid Drops Impacting a Solid Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tan, Peng; Xu, Lei

    2012-11-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high. Hong Kong GRF grant CUHK404211 and direct grant 2060418.

  5. Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram.

    PubMed

    Bhardwaj, Rajneesh; Fang, Xiaohua; Somasundaran, Ponisseril; Attinger, Daniel

    2010-06-01

    The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central bump, or a uniform layer. Simulations and experiments are found in very good agreement.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boreyko, Jonathan B; Collier, Pat

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effectmore » dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.« less

  7. The role of drop velocity in statistical spray description

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; El-Wakil, M. M.; Myers, P. S.; Uyehara, O. A.

    1978-01-01

    The justification for describing a spray by treating drop velocity as a random variable on an equal statistical basis with drop size was studied experimentally. A double exposure technique using fluorescent drop photography was used to make size and velocity measurements at selected locations in a steady ethanol spray formed by a swirl atomizer. The size velocity data were categorized to construct bivariate spray density functions to describe the spray immediately after formation and during downstream propagation. Bimodal density functions were formed by environmental interaction during downstream propagation. Large differences were also found between spatial mass density and mass flux size distribution at the same location.

  8. Liquid rims collisions and the formation of fines

    NASA Astrophysics Data System (ADS)

    Néel, Baptiste; Villermaux, Emmanuel

    2017-11-01

    As an elementary mechanism for the formation of drops from liquid sheets, we investigate the collision of liquid cylinders. This results from the opening of two nearby holes on a liquid film, growing at a constant speed while collecting liquid into two rims, eventually colliding with each other. In this surface tension driven phenomenon, a unique Weber number We = ρ(2 V) 2 2 a / σ controls a variety of behaviors (ρ , σ are the liquid density and surface tension, and 2 V the relative velocity of the impinging rims, each of individual radius a). At low We , the rims merge through an inelastic, dissipative collision which produces a corrugated ligament, finally breaking into drops of size scaling like a, on average. Above a critical Wec 60 , the collision leads to a splash, with the formation of a thin transverse liquid sheet. We will describe the expansion-retraction dynamics of this secondary sheet and its destabilization, responsible for the production of a mist of finer droplets. These alter sensibly the mean, and overall drops size distribution, thus weighted by a substantial fraction of so-called fines.

  9. Media additives to promote spheroid circularity and compactness in hanging drop platform.

    PubMed

    Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi

    2015-02-01

    Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.

  10. Tears of Wine

    ERIC Educational Resources Information Center

    Gugliotti, Marcos

    2004-01-01

    The unique occurrence of the upward motion of a thin film of wine, and its formation into drops inside the wall of a wine glass is explained. Evaporation of alcohol generates a surface tension gradient, moving the film of wine upwards on the internal sides of a wine glass, where it collects and forms into drops or tears.

  11. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    PubMed

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  12. Gas bubble formation and its pressure signature in T-junction of a microreactor

    NASA Astrophysics Data System (ADS)

    Pouya, Shahram; Koochesfahani, Manoochehr

    2013-11-01

    The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.

  13. A POSSIBLE DETECTION OF OCCULTATION BY A PROTO-PLANETARY CLUMP IN GM Cephei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W. P.; Hu, S. C.-L.; Guo, J. K.

    2012-06-01

    GM Cephei (GM Cep), in the young ({approx}4 Myr) open cluster Trumpler 37, has been known to be an abrupt variable and to have a circumstellar disk with a very active accretion. Our monitoring observations in 2009-2011 revealed that the star showed sporadic flare events, each with a brightening of {approx}< 0.5 mag lasting for days. These brightening events, associated with a color change toward blue, should originate from increased accretion activity. Moreover, the star also underwent a brightness drop of {approx}1 mag lasting for about a month, during which time the star became bluer when fainter. Such brightness dropsmore » seem to have a recurrence timescale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by the obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between the grain coagulation and the planetesimal formation in a young circumstellar disk.« less

  14. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.

  15. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  16. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    PubMed

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  17. [Epiphytic communities of arboreal formations in Southern Vietnam: an analysis of species composition and synusias structure in dependence on the extent of anthropogenic impact].

    PubMed

    Es'kov, A K

    2013-01-01

    Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.

  18. Effect of wave action on near-well zone cleaning

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2017-10-01

    Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.

  19. New particle dependant parameterizations of heterogeneous freezing processes.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Mitra, Subir K.

    2014-05-01

    For detailed investigations of cloud microphysical processes an adiabatic air parcel model with entrainment is used. It represents a spectral bin model which explicitly solves the microphysical equations. The initiation of the ice phase is parameterized and describes the effects of different types of ice nuclei (mineral dust, soot, biological particles) in immersion, contact, and deposition modes. As part of the research group INUIT (Ice Nuclei research UnIT), existing parameterizations have been modified for the present studies and new parameterizations have been developed mainly on the basis of the outcome of INUIT experiments. Deposition freezing in the model is dependant on the presence of dry particles and on ice supersaturation. The description of contact freezing combines the collision kernel of dry particles with the fraction of frozen drops as function of temperature and particle size. A new parameterization of immersion freezing has been coupled to the mass of insoluble particles contained in the drops using measured numbers of ice active sites per unit mass. Sensitivity studies have been performed with a convective temperature and dew point profile and with two dry aerosol particle number size distributions. Single and coupled freezing processes are studied with different types of ice nuclei (e.g., bacteria, illite, kaolinite, feldspar). The strength of convection is varied so that the simulated cloud reaches different levels of temperature. As a parameter to evaluate the results the ice water fraction is selected which is defined as the relation of the ice water content to the total water content. Ice water fractions between 0.1 and 0.9 represent mixed-phase clouds, larger than 0.9 ice clouds. The results indicate the sensitive parameters for the formation of mixed-phase and ice clouds are: 1. broad particle number size distribution with high number of small particles, 2. temperatures below -25°C, 3. specific mineral dust particles as ice nuclei such as illite or montmorillonite. Coupled cases of deposition and contact freezing show that they are hardly in competition because of differences in the preferred particle sizes. In the contact mode, small particles are less efficient for collisions as well as less efficient as ice nuclei so that these are available for deposition freezing. On the other hand, immersion freezing is the dominant process when it is coupled with deposition freezing. As it is initiated earlier the formed ice particles consume water vapor for growing. The competition of combined contact and immersion freezing leads to lower ice water contents because more ice particles are formed via the immersion mode. In general, ice clouds and mixed-phase clouds with high ice water fractions are not directly the result of primary ice formation but of secondary ice formation and growth of ice particles at the expense of liquid drops.

  20. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  1. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  2. Nitrogen stars: morphogenesis of a liquid drop

    NASA Astrophysics Data System (ADS)

    Strier, D. E.; Duarte, A. A.; Ferrari, H.; Mindlin, G. B.

    2000-08-01

    We report a study of a symmetry-breaking instability which ocurrs during the free evaporation of liquid nitrogen placed on a concave container initially at room temperature. The system evolves spontaneously from a highly disordered boiling state to one characterized by sequence of well-defined spatio-temporal structures. This sequence starts with the formation of a levitating drop. As the evaporation proceeds the drop undergoes an alternation between different star-like-shaped patterns with decreasing number of tips. In addition, each of this patterns oscillates. We frame the observed phenomena within the qualitative theory of bifurcations.

  3. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  4. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH.

    PubMed

    Secchi, Francesca; Zwieniecki, Maciej A

    2016-11-01

    Severe water stress constrains, or even stops, water transport in the xylem due to embolism formation. Previously, the xylem of poplar trees was shown to respond to embolism formation by accumulating carbohydrates in the xylem apoplast and dropping xylem sap pH. We hypothesize that these two processes may be functionally linked as lower pH activates acidic invertases degrading sucrose and inducing accumulation of monosaccharides in xylem apoplast. Using a novel in vivo method to measure xylem apoplast pH, we show that pH drops from ~6.2 to ~5.6 in stems of severely stressed plants and rises following recovery of stem water status. We also show that in a lower pH environment, sugars are continuously accumulating in the xylem apoplast. Apoplastic carbohydrate accumulation was reduced significantly in the presence of a proton pump blocker (orthovanadate). These observations suggest that a balance in sugar concentrations exists between the xylem apoplast and symplast that can be controlled by xylem pH and sugar concentration. We conclude that lower pH is related to loss of xylem transport function, eventually resulting in accumulation of sugars that primes stems for recovery from embolism when water stress is relieved. © 2016 John Wiley & Sons Ltd.

  5. Water drop dynamics on a granular layer

    NASA Astrophysics Data System (ADS)

    Llorens, Coraline; Biance, Anne-Laure; Ybert, Christophe; Pirat, Christophe; Liquids; Interfaces Team

    2015-11-01

    Liquid drop impacts, either on a solid surface or a liquid bath, have been studied for a while and are still subject of intense research. Less is known concerning impacts on granular layers that are shown to exhibit an intermediate situation between solid and liquid. In this study, we focus on water drop impacts on granular matter made of micrometer-sized spherical glass beads. In particular, we investigate the overall dynamics arising from the interplay between liquid and grains throughout the impact. Depending on the relevant parameters (impact velocity, drop and grain sizes, as well as their wetting properties), various behaviors are evidenced. In particular, the behavior of the beads at the liquid-gas interface (ball-bearing vs imbibition) is shown to greatly affect the spreading dynamics of the drop, as well as satellite droplets formation, beads ejection, and the final crater morphology.

  6. Spin-Up Instability of a Levitated Molten Drop in MHD-Flow Transition to Turbulence

    NASA Technical Reports Server (NTRS)

    Abedian, B.; Hyers, R. W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    When an alternating magnetic field interacts with induced eddy currents in a conducting body, there will be a repulsive force between the body and the driving coil system generating the field. This repulsive force is the basis of electromagnetic levitation, which allows containerless processing of different materials. The eddy currents in the conducting body also generate Joule heating. Axial rotation of electromagnetically levitated objects is a common observation in levitation systems and often an undesirable side effect of such experiments on 1-g and -g. There have been recent efforts to use magnetic damping and suppress this tendency of body rotation. The first report of rotation in EML drops was attributed to a slight asymmetry of the shape and location of the levitation coils could change the axis and speed of rotation. Other theories of sample rotation include a frequency difference in the traveling electromagnetic waves and a phase difference in two different applied fields of the same frequency. All of these different mechanisms share the following characteristics: the torque is small, constant for constant field strength, and very weakly dependent on the sample's temperature and phase (solid or liquid). During experiments on the MSL-1 (First Microgravity Science Laboratory) mission of the Space Shuttle (STS-83 and STS-94, April and July 1997), a droplet of palladium-silicon alloy was electromagnetically levitated for viscosity measurements. For the non-deforming droplet, the resultant MHD flow inside the drop is inferred from motion of impurities on the surface. These observations indicate formation of a pair of co-rotating toroidal flow structures inside the spheroidal levitated drop that undergo secondary flow instabilities. As rise in the fluid temperature rises, the viscosity falls and the internal flow accelerates and becomes oscillatory; and beyond a point in the experiments, the surface impurities exhibit non-coherent chaotic motion signifying emergence of turbulence inside the drop. In this work, a background of these set of observations will be given followed by a presentation of our results on the digital particle tracking analysis that has been performed on a number of available videos. The analysis indicates that the levitated drop attains a constant rotational speed during the melting phase and formation of the co-rotating axi-symmetric laminar toroidal structures. However, the rate of axial rotation increases dramatically during the deformation of the toroidal structures anti their breakup into chaotic entities. This new data suggests an interaction between the flow inside the levitated molten drop and the driving coils in the experiments. Possible mechanisms for this interaction will be reviewed. The data will also be used to make an assessment of existing theories on droplet rotation.

  7. Impact of a drop onto a wetted wall: description of crown formation and propagation

    NASA Astrophysics Data System (ADS)

    Roisman, I. V.; Tropea, C.

    2002-12-01

    The impact of a drop onto a liquid film with a relatively high impact velocity, leading to the formation of a crown-like ejection, is studied theoretically. The motion of a kinematic discontinuity in the liquid film on the wall due to the drop impact, the formation of the upward jet at this kinematic discontinuity and its elevation are analysed. Four main regions of the drop and film are considered: the perturbed liquid film on the wall inside the crown, the unperturbed liquid film on the wall outside the crown, the upward jet forming a crown, and the free rim bounding this jet. The theory of Yarin & Weiss (1995) for the propagation of the kinematic discontinuity is generalized here for the case of arbitrary velocity vectors in the inner and outer liquid films on the wall. Next, the mass, momentum balance and Bernoulli equations at the base of the crown are considered in order to obtain the velocity and the thickness of the jet on the wall. Furthermore, the dynamic equations of motion of the crown are developed in the Lagrangian form. An analytical solution for the crown shape is obtained in the asymptotic case of such high impact velocities that the surface tension and the viscosity effects can be neglected in comparison to inertial effects. The edge of the crown is described by the motion of a rim, formed due to the surface tension.

  8. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  9. Mechanism for amorphization of boron carbide under complex stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xu, Shuang; Liu, Lisheng; Wang, Zhen; Zhang, Jinyong; Liu, Qiwen

    2018-05-01

    As an excellent material, the application of boron carbide (B4C) is limited by pressure-induced amorphization. To understand the mechanism for amorphization in B4C, first-principles methods based on density functional theory were employed to investigate the mechanical behaviors and the deformation process in B4C under complex stress conditions with six different biaxial perpendicular compression directions. The angle (θ) between one of the loading directions and the [0 0 0 1] c-axis ranged from 0° to 75° with every 15° interval. We found that the maximum stress at θ = 30° is 124.5 GPa, which is the lowest among six biaxial compressions. Simulation results show that the mechanism for amorphization in B4C under complex stress conditions is complicated. We take the θ = 30° biaxial compression as an example to explain the complicated deformation process. In the elastic deformation region, sudden bending of three-atom chains occurs and results in a stress fluctuation. Then the formation of new B–B bonds between the three-atom chains and the icosahedra leads to the first stress drop. After that, the B–C bonds in the chains are broken, resulting in the second stress drop. In this process, the icosahedra are partially destroyed. The stress increases continuously and then drops at the critical failure strain. Finally, the fully destruction of icosahedra leads to amorphization in B4C. However, under other five biaxial compressions, the B–C bonds in three-atom chains are not fractured before structural failure. Understanding the deformation mechanism for amorphization of B4C in real applications is prime important for proposing how to resist amorphization and enhance the toughness of B4C.

  10. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  11. Formation and maintenance of tubular membrane projections: experiments and numerical calculations.

    PubMed

    Umeda, Tamiki; Inaba, Takehiko; Ishijima, Akihiko; Takiguchi, Kingo; Hotani, Hirokazu

    2008-01-01

    To study the mechanical properties of lipid membranes, we manipulated liposomes by using a system comprising polystyrene beads and laser tweezers, and measured the force required to transform their shapes. When two beads pushed the membrane from inside, spherical liposomes transformed into a lemon-shape. Then a discontinuous shape transformation occurred to form a membrane tube from either end of the liposomes, and the force dropped drastically. We analyzed these processes using a mathematical model based on the bending elasticity of the membranes. Numerical calculations showed that when the bead size was taken into account, the model reproduced both the liposomal shape transformation and the force-extension relation. This result suggests that the size of the beads is responsible for the existence of a force barrier for the tube formation.

  12. Proceedings of the Second International Colloquium on Drops and Bubbles

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H. (Editor)

    1982-01-01

    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  13. Fragmentation and Thermochemical Exchanges during Planetary Core Formation - an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Wacheul, J. B.

    2015-12-01

    Telluric planet formation involved the settling of large amounts of liquid iron coming from impacting planetesimals into an ambient viscous magma ocean. The initial state of planets was mostly determined by exchanges of heat and elements during this iron rain. Up to now, most models of planet formation simply assume that the metal rapidly equilibrated with the whole mantle. Other models account for simplified dynamics of the iron rain, involving the settling of single size drops at the Stokes velocity. But the fluid dynamics of iron sedimentation is much more complex, and influenced by the large viscosity ratio between the metal and the ambient fluid, as shown in studies of rising gas bubbles (e.g. Bonometti and Magnaudet 2006). We aim at developing a global understanding of the iron rain dynamics. Our study relies on a model experiment, consisting in popping a balloon of heated metal liquid at the top of a tank filled with viscous liquid. The experiments reach the relevant turbulent planetary regime, and tackle the whole range of expected viscosity ratios. High-speed videos allow determining the dynamics of drop clouds, as well as the statistics of drop sizes, shapes, and velocities. We also develop an analytical model of turbulent diffusion during settling, validated by measuring the temperature decrease of the metal blob. We finally present consequences for models of planet formation.

  14. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  15. Numerical analysis of the formation process of aerosols in the alveoli

    NASA Astrophysics Data System (ADS)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  16. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  17. Symmetry breaking in drop bouncing on curved surfaces

    PubMed Central

    Liu, Yahua; Andrew, Matthew; Li, Jing; Yeomans, Julia M.; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves that have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ∼40% reduction in contact time. PMID:26602170

  18. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  19. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.

    PubMed

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-04

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  20. AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation

    NASA Astrophysics Data System (ADS)

    Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.

    2017-09-01

    In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.

  1. A laboratory measurement of drop impact on a water surface in the presence of wind

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Liu, Ren

    2014-11-01

    The impact of single water drops on a water surface was studied experimentally in a wind tunnel. Water drops were generated from a needle oriented vertically from the top of the wind tunnel test section. After leaving the needle, the drops move downward due to gravity and downstream due to the effect of the wind, eventually impinging obliquely on the surface of a pool of water on the bottom of the test section. The vertical velocities of drops were about 2.0 m/s and the wind speeds varied from 0 to 6.4 m/s. The drop impacts were recorded simultaneously from the side and above with two high-speed movie cameras with frame rates of 1,000 Hz. Our measurements show that both wind speed and initial drop size dramatically affect the drop impacts and subsequent generation of crowns, secondary drops, stalks and ring waves. In the presence of wind, an asymmetric crown forms after the drop hits the water surface and secondary drops are generated from the fragmentation of the leeward side of the crown rim. This is followed by a stalk formation and ring waves at the location of the water drop impact. It is found that the stalks tilt to leeward and the ring waves in the windward direction are stronger than that in those in the leeward. This work is supported by National Science Foundation, Division of Ocean Sciences.

  2. Derivation and characterization of gut-like structures from embryonic stem cells.

    PubMed

    Yamada, Takatsugu; Nakajima, Yoshiyuki

    2006-01-01

    Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages of all three embryonic germ layers in vitro. The hanging drop culture of ES cell suspension in the absence of leukemia inhibitory factor induces aggregation and differentiation of the cells into simple or cystic embryoid bodies (EBs). After 6 d of hanging drop culture, the resulting EBs are plated onto plastic dishes for the outgrowth culture. At d 21 after outgrowth culture, cell populations of EBs can give rise to three-dimensional gut-like structures that exhibit spontaneous contraction and highly coordinated peristalsis. The gut-like structures have large lumens surrounded by three layers: epithelium, lamina propria, and muscularis. Ganglia are scattered along the periphery, and interstitial cells of Cajal are distributed among the smooth muscle cells. The fundamental process of formation of the in vitro organized gut-like structures is similar to embryonic gastrointestinal development in vivo. The EBs at the 6-d egg-cylinder stage may have the potential to regulate developmental programs associated with cell lineage commitment and provide an appropriate microenvironment to differentiate ES cells into enteric derivatives of all three embryonic germ layers and reproduce the gut organization process in vitro.

  3. Infrared imaging and acoustic sizing of a bubble inside a micro-electro-mechanical system piezo ink channel

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Segers, Tim; Jeurissen, Roger; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2011-08-01

    Piezo drop-on-demand inkjet printers are used in an increasing number of applications because of their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an inkjet nozzle at frequencies of up to 100 kHz. However, the entrapment of an air microbubble in the ink channel can severely impede the productivity and reliability of the printing system. The air bubble disturbs the channel acoustics, resulting in disrupted drop formation or failure of the jetting process. Here we study a micro-electro-mechanical systems-based printhead. By using the actuating piezo transducer in receive mode, the acoustical field inside the channel was monitored, clearly identifying the presence of an air microbubble inside the channel during failure of the jetting process. The infrared visualization technique allowed for the accurate sizing of the bubble, including its dynamics, inside the intact printhead. A model was developed to calculate the mutual interaction between the channel acoustics and the bubble dynamics. The model was validated by simultaneous acoustical and infrared detection of the bubble. The model can predict the presence and size of entrapped air bubbles inside an operating ink channel purely from the acoustic response.

  4. BEAP profiles as rapid test system for status analysis and early detection of process incidents in biogas plants.

    PubMed

    Refai, Sarah; Berger, Stefanie; Wassmann, Kati; Hecht, Melanie; Dickhaus, Thomas; Deppenmeier, Uwe

    2017-03-01

    A method was developed to quantify the performance of microorganisms involved in different digestion levels in biogas plants. The test system was based on the addition of butyrate (BCON), ethanol (ECON), acetate (ACON) or propionate (PCON) to biogas sludge samples and the subsequent analysis of CH 4 formation in comparison to control samples. The combination of the four values was referred to as BEAP profile. Determination of BEAP profiles enabled rapid testing of a biogas plant's metabolic state within 24 h and an accurate mapping of all degradation levels in a lab-scale experimental setup. Furthermore, it was possible to distinguish between specific BEAP profiles for standard biogas plants and for biogas reactors with process incidents (beginning of NH 4 + -N inhibition, start of acidification, insufficient hydrolysis and potential mycotoxin effects). Finally, BEAP profiles also functioned as a warning system for the early prediction of critical NH 4 + -N concentrations leading to a drop of CH 4 formation.

  5. Jet atomization and cavitation induced by interactions between focused ultrasound and a water surfacea)

    NASA Astrophysics Data System (ADS)

    Tomita, Y.

    2014-09-01

    Atomization of a jet produced by the interaction of 1 MHz focused ultrasound with a water surface was investigated using high-speed photography. Viewing various aspects of jet behavior, threshold conditions were obtained necessary for water surface elevation and jet breakup, including drop separation and spray formation. In addition, the position of drop atomization, where a single drop separates from the tip of a jet without spraying, showed good correlation with the jet Weber number. For a set of specified conditions, multiple beaded water masses were formed, moving upwards to produce a vigorous jet. Cavitation phenomena occurred near the center of the primary drop-shaped water mass produced at the leading part of the jet; this was accompanied by fine droplets at the neck between the primary and secondary drop-shaped water masses, due to the collapse of capillary waves.

  6. Bubble formation during drop impact on a heated pool

    NASA Astrophysics Data System (ADS)

    Tian, Yuansi; Alhazmi, Muath; Kouraytem, Nadia; Thoroddsen, Sigurdur

    2017-11-01

    Ultra high-speed video imaging, at up to 200 kfps, is used to investigate a drop impinging onto a high temperature pool. The room-temperature perfluorohexane drop, which has a boiling temperature as low as 56 °C impacts on the soybean oil pool heated up to around 200 °C, which is overwhelmingly higher than the boiling temperature of the drop. The bottom of the drop is therefore covered by a layer of vapor which prevents contact between the two immiscible liquid surfaces, akin to the Leidenfrost effect However, as the pool temperature is reduced, one starts seeing contact and the dynamics transition into the vapor explosion regime. At the boundary of this regime we observe some entrapment of scattered or a toroidal ring of small bubbles. Experimental video data will be presented to show this novel phenomenon and explain how these bubbles are formed and evolve.

  7. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    PubMed

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Aerodynamic heating and the deflection of drops by an obstacle in an air stream in relation to aircraft icing

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1940-01-01

    Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.

  9. Pollination drop in Juniperus communis: response to deposited material.

    PubMed

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-12-01

    The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response may decrease the probability of pollen landing on the drop, reducing pollination efficiency.

  10. Pollination Drop in Juniperus communis: Response to Deposited Material

    PubMed Central

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response may decrease the probability of pollen landing on the drop, reducing pollination efficiency. PMID:17942592

  11. Relating Stress Drop Variations with Geological Setting for Injection-Induced Seismicity and Its Seismic Hazard Implications

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Viegas, G. F.; Baig, A.

    2017-12-01

    We observe conflicting stress drop estimates of M0 to M4 injection-induced earthquakes in two regions of the Western Canadian Sedimentary Basin. Induced earthquakes in the Horn River Basin show lower stress drops than induced earthquakes in the Duvernay Basin by a factor of 10 to 20. Higher stress drop earthquakes have a significant role in seismic hazard as they generate higher frequency strong ground motions which can potentially cause more damages, making it important to understand its causes. Both earthquake datasets occur below shale reservoirs under hydraulic-fracture stimulation programs. Both treatment programs target the same shale formation (Muskwa in Horn River Basin and Duvernay in Duvernay Basin) at approximately the same depth (3 km). Both reservoirs are located to the edge of the Western Canadian Sedimentary Basin bordering the Rocky Mountains and are under the same tectonic setting, both currently and during the Devonian depositional phase. The major observable difference is the local geology. While the Horn River Basin in northeast British Columbia shows mostly continuous horizontal stratification the Duvernay shale in the Fox Creek region in Alberta drapes over Leduc Formation reefs which cross-cut it as chains of reefs, isolated atolls and isolated pinnacles. Schultz et al. (2017) showed that induced seismicity in the Duvernay Basin region occurs primarily in the margins of the Devonian carbonate reefs (10 to 20 km away) where optimally oriented basement faults exist. The fault system is in part associated with basement tectonism and isostatic compensation mechanisms involved in the reefs diagenesis. We propose that the observed stress drop differences are caused by different regional stress characteristics, with events occurring in more stressed regions having higher stress drops. These areas of higher stress are found at the margins of the denser Leduc reefs formation and may be caused either by load transfer, isostatic compensation mechanisms, and accumulation of strain energy in the underlying fault system. The geological setting in which earthquakes occur may be a more important factor than previously considered in seismic hazard studies.

  12. Stratigraphy and Facies of Cretaceous Schrader Bluff and Prince Creek Formations in Colville River Bluffs, North Slope, Alaska

    USGS Publications Warehouse

    Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.

    2007-01-01

    Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.

  13. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  14. Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.

    PubMed

    Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A

    2018-05-22

    Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.

  15. In situ emulsification using a non-uniform alternating electric field

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Saveliev, Alexei V.

    2014-08-01

    We report an electric field based method for in situ emulsification of water droplets immersed in a continuous oil phase. High density water-in-oil emulsions are generated using non-uniform ac electric fields applied between needle and plate electrodes. An initial water droplet is entrained in the area of high electric field near the needle electrode where it is dispersed under the influence of high electric stresses. Breakup mechanisms responsible for a gradual dispersion of the water droplets are investigated. Identified mechanisms involve drop elongation to a cylindrical shape followed by a capillary breakup, ac electrospraying from individual water droplets, and formation and breakup of bead-like structures comprised by the water droplets interconnected by thin water bridges. Water droplets with diameters close to 1 μm and a narrow size distribution are formed at long processing times. The generated emulsion has a well-defined boundary and is confined near the needle electrode in a shape resembling a pendant drop.

  16. A morphological screening of protein crystals for interferon delivery by metal ion-chelate technology.

    PubMed

    Jiang, Yanbo; Shi, Kai; Wang, Shuo; Li, Xuefeng; Cui, Fude

    2010-12-01

    This study presents a preliminary exploration on extending the half-life of therapeutic proteins by crystallization strategy without new molecular entities generation. Recombinant human interferon (rhIFN) α-2b, a model protein drug in this case, was crystallized using a hanging-drop vapor diffusion method. A novel chelating technique with metal ions was employed to promote crystals formation. The effects of key factors such as seeding protein concentration, pH of the hanging drop, ionic strength of the equilibration solution, and precipitants were investigated. Size-exclusion liquid chromatography, antiviral activity determination, and enzyme-linked immunosorbent assay indicated that both the molecular integrity and biological potency of rhIFN were not significantly affected by crystallization process. In addition, the in vitro release behavior of rhIFN from crystal lattice was characterized by an initial fast release, followed by a sustained release up to 48 hour. The work described here suggested an exciting possibility of therapeutic protein crystals as a long-acting formulation.

  17. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    PubMed

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  18. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  19. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    PubMed Central

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-01-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary. PMID:26047466

  20. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons.

    PubMed

    Mitropoulos, A C; Stefanopoulos, K L; Favvas, E P; Vansant, E; Hankins, N P

    2015-06-05

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  1. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  2. Reducing bottom anti-reflective coating (BARC) defects: optimizing and decoupling the filtration and dispense process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Martin, Gary; Simmons, Sean; Batchelder, Traci

    2006-03-01

    Semiconductor device manufacturing is one of the cleanest manufacturing operations that can be found in the world today. It has to be that way; a particle on a wafer today can kill an entire device, which raises the costs, and therefore reduces the profits, of the manufacturing company in two ways: it must produce extra wafers to make up for the lost die, and it has less product to sell. In today's state-of-the-art fab, everything is filtered to the lowest pore size available. This practice is fairly easy for gases because a gas molecule is very small compared to the pore size of the filter. Filtering liquids, especially photochemicals such as photoresists and BARCs, can be much harder because the molecules that form the polymers used to manufacture the photochemicals are approaching the filter pore size. As a result, filters may plug up, filtration rates may drop, pressure drops across the filter may increase, or a filter may degrade. These conditions can then cause polymer shearing, microbubble formation, gel particle formation, and BARC chemical changes to occur before the BARC reaches the wafer. To investigate these possible interactions, an Entegris(R) IntelliGen(R) pump was installed on a TEL Mk8 TM track to see if the filtration process would have an effect on the BARC chemistry and coating defects. Various BARC chemicals such as DUV112 and DUV42P were pumped through various filter media having a variety of pore sizes at different filtration rates to investigate the interaction between the dispense process and the filtration process. The IntelliGen2 pump has the capability to filter the BARC independent of the dispense process. By using a designed experiment to look at various parameters such as dispense rate, filtration rate, and dispense volume, the effects of the complete pump system can be learned, and appropriate conditions can be applied to yield the cleanest BARC coating process. Results indicate that filtration rate and filter pore size play a dramatic role in the defect density on a coated wafer with the actual dispense properties such as dispense wafer speed and dispense time playing a lesser role.

  3. NASA Tech Briefs, May 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Noise-Canceling Helmet Audio System; Program Analyzes Spacecraft/Ground Radio Links; Two-Way Communication Using RFID Equipment and Techniques; Six-Message Electromechanical Display System; Scanning Terahertz Heterodyne Imaging Systems; Master Clock and Time-Signal-Distribution System; Synchronous Phase-Resolving Flash Range Imaging; Integrated Radial Probe Transition From MMIC to Waveguide; Bar-Code System for a Microbiological Laboratory; MMIC Amplifier Produces Gain of 10 dB at 235 GHz; Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots; Digital Beam Deflectors Based Partly on Liquid Crystals; Narrow-Band WGM Optical Filters With Tunable FSRs; Better Finite-Element Analysis of Composite Shell Structures; Computing Spacecraft-Pointing Vectors for Limb Tracking; Enhanced Master Controller Unit Tester; Rover Graphical Simulator; Increasing Durability of Flame-Sprayed Strain Gauges; Multifunctional, High-Temperature Nanocomposites; Multilayer Impregnated Fibrous Thermal Insulation Tiles; Radiation-Shielding Polymer/Soil Composites; Film/Adhesive Processing Module for Fiber-Placement Processing of Composites; Fabrication of Submillimeter Axisymmetric Optical Components; Electrochemical Disposal of Hydrazines in Water; Statistical Model of Evaporating Multicomponent Fuel Drops; Resistively Heated SiC Nozzle for Generating Molecular Beams; Compact Packaging of Photonic Millimeter-Wave Receiver; Diffractive Combiner of Single-Mode Pump Laser-Diode Beams; Wide-Band, High-Quantum-Efficiency Photodetector; A Robustly Stabilizing Model Predictive Control Algorithm; Modeling Evaporation of Drops of Different Kerosenes; Development of Vapor-Phase Catalytic Ammonia Removal System; Several Developments in Space Tethers; Design Concept for a Nuclear Reactor-Powered Mars Rover; Formation-Initialization Algorithm for N Spacecraft; and DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence.

  4. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    PubMed

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.

    1947-01-01

    Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.

  6. A Cost-effective and Reliable Method to Predict Mechanical Stress in Single-use and Standard Pumps

    PubMed Central

    Dittler, Ina; Dornfeld, Wolfgang; Schöb, Reto; Cocke, Jared; Rojahn, Jürgen; Kraume, Matthias; Eibl, Dieter

    2015-01-01

    Pumps are mainly used when transferring sterile culture broths in biopharmaceutical and biotechnological production processes. However, during the pumping process shear forces occur which can lead to qualitative and/or quantitative product loss. To calculate the mechanical stress with limited experimental expense, an oil-water emulsion system was used, whose suitability was demonstrated for drop size detections in bioreactors1. As drop breakup of the oil-water emulsion system is a function of mechanical stress, drop sizes need to be counted over the experimental time of shear stress investigations. In previous studies, the inline endoscopy has been shown to be an accurate and reliable measurement technique for drop size detections in liquid/liquid dispersions. The aim of this protocol is to show the suitability of the inline endoscopy technique for drop size measurements in pumping processes. In order to express the drop size, the Sauter mean diameter d32 was used as the representative diameter of drops in the oil-water emulsion. The results showed low variation in the Sauter mean diameters, which were quantified by standard deviations of below 15%, indicating the reliability of the measurement technique. PMID:26274765

  7. Afterlife of a Drop Impacting a Liquid Pool

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Wei, Yanju; Tang, Xiaoyu; Law, Chung K.

    2017-11-01

    Drop impact on liquid pool is ubiquitous in industrial processes, such as inkjet printing and spray coating. While merging of drop with the impacted liquid surface is essential to facilitate the printing and coating processes, it is the afterlife of this merged drop and associated mixing which control the quality of the printed or coated surface. In this talk we will report an experimental study on the structural evolution of the merged droplet inside the liquid pool. First, we will analyze the depth of the crater created on the pool surface by the impacted drop for a range of impact inertia, and we will derive a scaling relation and the associated characteristic time-scale. Next, we will focus on the toroidal vortex formed by the moving drop inside the liquid pool and assess the characteristic time and length scales of the penetration process. The geometry of the vortex structure which qualitatively indicates the degree of mixedness will also be discussed. Finally, we will present the results from experiments with various viscosities to demonstrate the role of viscous dissipation on the geometry and structure formed by the drop. This work is supported by the Army Research Office and the Xerox Corporation.

  8. A High Proliferation Rate is Critical for Reproducible and Standardized Embryoid Body Formation from Laminin-521-Based Human Pluripotent Stem Cell Cultures.

    PubMed

    Dziedzicka, Dominika; Markouli, Christina; Barbé, Lise; Spits, Claudia; Sermon, Karen; Geens, Mieke

    2016-12-01

    When aiming for homogenous embryoid body (EB) differentiation, the use of equal-sized EBs is required to avoid a size-induced differentiation bias. In this study we developed an efficient and standardized EB formation protocol for human pluripotent stem cells (hPSC) cultured in a laminin-521-based xeno-free system. As the cell proliferation rate of the cells growing on laminin-521 strongly affected the efficiency of aggregate formation, we found that recently passaged cells, as well as the addition of ROCK inhibitor, were essential for reproducible EB formation from hPSC single-cell suspensions. EBs could be obtained in a variety of differentiation media, in 96-well round-bottom plates and in hanging drops. Gene expression studies on differentially sized EBs from three individual human embryonic stem cell lines demonstrated that the medium used for differentiation influenced the differentiation outcome to a much greater extent than the number of cells used for the initial EB formation. Our findings give a new insight into factors that influence the EB formation and differentiation process. This optimized method allows us to easily manipulate EB formation and provide an excellent starting point for downstream EB-based differentiation protocols.

  9. Electromagnetic Processing as a Way of Increasing Microbiological Safety of Animal Waste

    NASA Astrophysics Data System (ADS)

    Soboleva, O. M.; Kolosova, M. M.; Filipovich, L. A.; Aksenov, V. A.

    2017-05-01

    The article shows the possibility of using the electromagnetic field of ultrahigh frequency (EMF UHF) for drying and disinfecting of such animal waste as pig manure and poultry droppings. The studied modes included the following options: processing exposure of 60, 90, 120 sec, the capacity of 60 kW, the frequency of 915 MHz. The method of UHF processing of manure and poultry droppings is environmentally safe and effective in neutralizing the pathogenic microflora, as well as larvae and eggs of worms. The following processing mode of animal waste in the electromagnetic field of ultrahigh frequency was recognized as optimal: exposure of 90 seconds, the capacity of 60 kW, the frequency of 915 MHz. This option leads to the complete destruction of pathogenic and conditionally pathogenic microorganisms, as well as the eggs and larvae of worms. As a result of this processing, a high level of microbiological safety of pig manure and poultry droppings is achieved that allows using them as organic fertilizers. The peculiarities of some species of pathogenic fungi developing on the surface of the wheat grain are shown. Pre-processed animal waste (pig manure and and poultry droppings) were applied in experimental variants. Used organic fertilizers underwent electromagnetic processing of ultra-high frequency. The qualitative composition of the microflora on the surface of the grain depends on the type of animal waste (manure or droppings) and used dose. The safest part of the microflora of grain was marked with the application of the UHF-processed pig manure and poultry droppings in doses of 10 t/ha.

  10. Multifunctional switching unit for add/drop, wavelength conversion, format conversion, and WDM multicast based on bidirectional LCoS and SOA-loop architecture.

    PubMed

    Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo

    2014-09-08

    We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.

  11. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.

    PubMed

    Dugyala, Venkateshwar Rao; Basavaraj, Madivala G

    2015-03-05

    Liquid drops containing insoluble solutes when dried on solid substrates leave distinct ring-like deposits at the periphery or along the three-phase contact line-a phenomena popularly known as the coffee-ring or the coffee stain effect. The formation of such rings as well as their suppression is shown to have applications in particle separation and disease diagnostics. We present an experimental study of the evaporation of sessile drops containing silica rods to elucidate the structural arrangement of particles in the ring, an effect of the addition of surfactant and salt. To this end, the evaporation of aqueous sessile drops containing model rod-like silica particles of aspect ratio ranging from ∼4 to 15 on a glass slide is studied. We first show that when the conditions such as (1) solvent evaporation, (2) nonzero contact angle, (3) contact line pinning, (4) no surface tension gradient driven flow, and (5) repulsive particle-particle/particle-substrate interactions, that are necessary for the formation of the coffee-ring are met, the suspension drops containing silica rods upon evaporation leave a ring-like deposit. A closer examination of the ring deposits reveals that several layers of silica rods close to the edge of the drop are ordered such that the major axis of the rods are oriented parallel to the contact line. After the first few layers of ordered arrangement of particles, a random arrangement of particles in the drop interior is observed indicating an order-disorder transition in the ring. We monitor the evolution of the ring width and particle velocity during evaporation to elucidate the mechanism of the order-disorder transition. Moreover, when the evaporation rate is lowered, the ordering of silica rods is observed to extend over large areas. We demonstrate that the nature of the deposit can be tuned by the addition of a small quantity of surfactant or salt.

  12. Digital microfluidics for automated hanging drop cell spheroid culture.

    PubMed

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  13. Friability Testing as a New Stress-Stability Assay for Biopharmaceuticals.

    PubMed

    Torisu, Tetsuo; Maruno, Takahiro; Yoneda, Saki; Hamaji, Yoshinori; Honda, Shinya; Ohkubo, Tadayasu; Uchiyama, Susumu

    2017-10-01

    A cycle of dropping and shaking a vial containing antibody solution was reported to induce aggregation. In this study, antibody solutions in glass prefillable syringes with or without silicone oil lubrication were subjected to the combined stresses of dropping and shaking, using a friability testing apparatus. Larger numbers of subvisible particles were generated, regardless of silicone oil lubrication, upon combination stress exposure than that with shaking stress alone. Nucleation of antibody molecules upon perturbation by an impact of dropping and adsorption of antibody molecules to the syringe surface followed by film formation and antibody film desorption were considered key steps in the particle formation promoted by combination stress. A larger number of silicone oil droplets was released when silicone oil-lubricated glass syringes containing phosphate buffer saline were exposed to combination stress than that observed with shaking stress alone. Polysorbate 20, a non-ionic surfactant, effectively reduced the number of protein particles, but failed to prevent silicone oil release upon combination stress exposure. This study indicates that stress-stability assays using the friability testing apparatus are effective for assessing the stability of biopharmaceuticals under the combined stresses of dropping and shaking, which have not been tested in conventional stress-stability assays. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the samemore » unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.« less

  15. Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals

    NASA Astrophysics Data System (ADS)

    Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.

    2017-10-01

    DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.

  16. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    PubMed Central

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483

  17. Spontaneous formation of nanostructures inside inkjet-printed colloidal drops

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Thorne, Nathaniel; Sun, Ying

    2013-11-01

    Nanostructures formed in inkjet-printed colloidal drops are systematically examined with different substrates and ink formulations. Various deposition patterns from multi-ring, radial spoke, firework to spider web, foam and island structures are observed. With a high particle loading, deposition transitions from multi-ring near the drop edge to spider web and finally to foam and islands in the center of the drop with 20 nm sulfate-modified polystyrene particles. At the same particle loading, 200 nm particles self-assemble into radial spokes at the drop edge and islands in the center, due to reduced contact line pinning resulted from less particles. In drops with a low particle concentration, due to fingering instability of the contact line, 20 nm particles form radial spokes enclosed by a ring, while 200 nm particles assemble into firework-like structures without a ring. Moreover, at a high particle loading, ruptures are observed on the multi-ring structure formed by 20 nm carboxylic-modified particles, due to stronger capillary forces from the contact line. Furthermore, for a drop printed on a less hydrophilic substrate, the interparticle interactions enable a more uniform deposition rather than complex nanostructures.

  18. Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Grützun, Verena

    2018-03-01

    In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s-1. At such altitudes with corresponding temperatures below -40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1) additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2) contact and deposition freezing in comparison to immersion freezing, and (3) small fractions of biological ice nucleating particles (INPs) in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at later cloud stages coupled with approximately 50 % more precipitation in the cloud center. The modifications depend on the active freezing modes, the fractions of active INP, and the composition of the internal mixtures in the drops.

  19. Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation.

    PubMed

    Schwier, Allison N; Sareen, Neha; Mitroo, Dhruv; Shapiro, Erica L; McNeill, V Faye

    2010-08-15

    Glyoxal (G) and methylglyoxal (MG) are potentially important secondary organic aerosol (SOA) precursors. Previous studies of SOA formation by G and MG have focused on either species separately; however, G and MG typically coexist in the atmosphere. We studied the formation of secondary organic material in aqueous aerosol mimic mixtures containing G and MG with ammonium sulfate. We characterized the formation of light-absorbing products using UV-vis spectrophotometry. We found that absorption at 280 nm can be described well using models for the formation of light-absorbing products by G and MG in parallel. Pendant drop tensiometry measurements showed that surface tension depression by G and MG in these solutions can be modeled as a linear combination of the effects of G and MG alone. Product species were identified using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol CIMS). Peaks consistent with G-MG cross-reaction products were observed, accounting for a significant fraction of detected product mass, but most peaks could be attributed to self-reaction. We conclude that cross-reactions contribute to SOA mass from uptake of G and MG, but they are not required to accurately model the effects of this process on aerosol surface tension or light absorption.

  20. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  1. Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi

    2006-11-01

    In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.

  2. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  3. Effect of Electromigration on the Type of Drop Failure of Sn-3.0Ag-0.5Cu Solder Joints in PBGA Packages

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Zhao, N.

    2015-10-01

    Board-level drop tests of plastic ball grid array (PBGA) packages were performed in accordance with the Joint Electron Devices Engineering Council standard to investigate the effect of electromigration (EM) on the drop reliability of Sn-3.0Ag-0.5Cu solder joints with two substrate surface finishes, organic solderability preservative (OSP) and electroless nickel electroless palladium immersion gold (ENEPIG). In the as-soldered state, drop failures occurred at the substrate sides only, with cracks propagating within the interfacial intermetallic compound (IMC) layer for OSP solder joints and along the IMC/Ni-P interface for ENEPIG solder joints. The drop lifetime of OSP solder joints was approximately twice that of ENEPIG joints. EM had an important effect on crack formation and drop lifetime of the PBGA solder joints. ENEPIG solder joints performed better in drop reliability tests after EM, that is, the drop lifetime of ENEPIG joints decreased by 43% whereas that of OSP solder joints decreased by 91%, compared with the as-soldered cases. The more serious polarity effect, i.e., excessive growth of the interfacial IMC at the anode, was responsible for the sharper decrease in drop lifetime. The different types of drop failure of PBGA solder joints before and after EM, including the position of initiation and the propagation path of cracks, are discussed on the basis of the growth behavior of interfacial IMC.

  4. Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions.

    PubMed

    Buamah, R; Petrusevski, B; Schippers, J C

    2009-01-01

    For the removal of iron from groundwater, aeration followed with rapid (sand) filtration is frequently applied. Iron removal in this process is achieved through oxidation of Fe(2 + ) in aqueous solution followed by floc formation as well as adsorption of Fe(2 + ) onto the filter media. The rate of oxidation of the adsorbed Fe(2 + ) on the filter media plays an important role in this removal process. This study focuses on investigating the effect of pH on the rate of oxidation of adsorbed Fe(2 + ). Fe(2 + ) has been adsorbed, under anoxic conditions, on iron oxide coated sand (IOCS) in a short filter column and subsequently oxidized by feeding the column with aerated water. Ferrous ions adsorbed at pH 5, 6, 7 and 8 demonstrated consumption of oxygen, when aerated water was fed into the column. The oxygen uptake at pH 7 and 8 was faster than at pH 5 and 6. However the difference was less pronounced than expected. The difference is attributed to the pH buffering effect of the IOCS. At feedwater pH 5, 6 and 7 the pH in the effluent was higher than in the influent, while a pH drop should occur because of oxidation of adsorbed Fe(2 + ). At pH 8, the pH dropped. These phenomena are attributed to the presence of calcium and /or ferrous carbonate in IOCS.

  5. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.

    PubMed

    Tan, Huanshu; Diddens, Christian; Versluis, Michel; Butt, Hans-Jürgen; Lohse, Detlef; Zhang, Xuehua

    2017-04-12

    Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.

  6. Soil Overconsolidation Changes Caused by Dynamic Replacement

    NASA Astrophysics Data System (ADS)

    Piotr, Kanty; Sławomir, Kwiecień; Jerzy, Sękowski

    2017-10-01

    In the dynamic replacement method (DR) the soil is improved by initially dropping a large weight (typically 8-20 t) pounder from a significant height up to 25 m. The created crater is filled with a stronger material (gravel, rubble, stone aggregate, debris), and the pounder is dropped once or multiple times again. The construction of dynamic replacement pillars influences the parameters of the adjacent soil. It results from the energy generated by dropping a pounder into the soil. In the current practice, these changes are not taken into the account during the design. This paper focuses on the changes of overconsolidation ratio (OCR) and in situ coefficient of lateral earth pressure (K) values estimated base on cone penetration test (CPTU) and Dilatometric test (DMT) performed at a test site. A single column was constructed and the ground around the column was examined using CPTU and DMT, performed at different distances from the column centre (2, 3, 4 and 6 m) and at different time intervals (during construction and 1, 8, 30 days later). The column was constructed in so-called transition soils (between cohesive and non-cohesive). While interpreting the results of the research, the authors addressed the matter of choosing the procedure of OCR and K indication for transition soils (in this case described as silts and/or sandy silts). Overconsolidation changes may differ depending on the chosen analysis procedure (for cohesive or non-cohesive soils). On the basis of the analysis presented in the paper and the observation of soil (acknowledged as cohesive according to macroscopic observations) during column excavation, it was decided that for more detailed analyses methods dedicated to cohesive soils should be applied. Generally, it can be stated that although the changes were complex, DR pillar formation process resulted in the increase of these parameters. The average increases of OCR and K values were 25% and 10% respectively. The post installation values are not significant from the engineering point of view, but they represent the influence of the formation process of only a single column. The described results indicate that Priebe’s column dimensioning method should be applied with caution, as it assumes the value K=1 which was not obtained in the described research. The results from the conducted tests indicate that different mechanisms occur during stone column formation with vibro-replacement and dynamic replacement. As the authors did not manage to find literature describing the results of K tests in the surrounding of a DR column, the presented results should be acknowledged as significant for designers who will apply the dynamic replacement method.

  7. Three dimensional modeling of cirrus during the 1991 FIRE IFO 2: Detailed process study

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.

    1993-01-01

    A three-dimensional model of cirrus cloud formation and evolution, including microphysical, dynamical, and radiative processes, was used to simulate cirrus observed in the FIRE Phase 2 Cirrus field program (13 Nov. - 7 Dec. 1991). Sulfate aerosols, solution drops, ice crystals, and water vapor are all treated as interactive elements in the model. Ice crystal size distributions are fully resolved based on calculations of homogeneous freezing of solution drops, growth by water vapor deposition, evaporation, aggregation, and vertical transport. Visible and infrared radiative fluxes, and radiative heating rates are calculated using the two-stream algorithm described by Toon et al. Wind velocities, diffusion coefficients, and temperatures were taken from the MAPS analyses and the MM4 mesoscale model simulations. Within the model, moisture is transported and converted to liquid or vapor by the microphysical processes. The simulated cloud bulk and microphysical properties are shown in detail for the Nov. 26 and Dec. 5 case studies. Comparisons with lidar, radar, and in situ data are used to determine how well the simulations reproduced the observed cirrus. The roles played by various processes in the model are described in detail. The potential modes of nucleation are evaluated, and the importance of small-scale variations in temperature and humidity are discussed. The importance of competing ice crystal growth mechanisms (water vapor deposition and aggregation) are evaluated based on model simulations. Finally, the importance of ice crystal shape for crystal growth and vertical transport of ice are discussed.

  8. Molecular Dynamics Simulations of the Oil-Detachment from the Hydroxylated Silica Surface: Effects of Surfactants, Electrostatic Interactions, and Water Flows on the Water Molecular Channel Formation.

    PubMed

    Tang, Jian; Qu, Zhou; Luo, Jianhui; He, Lanyan; Wang, Pingmei; Zhang, Ping; Tang, Xianqiong; Pei, Yong; Ding, Bin; Peng, Baoliang; Huang, Yunqing

    2018-02-15

    The detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations. By tuning the polarity of model silica surfaces, as well as considering the different types of surfactant molecules and the water flow effects, more details about the formation of water molecular channel and the expansion processes are elucidated. It is found that for both ionic and nonionic type surfactant solutions, the perturbation of surfactant molecules on the two-dimensional oil molecule layer facilitates the injection and diffusion of water molecules between the oil layer and silica substrate. However, the water channel formation and expansion speed is strongly affected by the substrate polarity and properties of surfactant molecules. First, only for the silica surface with relative stronger polarity, the formation of water molecular channel is observed. Second, the expansion speed of the water molecular channel upon the ionic surfactant (dodecyl trimethylammonium bromide, DTAB and sodium dodecyl benzenesulfonate, SDBS) flooding is more rapidly than the nonionic surfactant system (octylphenol polyoxyethylene(10) ether, OP-10). Third, the water flow speed may also affect the injection and diffusion of water molecules. These simulation results indicate that the water molecular channel formation process is affected by multiple factors. The synergistic effects of perturbation of surfactant molecules and the electrostatic interactions between silica substrate and water molecules are two key factors aiding in the injection and diffusion of water molecules and helpful for the oil detachment from silica substrate.

  9. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    PubMed

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous dissipation, with a less significant contribution from the occluder rebound effect. The maximum pressure drop was on the order of magnitude of 40 mmHg. Detailed PIV measurements and quantitative analysis of the BSM mechanical heart valve revealed large-scale vortex formation immediately after valve closure. Of note, the vortices were typical of a Rankine vortex and the maximum pressure change at the vortex center was only 40 mmHg. These data support the conclusion that vortex formation alone cannot generate the magnitude of pressure drop required for cavitation bubble formation.

  10. The Route to Raindrop Formation in a Shallow Cumulus Cloud Simulated by a Lagrangian Cloud Model

    NASA Astrophysics Data System (ADS)

    Noh, Yign; Hoffmann, Fabian; Raasch, Siegfried

    2017-11-01

    The mechanism of raindrop formation in a shallow cumulus cloud is investigated using a Lagrangian cloud model (LCM). The analysis is focused on how and under which conditions a cloud droplet grows to a raindrop by tracking the history of individual Lagrangian droplets. It is found that the rapid collisional growth, leading to raindrop formation, is triggered when single droplets with a radius of 20 μm appear in the region near the cloud top, characterized by a large liquid water content, strong turbulence, large mean droplet size, a broad drop size distribution (DSD), and high supersaturations. Raindrop formation easily occurs when turbulence-induced collision enhancement(TICE) is considered, with or without any extra broadening of the DSD by another mechanism (such as entrainment and mixing). In contrast, when TICE is not considered, raindrop formation is severely delayed if no other broadening mechanism is active. The reason leading to the difference is clarified by the additional analysis of idealized box-simulations of the collisional growth process for different DSDs in varied turbulent environments. It is found that TICE does not accelerate the timing of the raindrop formation for individual droplets, but it enhances the collisional growth rate significantly afterward. KMA R & D Program (Korea), DFG (Germany).

  11. The critical pressure drop for the purge process in the anode of a fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang

    Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.

  12. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    NASA Astrophysics Data System (ADS)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  13. Diamond formation due to a pH drop during fluid–rock interactions

    DOE PAGES

    Sverjensky, Dimitri A.; Huang, Fang

    2015-11-03

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly withmore » eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state.« less

  14. Diamond formation due to a pH drop during fluid–rock interactions

    PubMed Central

    Sverjensky, Dimitri A.; Huang, Fang

    2015-01-01

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly with eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state. PMID:26529259

  15. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.

  16. Project Fog Drops. Part 1: Investigations of warm fog properties

    NASA Technical Reports Server (NTRS)

    Pilie, R. J.; Eadie, W.; Mack, E. J.; Rogers, C.; Kocmond, W. C.

    1972-01-01

    A detailed study was made of the micrometeorological and microphysical characteristics of eleven valley fogs occurring near Elmira, New York. Observations were made of temperature, dew point, wind speed and direction, dew deposition, vertical wind velocity, and net radiative flux. In fog, visibility was continuously recorded and periodic measurements were made of liquid water content and drop-size distribution. The observations were initiated in late evening and continued until the time of fog dissipation. The vertical distribution of temperature in the lowest 300 meters and cloud nucleus concentration at several heights were measured from an aircraft before fog nucleus concentrations at several heights were measured from an aircraft before fog formation. A numerical model was developed to investigate the life cycle of radiation fogs. The model predicts the temporal evolution of the vertical distributions of temperature, water vapor, and liquid water as determined by the turbulent transfer of heat and moisture. The model includes the nocturnal cooling of the earth's surface, dew formation, fog drop sedimentation, and the absorption of infrared radiation by fog.

  17. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.

    PubMed

    Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi

    2011-02-07

    Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.

  18. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. Shankar; Cole, Robert

    1988-01-01

    Flight experiments are planned on drops containing bubbles. The experiments involve stimulating the drop via non-uniform heating and rotation. The resulting trajectories of the bubbles as well as the shapes of the drops and bubble will be videotaped and analyzed later frame-by-frame on the ground. Supporting ground based experiments are planned in the area of surface tension driven motion of bubbles, the behavior of compound drops settling in an immiscible liquid and the shapes and trajectories of large bubbles and drops in a rotating liquid. Theoretical efforts will be directed at thermocapillary migration of drops and bubbles, surfactant effects on such migration, and the behavior of compound drops.

  19. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    PubMed

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  20. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  1. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  2. Role of Marangoni stress during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish M.; Wagoner, Brayden W.; Thete, Sumeet S.; Basaran, Osman A.

    2018-04-01

    Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h ) connects an about-to-form drop to the liquid that remains hanging from the nozzle when the former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering σ , they lower capillary pressure (σ /h ), and second, as surfactant concentration along the interface can be nonuniform, they cause the interface to be subjected to a surface tension gradient or Marangoni stress. Recent studies show that the location where the thread breaks is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off is negligible. We demonstrate by simulations and experiments that surfactants play a major role in drop formation and that Marangoni stresses acting near but not at the pinch point give rise to reduced rates of thread thinning and formation of multiple microthreads that distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling regimes that have heretofore only been observed during pinch-off of threads undergoing creeping flow (Re=0 ) while convection of surfactant is weak compared to its diffusion (Pe<1 ).

  3. Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMM

    NASA Technical Reports Server (NTRS)

    Munchak, Stephen Joseph; Kummerow, Christian; Elsaesser, Gregory

    2013-01-01

    Variability in the raindrop sized distribution (DSD) has long been recognized as a source of uncertainty in relationships between radar reflectivity Z and rain rate R. In this study, we analyze DSD retrievals from two years of data gathered by the Tropical Rainfall Measuring Mission (TRMM) satellite and processed with a combined radar-radiometer retrieval algorithm over the global oceans equatorward of 35?. Numerous variables describing properties of each reflectivity profile, large-scale organization, and the background environment are examined for relationships to the reflectivity-normalized median drop diameter, epsilonDSD. In general, we find that higher freezing levels and relative humidities are associated with smaller epsilonDSD. Within a given environment, the mesoscale organization of precipitation and the vertical profile of reflectivity are associated with DSD characteristics. In the tropics, the smallest epsilonDSD values are found in large but shallow convective systems, where warm rain formation processes are thought to be predominant, whereas larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest epsilonDSD values are found in the scattered convection that occurs when cold, dry continental air moves over the much warmer ocean after the passage of a cold front. The geographical distribution of the retrieved DSDs is consistent with many of the observed regional Z-R relationships found in the literature as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In particular, mid-latitude and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone.

  4. The re-emergence of sodium ion batteries: testing, processing, and manufacturability

    PubMed Central

    Roberts, Samuel; Kendrick, Emma

    2018-01-01

    With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a “drop-in” technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed. PMID:29910609

  5. Liquid crystalline pattern formation in drying droplets of biopolymers

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan; Zribi, Olena; Butler, John; Lavrentovich, Oleg; Wong, Gerard

    2006-03-01

    When a droplet of DNA in water dries out, a ring-like deposit is observed along the perimeter, similar to the stains in spilled drops of coffee. However, the dried ring of DNA is a self-similar birefringent pattern composed of extended molecules. We examine dynamics of the pattern formation at the droplet's rim. This gives us an insight into the underlining physics. During the major part of drying process the contact line is pinned so that DNA molecules are brought to the perimeter and extended by the radial capillary flow. Lyotropic nematic phase is formed in which highly concentrated DNA aligns along the triple line to minimize elastic energy. When the contact angle becomes small, the contact line starts to retract and the radial dilative stress causes buckling distortions at the rim which then propagate deep into the elastic liquid- crystalline medium and give rise to the pattern.

  6. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  7. Low-gravity processing of superconducting compounds

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1976-01-01

    Low gravity conditions can be sustained on earth for several seconds in an evacuated drop tube. Because radiation cooling is most effective at high temperatures, the refractive metals and alloys are prime candidates for free fall solidification. The results of initial experiments on droplet formation, droplet release, critical size and evaporation losses are given. The time required for free fall solidification of different size droplets is calculated. The materials studied were copper, niobium and vanadium, and a niobium-tin alloys. Improvements in purity, composition, homogeneity and stoichiometry are expected during free fall solidification of niobium based alloys which should become evident in an increase in the superconducting transition temperature.

  8. Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Zhang, H.; Sibeck, D.; Turner, D.

    2013-01-01

    Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) upstream of quasi-parallel bow shocks during steady solar wind conditions and in the absence of discontinuities. The results show the formation of a large number of structures along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and magnetic field enhancements, while their cores exhibit drops in density, magnetic field, solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the simulation, we show that the signatures of these structures in the time series data are very similar to those of SHFAs seen in THEMIS data and conclude that they correspond to SHFAs. Examination of the simulation data shows that SHFAs form as the result of foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due to the nonlinear evolution of ULF waves generated by the interaction of the solar wind with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock dissipation process, the formation of SHFAs is also an inherent part of the dissipation process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath including large scale density and magnetic field cavities.

  9. An optimized protocol for handling and processing fragile acini cultured with the hanging drop technique.

    PubMed

    Snyman, Celia; Elliott, Edith

    2011-12-15

    The hanging drop three-dimensional culture technique allows cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. The fragile acini are, however, difficult to preserve during processing steps for advanced microscopic investigation. We describe adaptations to the protocol for handling of hanging drop cultures to include investigation using confocal, scanning, and electron microscopy, with minimal loss of cell culture components. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. New Method Developed to Measure Contact Angles of a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  11. Separation processes during binary monotectic alloy production

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1984-01-01

    Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.

  12. In Situ μGISAXS: II. Thaumatin Crystal Growth Kinetic

    PubMed Central

    Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio

    2010-01-01

    The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. PMID:20713011

  13. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  14. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  15. Redshifts for Spitzer-detected galaxies at z 6 - old stars in the first Gyr

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Stanway, Elizabeth; Chiu, Kuenley; Douglas, Laura; Eyles, Laurence; Bunker, Andrew

    2008-02-01

    We have identified a population of star-forming galaxies at z 6 through the i-drop Lyman-break technique using HST/ACS. Using Spitzer/IRAC imaging (tracing the rest-frame optical), we discovered from SED-fitting that some of this population harbour relatively old stars (300-500Myr) with significant Balmer breaks, implying formation epochs of z 10. Our work suggests that UV photons from star formation at z 10 may play a key role in reionizing the Universe. However, these conclusions are drawn from the only field (GOODS-South) which has both deep Spitzer/IRAC imaging and many i-drop spectroscopic redshifts. Hence the global conclusions are compromised by cosmic variance. We have 72-hours on Spitzer to image 6 other sight-lines with deep ACS data; we propose to use GMOS multiobject mode to obtain spectroscopic redshifts, which are crucial to reduce the large uncertainties in fitting the stellar ages and masses, and hence inferring the preceding star formation history and the contribution to reionization.

  16. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  17. Transition from single to multiple axial potential structure in expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    Transition from single to multiple axial potential structure (MAPS) formation is reported in expanding helicon plasma. This transition is created by forming a cusp magnetic field at the downstream after the expansion throat. Two distinct potential drops are separated by a uniform axial potential zone. Non-uniform axial density distribution exists in expanding helicon systems. A cusp-like field nourishes both the axial density gradients sufficient enough for the formation of these two distinct potential drops. It is also shown that both single and multiple axial potential structures are observed only when both geometric and magnetic expansions closely coincide with each other. Coexistence of these two expansions at the same location enhances plasma expansion which facilitates deviation from Boltzmann distribution and violates quasi-neutrality locally.

  18. Deposition dynamics of multi-solvent bioinks

    NASA Astrophysics Data System (ADS)

    Kaneelil, Paul; Pack, Min; Cui, Chunxiao; Han, Li-Hsin; Sun, Ying

    2017-11-01

    Inkjet printing cellular scaffolds using bioinks is gaining popularity due to the advancement of printing technology as well as the growing demands of regenerative medicine. Numerous studies have been conducted on printing scaffolds of biomimetic structures that support the cell production of human tissues. However, the underlying physics of the deposition dynamics of bioinks remains elusive. Of particular interest is the unclear deposition dynamics of multi-solvent bioinks, which is often used to tune the micro-architecture formation. Here we systematically studied the effects of jetting frequency, solvent properties, substrate wettability, and temperature on the three-dimensional deposition patterns of bioinks made of Methacrylated Gelatin and Carboxylated Gelatin. The microflows inside the inkjet-printed picolitre drops were visualized using fluorescence tracer particles to decipher the complex processes of multi-solvent evaporation and solute self-assembly. The evolution of droplet shape was observed using interferometry. With the integrated techniques, the interplay of solvent evaporation, biopolymer deposition, and multi-drop interactions were directly observed for various ink and substrate properties, and printing conditions. Such knowledge enables the design and fabrication of a variety of tissue engineering scaffolds for potential use in regenerative medicine.

  19. Emotional Intelligence and Spiritual Formation Scores as Predictors for College Freshman at Risk for Dropping Out

    ERIC Educational Resources Information Center

    Gilliland, Sandra Le' Ann

    2013-01-01

    The current research examined the relationship between two non-academic factors associated with retention: emotional intelligence (EI) and spiritual formation. The primary goal of this research was to determine whether using a combination of academic and non-academic factors could increase the researcher's ability to identify students most at risk…

  20. Using Percentages to Describe and Calculate Change

    ERIC Educational Resources Information Center

    Price, Beth; Steinle, Vicki; Stacey, Kaye; Gvozdenko, Eugene

    2014-01-01

    This study reports on the use of formative, diagnostic online assessments for the topic percentages. Two new item formats (drag-drop and slider) are described. About one-third of the school students (Years 7 to 9) could, using a slider, estimate "80% more than" a given length, in contrast with over two-thirds who could estimate "90%…

  1. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    PubMed

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low values. When impurities were involved, the shape of BR curves showed that intense decomposition started earlier but morphological characteristics remained the same. In addition, compared to parameters such as pressure, the BR reflects reaction stages better and its change with pyrolysis process of PE/PP plastics with or without impurities was more intrinsically process correlated; therefore it can be adopted as a signal for pyrolysis process characterization, as well as offering guide to process improvement and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The effect of shear and extensional viscosity on atomization in medical inhaler.

    PubMed

    Broniarz-Press, L; Ochowiak, M; Matuszak, M; Włodarczak, S

    2014-07-01

    The paper contains the results of experimental studies of water, aqueous solutions of glycerol and aqueous solutions of glycerol-polyethylene oxide (PEO) atomization process in a medical inhaler obtained by the use of the digital microphotography method. The effect of the shear and extensional viscosity on the drop size, drop size histogram and mean drop diameter has been analyzed. The obtained results have shown that the drop size increases with the increase in shear and extensional viscosity of liquid atomized. Extensional viscosity has a greater impact on the spraying process. It has been shown that the change in liquid viscosity leads to significant changes in drop size distribution. The correlation for Sauter mean diameter as function of the shear and extensional viscosity was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Short Shot Tower for Silicon

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    Drop length necessary to convert molten silicon to shot reduced by proposed new process. Conversion of silicon from powder or chunks to shot often simplifies processing. Shot is more easily handled in most processing equipment. Drops of liquid silicon fall through protective cloud of argon, then through rapidly cooling bath of methanol, where they quickly turn into solid shot.

  4. Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.

    NASA Astrophysics Data System (ADS)

    Allen, John Morrison

    1992-01-01

    The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought to be an important pathway by which a strong acid is produced within cloud drops under certain conditions. Experiments performed in distilled, deionized water presented in this dissertation will demonstrate that the oxidation of SO_2 in the presence of Fe(III) is much slower in sunlight than in the dark.

  5. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  6. Could some aviation deep vein thrombosis be a form of decompression sickness?

    PubMed

    Buzzacott, Peter; Mollerlokken, Andreas

    2016-10-01

    Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.

  7. Optimal formation of genetically modified and functional pancreatic islet spheroids by using hanging-drop strategy.

    PubMed

    Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y

    2013-03-01

    Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  9. Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan

    2007-07-15

    Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barriermore » and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)« less

  10. Effects of coffee intake and intraperitoneal caffeine on bone repair process--a histologic and histometric study.

    PubMed

    Macedo, Rander Moreira; Brentegani, Luiz Guilherme; Lacerda, Suzie Aparecida de

    2015-01-01

    Studies have suggested that caffeine acts on bone promoting an increase of calcium excretion, inhibition of osteoblast proliferation and delay in tissue repair process, raising the risk of fractures, osteoporosis, periodontal disease and affecting the success of bone reconstructive procedures. The aim of this study was to analyze histomorphometrically the process of alveolar bone healing after tooth extraction in rats subjected to daily intake of boiled coffee or intraperitoneal administration of caffeine. Forty-five male rats were divided according to the treatment in Control group (C); Coffee group (CO) - treated with coffee since birth; and Caffeine (CAF) - intraperitoneal injection of aqueous solution of caffeine 1.5% (0.2 mL/100g body weight) for 30 days. When weighing between 250-300 g they were anesthetized, subjected to extraction of the maxillary right incisor, and euthanized 7, 21 and 42 days after surgery for histological assessments of bone volume and the quality of formed bone in the dental socket. The qualitative results demonstrated larger amounts of blood clot and immature bone in animals under treatment of pure caffeine compared to coffee and control. Histometric analysis revealed that coffee treatment led to a 40% drop in bone formation, and caffeine a 60% drop in comparison to control animals (ANOVA p≤0.01). It was concluded that both the daily ingestion of coffee and the intraperitoneal administration of caffeine in rats delayed the alveolar bone reparative process after tooth extraction, and this effect was more aggressive when pure caffeine was used.

  11. Semi-automatic image analysis methodology for the segmentation of bubbles and drops in complex dispersions occurring in bioreactors

    NASA Astrophysics Data System (ADS)

    Taboada, B.; Vega-Alvarado, L.; Córdova-Aguilar, M. S.; Galindo, E.; Corkidi, G.

    2006-09-01

    Characterization of multiphase systems occurring in fermentation processes is a time-consuming and tedious process when manual methods are used. This work describes a new semi-automatic methodology for the on-line assessment of diameters of oil drops and air bubbles occurring in a complex simulated fermentation broth. High-quality digital images were obtained from the interior of a mechanically stirred tank. These images were pre-processed to find segments of edges belonging to the objects of interest. The contours of air bubbles and oil drops were then reconstructed using an improved Hough transform algorithm which was tested in two, three and four-phase simulated fermentation model systems. The results were compared against those obtained manually by a trained observer, showing no significant statistical differences. The method was able to reduce the total processing time for the measurements of bubbles and drops in different systems by 21-50% and the manual intervention time for the segmentation procedure by 80-100%.

  12. Conditions for Destabilizing Pickering emulsions using external electric fields

    NASA Astrophysics Data System (ADS)

    Hwang, Kyuho; Singh, Pushpendra; Aubry, Nadine

    2009-11-01

    Fine particles are readily adsorbed at fluid-fluid interfaces, and can be used as stabilizers in emulsion technology by preventing adjacent drops from coalescing with each other. We investigate a new technique to destabilize such emulsions, or Pickering emulsions, by applying an external electric field. Experiments show that the latter has two effects: (i) the drops elongate in the direction of the electric field, (ii) the local particle density varies on the drop surface due to the dielectrophoretic (DEP) force acting on the particles. It is shown that the latter is the dominant factor in the destabilization process. Particularly, the success of the method depends on the values of certain dimensionless parameters; specifically, the ratio of the work done by the dielectrophoretic force must be larger than the work done by the buoyant force. Moreover, drops do not coalesce through the regions where the particles locally cluster, whether those are gathered at the poles or at the equator of the drops. As particles move, particle-free openings form on the drop's surface, which allow for adjacent drops to merge. This process takes place even if the particles are fully packed on the drops' surfaces as particles get ejected from the clustering areas due to a buckling phenomenon.

  13. In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method.

    PubMed

    Wang, Xiang; Yang, Phillip

    2008-07-23

    Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.

  14. Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao

    2013-03-01

    We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.

  15. Laboratory experiments on liquid fragmentation during Earth's core formation

    NASA Astrophysics Data System (ADS)

    Landeau, M.; Deguen, R.; Olson, P.

    2013-12-01

    Buoyancy-driven fragmentation of one liquid in another immiscible liquid likely occurred on a massive scale during the formation of the Earth, when dense liquid metal blobs were released within deep molten silicate magma oceans. Another example of this phenomenon is the sudden release of petroleum into the ocean during the Deepwater Horizon disaster (Gulf of Mexico, 2010). We present experiments on the instability and fragmentation of blobs of a heavy liquid released into a lighter immiscible liquid. During the fragmentation process, we observe deformation of the released fluid, formation of filamentary structures, capillary instability, and eventually drop formation. We find that, at low and intermediate Weber numbers (which measures the importance of inertia versus surface tension), the fragmentation regime mainly results from the competition between a Rayleigh-Taylor instability and the roll-up of a vortex ring. At sufficiently high Weber numbers (the relevant regime for core formation), the fragmentation process becomes turbulent. The large-scale flow then behaves as a turbulent vortex ring or a turbulent thermal: it forms a coherent structure whose shape remains self-similar during the fall and which grows by turbulent entrainment of ambient fluid. An integral model based on the entrainment assumption, and adapted to buoyant vortex rings with initial momentum, is consistent with our experimental data. This indicates that the concept of turbulent entrainment is valid for non-dispersed immiscible fluids at large Weber and Reynolds numbers. Series of photographs, turbulent fragmentation regime, time intervals of about 0.2 s. Portions (red boxes) have been magnified (on the right).

  16. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  17. [Stability of physical state on compound hawthorn dropping pills].

    PubMed

    Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan

    2008-11-01

    To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.

  18. The NASA, Marshall Space Flight Center drop tube user's manual

    NASA Technical Reports Server (NTRS)

    Rathz, Thomas J.; Robinson, Michael B.

    1990-01-01

    A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.

  19. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  20. Analysis of preparation of Chinese traditional medicine based on the fiber fingerprint drop trace

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Wang, Jialu; Sun, Weimin; Yan, Qi

    2010-11-01

    The purpose of the fiber micro-drop analyzing technique is to measure the characteristics of liquids using optical methods. The fiber fingerprint drop trace (FFDT) is a curve of light intensity vs. time. This curve indicates the forming, growing and dripping processes of the liquid drops. A pair of fibers was used to monitor the dripping process. The FFDTs are acquired and analyzed by a computer. Different liquid samples of many kinds of preparation of Chinese traditional medicines were tested by using the fiber micro-drop sensor in the experiments. The FFDTs of preparation of Chinese traditional medicines with different concentrations were analyzed in different ways. Considering the characters of the FFDTs, a novel method is proposed to measure the different preparation of Chinese traditional medicines and its concentration based on the corresponding relationship of FFDTs and the physical and chemical parameters of the liquids.

  1. Susceptibility measurements on the superconducting properties of Nb-Ge alloys

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1981-01-01

    A susceptibility apparatus to measure superconducting properties of samples made in the MSFC Drop Tube was used to measure the transition temperature (Tc) and susceptibilities of Nb and Nb Ge Alloys prepared in bulk spherical (2-4 mm diameter) form using a 32 m drop tube in which containerless low gravity solidification could take place. Results indicate that a drop tube processing environment was beneficial for increasing the Tc of the superconducting phase of the material over that of arc melted material. The increase in Tc is found to be related to the amount of solidification of the total sample that took place before reaching the bottom of the drop tube. In phase and quadrature phase measurements of the specimen's susceptibility indicated that some improvement in homogeneity takes place in drop tube processing. These phase measurements also indicated little or no shielding of a lower Tc phase by a higher Tc filamentary structure.

  2. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  3. Directional motion of impacting drops on dual-textured surfaces.

    PubMed

    Vaikuntanathan, V; Sivakumar, D

    2012-09-01

    In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.

  4. Simple, robust storage of drops and fluids in a microfluidic device.

    PubMed

    Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth

    2009-01-21

    We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.

  5. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  6. Traffic behavior at freeway bottlenecks.

    DOT National Transportation Integrated Search

    2014-09-01

    This study examines traffic behavior in the vicinity of a freeway bottleneck, revisiting commonly held : assumptions and uncovering systematic biases that likely have distorted empirical studies of bottleneck : formation, capacity drop, and the funda...

  7. Unstable bidimensional grids of liquid filaments: Drop pattern after breakups

    NASA Astrophysics Data System (ADS)

    Diez, Javier; Cuellar, Ingrith; Ravazzoli, Pablo; Gonzalez, Alejandro

    2017-11-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops. We acknowledge support from CONICET-Argentina (Grant PIP 844/2012) and ANPCyT-Argentina (Grant PICT 931/2012).

  8. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  9. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  10. Theoretical study of a consumable anode in a gas metal welding arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, P.; Simpson, S.W.

    1996-12-31

    A better understanding of the behavior of the metal transfer process in a welding arc is important for further improvement of quality control for gas-metal-arc welding (GMAW). The problems related to the metal transfer are generally complicated because (a) the metal transfer process is strongly coupled with the arc plasma, which is not stable, for example, the length of the arc plasma varies during the formation and detachment of a metal droplet, and (b) the formation of the electrode droplet itself is influenced by energy transfer, the anode-plasma interface, and also the location of the liquid-solid interface inside the anode.more » This paper presents primary results of an investigation of the consumable anode in a gas metal welding arc. The study includes theoretical predictions of the properties related to metal transfer including moving anode temperature profile, welding arc length and arc current as a function of time for various wire feed rates, as well as numerical treatment of droplet formation. The anode temperature profile and the melting rate are analyzed by a metal transfer model which couples a two-dimensional arc model to a one-dimensional anode thermal model. The droplet formation is predicted by a quasi-one-dimensional dynamic model of a pendant drop which accounts for the electromagnet pinch effect, the surface tension, gravitation and the momentum transfer due to wire motion. Comparison between experimental observation and theoretical predictions will also be discussed.« less

  11. Break-up dynamics of fluctuating liquid threads

    PubMed Central

    Petit, Julien; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2012-01-01

    The thinning dynamics of a liquid neck before break-up, as may happen when a drop detaches from a faucet or a capillary, follows different rules and dynamic scaling laws depending on the importance of inertia, viscous stresses, or capillary forces. If now the thinning neck reaches dimensions comparable to the thermally excited interfacial fluctuations, as for nanojet break-up or the fragmentation of thermally annealed nanowires, these fluctuations should play a dominant role according to recent theory and observations. Using near-critical interfaces, we here fully characterize the universal dynamics of this thermal fluctuation-dominated regime and demonstrate that the cross-over from the classical two-fluid pinch-off scenario of a liquid thread to the fluctuation-dominated regime occurs at a well-defined neck radius proportional to the thermal length scale. Investigating satellite drop formation, we also show that at the level of the cross-over between these two regimes it is more probable to produce monodisperse droplets because fluctuation-dominated pinch-off may allow the unique situation where satellite drop formation can be inhibited. Nonetheless, the interplay between the evolution of the neck profiles from the classical to the fluctuation-dominated regime and the satellites’ production remains to be clarified. PMID:23090994

  12. Energetics of metastudtite and implications for nuclear waste alteration

    PubMed Central

    Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina; Curtius, Hildegard; Bosbach, Dirk; Navrotsky, Alexandra

    2014-01-01

    Metastudtite, (UO2)O2(H2O)2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, −1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. Four decomposition steps were observed in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO3 to crystallize orthorhombic α-UO2.9; and reduction to crystalline U3O8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water. PMID:25422465

  13. A hollow sphere soft lithography approach for long-term hanging drop methods.

    PubMed

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali

    2010-04-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.

  14. A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods

    PubMed Central

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J.; Bae, Hojae

    2010-01-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 μL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10–15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 μL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine. PMID:19505251

  15. Energetics of metastudtite and implications for nuclear waste alteration

    DOE PAGES

    Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina; ...

    2014-11-24

    Metastudtite, (UO 2)O 2(H 2O) 2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, $-$1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. We observed four decomposition steps in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO 3more » to crystallize orthorhombic α-UO 2.9; and reduction to crystalline U 3O 8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water.« less

  16. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function.

    PubMed

    Banach, Mateusz; Konieczny, Leszek; Roterman, Irena

    2014-10-21

    In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Desiccation of a pool of blood: from fluid mechanics to forensic investigations

    NASA Astrophysics Data System (ADS)

    Nicloux, Celine; Brutin, David

    2012-11-01

    The evaporation of biological fluids (with droplet configuration) has been studied since a few years due to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The evaporation of a pool of blood is studied in order to link the pattern formation and the evaporation dynamics. We intend to transfer the knowledge acquired for drops on pool to improve the forensic investigations. In this study, we focus on both pool of blood and pure water to determine the transition region from drop to pool and then to characterize the evaporation rate in the pool configuration. The spreading of blood which can be seen as a complex fluid is strongly influenced the substrate nature. The initial contact angle of blood on different substrate nature will influence the maximum thickness of the layer and then will influence the evaporation mass flux. The authors gratefully acknowledge the help and the fruitful discussions raised with A. Boccoz.

  18. Probing the nanoscale with high-speed interferometry of an impacting drop

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Li, E. Q.; Vakarelski, I. U.; Langley, K.

    2017-02-01

    The simple phenomenon of a water drop falling onto a glass plate may seem like a trivial fluid mechanics problem. However, detailed imaging has shown that this process is highly complex and a small air-bubble is always entrapped under the drop when it makes contact with the solid. This bubble can interfere with the uniformity of spray coatings and degrade inkjet fabrication of displays etc. We will describe how we use high-speed interferometry at 5 million frames per second to understand the details of this process. As the impacting drop approaches the solid, the dynamics are characterized by a balance between the lubrication pressure in the thin air layer and the inertia of the bot-tom of the drop. This deforms the drop, forming a dimple at its bottom and making the drop touch the surface along a ring, thereby entrapping the air-layer, which is typically 1-3 μm thick. This air-layer can be highly compressed and the deceleration of the bottom of the drop can be as large as 300,000 g. We describe how the thickness evolution of the lubricating air-layer is extracted from following the interference fringes between frames. Two-color interferometry is also used to extract absolute layer thicknesses. Finally, we identify the effects of nanometric surface roughness on the first contact of the drop with the substrate. Here we need to resolve the 100 nm thickness changes occurring during 200 ns intervals, requiring these state of the art high-speed cameras. Surprisingly, we see a ring of micro-bubbles marking the first contact of the drop with the glass, only for microscope slides, which have a typical roughness of 20 nm, while such rings are absent for drop impacts onto molecularly smooth mica surfaces.

  19. 43 CFR 423.29 - Natural and cultural resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., including their reproductive bodies, into Reclamation lands and waterbodies. (c) You must not drop, place..., mountainsides, thermal features, or other natural formations. (d) You may bring firewood to or gather dead wood...

  20. 43 CFR 423.29 - Natural and cultural resources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including their reproductive bodies, into Reclamation lands and waterbodies. (c) You must not drop, place..., mountainsides, thermal features, or other natural formations. (d) You may bring firewood to or gather dead wood...

  1. 43 CFR 423.29 - Natural and cultural resources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., including their reproductive bodies, into Reclamation lands and waterbodies. (c) You must not drop, place..., mountainsides, thermal features, or other natural formations. (d) You may bring firewood to or gather dead wood...

  2. Reliability analysis of different structure parameters of PCBA under drop impact

    NASA Astrophysics Data System (ADS)

    Liu, P. S.; Fan, G. M.; Liu, Y. H.

    2018-03-01

    The establishing process of PCBA is modelled by finite element analysis software ABAQUS. Firstly, introduce the Input-G method and the fatigue life under drop impact are introduced and the mechanism of the solder joint failure in the process of drop is analysed. The main reason of solder joint failure is that the PCB component is suffering repeated tension and compression stress during the drop impact. Finally, the equivalent stress and peel stress of different solder joint and plate-level components under different impact acceleration are also analysed. The results show that the reliability of tin-silver copper joint is better than that of tin- lead solder joint, and the fatigue life of solder joint expectancy decrease as the impact pulse amplitude increases.

  3. Drop dynamics in space and interference with acoustic field (M-15)

    NASA Technical Reports Server (NTRS)

    Yamanaka, Tatsuo

    1993-01-01

    The objective of the experiment is to study contactless positioning of liquid drops, excitation of capillary waves on the surface of acoustically levitated liquid drops, and deformation of liquid drops by means of acoustic radiation pressure. Contactless positioning technologies are very important in space materials processing because the melt is processed without contacting the wall of a crucible which can easily contaminate the melt specifically for high melting temperatures and chemically reactive materials. Among the contactless positioning technologies, an acoustic technology is especially important for materials unsusceptible to electromagnetic fields such as glasses and ceramics. The shape of a levitated liquid drop in the weightless condition is determined by its surface tension and the internal and external pressure distribution. If the surface temperature is constant and there exist neither internal nor external pressure perturbations, the levitated liquid drop forms a shape of perfect sphere. If temperature gradients on the surface and internal or external pressure perturbations exist, the liquid drop forms various modes of shapes with proper vibrations. A rotating liquid drop was specifically studied not only as a classical problem of theoretical mechanics to describe the shapes of the planets of the solar system, as well as their arrangement, but it is also more a contemporary problem of modern non-linear mechanics. In the experiment, we are expecting to observe various shapes of a liquid drop such as cocoon, tri-lobed, tetropod, multi-lobed, and doughnut.

  4. On the autonomous motion of active drops or bubbles.

    PubMed

    Ryazantsev, Yuri S; Velarde, Manuel G; Guzman, Eduardo; Rubio, Ramón G; Ortega, Francisco; Montoya, Juan-Jose

    2018-05-19

    Thermo-capillary stresses on the surface of a drop can be the result of a non-isothermal surface chemical conversion of a reactant dissolved in the host fluid. The strength of heat production (with e.g. absorption) on the surface is ruled by the diffusion of the reactant and depends on the state of motion of the drop. Such thermo-capillary stresses can provoke the motion of the drop or its motionless state in the presence of an external body force. If in the balance of forces, including indeed viscous drag, the net resultant force vanishes there is the possibility of autonomous motion with constant velocity of the drop. Focusing on drops with radii in the millimeter range provided here is a quantitative study of the possibility of such autonomous motion when the drop, considered as active unit, is seat of endo- or exo-thermic reactive processes that dominate its motion. The framework is restricted to Stokes flows in the hydrodynamics, negligible heat Peclet number while the solute Peclet number is considered very high. A boundary layer approximation is used in the description of reactant diffusion. Those processes eventually end up in the action being expressed by surface tension gradients and the Marangoni effect. Explicit expressions of the force acting on the drop and the velocity fields inside and outside the drop are provided. Some significant particular cases are discussed to illustrate the usefulness of the theory. Copyright © 2018. Published by Elsevier Inc.

  5. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  6. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  7. Drop impact on spherical soft surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Simeng; Bertola, Volfango

    2017-08-01

    The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.

  8. Ground based research in microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1994-01-01

    The core activities performed during this time period have been concerned with tracking the TEMPEST experiments on the shuttle with drops of Zr, Ni, and Nb alloys. In particular a lot of Zr drops are being made to better define the recalescence characteristics of that system so that accurate comparisons of the drop tube results with Tempest can be made. A new liner, with minimal reflectivity characteristics, has been inserted into the drop tube in order to improve the recalescence measurements of the falling drops. The first installation to make the geometric measurements to ensure a proper fit has been made. The stovepipe sections are currently in the shop at MSFC being painted with low reflectivity black paint. Work has also continued on setting up the MEL apparatus obtained from Oak Ridge in the down stairs laboratory at the Drop Tube Facilities. Some ground-based experiments on the same metals as are being processed on TEMPEST are planned for the MEL. The flight schedules for the KC-135 experiments are still to be determined in the near future.

  9. Toxin studies using an integrated biophysical and structural biology approach.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membranemore » a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.« less

  10. Transport of particles, drops, and small organisms in density stratified fluids

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  11. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Cruikshank, Owen; He, Weilue

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Some progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does notmore » freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ~1010 increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.« less

  12. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops

    DOE PAGES

    Yang, Fan; Cruikshank, Owen; He, Weilue; ...

    2018-02-06

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Some progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does notmore » freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ~1010 increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.« less

  13. Hybrid Ag 2VO 2PO 4/CF x as a High Capacity and Energy Cathode for Primary Batteries

    DOE PAGES

    Li, Yue Ru; Bruck, Andrea M.; Brady, Alexander B.; ...

    2017-08-18

    In this report, we describe the electrochemistry of hybrid dual silver vanadium phosphorus oxide/carbon fluoride (Ag 2VO 2PO 4/CF x) cathodes with various weight ratios. Through modification of the Ag 2VO 2PO 4/CF x ratio, we can control the gravimetric and volumetric capacity, as well as mitigate the voltage drop during high current pulses. The increase in impedance caused by irreversible LiF formation in CFx was reduced by the silver reduction-displacement during electrochemical discharge of the Ag 2VO 2PO 4. Moreover, the addition of graphite was shown to reduce initial voltage delay. When Ag 2VO 2PO 4 dominates the electrodemore » mass (i.e. 75/25 Ag 2VO 2PO 4/CF x) in the hybrid cathode, pulse testing shows less voltage drop and delay, but at the expense of capacity and energy density. As the amount of CFx in the composite increases (i.e. Ag 2VO 2PO 4/CF x ratio of to 50/50 or 25/75), charge capacity and energy density increases, but at the expense of larger voltage drops and delays early in the discharge process. Thus, controlling the Ag 2VO 2PO 4/CF x ratio can be used to tune the electrochemical properties of the dual cathode, allowing for optimization of capacity and power depending on the application.« less

  14. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A.

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ˜1010 increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  15. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.

    PubMed

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  16. Hybrid Ag 2VO 2PO 4/CF x as a High Capacity and Energy Cathode for Primary Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue Ru; Bruck, Andrea M.; Brady, Alexander B.

    In this report, we describe the electrochemistry of hybrid dual silver vanadium phosphorus oxide/carbon fluoride (Ag 2VO 2PO 4/CF x) cathodes with various weight ratios. Through modification of the Ag 2VO 2PO 4/CF x ratio, we can control the gravimetric and volumetric capacity, as well as mitigate the voltage drop during high current pulses. The increase in impedance caused by irreversible LiF formation in CFx was reduced by the silver reduction-displacement during electrochemical discharge of the Ag 2VO 2PO 4. Moreover, the addition of graphite was shown to reduce initial voltage delay. When Ag 2VO 2PO 4 dominates the electrodemore » mass (i.e. 75/25 Ag 2VO 2PO 4/CF x) in the hybrid cathode, pulse testing shows less voltage drop and delay, but at the expense of capacity and energy density. As the amount of CFx in the composite increases (i.e. Ag 2VO 2PO 4/CF x ratio of to 50/50 or 25/75), charge capacity and energy density increases, but at the expense of larger voltage drops and delays early in the discharge process. Thus, controlling the Ag 2VO 2PO 4/CF x ratio can be used to tune the electrochemical properties of the dual cathode, allowing for optimization of capacity and power depending on the application.« less

  17. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  18. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  19. Crystal clear transparent lipstick formulation based on solidified oils.

    PubMed

    De Clermont-Gallerande, H; Chavardes, V; Zastrow, L

    1999-12-01

    We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.

  20. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  1. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles.

    PubMed

    Binks, Bernard P; Clint, John H; Whitby, Catherine P

    2005-06-07

    A study of the rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles is described. Concentrated emulsions were prepared and diluted at constant particle concentration to investigate the effect of drop volume fraction on the viscosity and viscoelastic response of the emulsions. The influence of the structure of the hydrophobic clay particles in the oil has also been studied by using oils in which the clay swells to very different extents. Emulsions prepared from isopropyl myristate, in which the particles do not swell, are increasingly flocculated as the drop volume fraction increases and the viscosity of the emulsions increases accordingly. The concentrated emulsions are viscoelastic and the elastic storage and viscous loss moduli also increase with increasing drop volume fraction. Emulsions prepared from toluene, in which the clay particles swell to form tactoids, are highly structured due to the formation of an integrated network of clay tactoids and drops, and the moduli of the emulsions are significantly larger than those of the emulsions prepared from isopropyl myristate.

  2. Effect of Abscission Zone Formation on Orange ( Citrus sinensis) Fruit/Juice Quality for Trees Affected by Huanglongbing (HLB).

    PubMed

    Baldwin, Elizabeth; Plotto, Anne; Bai, Jinhe; Manthey, John; Zhao, Wei; Raithore, Smita; Irey, Mike

    2018-03-21

    Orange trees affected by huanglongbing (HLB) exhibit excessive fruit drop, and fruit loosely attached to the tree may have inferior flavor. Fruit were collected from healthy and HLB-infected ( Candidatus liberibacter asiaticus) 'Hamlin' and 'Valencia' trees. Prior to harvest, the trees were shaken, fruit that dropped collected, tree-retained fruit harvested, and all fruit juiced. For chemical analyses, sugars and acids were generally lowest in HLB dropped (HLB-D) fruit juice compared to nonshaken healthy (H), healthy retained (H-R), and healthy dropped fruit (H-D) in early season (December) but not for the late season (January) 'Hamlin' or 'Valencia' except for sugar/acid ratio. The bitter limonoids, many flavonoids, and terpenoid volatiles were generally higher in HLB juice, especially HLB-D juice, compared to the other samples. The lower sugars, higher bitter limonoids, flavonoids, and terpenoid volatiles in HLB-D fruit, loosely attached to the tree, contributed to off-flavor, as was confirmed by sensory analyses.

  3. Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments

    NASA Astrophysics Data System (ADS)

    Cuellar, Ingrith; Ravazzoli, Pablo D.; Diez, Javier A.; González, Alejandro G.

    2017-10-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops, and its predictions are successfully compared with the experimental data as well as with numerical simulations of the full Navier-Stokes equation that provide a detailed time evolution of the dewetting motion of the filament till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing theories for infinite ones.

  4. Il fenomeno della "goccia nera" e l'astigmatismo

    NASA Astrophysics Data System (ADS)

    Horn D'Arturo, Guido

    2004-03-01

    The Venus transit on the Solar disc was for the first time observed in 1639, using "modern" instruments, by Gassendi. Yet since the following transit, an effect was perceived which modified Venus and Sun profiles at the moments of the first and second visual contact between the two celestial bodies. This effect was called "gutta nigra", i.e. black drop. Horn d'Arturo was widely interested in studies on the vision and on its effects on astronomical observations. In the following paper, he suggested what probably was the first correct explanation of the black drop effect. As stated on the Dictionary of Scientific Biography (ad vocem), Horn "clarified the effect on vision, especially in the astigmatic eye, of the suture of the eye lens and the formation of the so-called black drop".

  5. The structure of dilute combusting sprays

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.

    1985-01-01

    An experimental and theoretical study of drop processes in a turbulent flame is described. The experiments involved a monodisperse (105 and 180 micro m initial diameter) stream of methanol drops injected at the base of a turbulent methane-fueled diffusion flame burning in still air. The following measurements were made: mean and fluctuating phase velocities, mean drop number flux, drop-size distributions and mean gas-phase temperatures. Measurements were compared with predictions of two separated flow models: (1) deterministic separated flow, where drop-turbulence interactions are ignored; and (2) stochastic separated flow, where drop-turbulence interactions are considered using random-walk computations. The stochastic separated flow analysis yielded best agreement with measurements, since it provides for turbulent dispersion of drops which was important for present test conditions (and probably for most combusting sprays as well). Distinguishing the presence or absence of envelope flames around the drops, however, was relatively unimportant for present test conditions, since the drops spent most of their lifetime in fuel-rich regions of the flow where this distinction is irrelevant.

  6. Infiltration processing of metal matrix composites using coated ceramic particulates

    NASA Astrophysics Data System (ADS)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The overall Ni and Cu content increased from bottom to top of the samples due to dissolution of the metal film by the stream of liquid Al during infiltration. The strengths of the Al/Ni-SiC composites, measured by four-point bending, were 205 and 225 MPa for samples reinforced with 78 mum and 49 mum Ni-SiC, respectively. The mode of fracture was mainly controlled by SiC particle fracture.

  7. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Analysis of the reflection of a micro drop fiber sensor

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo

    2005-01-01

    Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.

  9. Designing Input Fields for Non-Narrative Open-Ended Responses in Web Surveys

    PubMed Central

    Couper, Mick P.; Kennedy, Courtney; Conrad, Frederick G.; Tourangeau, Roger

    2012-01-01

    Web surveys often collect information such as frequencies, currency amounts, dates, or other items requiring short structured answers in an open-ended format, typically using text boxes for input. We report on several experiments exploring design features of such input fields. We find little effect of the size of the input field on whether frequency or dollar amount answers are well-formed or not. By contrast, the use of templates to guide formatting significantly improves the well-formedness of responses to questions eliciting currency amounts. For date questions (whether month/year or month/day/year), we find that separate input fields improve the quality of responses over single input fields, while drop boxes further reduce the proportion of ill-formed answers. Drop boxes also reduce completion time when the list of responses is short (e.g., months), but marginally increases completion time when the list is long (e.g., birth dates). These results suggest that non-narrative open questions can be designed to help guide respondents to provide answers in the desired format. PMID:23411468

  10. Drop interaction with solid boundaries in liquid/liquid systems

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/D<1) was studied using high speed imaging and planar PIV. Drops of water/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface wettability. For d/D<0.8, the Boundary between drop capture and release depended on a modified Bond number relating drop gravitational time scale to orifice surface tension time scale. For the sharp-edged case, contact was initiated at the orifice edge immediately upon impact, such that surface wettability influenced the drop outcome.

  11. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs

    NASA Astrophysics Data System (ADS)

    Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.

    Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.

  12. Vapor condensation onto a non-volatile liquid drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the coremore » of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.« less

  13. Continuous Microfluidics (Ecology-on-a-Chip) Experiments for Long Term Observation of Bacteria at Liquid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Michael; White, Andrew; Jalali, Maryam; Sheng, Jian

    2017-11-01

    A microfluidic bioassay incorporating a peristaltic pump and chemostat capable of continuously culturing a bacterial suspension through a microchannel for an extended period of time relevant to ecological processes is presented. A single crude oil droplet is dispensed on-chip and subsequently pinned to the top and bottom surfaces of the microchannel to establish a vertical curved oil-water interface to observe bacteria without boundary interference. The accumulation of extracellular polymeric substances (EPS), microbial film formation, and aggregation is provided by DIC microscopy with an EMCCD camera at an interval of 30 sec. Cell-interface interactions such as cell translational and angular motilities as well as encountering, attachment, detachment to the interface are obtained by a high speed camera at 1000 fps with a sampling interval of 10 min. Experiments on Pseudomonas sp. (P62) and isolated EPS suspensions from Sagitulla Stelleta and Roseobacter show rapid formation of bacterial aggregates including EPS streamers stretching tens of drop diameters long. These results provide crucial insights into environmentally relevant processes such as the initiation of marine oil snow, an alternative mode of biodegradation to conventional bioconsumption. Funded by GoMRI, NSF, ARO.

  14. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries.

    PubMed

    Guo, Rui; Lu, Languang; Ouyang, Minggao; Feng, Xuning

    2016-07-22

    Lithium-ion batteries connected in series are prone to be overdischarged. Overdischarge results in various side effects, such as capacity degradation and internal short circuit (ISCr). However, most of previous research on the overdischarge of a cell was terminated when the cell voltage dropped to 0 V, leaving the further impacts of overdischarge unclear. This paper investigates the entire overdischarge process of large-format lithium-ion batteries by discharging the cell to -100% state of charge (SOC). A significant voltage platform is observed at approximately -12% SOC, and ISCr is detected after the cell is overdischarged when passing the platform. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that the overdischarge-induced ISCr is caused by Cu deposition on electrodes, suggesting possible Cu collector dissolution at the voltage platform near -12% SOC. A prognostic/mechanistic model considering ISCr is used to evaluate the resistance of ISCr (RISCr), the value of which decreases sharply at the beginning of ISCr formation. Inducing the ISCr by overdischarge is effective and well controlled without any mechanical deformation or the use of a foreign substance.

  15. Dynamic behavior of the weld pool in stationary GMAW

    NASA Astrophysics Data System (ADS)

    Chapuis, J.; Romero, E.; Bordreuil, C.; Soulié, F.; Fras, G.

    2010-06-01

    Because hump formation limits welding productivity, better understanding of the humping phenomena during the welding process is needed to access to process modifications that decrease the tendency for hump formation and then allow higher productivity welding. From a physical point of view, the mechanism identified is the Rayleigh instability initiated by strong surface tension gradient which induces a variation of kinetic flow. But the causes of the appearance of this instability are not yet well explained. Because of the phenomena complex and multi-physics, we chose in first step to conduct an analysis of the characteristic times involved in weld pool in pulsed stationary GMAW. The goal is to study the dynamic behavior of the weld pool, using our experimental multi physics approach. The experimental tool and methodology developed to understand these fast phenomena are presented first: frames acquisition with high speed digital camera and specific optical devices, numerical library. The analysis of geometric parameters of the weld pool during welding operation are presented in the last part: we observe the variations of wetting angles (or contact lines angles), the base and the height of the weld pool (macro-drop) versus weld time.

  16. Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc

    PubMed Central

    Cole, Ivan S.

    2017-01-01

    This paper reviews the progress in atmospheric corrosion of zinc since 2009. It firstly summarises the state of the art in 2009, then outlines progress since 2009, and then looks at the significance of this progress and the areas the need more research. Within this framework, it looks at climate effects, oxide formation, oxide properties, pitting, laboratory duplication of atmospheric corrosion, and modelling. The major findings are that there have been major advances in the fields understanding of the structure of corrosion patina, in particular their layered structure and the presence of compact layers, local corrosion attacks have been found to be a significant process in atmospheric corrosion and experiments under droplets are leading to new understanding of the criticality of drop size in regulating atmospheric corrosion processes. Further research is indicating that zinc oxide within corrosion products may promote the oxygen reduction reaction (ORR) and that, in porous oxides, the ORR would control pore chemistry and may promote oxide densification. There is a strong need for more research to understand more deeply the formation and properties of these layered oxides as well as additional research to refine and quantify our emerging understanding of corrosion under droplets. PMID:29120373

  17. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Lu, Languang; Ouyang, Minggao; Feng, Xuning

    2016-07-01

    Lithium-ion batteries connected in series are prone to be overdischarged. Overdischarge results in various side effects, such as capacity degradation and internal short circuit (ISCr). However, most of previous research on the overdischarge of a cell was terminated when the cell voltage dropped to 0 V, leaving the further impacts of overdischarge unclear. This paper investigates the entire overdischarge process of large-format lithium-ion batteries by discharging the cell to -100% state of charge (SOC). A significant voltage platform is observed at approximately -12% SOC, and ISCr is detected after the cell is overdischarged when passing the platform. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that the overdischarge-induced ISCr is caused by Cu deposition on electrodes, suggesting possible Cu collector dissolution at the voltage platform near -12% SOC. A prognostic/mechanistic model considering ISCr is used to evaluate the resistance of ISCr (RISCr), the value of which decreases sharply at the beginning of ISCr formation. Inducing the ISCr by overdischarge is effective and well controlled without any mechanical deformation or the use of a foreign substance.

  18. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode.

    PubMed

    Poulton, Christopher V; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A

    2015-09-15

    We demonstrate an add-drop filter based on a dual photonic crystal nanobeam cavity system that emulates the operation of a traveling wave resonator, and, thus, provides separation of the through and drop port transmission from the input port. The device is on a 3×3  mm chip fabricated in an advanced microelectronics silicon-on-insulator complementary metal-oxide semiconductor (SOI CMOS) process (IBM 45 nm SOI) without any foundry process modifications. The filter shows 1 dB of insertion loss in the drop port with a 3 dB bandwidth of 64 GHz, and 16 dB extinction in the through port. To the best of our knowledge, this is the first implementation of a port-separating, add-drop filter based on standing wave cavities coupled to conventional waveguides, and demonstrates a performance that suggests potential for photonic crystal devices within optical immersion lithography-based advanced CMOS electronics-photonics integration.

  19. The Story of a Dewdrop.

    ERIC Educational Resources Information Center

    Abrikosov, A. A.

    1992-01-01

    Looks at one phase of the water cycle; the formation of drops in cooling water vapor. Examines the influence of surface shape on the equilibrium of the liquid and gas phases. Discusses the mathematical formulas that model the phenomenon. (MDH)

  20. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1992-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  1. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1993-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  2. Characteristic properties of laser ablation of translucent targets

    NASA Astrophysics Data System (ADS)

    Platonov, V. V.; Kochurin, E. A.; Osipov, V. V.; Lisenkov, V. V.; Zubarev, N. M.

    2018-07-01

    This study reveals the characteristic features of the laser ablation of the solid Nd:Y2O3 targets, such as the dynamics of the laser plume, the crater depth, and the weight and size distribution of liquid melt droplets. The ablation was initiated by the ytterbium fiber laser radiation pulses with constant energy (0.67 J) and with different power densities. The dependence on the power density of such parameters as the injection time of drops, mass distribution of drops, crater depth, and productivity of synthesis of nonopowder was revealed. To explain the formation of deep craters a model was proposed, stating that the formation of liquid droplets is a consequence of the Kelvin–Helmholtz instability’s appearing and developing on the border between the liquid melt on the crater’s wall and the vapor flow from the crater. The increment of this instability and its characteristic size was determined.

  3. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Daniel; Lobban, Lance; Crossley, Steven

    The goal was to develop a biomass conversion process that optimizes fractionation and conversion to maximize Carbon efficiency and Hydrogen consumption to obtain drop-in fuels. Selective fractionation of raw biomass was obtained via multi-stage thermal fractionation to produce different streams that are enriched in a particular chemical family (acids, furanics or phenolics). These streams were later catalytically upgraded in both liquid and vapor phase to perform C-C bond formation and hydrodeoxygenation. Among various upgrading strategies investigated we have identified an effective path in which cyclopentanone is a crucial intermediate that can be derived from furfural and other furanics obtained inmore » high concentrations from this thermal staged process. Cyclopentanone is a very versatile molecule, which can couple with itself to product high quality jet-fuel, or couple with phenolic or furanics to create long chain molecules. These (mono-oxygenated) compounds in the correct molecular weight fuel range can be hydrotreated to direct drop-in fuels. Interestingly, we have found that the conversion of furfural to cyclopentanone is not affected by the presence of acetic acid, and, more interestingly, it is enhanced by the presence of water. These are very significant findings, since water and acetic acid are always present in all streams from the primary conversion stage. These results have allowed to complete detailed life-cycle assessment and techno-economic analysis that have been back-fed to the experimentalists to refine the catalyst selection and process operations with the objective of maximizing C efficiency at minimum H utilization. These combined investigations have opened the possibility of an economically and technologically effective process that could result in commercial fuels produced from renewable sources at a cost that might be competitive with fossil fuels.« less

  4. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.

  5. Chondrules born in plasma? Simulation of gas-grain interaction using plasma arcs with applications to chondrule and cosmic spherule formation

    NASA Astrophysics Data System (ADS)

    Morlok, A.; Sutton, Y. C.; Braithwaite, N. St. J.; Grady, Monica M.

    2012-12-01

    Abstract-We are investigating chondrule formation by nebular shock waves, using hot plasma as an analog of the heated gas produced by a shock wave as it passes through the protoplanetary environment. Precursor material (mainly silicates, plus metal, and sulfide) was dropped through the plasma in a basic experimental set-up designed to simulate gas-grain collisions in an unconstrained spatial environment (i.e., no interaction with furnace walls during formation). These experiments were undertaken in air (at atmospheric pressure), to act as a "proof-of-principle"—could chondrules, or chondrule-analog objects (CAO), be formed by gas-grain interaction initiated by shock fronts? Our results showed that if accelerating material through a fixed plasma field is a valid simulation of a supersonic shock wave traveling through a cloud of gas and dust, then CAO certainly could be formed by this process. Melting of and mixing between starting materials occurred, indicating temperatures of at least 1266 °C (the olivine-feldspar eutectic). The production of CAO with mixed mineralogy from monomineralic starting materials also shows that collisions between particles are an important mechanism within the chondrule formation process, such that dust aggregates are not necessarily required as chondrule precursors. Not surprisingly, there were significant differences between the synthetic CAO and natural chondrules, presumably mainly because of the oxidizing conditions of the experiment. Results also show similarity to features of micrometeorites like cosmic spherules, particularly the dendritic pattern of iron oxide crystallites produced on micrometeorites by oxidation during atmospheric entry and the formation of vesicles by evaporation of sulfides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9699V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9699V"><span>Integrated stratigraphy of the Ammer section, Northern Alpine Foreland Basin, Germany: examining the age and origin of the earliest deposits in the Paratethys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der boon, Annique; Beniest, Anouk; Ciurej, Agnieszka; Gaździcka, Elzbieta; Grothe, Arjen; Sachsenhofer, Reinhard; Langereis, Cor; Krijgsman, Wout</p> <p>2017-04-01</p> <p>The Northern Alpine Foreland Basin (NAFB) was an arm of the epicontinental Paratethys Sea during the Oligocene. The Oligocene and Miocene deposits in the Paratethys are linked to a long-term phase of episodically oxygen-poor conditions. This led to the deposition of organic-rich shales over millions of years, which nowadays make up the most important part of the source rocks of the Paratethys. At the Eocene-Oligocene transition (EOT), global sea-level dropped by an estimated 70 meters. Both this eustatic sea-level drop and large scale tectonic movements are inferred as mechanisms for restriction of connections to the global ocean and consecutive basin isolation in the Paratethys. Discriminating sea-level effects from tectonic processes requires accurate dating of Oligocene deposits. Here, we use an integrated stratigraphic approach, combining different biostratigraphic techniques with magnetostratigraphy and organic geochemistry, to determine the age of the Tonmergel formation along the Ammer River in southern Germany. The Tonmergel formation is usually interpreted as the equivalent of the Paratethys Lower Oligocene organic-rich shales. The age of deposits (typically mapped as Oligocene) in this region is currently under debate, as some studies suggest they might be late Eocene in age. The absence of marker species for biostratigraphic zones, the scarcity of ash layers and the lack of formally defined boundaries of nannoplankton zones around the Eocene-Oligocene interval (e.g. the NP19-20/NP21 boundary) further obstruct accurate dating. Here we present the results of our magnetostratigraphy, biostratigraphy and organic geochemistry and interpret whether any lithological changes can be linked to climate forcing or tectonic processes. Based on the combined results of our study we provide several options for the age of these earliest Paratethys deposits, and discuss our preferred option.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1444082-galinstan-liquid-metal-breakup-droplet-formation-shock-induced-cross-flow','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1444082-galinstan-liquid-metal-breakup-droplet-formation-shock-induced-cross-flow"><span>Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham</p> <p></p> <p>Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ApJ...671L.113L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ApJ...671L.113L"><span>The Star Formation Demographics of Galaxies in the Local Volume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Janice C.; Kennicutt, Robert C.; Funes, S. J., José G.; Sakai, Shoko; Akiyama, Sanae</p> <p>2007-12-01</p> <p>We examine the connections between the current global star formation activity, luminosity, dynamical mass, and morphology of galaxies in the Local Volume, using Hα data from the 11 Mpc Hα and Ultraviolet Galaxy Survey (11HUGS). Taking the equivalent width (EW) of the Hα emission line as a tracer of the specific star formation rate, we analyze the distribution of galaxies in the MB-EW and rotational velocity (Vmax)-EW planes. Star-forming galaxies show two characteristic transitions in these planes. A narrowing of the galaxy locus occurs at MB~-15 and Vmax~50 km s-1, where the scatter in the logarithmic EWs drops by a factor of 2 as the luminosities/masses increase, and galaxy morphologies shift from predominately irregular to late-type spiral. Another transition occurs at MB~-19 and Vmax~120 km s-1, above which the sequence turns off toward lower EWs and becomes mostly populated by intermediate- and early-type bulge-prominent spirals. Between these two transitions, the mean logarithmic EW appears to remain constant at 30 Å. We comment on how these features reflect established empirical relationships, and provide clues for identifying the large-scale physical processes that both drive and regulate star formation, with emphasis on the low-mass galaxies which dominate our approximately volume-limited sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1444082-galinstan-liquid-metal-breakup-droplet-formation-shock-induced-cross-flow','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1444082-galinstan-liquid-metal-breakup-droplet-formation-shock-induced-cross-flow"><span>Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham; ...</p> <p>2018-05-22</p> <p>Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.463.2986S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.463.2986S"><span>Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.</p> <p>2016-12-01</p> <p>We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ASSL..430...67S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ASSL..430...67S"><span>Gas Accretion and Star Formation Rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez Almeida, Jorge</p> <p></p> <p>Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=image+AND+j&id=EJ921287','ERIC'); return false;" href="https://eric.ed.gov/?q=image+AND+j&id=EJ921287"><span>Contact Angle Measurements Using a Simplified Experimental Setup</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric</p> <p>2010-01-01</p> <p>A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22572189-kev-sterile-neutrino-dark-matter-from-singlet-scalar-decays-most-general-case','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22572189-kev-sterile-neutrino-dark-matter-from-singlet-scalar-decays-most-general-case"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>König, Johannes; Merle, Alexander; Totzauer, Maximilian</p> <p></p> <p>We investigate the early Universe production of sterile neutrino Dark Matter by the decays of singlet scalars. All previous studies applied simplifying assumptions and/or studied the process only on the level of number densities, which makes it impossible to give statements about cosmic structure formation. We overcome these issues by dropping all simplifying assumptions (except for one we showed earlier to work perfectly) and by computing the full course of Dark Matter production on the level of non-thermal momentum distribution functions. We are thus in the position to study a broad range of aspects of the resulting settings and applymore » a broad set of bounds in a reliable manner. We have a particular focus on how to incorporate bounds from structure formation on the level of the linear power spectrum, since the simplistic estimate using the free-streaming horizon clearly fails for highly non-thermal distributions. Our work comprises the most detailed and comprehensive study of sterile neutrino Dark Matter production by scalar decays presented so far.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..262a2028I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..262a2028I"><span>Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.</p> <p>2017-11-01</p> <p>According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARS36013R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARS36013R"><span>Approaching a flat boundary with a block copolymer coated emulsion drop: late stage drainage dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rozairo, Damith; Croll, Andrew</p> <p></p> <p>Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15359577','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15359577"><span>Solvent exchange method: a novel microencapsulation technique using dual microdispensers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yeo, Yoon; Chen, Alvin U; Basaran, Osman A; Park, Kinam</p> <p>2004-08-01</p> <p>A new microencapsulation method called the "solvent exchange method" was developed using a dual microdispenser system. The objective of this research is to demonstrate the new method and understand how the microcapsule size is controlled by different instrumental parameters. The solvent exchange method was carried out using a dual microdispenser system consisting of two ink-jet nozzles. Reservoir-type microcapsules were generated by collision of microdrops of an aqueous and a polymer solution and subsequent formation of polymer films at the interface between the two solutions. The prepared microcapsules were characterized by microscopic methods. The ink-jet nozzles produced drops of different sizes with high accuracy according to orifice size of a nozzle, flow rate of the jetted solutions, and forcing frequency of the piezoelectric transducers. In an individual microcapsule, an aqueous core was surrounded by a thin polymer membrane; thus, the size of the collected microcapsules was equivalent to that of single drops. The solvent exchange method based on a dual microdispenser system produces reservoir-type microcapsules in a homogeneous and predictable manner. Given the unique geometry of the microcapsules and mildness of the encapsulation process, this method is expected to provide a useful alternative to existing techniques in protein microencapsulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhRvE..74a6123T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhRvE..74a6123T"><span>Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treiber, Martin; Kesting, Arne; Helbing, Dirk</p> <p>2006-07-01</p> <p>We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck and in a closed ring road. Single-vehicle data and one-minute aggregated data generated by several virtual detectors show a semiquantitative agreement with microscopic and flow-density data from the Dutch freeway A9. This includes the observed distributions of the net time headways for free and congested traffic, the velocity variance as a function of density, and the fundamental diagram. The modal value of the time headway distribution is shifted by a factor of about 2 under congested conditions. Macroscopically, this corresponds to the capacity drop at the transition from free to congested traffic. The simulated fundamental diagram shows free, synchronized, and jammed traffic, and a wide scattering in the congested traffic regime. We explain this by a self-organized variance-driven process that leads to the spontaneous formation and decay of long-lived platoons even for a deterministic dynamics on a single lane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024684','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024684"><span>Hydrological response to earthquakes in the Haibara well, central Japan - II. Possible mechanism inferred from time-varying hydraulic properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Matsumoto, N.; Roeloffs, E.A.</p> <p>2003-01-01</p> <p>28 coseismic groundwater level decreases have been observed at the Haibara well, Shizuoka prefecture, central Japan, from 1981 to 1997. These groundwater level changes cannot be explained as the poroelastic response to coseismic static strain. We use the atmospheric pressure and tidal responses of the well, rock properties measured on core samples from the same formation and pumping test results to characterize the hydraulic and mechanical properties of the aquifer. The responses of the Haibara well to the M2 Earth tide constituent and to atmospheric pressure have varied over time. In particular, increasing amplitude and decreasing phase lags were observed after the 1993 pumping test, as well as after earthquakes that caused coseismic water level changes. The tidal response, together with the surface load efficiency derived from the atmospheric pressure response, is used to estimate the mechanical properties of the aquifer. The largest amplitude of the M2 constituent, 2.2 mm, is small enough to imply that pore fluid in this system is approximately twice as compressible as water, possibly due to the presence of a small amount of exsolved gas. Diffusion of a coseismic pressure drop near the well could account for the observed time histories of the water level changes. The time histories of the water level drops are well matched by the decay of a coseismic pressure drop at least 80 m away from the well. Removal of a small amount of gas from the formation in that location might in turn explain the coseismic pressure drops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4287498','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4287498"><span>RecFOR Is Not Required for Pneumococcal Transformation but Together with XerS for Resolution of Chromosome Dimers Frequently Formed in the Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Johnston, Calum; Mortier-Barrière, Isabelle; Granadel, Chantal; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre</p> <p>2015-01-01</p> <p>Homologous recombination (HR) is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss) DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA - cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells) formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells) was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that different HR machineries exist for genome maintenance and transformation in pneumococci. These observations presumably apply to most naturally transformable species. PMID:25569614</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..315L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..315L"><span>Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing</p> <p>2018-01-01</p> <p>Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or partially propped by the proppants. This paper provides insights on fracture propagation and can be a reference for fracturing treatments in unconventional tight reservoirs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARW50005W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARW50005W"><span>Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan</p> <p>2012-02-01</p> <p>Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDG32004D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDG32004D"><span>Ring formation on an inclined surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deegan, Robert; Du, Xiyu</p> <p>2015-11-01</p> <p>A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5388897','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5388897"><span>The Dynamic Surface Tension of Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28301160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28301160"><span>The Dynamic Surface Tension of Water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel</p> <p>2017-04-06</p> <p>The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFD.D5008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFD.D5008M"><span>Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias</p> <p>2015-11-01</p> <p>Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApPhA.120..207Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApPhA.120..207Y"><span>A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al-Cu-Sn alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.</p> <p>2015-07-01</p> <p>The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29459628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29459628"><span>Submarine slope failures due to pipe structure formation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H</p> <p>2018-02-19</p> <p>There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54...59A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54...59A"><span>Artificial neural network modeling of a deflector in a grooved channel as well as optimization of its effective parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdollahi, Azita; Shams, Mehrzad; Abdollahi, Anita</p> <p>2018-01-01</p> <p>One of methods available to increase the rate of heat transfer in channels with parallel plates is making grooves in them. But, the fundamental problem of this method is the formation of stagnation zone in the grooves and as a result formation a zone with low energy transfer. In this paper, the effect of placing curved deflectors (geometries with elliptical forms) in channel on thermal and hydraulic characteristic of the fluid flow- with the aim of directing of the flow into the grooves and as a result increasing the rate of heat transfer in this zone- are investigated and heat transfer coefficient and pressure drop are calculated for different values of Reynolds number and geometrical parameters of the deflector (its small and large radiuses). The results show that the presence of the deflector in the channel significantly increases the heat transfer rate compare to the channel without deflector. Of course, it should be noted that this work also increases the pressure drop. So, finally in order to determine configurations of the deflector causing minimum pressure drop, maximum Nusselt number or a balance between them, optimization algorithm consisting of artificial neural network and multi-objective genetic algorithm was utilized to calculate the optimal values of these parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4233147','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4233147"><span>High Throughput, Polymeric Aqueous Two-Phase Printing of Tumor Spheroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Atefi, Ehsan; Lemmo, Stephanie; Fyffe, Darcy; Luker, Gary D.; Tavana, Hossein</p> <p>2014-01-01</p> <p>This paper presents a new 3D culture microtechnology for high throughput production of tumor spheroids and validates its utility for screening anti-cancer drugs. We use two immiscible polymeric aqueous solutions and microprint a submicroliter drop of the “patterning” phase containing cells into a bath of the “immersion” phase. Selecting proper formulations of biphasic systems using a panel of biocompatible polymers results in the formation of a round drop that confines cells to facilitate spontaneous formation of a spheroid without any external stimuli. Adapting this approach to robotic tools enables straightforward generation and maintenance of spheroids of well-defined size in standard microwell plates and biochemical analysis of spheroids in situ, which is not possible with existing techniques for spheroid culture. To enable high throughput screening, we establish a phase diagram to identify minimum cell densities within specific volumes of the patterning drop to result in a single spheroid. Spheroids show normal growth over long-term incubation and dose-dependent decrease in cellular viability when treated with drug compounds, but present significant resistance compared to monolayer cultures. The unprecedented ease of implementing this microtechnology and its robust performance will benefit high throughput studies of drug screening against cancer cells with physiologically-relevant 3D tumor models. PMID:25411577</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RScI...85i4103B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RScI...85i4103B"><span>Characterization of buried metal-molecule-metal junctions using Fourier transform infrared microspectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babayco, Christopher B.; Land, Donald P.; Parikh, Atul N.; Kiehl, Richard A.</p> <p>2014-09-01</p> <p>We have devised an infrared spectromicroscopy based experimental configuration to enable structural characterization of buried molecular junctions. Our design utilizes a small mercury drop at the focal point of an infrared microscope to act as a mirror in studying metal-molecule-metal (MmM) junctions. An organic molecular monolayer is formed either directly on the mercury drop or on a thin, infrared (IR) semi-transparent layer of Au deposited onto an IR transparent, undoped silicon substrate. Following the formation of the monolayer, films on either metal can be examined independently using specular reflection spectroscopy. Furthermore, by bringing together the two monolayers, a buried molecular bilayer within the MmM junction can be characterized. Independent examination of each half of the junction prior to junction formation also allows probing any structural and/or conformational changes that occur as a result of forming the bilayer. Because our approach allows assembling and disassembling microscopic junctions by forming and withdrawing Hg drops onto the monolayer covered metal, spatial mapping of junctions can be performed simply by translating the location of the derivatized silicon wafer. Finally, the applicability of this technique for the longer-term studies of changes in molecular structure in the presence of electrical bias is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869877','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869877"><span>Preparation of superconductor precursor powders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bhattacharya, Raghunath; Blaugher, Richard D.</p> <p>1995-01-01</p> <p>A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2233B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2233B"><span>Karstic terrain in the equatorial layered deposits within a crater in northern Sinus Meridiani, Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baioni, Davide</p> <p>2017-04-01</p> <p>This work investigates the equatorial layered deposits (ELDs) located within a crater located in northern Sinus Meridiani, Mars (4.430 N, 3.320 W), which display traits that are consistent with formation by karst-driven processes. Here, shallow depressions showing a variety of plan forms ranging from rounded, circular, elongated, polygonal and drop-like to elliptical can be observed. The morphologic and morphometric analyses performed, highlight that these depressions display strong morphometric (sizes) and morphologic (shapes, bottoms, walls) similarities with the karst depressions that are common on limestone and evaporite terrains on the Earth and other regions on Mars. On the basis of the characteristics of the investigated landforms and the similarities of features on Earth and Mars, and after discarding other possible origins such as, aeolian, periglacial, volcanic or impact related processes, it has been inferred that the depressions are karstic dolines formed polygenetically by corrosion and solution-related intra-crater processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT.......157P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT.......157P"><span>Emergent self-similarity of cluster coagulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pushkin, Dmtiri O.</p> <p></p> <p>A wide variety of nonequilibrium processes, such as coagulation of colloidal particles, aggregation of bacteria into colonies, coalescence of rain drops, bond formation between polymerization sites, and formation of planetesimals, fall under the rubric of cluster coagulation. We predict emergence of self-similar behavior in such systems when they are 'forced' by an external source of the smallest particles. The corresponding self-similar coagulation spectra prove to be power laws. Starting from the classical Smoluchowski coagulation equation, we identify the conditions required for emergence of self-similarity and show that the power-law exponent value for a particular coagulation mechanism depends on the homogeneity index of the corresponding coagulation kernel only. Next, we consider the current wave of mergers of large American banks as an 'unorthodox' application of coagulation theory. We predict that the bank size distribution has propensity to become a power law, and verify our prediction in a statistical study of the available economical data. We conclude this chapter by discussing economically significant phenomenon of capital condensation and predicting emergence of power-law distributions in other economical and social data. Finally, we turn to apparent semblance between cluster coagulation and turbulence and conclude that it is not accidental: both of these processes are instances of nonlinear cascades. This class of processes also includes river network formation models, certain force-chain models in granular mechanics, fragmentation due to collisional cascades, percolation, and growing random networks. We characterize a particular cascade by three indicies and show that the resulting power-law spectrum exponent depends on the indicies values only. The ensuing algebraic formula is remarkable for its simplicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23261338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23261338"><span>Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian</p> <p>2013-03-15</p> <p>Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4737071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4737071"><span>Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze–thaw cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry</p> <p>2016-01-01</p> <p>Freeze–thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice–liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree–water relations. We investigated water fluxes induced by ice formation during freeze–thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark’s living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze–thaw cycles in tree stems. PMID:26585223</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFDD34008G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFDD34008G"><span>Building micro-soccer-balls with evaporating colloidal fakir drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.</p> <p>2013-11-01</p> <p>Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21889152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21889152"><span>Drop shape visualization and contact angle measurement on curved surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guilizzoni, Manfredo</p> <p>2011-12-01</p> <p>The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CryRp..63..493G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CryRp..63..493G"><span>On the Relationship of the Fractal Dimension of Structure with the State of Drying Drops of Crystallizing Solutions (Thermodynamic and Experimental Modeling)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golovanova, O. A.; Chikanova, E. S.; Fedoseev, V. B.</p> <p>2018-05-01</p> <p>The processes occurring in aqueous salt solutions have been investigated based on thermodynamic and experimental modeling. The self-organization in a drying drop of dehydrated liquids is analyzed using the fractal theory, due to which the quantitative characteristics of the crystallization processes in a small volume are obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=attrition&pg=7&id=EJ954053','ERIC'); return false;" href="https://eric.ed.gov/?q=attrition&pg=7&id=EJ954053"><span>A Theoretical Model and Analysis of the Effect of Self-Regulation on Attrition from Voluntary Online Training</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sitzmann, Traci</p> <p>2012-01-01</p> <p>A theoretical model is presented that examines self-regulatory processes and trainee characteristics as predictors of attrition from voluntary online training in order to determine who is at risk of dropping out and the processes that occur during training that determine when they are at risk of dropping out. Attrition increased following declines…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26082005','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26082005"><span>Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V</p> <p>2016-04-01</p> <p>The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030336','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030336"><span>Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fletcher, Joe B.; McGarr, A.</p> <p>2006-01-01</p> <p>Using information provided by slip models and the methodology of McGarr and Fletcher (2002), we map static stress drop, stiffness (k = ????/u, where ???? is static stress drop and u is slip), and fracture energy over the slip surface to investigate the earthquake rupture process and energy budget. For the 1994 M6.7 Northridge, 1992 M7.3 Landers, and 1995 M6.9 Kobe earthquakes, the distributions of static stress drop show strong heterogeneity, emphasizing the importance of asperities in the rupture process. Average values of static stress drop are 17, 11, and 4 Mpa for Northridge, Landers, and Kobe, respectively. These values are substantially higher than estimates based on simple crack models, suggesting that the failure process involves the rupture of asperities within the larger fault zone. Stress drop as a function of depth for the Northridge and Landers earthquakes suggests that stress drops are limited by crustal strength. For these two earthquakes, regions of high slip are surrounded by high values of stiffness. Particularly for the Northridge earthquake, the prominent patch of high slip in the central part of the fault is bordered by a ring of high stiffness and is consistent with expectations based on the failure of an asperity loaded at its edge due to exterior slip. Stiffness within an asperity is inversely related to its dimensions. Estimates of fracture energy, based on static stress drop, slip, and rupture speed, were used to investigate the nature of slip weakening at four locations near the hypocenter of the Kobe earthquake for comparison with independent results based on a dynamic model of this earthquake. One subfault updip and to the NE of the hypocenter has a fracture energy of 1.1 MJ/m2 and a slip-weakening distance, Dc, of 0.66 m. Right triangles, whose base and height are Dc and the dynamic stress drop, respectively, approximately overlie the slip-dependent stress given by Ide and Takeo (1997) for the same locations near the hypocenter. The total fracture energy for the Kobe earthquake, 3.7 ?? 1014 J, is about the same as the seismic energy (Ea = 3.2 ?? 1014 J.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.687a2016M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.687a2016M"><span>Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.</p> <p>2016-02-01</p> <p>Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28893068','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28893068"><span>Wetting and Coalescence of Drops of Self-Healing Agents on Electrospun Nanofiber Mats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>An, Seongpil; Kim, Yong Il; Lee, Min Wook; Yarin, Alexander L; Yoon, Sam S</p> <p>2017-10-10</p> <p>Here we study experimentally the behavior of liquid healing agents released in vascular core-shell nanofiber mats used in self-healing engineered materials. It is shown that wettability-driven spreading of liquid drops is accompanied by the imbibition into the nanofiber matrix, and its laws deviate from those known for spreading on an intact surface. We also explore coalescence of the released drops on nanofiber mats, in particular, coalescence of drops of resin monomer and cure important for self-healing. The coalescence process is also affected by the imbibition into the pores of an underlying nanofiber mat. A theoretical model is developed to account for the imbibition effect on drop coalescence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19495334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19495334"><span>Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya</p> <p>2005-05-30</p> <p>We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989SPIE.1145..350L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989SPIE.1145..350L"><span>FT-IR Spectroscopic Evidence Of Phase Transition For NaA-ROH-Kerosine-H2O Microemulsion System Containing Nd3+ Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Hua; Xu, Zhen-Hua; Shi, Nai; Wu, Jin-Guang; Xu, Guang-Xian</p> <p>1989-12-01</p> <p>In the previous investigation, the saponification of naphthenic acid extractant system has been proved to be a process of the formation of a microemulsion of 14/0 type, and its full extraction of rare earths is a process of destruction of the W/O microemulsion[1]. When NdCl3 is partially extracted with NaA (sodium naphthenate) secoctylalcohol-- kerosine-- water microemulsion system (ME), both the NdA3 and the NaA co-exist in the same organic phase. However,the formation mechanism of microemulsion containing neodymium has not been much studied. In this paper, 10 aliquots of fully saponificated extractants were equilibrated with various amounts of NdC13 solutions respectively, then ten organic phases with different extraction efficiencies of neodymium from 094 to 9094 were obtained. After extraction,the volume of neodymium containing organic phase increased by 5 to 4594, because of the transfer of water molecules. The appearance of these organic phase still remained clear and transparent. The average hydrodynamic radius of the drops were found to be 100-300 Angstrom by using light scattering techniques. The results give a direct evidence of the microemulsion formation in the organic phase. Their FT-IR spectra were measured with CaFa liquid cells utilizing a Nicolet 7199B FT-IR spectrometer. The presence of various amounts of water in the organic phases was clearly detected from the relative intensity changes of 1644 cm-I, which is assigned to the bending mode of 1110 molecules. Fig.1 shows the change of water contents to the percent extraction of neodymium. Comparsion with the FT-IR spectra, it is seen that the 1560 cm-1 peak of the full saponificated extractant is attributed to the asym. stretching vibration of COO''' group, it shifted to 1536 for 100% extration of Nd ions, indicating the formation of neodymium naphthenate (NdA ) from ionic sodium naphthenate. The sym. strethching vibration of COO''' located at 1406 cm-1, it shifted to 1408 cm in 45% Nd extration. and disappeared when the percentage extration of Nd3+ was larger than 50%, at the same time, the water content dropped sharply (Fig.1).These results suggested that a series of microemulsion containing Nd ions formed in these organic phases, at the transition region ( more than 50 percentage extration of neodymium), a morphological change of the W/0 dispersion system might occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820015552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820015552"><span>A numerical study of drop-on-demand ink jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fromm, J.</p> <p>1982-01-01</p> <p>Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhL.103e4105L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhL.103e4105L"><span>Electrostatic formation of liquid marbles and agglomerates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.</p> <p>2013-07-01</p> <p>We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16486155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16486155"><span>Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kajiya, Tadashi; Nishitani, Eisuke; Yamaue, Tatsuya; Doi, Masao</p> <p>2006-01-01</p> <p>We studied the drying process of polymer solution drops placed on a substrate having a large contact angle with the drop. The drying process takes place in three stages. First, the droplet evaporates keeping the contact line fixed. Second, the droplet shrinks uniformly with receding contact line. Finally the contact line is pinned again, and the droplet starts to be deformed. The shape of the final polymer deposit changes from concave dot, to flat dot, and then to concave dot again with the increase of the initial polymer concentration. This shape change is caused by the gradual transition from the solute piling mechanism proposed by Deegan to the crust buckling mechanism proposed by de Gennes and Pauchard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EML....14...64M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EML....14...64M"><span>Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh</p> <p>2018-01-01</p> <p>In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920074043&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920074043&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmagnetic%2Bcooling"><span>Prominence condensation and magnetic levitation in a coronal loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Hoven, G.; Mok, Y.; Drake, J. F.</p> <p>1992-01-01</p> <p>The results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of the normal-polarity Kippenhahn-Schlueter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, elucidates the various contributions to the nonlinear dynamics of prominence condensation and levitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H11F0903V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H11F0903V"><span>Affordable Acoustic Disdrometer: Design, Calibration, Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van de Giesen, N.; Degen, C.; Hut, R.</p> <p>2009-12-01</p> <p>It would be a hydrological understatement to say that measuring rainfall correctly is important. Recent years have seen important lowering of the costs of raingauges capable of measuring rainfall intensities. Such raingauges are typically tipping bucket raingauges, connected to an event logger. Costs for such a raingauge are about 100. Accuracy is not always very high, especially during high intensity storms. The moving parts make them vulnerable to slight disruptions such as insects. We set out to design a raingauge without moving parts and at a better price/quality ratio than existing raingauges. After testing several potential candidates, we settled on a very simple piezo ceramic element, which measures the impact of single drops. Such an element costs around 1. The impact of each drop causes an acoustic signal that is transformed into a voltage. A typical impact gives an upswing of up to 1 V and the ringing lasts about 50 ms. With a surface area of about 20 cm2, there is almost never overlap between the signals of different drops. The basic assumption is that each drop will have reached terminal velocity and that the total energy of the impact can, thereby, be related to drop size. We calibrated this acoustic disdrometer by letting drops of different size fall on the disdrometer. A very encouraging calibration curve was obtained in this way. Further testing consisted of comparisons during rainstorms between the acoustic disdrometer and standard tipping bucket raingauges. During intensive storms, the acoustic disdrometer gave results that were very close to those of a nearby totaling raingauge. The signal of the tipping bucket raingauges was clearly saturated as these were not capable of keeping up with the rain. During low intensity events, tipping bucket raingauges performed better as drops too small to detect by the acoustic disdrometer became a significant part of the total rainfall. In first instance, a simple MP3 player with recording functionality ($50) was used as datalogger and processing was performed with a Matlab script. Presently, processing is done on-board of a simple custom built logger that logs the time and total energy of each drop. Post-processing converts the total energy to drop size and corrects for missing small drops by fitting the pdf’s to known raindrop distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24810240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24810240"><span>Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J</p> <p>2014-08-25</p> <p>Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940009975','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940009975"><span>Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reitz, R. D.; Rutland, C. J.</p> <p>1993-01-01</p> <p>A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006OExpr..1412049P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006OExpr..1412049P"><span>Robustness of 40 Gb/s ASK modulation formats in the practical system infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pincemin, Erwan; Tan, Antoine; Bezard, Aude; Tonello, Alessandro; Wabnitz, Stefano; Ania-Castañòn, Juan-Diego; Turitsyn, Sergei</p> <p>2006-12-01</p> <p>In this work, we theoretically and experimentally analyzed the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3529539','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3529539"><span>Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hubert, Olivier; Mbéguié-A-Mbéguié, Didier</p> <p>2012-01-01</p> <p>Background and aims Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes. Methods Postharvest ripening of green banana fruit was induced by acetylene treatment and fruit taken at 1–4 days after ripening induction, and total RNA extracted from the median area [control zone (CZ)] and the pedicel rupture area [drop zone (DZ)] of peel tissue. Then the expression patterns of EB genes (MaACO1, MaACO2, MaACS1, MaACS2, MaACS3 and MaACS4) were comparatively examined in CZ and DZ via real-time quantitative polymerase chain reaction. Principal results Differential expression of EB gene was observed in CZ and DZ during the postharvest period examined in this study. MaACO1, MaACS2 and MaACS1 were more highly induced in DZ than in the control, while a slight induction of the MaACS4 gene was observed. No marked differences between the two zones were observed for the MaACO2 gene. Conclusions The finger drop process enhanced EB gene expression including developmental- and ripening-induced genes (MaACO1), specific ripening-induced genes (MaACS1) and wound-induced genes (MaACS2). Thus, this process might be associated with a specific ethylene production in DZ of the pedicel area and the result of crosstalk between developmental, ripening and wound regulatory pathways. MaACO1, MaACS1, MaACS2, and to a lesser extent MaACS4 genes, which are more highly induced in DZ than in CZ, could be considered as putative candidates of the finger drop process. PMID:23267429</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMag...93.4090T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMag...93.4090T"><span>Characteristics of large three-dimensional heaps of particles produced by ballistic deposition from extended sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Topic, Nikola; Gallas, Jason A. C.; Pöschel, Thorsten</p> <p>2013-11-01</p> <p>This paper reports a detailed numerical investigation of the geometrical and structural properties of three-dimensional heaps of particles. Our goal is the characterization of very large heaps produced by ballistic deposition from extended circular dropping areas. First, we provide an in-depth study of the formation of monodisperse heaps of particles. We find very large heaps to contain three new geometrical characteristics: they may display two external angles of repose, one internal angle of repose, and four distinct packing fraction (density) regions. Such features are found to be directly connected with the size of the dropping zone. We derive a differential equation describing the boundary of an unexpected triangular packing fraction zone formed under the dropping area. We investigate the impact that noise during the deposition has on the final heap structure. In addition, we perform two complementary experiments designed to test the robustness of the novel features found. The first experiment considers changes due to polydispersity. The second checks what happens when letting the extended dropping zone to become a point-like source of particles, the more common type of source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27815483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27815483"><span>Effect of Autologous Serum Eye Drops in Patients with Sjögren Syndrome-related Dry Eye: Clinical and In Vivo Confocal Microscopy Evaluation of the Ocular Surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Semeraro, Francesco; Forbice, Eliana; Nascimbeni, Giuseppe; Taglietti, Marco; Romano, Vito; Guerra, Germano; Costagliola, Ciro</p> <p></p> <p>To evaluate in vivo changes after therapy using autologous serum (AS) eye drops in Sjögren's syndrome (SS)-related dry eyes by confocal microscopy. In this study, 24 patients with SS-related dry eyes [12 in AS eye drop therapy and 12 in artificial tear (AT) therapy] and 24 healthy volunteers were recruited. Ocular Surface Disease Index (OSDI), central corneal thickness, tear film, break-up time, corneal and conjunctival staining, Schirmer's test and corneal confocal microscopy were investigated. Tear production, tear stability, corneal staining, inflammation, and central corneal thickness, Langherans cells, activated keratocytes, intermediate epithelial cell density, nerve tortuosity, number of sub-basal nerve branches, and number of bead-like formations differed between patients and controls (p<0.0001). The AT and AS groups differed in the OSDI, number of branches, and number of beadings (p<0.0001). AS eye drops improve symptoms and confocal microscopy findings in SS-related dry eyes. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH12001K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH12001K"><span>Fragmentation dynamics in the droplet bag breakup regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulkarni, Varun; Sojka, Paul</p> <p>2014-11-01</p> <p>The closing stages of a droplet bag breakup event is marked by the appearance of several topological changes in the drop shape, followed by its fragmentation owing to hydrodynamics instabilities. In the present work we examine this breakup event, which occurs when a drop enters a continuous jet air stream. The deformed drop before eventual fragmentation is comprised of two main features: a bag and a bounding rim. Our investigation discusses the mechanism of rim/ bag breakup and the ensuing drop size distribution. The role of two possible instabilities, Plateau -Rayleigh and Rayleigh -Taylor, in rim breakup is examined and the dominant role of the Plateau -Rayleigh instability is revealed. In contrast, the Rayleigh -Taylor instability is seen to explain the disintegration of the bag well. The effects of viscosity and air jet velocity are also investigated. The formation of secondary features, such as nodes on the rim and holes on the bag, are also discussed. To conclude, a simple scaling argument based on the characteristic time scales of these instabilities is presented to explain the commonly observed early bursting of the bag, vis-à-vis the rim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCrGr.428...80F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCrGr.428...80F"><span>Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha</p> <p>2015-10-01</p> <p>Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EL....11627001J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EL....11627001J"><span>Supercrystallization of KCl from solution irradiated by soft X-rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janavičius, A. J.; Rinkūnas, R.; Purlys, R.</p> <p>2016-10-01</p> <p>The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100032975','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100032975"><span>Viscosity Measurement via Drop Coalescence: A Space Station Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antar, Basil; Ethridge, Edwin C.</p> <p>2010-01-01</p> <p>The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/127330-chronostratigraphy-hydrocarbon-habitat-associated-jurassic-carbonates-abu-dhabi-united-arab-emirates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/127330-chronostratigraphy-hydrocarbon-habitat-associated-jurassic-carbonates-abu-dhabi-united-arab-emirates"><span>Chronostratigraphy and hydrocarbon habitat associated with the Jurassic carbonates of Abu Dhabi, United Arab Emirates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alsharahan, A.S.; Whittle, G.L.</p> <p>1995-08-01</p> <p>Deposition of Jurassic epeiric shelf carbonates and evaporates were controlled by epeirogenic movement and sea level fluctuations which formed an excellent combination of source rocks, reservoirs and seats in Abu Dhabi. At the end of the Triassic, a relative drop in sea level, caused by eustatic sea level lowering in conjunction with minor tectonic uplift, resulted in non-deposition or erosion. In the Toarcian, deposition of carbonates and terrigenous, clastics produced the Marrat Formation. In the mid-Aalenian, a drop in sea level eroded much of the Marrat and some of the Triassic in offshore U.A.E. The deposition of the Hamlah Formationmore » followed, under neritic, well-oxygenated conditions. The Middle Jurassic was characterized by widespread, normal marine shelf carbonates which formed the cyclic Izhara and Araej formations (reservoirs). In the Upper Jurassic, the carbonate shelf became differentiated into a broad shelf with a kerogen-rich intrashelf basin, formed in response to a eustatic rise coupled with epeirogenic downwarping and marine flooding. The intrashelf basin fill of muddy carbonate sediments constitutes the Diyab Formation and its onshore equivalent, the Dukhan Formation (source rocks). In the late Upper Jurassic, the climate became more arid and cyclic deposition of carbonates and evaporates prevailed, forming alternating peritidal anhydrite, dolomite and limestone in the Arab Formation (reservoir). Arid conditions continued into the Tithonian, fostering the extensive anhydrite of the Hith Formation (seal) in a sabkha/lagoonal setting on the shallow peritidal platform, the final regressive supratidal stage of this major depositional cycle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7306E..1US','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7306E..1US"><span>Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.</p> <p>2009-05-01</p> <p>Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2g3906C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2g3906C"><span>Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comiskey, P. M.; Yarin, A. L.; Attinger, D.</p> <p>2017-07-01</p> <p>A theoretical model describing the blood spatter pattern resulting from a blunt bullet gunshot is proposed. The predictions are compared to experimental data acquired in the present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the pressure impulse generating the blood flow. At the free surface, the latter is directed outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the flow of blood occurs, which is responsible for the formation of blood drops of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood drops can be determined. Then, the equations of motion are solved, describing drop trajectories in air accounting for gravity, and air drag. Also considered are the drop-drop interactions through air, which diminish air drag on the subsequent drops. Accordingly, deposition of two-phase (blood-drop and air) jets on a vertical cardstock sheet located between the shooter and the target (and perforated by the bullet) is predicted and compared with experimental data. The experimental data were acquired with a porous polyurethane foam sheet target impregnated with swine blood, and the blood drops were collected on a vertical cardstock sheet which was perforated by the blunt bullet. The highly porous target possesses a low hydraulic resistance and therefore resembles a pool of blood shot by a blunt bullet normally to its free surface. The back spatter pattern was predicted numerically and compared to the experimental data for the number of drops, their area, the total stain area, and the final impact angle as functions of radial location from the bullet hole in the cardstock sheet (the collection screen). Comparisons of the predicted results with the experimental data revealed satisfactory agreement. The predictions also allow one to find the impact Weber number on the collection screen, which is necessary to predict stain shapes and sizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=zero&pg=2&id=EJ1168387','ERIC'); return false;" href="https://eric.ed.gov/?q=zero&pg=2&id=EJ1168387"><span>The Processing of Relative Clause Attachment as a Tool for Resolving a Problem in Typology of Relative Clauses: Preliminary Evidence from Thai Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Siriwittayakorn, Teeranoot</p> <p>2018-01-01</p> <p>In typological literature, there has been disagreement as to whether there should be distinction between relative clauses (RCs) and nominal sentential complements (NSCs) in pro-drop languages such as Japanese, Chinese, Korean, Khmer and Thai. In pro-drop languages, nouns can be dropped when its reference can be retrieved from context. Therefore,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1333435-persister-formation-staphylococcus-aureus-associated-atp-depletion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1333435-persister-formation-staphylococcus-aureus-associated-atp-depletion"><span>Persister formation in Staphylococcus aureus is associated with ATP depletion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Conlon, Brian P.; Rowe, Sarah E.; Gandt, Autumn Brown</p> <p></p> <p>Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic bacterial infection and antibiotic treatment failure. In Escherichia coli, toxin/antitoxin (TA) modules are responsible for persister formation. The mechanism of persister formation in Gram positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrancemore » to stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers was associated with a 100-1000 fold increased likelihood of survival to antibiotic challenge. We find that the antibiotic tolerance of these cells is due to a drop in intracellular ATP. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotic treatment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017LPICo1987.6305K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017LPICo1987.6305K"><span>Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiefer, W. S.; Mittlefehldt, D. W.</p> <p>2017-07-01</p> <p>Initially small liquid metal drops must grow to about 10 cm in size before sinking through the convecting silicate magma ocean to form a core. The required magma temperature is consistent with moderately siderophile element abundances in eucrites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31G2274L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31G2274L"><span>An intercomparison of methods for solving the stochastic collection equation with a focus on cloud radar Doppler spectra in drizzling stratocumulus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.</p> <p>2017-12-01</p> <p>Cloud radar Doppler spectra provide rich information for evaluating the fidelity of particle size distributions from cloud models. The intrinsic simplifications of bulk microphysics schemes generally preclude the generation of plausible Doppler spectra, unlike bin microphysics schemes, which develop particle size distributions more organically at substantial computational expense. However, bin microphysics schemes face the difficulty of numerical diffusion leading to overly rapid large drop formation, particularly while solving the stochastic collection equation (SCE). Because such numerical diffusion can cause an even greater overestimation of radar reflectivity, an accurate method for solving the SCE is essential for bin microphysics schemes to accurately simulate Doppler spectra. While several methods have been proposed to solve the SCE, here we examine those of Berry and Reinhardt (1974, BR74), Jacobson et al. (1994, J94), and Bott (2000, B00). Using a simple box model to simulate drop size distribution evolution during precipitation formation with a realistic kernel, it is shown that each method yields a converged solution as the resolution of the drop size grid increases. However, the BR74 and B00 methods yield nearly identical size distributions in time, whereas the J94 method produces consistently larger drops throughout the simulation. In contrast to an earlier study, the performance of the B00 method is found to be satisfactory; it converges at relatively low resolution and long time steps, and its computational efficiency is the best among the three methods considered here. Finally, a series of idealized stratocumulus large-eddy simulations are performed using the J94 and B00 methods. The reflectivity size distributions and Doppler spectra obtained from the different SCE solution methods are presented and compared with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ10001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ10001G"><span>Isolated drops from capillary jets by means of Gaussian wave packets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose</p> <p>2017-11-01</p> <p>The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25328251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25328251"><span>[Aggregate shocks and investment in human capital: higher educational achievement during the lost decade in Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peña, Pablo A</p> <p>2013-01-01</p> <p>This article documents a negative aggregate response in the attainment of postsecondary education (more than 12 years of schooling) in Mexico to the recession of 1982-83 and the stagnation that followed. The response was not homogeneous across genders, regions or family backgrounds. Males experienced a drop in attainment and females experienced a slowdown in attainment growth. On average, states with greater pre-shock educational attainment experienced larger drops. There was no clear trend for the response by family background. However, a negative effect is found even between siblings. The evidence suggests a demand side story: the drop in household income seems to be the main determinant of the fall/slowing down in attainment. The conclusion is that the recession and the lack of growth that ensued had a sizeable and lasting negative impact on skill formation in Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JBIS...65...71O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JBIS...65...71O"><span>Short Duration Reduced Gravity Drop Tower Design and Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osborne, B.; Welch, C.</p> <p></p> <p>The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30a2110S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30a2110S"><span>Spreading dynamics of superposed liquid drops on a spinning disk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahoo, Subhadarshinee; Orpe, Ashish V.; Doshi, Pankaj</p> <p>2018-01-01</p> <p>We have experimentally studied simultaneous spreading of superposed drops of two Newtonian liquids on top of a horizontal spinning disk using the flow visualization technique. An inner drop of high surface tension liquid is placed centrally on the disk followed by a drop of outer liquid (lower surface tension) placed exactly above that. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. Such an arrangement of two superposed liquid drops does not affect the spreading behavior of the outer liquid but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers (Nf) as compared to the case where the same liquid is spreading in the absence of outer liquid. The experimentally observed number of fingers is compared with the prediction using available theory for single liquid. It is found that the theory over-predicts the value of Nf for the inner liquid while it is covered by an outer liquid. We provide a theoretical justification for this observation using linear stability analysis. Our analysis demonstrates that for small but finite surface tension ratio of the two liquids, the presence of the outer interface reduces the value of the most unstable wave number which is equivalent to the decrease in the number of fingers observed experimentally. Finally, sustained rotation of the disk leads to the formation of droplets at the tip of the fingers traveling outwards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950049897&hterms=plate+tectonics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950049897&hterms=plate+tectonics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dplate%2Btectonics"><span>Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lenardic, A.; Kaula, W. M.</p> <p>1994-01-01</p> <p>It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10148E..10B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10148E..10B"><span>IR-drop analysis for validating power grids and standard cell architectures in sub-10nm node designs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ban, Yongchan; Wang, Chenchen; Zeng, Jia; Kye, Jongwook</p> <p>2017-03-01</p> <p>Since chip performance and power are highly dependent on the operating voltage, the robust power distribution network (PDN) is of utmost importance in designs to provide with the reliable voltage without voltage (IR)-drop. However, rapid increase of parasitic resistance and capacitance (RC) in interconnects makes IR-drop much worse with technology scaling. This paper shows various IR-drop analyses in sub 10nm designs. The major objectives are to validate standard cell architectures, where different sizes of power/ground and metal tracks are validated, and to validate PDN architecture, where types of power hook-up approaches are evaluated with IR-drop calculation. To estimate IR-drops in 10nm and below technologies, we first prepare physically routed designs given standard cell libraries, where we use open RISC RTL, synthesize the CPU, and apply placement & routing with process-design kits (PDK). Then, static and dynamic IR-drop flows are set up with commercial tools. Using the IR-drop flow, we compare standard cell architectures, and analysis impacts on performance, power, and area (PPA) with the previous technology-node designs. With this IR-drop flow, we can optimize the best PDN structure against IR-drops as well as types of standard cell library.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.B12E0155Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.B12E0155Z"><span>Biological Control on Mineral Transformation in Soils ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziegler, K.; Hsieh, J. C.; Chadwick, O. A.; Kelly, E. F.</p> <p>2001-12-01</p> <p>Weathering of primary minerals is commonly linked to biological processes through the production of carbonic and organic acids. Plants can also play a role in weathering by removing soluble constituents and enhancing diffusion gradients within the soil. Here we investigate the synthesis of secondary minerals and the role of plants in removing elements that act as building blocks for these minerals. In order to minimize losses from leaching, we have sampled a chronosequence of soils forming on lava flows on Hawaii Island that receive about 200 mm of rain annually and have never been subjected to high levels of rainfall. The P concentration in the soils drops from almost 3000 mg/kg on a 1.5 ky lava flow to around 1000 mg/kg on a 350 ky lava flow. This loss of P can only be ascribed to P-uptake by plants with subsequent removal through the loss of above ground biomass through fire and/or wind removal. Over the same time frame the amount of plagioclase in the soils drops from around 22% of the <2 mm soil fraction on the youngest lava flow to virtually 0% on the 350 ky flow, suggesting a substantial release of Si. Elevated silicon in arid, basaltic soil environments often leads to formation of smectite, a feature not observed along the chronosequence. In fact, plagioclase is replaced by the kaolin mineral halloysite with allophane as an apparent precursor. Kaolin minerals are associated with moderate to intense leaching environments rather than the mild leaching conditions that influence these soils. We selected an intermediate age soil profile (170 ky lava flow) to conduct an in-depth investigation of the soil mineral composition. We detected a strong dominance of halloysite, the presence of gibbsite, but no smectite. Secondary halloysite formation is preferred over smectite formation when Si activities are relatively low, and the pH is acidic rather than alkaline. Although this mineral assemblage seems to imply formation under a wetter climatic regime, the oxygen isotopic composition of the halloysite suggests formation under soil environmental conditions similar to the present. The Si concentration in grass and tree leaves in the vicinity of the soil contain between 3 and 8% Si. Loss of these leaves to the nearby ocean (either as dried or burned residue) could be responsible for considerable Si removal in a manner similar to the P-removal. The resulting Si-deficient soil-water favors the formation of halloysite over smectite as is demonstrated by construction of mineral stability diagrams using the soil-water data from the soils along the chronosequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1339255-evaluation-formation-water-chemistry-scale-prediction-bakken-shale','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1339255-evaluation-formation-water-chemistry-scale-prediction-bakken-shale"><span>Evaluation of formation water chemistry and scale prediction: Bakken Shale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Thyne, Geoffrey; Brady, Patrick</p> <p>2016-10-24</p> <p>Determination of in situ formation water chemistry is an essential component of reservoir management. This study details the use of thermodynamic computer models to calculate reservoir pH and restore produced water analyses for prediction of scale formation. Bakken produced water samples were restored to formation conditions and calculations of scale formation performed. In situ pH is controlled by feldspar-clay equilibria. Calcite scale is readily formed due to changes in pH during pressure drop from in situ to surface conditions. The formation of anhydrite and halite scale, which has been observed, was predicted only for the most saline samples. Finally, inmore » addition, the formation of anhydrite and/or halite may be related to the localized conditions of increased salinity as water is partitioned into the gas phase during production.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DFD.EC002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DFD.EC002S"><span>Liquid crystal droplet formation and anchoring dynamics in a microfluidic device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren</p> <p>2004-11-01</p> <p>Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022359','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022359"><span>Fracture process zone in granite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.</p> <p>2000-01-01</p> <p>In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27535065','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27535065"><span>A drop in performance on a fluid intelligence test due to instructed-rule mindset.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>ErEl, Hadas; Meiran, Nachshon</p> <p>2017-09-01</p> <p>A 'mindset' is a configuration of processing resources that are made available for the task at hand as well as their suitable tuning for carrying it out. Of special interest, remote-relation abstract mindsets are introduced by activities sharing only general control processes with the task. To test the effect of a remote-relation mindset on performance on a Fluid Intelligence test (Raven's Advanced Progressive Matrices, RAPM), we induced a mindset associated with little usage of executive processing by requiring participants to execute a well-defined classification rule 12 times, a manipulation known from previous work to drastically impair rule-generation performance and associated cognitive processes. In Experiment 1, this manipulation led to a drop in RAPM performance equivalent to 10.1 IQ points. No drop was observed in a General Knowledge task. In Experiment 2, a similar drop in RAPM performance was observed (equivalent to 7.9 and 9.2 IQ points) regardless if participants were pre-informed about the upcoming RAPM test. These results indicate strong (most likely, transient) adverse effects of a remote-relation mindset on test performance. They imply that although the trait of Fluid Intelligence has probably not changed, mindsets can severely distort estimates of this trait.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDG16010G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDG16010G"><span>The Effect of a Yield Stress on the Drainage of the Thin Film Between Two Colliding Newtonian Drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goel, Sachin; Ramachandran, Arun</p> <p>2016-11-01</p> <p>Coalescence of drops immersed in fluids possessing a yield stress has been of interest to many industries such as the oil extraction, cosmetics and food industries. Unfortunately, a theoretical understanding of the drainage of the thin film of Bingham fluid (a model yield stress fluid) that develops between two drops undergoing a collision is still lacking, with the exception of two prior studies that make ad-hoc assumptions about the film shape. In this work, we examine this problem via a combination of scaling analysis and numerical simulations based on the lubrication analysis. There are four key features of the film drainage process of Bingham fluids. First, the introduction of a yield stress in the suspending fluid retards the drainage process relative to Newtonian fluid of the same viscosity. Second, the drainage time shows a minimum with respect to the capillary number. Third, the effect of yield stress on the drainage process becomes more pronounced at higher capillary numbers and lower Hamaker constant. Lastly, below a critical height, drainage can be arrested completely due to the yield stress. This critical height scales as τ02R3 <m:mfenced close="" open="/"><m:mphantom><m:mpadded width="0pt">τ02R3 γ2</m:mpadded></m:mphantom></m:mfenced> γ2 , where τ0 is the yield stress, R is the drop radius and γ is the interfacial tension, and is, surprisingly, independent of the force colliding the drops. This and other distinguishing characteristics of the drainage process will be elucidated in the presentation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018972','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018972"><span>Observational constraints on earthquake source scaling: Understanding the limits in resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hough, S.E.</p> <p>1996-01-01</p> <p>I examine the resolution of the type of stress drop estimates that have been used to place observational constraints on the scaling of earthquake source processes. I first show that apparent stress and Brune stress drop are equivalent to within a constant given any source spectral decay between ??1.5 and ??3 (i.e., any plausible value) and so consistent scaling is expected for the two estimates. I then discuss the resolution and scaling of Brune stress drop estimates, in the context of empirical Green's function results from recent earthquake sequences, including the 1992 Joshua Tree, California, mainshock and its aftershocks. I show that no definitive scaling of stress drop with moment is revealed over the moment range 1019-1025; within this sequence, however, there is a tendency for moderate-sized (M 4-5) events to be characterized by high stress drops. However, well-resolved results for recent M > 6 events are inconsistent with any extrapolated stress increase with moment for the aftershocks. Focusing on comer frequency estimates for smaller (M < 3.5) events, I show that resolution is extremely limited even after empirical Green's function deconvolutions. A fundamental limitation to resolution is the paucity of good signal-to-noise at frequencies above 60 Hz, a limitation that will affect nearly all surficial recordings of ground motion in California and many other regions. Thus, while the best available observational results support a constant stress drop for moderate-to large-sized events, very little robust observational evidence exists to constrain the quantities that bear most critically on our understanding of source processes: stress drop values and stress drop scaling for small events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770010736','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770010736"><span>Behavior of fluids in a weightless environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.</p> <p>1977-01-01</p> <p>Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22252105-experimental-investigation-current-free-double-layers-helicon-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22252105-experimental-investigation-current-free-double-layers-helicon-plasmas"><span>Experimental investigation of current free double layers in helicon plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sahu, B. B.; Tarey, R. D.; Ganguli, A.</p> <p>2014-02-15</p> <p>The paper presents investigations of current free double layer (CFDL) that forms in helicon plasmas. In contrast to the other work reporting on the same subject, in the present investigations the double layer (DL) forms in a mirror-like magnetic field topology. The RF compensated Langmuir probe measurements show multiple DLs, which are in connection with, the abrupt fall of densities along with potential drop of about 24 V and 18 V. The DLs strengths (e ΔV{sub p})/(k T{sub e}) are about 9.5 and 6, and the corresponding widths are about 6 and 5 D lengths. The potential drop is nearly equal tomore » the thermal anisotropies between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike the earlier studies on the DL formation in the region of strong gradients in the magnetic field. Also, it presents a qualitative discussion on the mechanism of DL formation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptLT..78..153Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptLT..78..153Y"><span>[INVITED] Laser treatment of Inconel 718 alloy and surface characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.</p> <p>2016-04-01</p> <p>Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SuTMP...5c5003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SuTMP...5c5003H"><span>In situ probing of pulsed laser melting and laser-induced periodic surface structures formation by dynamic reflectivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huynh, T. T. D.; Semmar, N.</p> <p>2017-09-01</p> <p>The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25420755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25420755"><span>Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah</p> <p>2016-01-01</p> <p>Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24011631','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24011631"><span>Evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caceres, Neus; Vilaplana, Cristina; Prats, Clara; Marzo, Elena; Llopis, Isaac; Valls, Joaquim; Lopez, Daniel; Cardona, Pere-Joan</p> <p>2013-11-01</p> <p>The aim of this study was to evaluate the evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures according to growth time and conditions. Thus, in standard culture using aerated 7H9 Middlebrook broth supplemented with 0.05% Tween 80, a dramatic CFU decrease was observed at the end of the exponential phase. This phase was followed by a stable stationary phase that led to dissociation between the optical density (O.D.) and CFU values, together with the formation of opaque colonies in solid culture. Further analysis revealed that this was due to cording. Scanning electron microscopy showed that cording led to the formation of very stable coiled structures and corded cell aggregations which proved impossible to disrupt by any of the physical means tested. Modulation of cording with a high but non-toxic concentration of Tween 80 led to a slower growth rate, avoidance of a sudden drop-off to the stationary phase, the formation of weaker cording structures and the absence of opaque colonies, together with a lower survival at later time-points. An innovative automated image analysis technique has been devised to characterize the cording process. This analysis has led to important practical consequences for the elaboration of M. tuberculosis inocula and suggests the importance of biofilm formation in survival of the bacilli in the extracellular milieu. Copyright © 2013. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23567746','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23567746"><span>Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Basu, Amar S</p> <p>2013-05-21</p> <p>Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/603492','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/603492"><span>X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Singh, S.; Solak, H.; Cerrina, F.</p> <p>1997-04-01</p> <p>Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and themore » stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29653883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29653883"><span>Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Tiantao; Guo, Feiqiang; Li, Xiaolei; Liu, Yuan; Peng, Kuangye; Jiang, Xiaochen; Guo, Chenglong</p> <p>2018-04-10</p> <p>High ash-containing paper sludge which is rich in various metal oxides is employed in herb residue pyrolysis to enhance the yield of fuel gas and reduce tar yield in a drop tube fixed bed reactor. Effects of heat treatment temperature and blending ratio of paper sludge on the yields and composition of pyrolysis products (gas, tar and char) were investigated. Results indicate that paper sludge shows a significantly catalytic effect during the pyrolysis processes of herb residue, accelerating the pyrolysis reactions. The catalytic effect resulted in an increase in gas yield but a decrease in tar yield. The catalytic effect degree is affected by the paper sludge proportions, and the strongest catalytic effect of paper sludge is noted at its blending ratio of 50%. At temperature lower than 900 °C, the catalytic effect of paper sludge in the pyrolysis of herb residue promotes the formation of H 2 and CO 2 , inhibits the formation of CH 4 , but shows slight influence on the formations of CO, while the formation of the four gas components was all promoted at 900 °C. SEM results of residue char show that ash particles from paper sludge adhere to the surface of the herb residue char after pyrolysis, which may promote the pyrolysis process of herb residue for more gas releasing. FT-IR results indicate that most functional groups disappear after pyrolysis. The addition of paper sludge promotes deoxidisation and aromatization reactions of hetero atoms tars, forming heavier polycyclic aromatic hydrocarbons and leading to tar yield decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012025','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012025"><span>The Japanese containerless experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Azuma, Hisao</p> <p>1990-01-01</p> <p>There are three sets of Japanese containerless experiments. The first is Drop dynamics research. It consists of acoustic levitation and large amplitude drop oscillation. The second is Optical materials processing in an acoustic levitation furnace. And the third is Electrostatic levitator development by two different Japanese companies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26585223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26585223"><span>Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry</p> <p>2016-02-01</p> <p>Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016668','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016668"><span>Automatic Control of Arc Process for Making Carbon Nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scott, Carl D.; Pulumbarit, Robert B.; Victor, Joe</p> <p>2004-01-01</p> <p>An automatic-control system has been devised for a process in which carbon nanotubes are produced in an arc between a catalyst-filled carbon anode and a graphite cathode. The control system includes a motor-driven screw that adjusts the distance between the electrodes. The system also includes a bridge circuit that puts out a voltage proportional to the difference between (1) the actual value of potential drop across the arc and (2) a reference value between 38 and 40 V (corresponding to a current of about 100 A) at which the yield of carbon nanotubes is maximized. Utilizing the fact that the potential drop across the arc increases with the interelectrode gap, the output of the bridge circuit is fed to a motor-control circuit that causes the motor to move the anode toward or away from the cathode if the actual potential drop is more or less, respectively, than the reference potential. Thus, the system regulates the interelectrode gap to maintain the optimum potential drop. The system also includes circuitry that records the potential drop across the arc and the relative position of the anode holder as function of time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1826b0013D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1826b0013D"><span>Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin</p> <p>2017-03-01</p> <p>Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993SiFTZ...1..116S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993SiFTZ...1..116S"><span>Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surov, V. S.</p> <p>1993-02-01</p> <p>The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1406344','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1406344"><span>A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weerakkody, Sean; Ozel, Omur; Sinopoli, Bruno</p> <p></p> <p>We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the othermore » hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ExFl...58...13Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ExFl...58...13Z"><span>Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng</p> <p>2017-03-01</p> <p>Drop breakup is a familiar event in both nature and technology. In this study, we find that the bag breakup mode can be replaced by a new breakup mode: jellyfish breakup, when the surfactant concentration of a surfactant-laden drop is high. This new breakup mode has a morphology resembling a jellyfish with many long tentacles. This is due to the inhomogeneous distribution of surfactant in the process of drop deformation and breakup. The thin film of liquid can remain stable as a result of the Marangoni effect. Finally, we propose that the dimensionless surfactant concentration can serve as a criterion for breakup mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22207902-purification-crystallization-abc-type-transport-substrate-binding-protein-oppa-from-thermoanaerobacter-tengcongensis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22207902-purification-crystallization-abc-type-transport-substrate-binding-protein-oppa-from-thermoanaerobacter-tengcongensis"><span>Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gao, Jinlan; Li, Xiaolu; Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China</p> <p>2012-06-22</p> <p>Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGEmore » after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAP...112b3111P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAP...112b3111P"><span>Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pu, Yunti; Ma, Ping; Chen, Songlin; Zhu, Jiliang; Wang, Gang; Pan, Feng; Sun, Ping; Zhu, Xiaohong; Zhu, Jianguo; Xiao, Dingquan</p> <p>2012-07-01</p> <p>We show in this paper single-shot and multi-shot laser-induced damage thresholds (LIDTs) of HfO2/SiO2 high reflective films (the reflectance = 99.9%) are affected by the presence of a water layer absorbed on the surface of the porous films. When the water layer was removed with the process of pumping, the single-shot LIDT measured in vacuum dropped to ˜48% of that measured in air, while the multi-shot LIDT in vacuum dropped to ˜47% of its atmospheric value for the high reflective films. Typical damage micrographs of the films in air and in vacuum were obtained, showing distinct damage morphologies. Such atmosphere dependence of the laser damage morphology was found to originate from that formation of a water layer on the surface of porous films could cause an increase of horizontal thermal conductivity and a reduction of vertical thermal conductivity. Moreover, laser-induced periodic ripple damages in air were found in the SiO2 layer from the micrographs. A model of deformation kinematics was used to illustrate the occurrence of the periodic ripple damage, showing that it could be attributed to a contraction of the HfO2 layer under irradiation by the 5-ns laser pulses in air.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5433495','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5433495"><span>Gel-based morphological design of zirconium metal–organic frameworks† †Electronic supplementary information (ESI) available: Optical microscopy, PDF TGA, Hg intrusion, nanoindentation, gels of various Zr-MOFs, oil-drop process. See DOI: 10.1039/c6sc05602d Click here for additional data file.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bueken, Bart; Van Velthoven, Niels; Willhammar, Tom; Stassin, Timothée; Stassen, Ivo; Keen, David A.; Baron, Gino V.; Denayer, Joeri F. M.; Ameloot, Rob; Bals, Sara</p> <p>2017-01-01</p> <p>The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. PMID:28553536</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.4149P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.4149P"><span>Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.</p> <p></p> <p>A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH12010K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH12010K"><span>Break-up of droplets in a concentrated emulsion flowing through a narrow constriction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Minkyu; Rosenfeld, Liat; Tang, Sindy; Tang Lab Team</p> <p>2014-11-01</p> <p>Droplet microfluidics has enabled a wide range of high throughput screening applications. Compared with other technologies such as robotic screening technology, droplet microfluidics has 1000 times higher throughput, which makes the technology one of the most promising platforms for the ultrahigh throughput screening applications. Few studies have considered the throughput of the droplet interrogation process, however. In this research, we show that the probability of break-up increases with increasing flow rate, entrance angle to the constriction, and size of the drops. Since single drops do not break at the highest flow rate used in the system, break-ups occur primarily from the interactions between highly packed droplets close to each other. Moreover, the probabilistic nature of the break-up process arises from the stochastic variations in the packing configuration. Our results can be used to calculate the maximum throughput of the serial interrogation process. For 40 pL-drops, the highest throughput with less than 1% droplet break-up was measured to be approximately 7,000 drops per second. In addition, the results are useful for understanding the behavior of concentrated emulsions in applications such as mobility control in enhanced oil recovery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Cryo...79...53D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Cryo...79...53D"><span>Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.</p> <p>2016-10-01</p> <p>In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA446632','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA446632"><span>The National Shipbuilding Research Program: Solid Waste Segregation and Recycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1998-03-01</p> <p>Shields , Recycling Coordinator D.C. Department of Public Works 65 K Street, NE Washington, DC 20002 202-727-5887 Task Three, Tab Three Page 42 George...SHEAR X FRONT END LOADERS = CONVEYORS X FORKLIFTS O WEIGHT SCALES X PROCESSING DROP-BALL BREAKAGE X CUTTING TORCHES GAS = PLASMA = POWDER = WATER-JET...Loaders Conveyors Forklifts Weight Scales Processing Drop-ball Breakage Cutting Torches Gas Plasma Powder Laser Water-jet Abrasive disk Shears Ferrous</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ExFl...56..106W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ExFl...56..106W"><span>Multiphase flow of miscible liquids: jets and drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.</p> <p>2015-05-01</p> <p>Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=254698','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=254698"><span>Droplet Kinetic Energy from Center-Pivot Sprinklers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The kinetic energy of discrete water drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy developmen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27599062','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27599062"><span>How salt lakes affect atmospheric new particle formation: A case study in Western Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A</p> <p>2016-12-15</p> <p>New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh -1 . The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to new particle formation in the investigated salt lake environment. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24767119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24767119"><span>Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D</p> <p>2014-06-01</p> <p>Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010057272','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010057272"><span>Studies of Nucleation, Growth, Specific Heat, and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.</p> <p>2001-01-01</p> <p>Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...516199D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...516199D"><span>Sub-wavelength Laser Nanopatterning using Droplet Lenses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duocastella, Martí; Florian, Camilo; Serra, Pere; Diaspro, Alberto</p> <p>2015-11-01</p> <p>When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760024241','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760024241"><span>Experimental development of processes to produce homogenized alloys of immiscible metals, phase 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reger, J. L.</p> <p>1976-01-01</p> <p>An experimental drop tower package was designed and built for use in a drop tower. This effort consisted of a thermal analysis, container/heater fabrication, and assembly of an expulsion device for rapid quenching of heated specimens during low gravity conditions. Six gallium bismuth specimens with compositions in the immiscibility region (50 a/o of each element) were processed in the experimental package: four during low gravity conditions and two under a one gravity environment. One of the one gravity processed specimens did not have telemetry data and was subsequently deleted for analysis since the processing conditions were not known. Metallurgical, Hall effect, resistivity, and superconductivity examinations were performed on the five specimens. Examination of the specimens showed that the gallium was dispersed in the bismuth. The low gravity processed specimens showed a relatively uniform distribution of gallium, with particle sizes of 1 micrometer or less, in contrast to the one gravity control specimen. Comparison of the cooling rates of the dropped specimens versus microstructure indicated that low cooling rates are more desirable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29717867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29717867"><span>Time-Dependent Liquid Transport on a Biomimetic Topological Surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei</p> <p>2018-05-02</p> <p>Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MicST.tmp...16K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MicST.tmp...16K"><span>Effect of Marangoni Convection on Surfactant Transfer Between the Drop Connected to the Reservoir and Surrounding Liquid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kostarev, K.; Denisova, M.; Shmyrov, A.</p> <p>2018-03-01</p> <p>The paper presents the results of comparative investigation of the interaction between the capillary and buoyant mechanisms of motion in a problem of surfactant mass transfer between an insoluble drop and surrounding fluid under different gravity conditions. The research was performed for the drop that is coupled with the reservoir filled with a source mixture through a long thin tube (needle). Visualization of the flow patterns and concentration fields has shown that surfactant diffusion from the needle at normal gravity leads to the onset of the oscillatory mode of the capillary convection in the drop. It has been found that the frequency of the Marangoni convection outbursts, the lifetime of the oscillatory flow modes and the amount of the source mixture involved in the process of mass transfer depend on the drop size and initial concentration of the surfactant. The obtained results are compared with the cases of surfactant diffusion from the isolated drop under terrestrial conditions and from the drop coupled with reservoir in microgravity. Additionally, a series of experiments were performed to investigate diffusion of a surfactant from the surrounding solution into a drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30e2001I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30e2001I"><span>Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, Aleksey S.</p> <p>2018-05-01</p> <p>Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5502603','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5502603"><span>Heat exchange between a bouncing drop and a superhydrophobic substrate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shiri, Samira; Bird, James C.</p> <p>2017-01-01</p> <p>The ability to enhance or limit heat transfer between a surface and impacting drops is important in applications ranging from industrial spray cooling to the thermal regulation of animals in cold rain. When these surfaces are micro/nanotextured and hydrophobic, or superhydrophobic, an impacting drop can spread and recoil over trapped air pockets so quickly that it can completely bounce off the surface. It is expected that this short contact time limits heat transfer; however, the amount of heat exchanged and precise role of various parameters, such as the drop size, are unknown. Here, we demonstrate that the amount of heat exchanged between a millimeter-sized water drop and a superhydrophobic surface will be orders of magnitude less when the drop bounces than when it sticks. Through a combination of experiments and theory, we show that the heat transfer process on superhydrophobic surfaces is independent of the trapped gas. Instead, we find that, for a given spreading factor, the small fraction of heat transferred is controlled by two dimensionless groupings of physical parameters: one that relates the thermal properties of the drop and bulk substrate and the other that characterizes the relative thermal, inertial, and capillary dynamics of the drop. PMID:28630306</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9704331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9704331"><span>Effectiveness of eye drops protective against ultraviolet radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daxer, A; Blumthaler, M; Schreder, J; Ettl, A</p> <p>1998-01-01</p> <p>To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......149W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......149W"><span>Experimental Studies in Ice Nucleation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, Timothy Peter</p> <p></p> <p>Ice nuclei play a critical role in the formation of precipitation in mixed phase clouds. Modification of IN concentrations can lead to changes in cloud lifetimes and precipitation size. Presented in this study are experimental investigations into ice nuclei in an ongoing effort to reduce the uncertainties that ice nuclei have on cloud processes and climate. This research presents a new version of the cold stage drop freezing assay to investigate the time-dependence of heterogeneous nucleation. The temperature range for the instrument spans from the melting point of water to the homogeneous freezing limit of ˜-38 deg C. Temperature stability for the instrument allowed for experimental operation for up to four days while interrogating the same sample. Up to a one hundred fold increase in the number of analyzed drops was accomplished through an in-house written automated drop freezing detection software package. Combined instrument design improvements allow for the analysis of IN concentrations down to ˜10-8 ice nuclei per picoliter of sample water. A new variant of the multiple-component stochastic model for heterogeneous ice nucleation was used to investigate the time dependence of heterogeneous freezing processes. This was accomplished by analyzing how the changes in the cooling rate can impact the observed nucleation rate. The model employed four material-dependent parameters to accurately capture the observed freezing of water drops containing Arizona Test Dust. The parameters were then used to accurately predict the freezing behavior of the drops in time dependent experiments. The time dependence freezing of a wide range of materials was then investigated. These materials included the minerals montmorillonite and kaolinite, the biological proxy ice nuclei contained within the product Icemax, and flame soot generated from the incomplete combustion of ethylene gas. The time dependence for ice nuclei collected from rainwater samples was also investigated. The data show that the time dependence for all investigated materials was weak. The drop freezing assay was then employed to test the hypothesis that certain macromolecules derived from burst pollen could be efficient ice nuclei. In a new method, air samples were collected during the height of the 2013 pollen season using a particle-in-liquid impinger and the solutions were transferred to the drop freezing assay to be analyzed for ice nuclei activity. The IN concentration in collected rainwater was analyzed and compared to IN concentrations near the ground to determine if potential IN enhancement due to pollen bursting at the surface was also found within clouds. No general trend was observed between ambient pollen counts and observed IN concentrations, suggesting that ice nuclei multiplication via pollen sac rupturing and the subsequent release of macromolecules was not prevalent for the pollen types and meteorological conditions typically encountered in the Southeastern US. Additional field tests were performed in conjunction with the Wideband Integrated Bioaerosol Sensor which used UV fluorescence to determine the possible fraction of biological aerosol present at the measurement site. This instrument was operated in parallel with the particle-in-liquid impinger allowing for a comparison of ambient immersion mode ice nuclei and fluorescent particle concentrations. Two case studies provided evidence that the active release of biological ice nuclei was causally coordinated with the arrival of a cold-frontal boundary, which can loft the nuclei to seed the frontal cloud rain band.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MRE.....2k5003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MRE.....2k5003B"><span>Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.</p> <p>2015-11-01</p> <p>We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5356071','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5356071"><span>Method for introduction of gases into microspheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.</p> <p></p> <p>A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16256661','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16256661"><span>Formation of a percolating cluster in films prepared by cathodic electrodeposition of a mixture of lower and higher molecular weight epoxy-amine adducts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ranjbar, Zahra; Moradian, Siamak; Rastegar, Saeed</p> <p>2003-08-15</p> <p>The electrodeposition behavior of blends of primary dispersions of a lower and a higher molecular weight epoxy-amine adduct has been investigated. The throwing power of the above-mentioned blends showed a voltage-dependent critical composition at which the throwing power dropped to a much lower value. This was assigned to the formation of an infinite conducting cluster, the extension of which is dependent on the rate of the electrocoagulation process at the cathode boundary. The random resistor network approach of Stauffer (RRNS) and the random resistor network approach of Miller and Abrahams (RRNMA) were applied to the experimental data with high correlations (r2=0.9314 and 0.9699). The percolating cluster formed within the film, however, gave a critical exponent of conductivity equal to 1.1028, much less than expected from a classical three-dimensional lattice (i.e., 1.5-2.0). This discrepancy was explained in terms of the changed behavior of the film resulting from the bubbles formed near the cathode and its effect on the infinite conducting cluster.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810002947','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810002947"><span>Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ownby, D. P.; Barsoum, M. W.</p> <p>1980-01-01</p> <p>The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4141680','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4141680"><span>Transfer, Imaging, and Analysis Plate for Facile Handling of 384 Hanging Drop 3D Tissue Spheroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cavnar, Stephen P.; Salomonsson, Emma; Luker, Kathryn E.; Luker, Gary D.; Takayama, Shuichi</p> <p>2014-01-01</p> <p>Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated highfidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type–dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging. PMID:24051516</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24051516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24051516"><span>Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cavnar, Stephen P; Salomonsson, Emma; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi</p> <p>2014-04-01</p> <p>Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated high-fidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type-dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DFD.CS008S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DFD.CS008S"><span>Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Ying; Joshi, Abhijit; Chhasatia, Viral</p> <p>2010-11-01</p> <p>In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDG20006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDG20006B"><span>Dripping and jetting regimes in co-flowing capillary jets: unforced measurements and response to driving</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baroud, Charles; Cordero, Maria-Luisa; Gallaire, Francois</p> <p>2011-11-01</p> <p>We study the breakup of drops in a co-flowing jet, within the confinement of a microfluidic channel. The breakup can occur right after the nozzle (dripping) or through the generation of a liquid jet that breaks up a long distance from the nozzle (jetting). Traditionally, these two regimes have been considered to reflect an absolutely unstable jet or a convectively unstable jet, respectively. We first provide measurements of the frequency of oscillation and breakup of the liquid jet; the dispersion relation thus obtained compares well with existing theories for convective instabilities in the case of the jetting regime. However, the theories in the absolutely unstable mode fail to predict the evolution of the frequency and drop size in the dripping regime. We also test the jet response to an external forcing, using a focused laser to locally heat the jet. The dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. In contrast, the jetting regime locks to the external frequency, which translates into a modification of the drop size in agreement with the dispersion relations. This confirms the convective nature of the jetting regime. Permanent address: Universidad de Chile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJT....39...76Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJT....39...76Z"><span>Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai</p> <p>2018-06-01</p> <p>With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22639348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22639348"><span>Interpreting the formation of bloodstains on selected apparel fabrics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Castro, Therese; Nickson, Tania; Carr, Debra; Knock, Clare</p> <p>2013-01-01</p> <p>Bloodstain pattern analysis (BPA) is the investigation and interpretation of blood deposited at crime scenes. However, the interaction of blood and apparel fabrics has not been widely studied. In this work, the development of bloodstains (passive, absorbed and transferred) dropped from three different heights (500, 1,000, 1,500 mm) on two cotton apparel fabrics (1 × 1 rib knit, drill) was investigated. High-speed video was used to investigate the interaction of the blood and fabric at impact. The effect of drop height on the development of passive, absorbed and transferred bloodstains was investigated using image analysis and statistical tools. Visually, the passive bloodstain patterns produced on the technical face of fabrics from the different drop heights were similar. The blood soaked unequally through to the technical rear of both fabrics. Very little blood was transferred between a bloody fabric and a second piece of fabric. Statistically, drop height did not affect the size of the parent bloodstain (wet or dry), but did affect the number of satellite bloodstains formed. Some differences between the two fabrics were noted, therefore fabric structure and properties must be considered when conducting BPA on apparel fabrics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004MeScT..15..509L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004MeScT..15..509L"><span>Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Kihyung; Reitz, Rolf D.</p> <p>2004-03-01</p> <p>Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1245745','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1245745"><span>Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in October 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fondeur, F.</p> <p>2016-03-01</p> <p>In February 2015, Savannah River National Laboratory (SRNL) received a Strip Effluent (SE) coalescer (FLT-304) from MCU. That coalescer was first installed at MCU in July 2014 and removed in October 2014. While processing approximately 31,400 gallons of strip solution, the pressure drop steadily increased from 1 psi to beyond the administrative limit of 20 psi. The physical and chemical analysis was conducted on this coalescer to determine the mechanism that led to the plugging of this coalescer. Characterization of this coalescer revealed the adsorption of organic containing amines as well as MCU modifier. The amines are probably from themore » decomposition of the suppressor (TiDG) as well as from bacteria. This adsorption may have changed the surface energetics (characteristics) of the coalescer fibers and therefore, their wetting behavior. A very small amount of inorganic solids were found to have deposited on this coalescer (possibly an artifact of cleaning the coalescer with Boric acid. However, we believe that inorganic precipitation, as has been seen in the past, did not play a role in the high pressure drop rise of this coalescer. With regards to the current practice of reducing the radioactive content of the SE coalescer, it is recommended that future SE coalescer should be flushed with 10 mM boric acid which is currently used at MCU. Plugging of the SE coalescer was most likely due to the formation and accumulation of a water-in-oil emulsion that reduced the overall porosity of the coalescer. There is also evidence that a bimodal oil particle distribution may have entered and deposited in the coalescer and caused the initial increase in pressure drop.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1233650','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1233650"><span>Final Technical Report: Electrohydrodynamic Tip Streaming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Basaran, Osman</p> <p>2016-01-06</p> <p>When subjected to strong electric fields, liquid drops and films form conical tips and emit thin jets from their tips. Such electrodydrodynamic (EDH) tip streaming or cone-jetting phenomena, which are sometimes referred to as electrospraying, occur widely in nature, e.g., in ejection of streams of small charged drops from pointed tips of raindrops in thunderclouds, and technology, e.g., in electrospray mass spectrometry or electric field-driven solvent extraction. More recently, EHD cone-jetting has emerged as a powerful technique for direct printing of solar cells, micro- and nano- particle production, and microencapsulation for controlled release. In many of the aforementioned situations, ofmore » equal importance to the processes by which one drop disintegrates to form several drops are those by which (a) two drops come together and coalesce and (b) two drops are coupled to form a double droplet system (DDS) or a capillary switch (CS). the main objective of this research program is to advance through simulation, theory, and experiment the breakup, coalescence, and oscillatory dynamics of single and pairs of charged as well as uncharged drops.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23351154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23351154"><span>Electrochemistry in an acoustically levitated drop.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander</p> <p>2013-02-19</p> <p>Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28931961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28931961"><span>Optimum Image Formation for Spaceborne Microwave Radiometer Products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Long, David G; Brodzik, Mary J</p> <p>2016-05-01</p> <p>This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/483919-transient-analysis-frost-formation-parallel-plate-evaporator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/483919-transient-analysis-frost-formation-parallel-plate-evaporator"><span>A transient analysis of frost formation on a parallel plate evaporator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.</p> <p>1996-12-31</p> <p>This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for airmore » and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28746622','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28746622"><span>Holocene history of a lake filling and vegetation dynamics of the Serra Sul dos Carajás, southeast Amazonia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guimarães, José T F; Sahoo, Prafulla K; Souza-Filho, Pedro W M; Figueiredo, Mariana M J Costa DE; Reis, Luiza S; Silva, Marcio S DA; Rodrigues, Tarcísio M</p> <p>2017-07-24</p> <p>Down-core changes in sedimentary facies, elemental geochemistry, pollen, spore, δ13C, δ15N and radiocarbon records from a filled lake, named R4, of the Serra Sul dos Carajás were used to study the relationship between the paleomorphological and paleoecological processes and their significance for Holocene paleoclimatology of the southeast Amazonia. The sediment deposition of the R4 lake started around 9500 cal yr BP. Increase of detrital components from 9500 to 7000 cal yr BP suggests high weathering of surrounding catchment rocks and soils, and deposition into the lake basin under mudflows. At that time, montane savanna and forest formation were already established suggesting predominance of wet climate. However, from 7000 to 3000 cal yr BP, a decline of detrital input occurred. Also, forest formation and pteridophytes were declined, while palms and macrophytes were remained relatively stable, indicating that water levels of the lake is likely dropped allowing the development of plants adapted to subaerial condition under drier climate conditions. After 3000 cal yr BP, eutrophication and low accommodation space lead to high lake productivity and the final stage of the lake filling respectively, and forest formation may has acquired its current structure, which suggests return of wetter climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=271551','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=271551"><span>Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The kinetic energy of discrete water drops impacting a bare soil surface generally leads to a drastic reduction in water infiltration rate due to formation of a seal on the soil surface. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=247716','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=247716"><span>Determination of kinetic energy applied by center pivot sprinklers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870135','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870135"><span>Preparation of lead-zirconium-titanium film and powder by electrodeposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bhattacharya, Raghu N.; Ginley, David S.</p> <p>1995-01-01</p> <p>A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/131918','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/131918"><span>Preparation of lead-zirconium-titanium film and powder by electrodeposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bhattacharya, R.N.; Ginley, D.S.</p> <p>1995-10-31</p> <p>A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940018569','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940018569"><span>Spray formation processes of impinging jet injectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.</p> <p>1993-01-01</p> <p>A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..460V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..460V"><span>Dramatic water-level fluctuations in lakes under intense human impact: modelling the effect of vegetation, climate and hydrogeology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vainu, M.</p> <p>2012-04-01</p> <p>Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a coniferous forest on the lake catchments, due to which evapotranspiration and subsequently runoff from the catchment decreased. The forest had been destroyed by wildfires during World War II. The water-level rise that the lakes have gone through in the last 20 years has in the case of L. Ahnejärv been caused by changing meteorological conditions (precipitation, air temperature and wind speed). In the case of Lakes Kuradijärv and Martiska the change has been caused by both the raise of groundwater level (caused by the decreasing groundwater abstraction) and the change of meteorological conditions. Therefore the vegetation change on the catchment and changes in meteorological conditions have played as important or, at times, even more important role in the water-level fluctuations than changes in the hydrogeological conditions. Although concentrating on three specific lakes in a specific region, the result of the study indicate the complexity of factors influencing the amount of water stored in a lake at a certain moment. Therefore it manifests a need for improved models in order to improve lake management around the world.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EJPh...39d5008C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EJPh...39d5008C"><span>Implementation of an axisymmetric drop shape apparatus using a Raspberry-Pi single-board computer and a web camera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlà, Marcello; Orlando, Antonio</p> <p>2018-07-01</p> <p>This paper describes the implementation of an axisymmetric drop shape apparatus for the measurement of surface or interfacial tension of a hanging liquid drop, using only cheap resources like a common web camera and a single-board microcomputer. The mechanics of the apparatus is composed of stubs of commonly available aluminium bar, with all other mechanical parts manufactured with an amateur 3D printer. All of the required software, either for handling the camera and taking the images, or for processing the drop images to get the drop profile and fit it with the Bashforth and Adams equation, is freely available under an open source license. Despite the very limited cost of the whole setup, an extensive test has demonstrated an overall accuracy of ±0.2% or better.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112l1602K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112l1602K"><span>Measurement of surface tension by sessile drop tensiometer with superoleophobic surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwak, Wonshik; Park, Jun Kwon; Yoon, Jinsung; Lee, Sanghyun; Hwang, Woonbong</p> <p>2018-03-01</p> <p>A sessile drop tensiometer provides a simple and efficient method of determining the surface tension of various liquids. The technique involves obtaining the shape of an axisymmetric liquid droplet and iterative fitting of the Young-Laplace equation, which balances the gravitational deformation of the drop. Since the advent of high quality digital cameras and desktop computers, this process has been automated with precision. However, despite its appealing simplicity, there are complications and limitations in a sessile drop tensiometer, i.e., it must dispense spherical droplets with low surface tension. We propose a method of measuring surface tension using a sessile drop tensiometer with a superoleophobic surface fabricated by acidic etching and anodization for liquids with low surface tension and investigate the accuracy of the measurement by changing the wettability of the measuring plate surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868098','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868098"><span>Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tavlarides, Lawrence L.; Bae, Jae-Heum</p> <p>1991-01-01</p> <p>A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790064333&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddebye%2Blength','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790064333&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddebye%2Blength"><span>Two-dimensional potential double layers and discrete auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kan, J. R.; Lee, L. C.; Akasofu, S.-I.</p> <p>1979-01-01</p> <p>This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191436','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191436"><span>Source spectral properties of small-to-moderate earthquakes in southern Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Trugman, Daniel T.; Dougherty, Sara L.; Cochran, Elizabeth S.; Shearer, Peter M.</p> <p>2017-01-01</p> <p>The source spectral properties of injection-induced earthquakes give insight into their nucleation, rupture processes, and influence on ground motion. Here we apply a spectral decomposition approach to analyze P-wave spectra and estimate Brune-type stress drop for more than 2000 ML1.5–5.2 earthquakes occurring in southern Kansas from 2014 to 2016. We find that these earthquakes are characterized by low stress drop values (median ∼0.4MPa) compared to natural seismicity in California. We observe a significant increase in stress drop as a function of depth, but the shallow depth distribution of these events is not by itself sufficient to explain their lower stress drop. Stress drop increases with magnitude from M1.5–M3.5, but this scaling trend may weaken above M4 and also depends on the assumed source model. Although we observe a nonstationary, sequence-specific temporal evolution in stress drop, we find no clear systematic relation with the activity of nearby injection wells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApSS..377..134P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApSS..377..134P"><span>Controllable formation of high density SERS-active silver nanoprism layers on hybrid silica-APTES coatings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilipavicius, J.; Kaleinikaite, R.; Pucetaite, M.; Velicka, M.; Kareiva, A.; Beganskiene, A.</p> <p>2016-07-01</p> <p>In this work sol-gel process for preparation of the uniform hybrid silica-3-aminopropyltriethoxysilane (APTES) coatings on glass surface is presented from mechanistic point of view. The suggested synthetic approach is straightforward, scalable and provides the means to tune the amount of amino groups on the surface simply by changing concentration of APTES in the initial sol. Deposition rate of different size silver nanoprisms (AgNPRs) on hybrid silica coatings of various amounts of APTES were studied and their performance as SERS materials were probed. The acquired data shows that the deposition rate of AgNPRs can be tuned by changing the amount of APTES. The optimal amount of APTES was found to be crucial for successful AgNPRs assembly and subsequent uniformity of the final SERS substrate-too high APTES content may result in rapid non-stable aggregation and non-uniform assembly process. SERS study revealed that SERS enhancement is the strongest at moderate AgNPRs aggregation level whereas it significantly drops at high aggregation levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28692273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28692273"><span>Protein Mixture Segregation at Coffee-Ring: Real-Time Imaging of Protein Ring Precipitation by FTIR Spectromicroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Sun; Birarda, Giovanni</p> <p>2017-08-03</p> <p>During natural drying process, all solutions and suspensions tend to form the so-called "coffee-ring" deposits. This phenomenon, by far, has been interpreted by the hydrodynamics of evaporating fluids. However, in this study, by applying Fourier transform infrared imaging (FTIRI), it is possible to observe the segregation and separation of a protein mixture at the "ring", hence we suggest a new way to interpret "coffee-ring effect" of solutions. The results explore the dynamic process that leads to the ring formation in case of model plasma proteins, such as BGG (bovine γ globulin), BSA (bovine serum albumin), and Hfib (human fibrinogen), and also report fascinating discovery of the segregation at the ring deposits of two model proteins BGG and BSA, which can be explained by an energy kinetic model, only. The investigation suggests that the coffee-ring effect of solute in an evaporating solution drop is driven by an energy gradient created from change of particle-water-air interfacial energy configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMEP..tmp.1544K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMEP..tmp.1544K"><span>Wetting and Interfacial Reactivity of Zn-Coated Steel Products with Cu-Si, Cu-Sn and Al-Si Filler Metals for Laser Brazing Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koltsov, Alexey; Cretteur, Laurent</p> <p>2018-03-01</p> <p>The laser brazing process is successfully applied in automotive industry for joining of roofs and hatchbacks of vehicles. The bad wetting of the brazing alloy during the process can lead to the formation of random external porosities which are not allowed on visible parts. This paper describes the wettability and reactivity mechanisms at short contact time of Cu and Al matrix brazing alloys with different reactive elements (Si, Sn) on different steel products such as hot-dip galvanized steels, galvannealed steel and bare steel. Wetting experiments were carried out by the dispensed drop technique. The effects of alloying elements and brazing alloy matrix on interfacial reactivity are discussed. It was found that Cu matrix containing 3 wt.% Si is the most favorable for short time liquid/solid adhesion relatively to the other studied brazing alloy compositions. The brazing ability of different steel products is well correlated with the wettability and interfacial reactivity results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...7.1944S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...7.1944S"><span>Donor-acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Yajun; Li, Yan; Liu, Jiangang; Xing, Rubo; Han, Yanchun</p> <p>2015-01-01</p> <p>An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1.An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05915h</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT........28V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT........28V"><span>Flows in films and over flippers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Nierop, Ernst Adriaan</p> <p></p> <p>Three topics in fluid mechanics are dealt with in this dissertation, namely (i) reactive spreading and recoil of oil on water, (ii) free film formation theory and experiment, and (iii) how humpback whale flippers delay stall. Reactive spreading of an oil droplet on water is described in Chapter 1. Small amounts of acid and base were added to the oil and water respectively, such that a surfactant was produced at the interface between the oil and the water, greatly enhancing spreading rates. After the oil drop spreads out to some maximum radius, the drop recoils on a timescale that is indicative of a diffusive process redistributing the surfactant over the entire volume of water. In Chapter 2, the theory of soap film formation by withdrawal from a bath of soapy liquid is reviewed, and the assumptions supporting Frankel's law are challenged. Stress balances that describe film evolution in either extensional or shear flow are rigorously derived and we find that the strength of surface stress terms pick the resulting flow type. With this background in mind, we describe in Chapter 3 how films were made using aqueous solutions of poly(ethylene oxide) or PEO with and without surfactant. The initial thickness of these films agrees well with existing data in the literature for overlapping ranges of the capillary number Ca. For larger Ca numbers, we observe that (i) the addition of SDS results in thinner films, (ii) films can be made that are thicker than the wire thickness, and (iii) films swell in thickness when the withdrawal process stops. Some potential mechanisms are described to explain the novel swelling phenomenon. Finally, in Chapter 4, we model the bumpy flipper of a humpback whale as a perturbed elliptic wing with Joukowski profiles of varying chord length, and combine this with lifting line theory as well as experimental stall characteristics of smooth wings. This model shows that the perturbations rearrange the downwash distribution on the wing, smoothing the transition to stall. Bump amplitude dominates the smoothing, while the wavelength of the bumps plays only a small role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8621Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8621Z"><span>On the physics-based processes behind production-induced seismicity in natural gas fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan</p> <p>2017-04-01</p> <p>Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity. In the case of gas re-injection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, accounting for continuous production at a given reservoir and gas re-injection at a neighbouring compartment does not stop the fault from being reactivated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4978895','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4978895"><span>A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.</p> <p>2016-01-01</p> <p>To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910062192&hterms=1047&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231047','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910062192&hterms=1047&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231047"><span>The use of containerless processing in researching reactive materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weber, J. K. R.; Krishnan, Shankar; Nordine, Paul C.</p> <p>1991-01-01</p> <p>It has recently become possible to perform containerless, high-temperature liquid-phase processing of many nonvolatile materials without resort to orbital microgravity, thereby facilitating the conduct of materials research in conjunction with noncontact diagnostic instruments. The melt-levitation techniques are electromagnetic, aerodynamic, acoustic, aeroacoustic, and electrostatic; nonorbital microgravity conditions are obtainable aboard NASA's KC-135 aircraft on parabolic flight paths, as well as in drop tubes and towers. Applications encompass the purification of metals and the creation of nonequilibrium and metastable structures. Process control and property measurements include optical pyrometry and emissivity, laser polarimetry, and drop calorimetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvE..93f3108K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvE..93f3108K"><span>Formation of microbeads during vapor explosions of Field's metal in water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kouraytem, N.; Li, E. Q.; Thoroddsen, S. T.</p> <p>2016-06-01</p> <p>We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThCFD..32..235M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThCFD..32..235M"><span>Stochastic growth of cloud droplets by collisions during settling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madival, Deepak G.</p> <p>2018-04-01</p> <p>In the last stage of droplet growth in clouds which leads to drizzle formation, larger droplets begin to settle under gravity and collide and coalesce with smaller droplets in their path. In this article, we shall deal with the simplified problem of a large drop settling amidst a population of identical smaller droplets. We present an expression for the probability that a given large drop suffers a given number of collisions, for a general statistically homogeneous distribution of droplets. We hope that our approach will serve as a valuable tool in dealing with droplet distribution in real clouds, which has been found to deviate from the idealized Poisson distribution due to mechanisms such as inertial clustering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995QuEle..25..232G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995QuEle..25..232G"><span>EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of formation of the liquid-drop phase of laser erosion jets near the surfaces of metal targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goncharov, V. K.; Kontsevoi, V. L.; Puzyrev, M. V.</p> <p>1995-03-01</p> <p>An investigation was made of laser erosion jets formed at 0.1-1.5 mm above the surfaces of Pb, Co, Ni, Sn, and Zn targets. A neodymium laser emitting rectangular pulses of 400 μs duration and of energy up to 400 J was used. The diameters, as well as the number density and volume fraction of the metal particles present in the jet, were measured. An analysis of the results showed that the metal liquid drops broke up near the surface and experienced additional evaporation because of their motion opposite to the laser beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863833','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863833"><span>Method for introduction of gases into microspheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan</p> <p>1981-01-01</p> <p>A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014hst..prop13856C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014hst..prop13856C"><span>Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crnojevic, Denija</p> <p>2014-10-01</p> <p>We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28988487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28988487"><span>Mechanisms and Control of Self-Emulsification upon Freezing and Melting of Dispersed Alkane Drops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valkova, Zhulieta; Cholakova, Diana; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K</p> <p>2017-10-31</p> <p>Emulsification requires drop breakage and creation of a large interfacial area between immiscible liquid phases. Usually, high-shear or high-pressure emulsification devices that generate heat and increase the emulsion temperature are used to obtain emulsions with micrometer and submicrometer droplets. Recently, we reported a new, efficient procedure of self-emulsification (Tcholakova et al. Nat. Commun. 2017, 8, 15012), which consists of one to several cycles of freezing and melting of predispersed alkane drops in a coarse oil-in-water emulsion. Within these freeze-thaw cycles of the dispersed drops, the latter burst spontaneously into hundreds and thousands of smaller droplets without using any mechanical agitation. Here, we clarify the main factors and mechanisms, which drive this self-emulsification process, by exploring systematically the effects of the oil and surfactant types, the cooling rate, and the initial drop size. We show that the typical size of the droplets, generated by this method, is controlled by the size of the structural domains formed in the cooling-freezing stage of the procedure. Depending on the leading mechanism, these could be the diameter of the fibers formed upon drop self-shaping or the size of the crystal domains formed at the moment of drop-freezing. Generally, surfactant tails that are 0-2 carbon atoms longer than the oil molecules are most appropriate to observe efficient self-emulsification. The specific requirements for the realization of different mechanisms are clarified and discussed. The relative efficiencies of the three different mechanisms, as a function of the droplet size and cooling procedure, are compared in controlled experiments to provide guidance for understanding and further optimization and scale-up of this self-emulsification process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000450','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000450"><span>Drops in Space: Super Oscillations and Surfactant Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19970000450'); toggleEditAbsImage('author_19970000450_show'); toggleEditAbsImage('author_19970000450_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19970000450_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19970000450_hide"></p> <p>1996-01-01</p> <p>An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>