Sample records for drop model etude

  1. Etude aerodynamique d'un jet turbulent impactant une paroi concave

    NASA Astrophysics Data System (ADS)

    LeBlanc, Benoit

    Etant donne la demande croissante de temperatures elevees dans des chambres de combustion de systemes de propulsions en aerospatiale (turbomoteurs, moteur a reaction, etc.), l'interet dans le refroidissement par jets impactant s'est vu croitre. Le refroidissement des aubes de turbine permet une augmentation de temperature de combustion, ce qui se traduit en une augmentation de l'efficacite de combustion et donc une meilleure economie de carburant. Le transfert de chaleur dans les au bages est influence par les aspects aerodynamiques du refroidissement a jet, particulierement dans le cas d'ecoulements turbulents. Un manque de comprehension de l'aerodynamique a l'interieur de ces espaces confinees peut mener a des changements de transfert thermique qui sont inattendus, ce qui augmente le risque de fluage. Il est donc d'interet pour l'industrie aerospatiale et l'academie de poursuivre la recherche dans l'aerodynamique des jets turbulents impactant les parois courbes. Les jets impactant les surfaces courbes ont deja fait l'objet de nombreuses etudes. Par contre des conditions oscillatoires observees en laboratoire se sont averees difficiles a reproduire en numerique, puisque les structures d'ecoulements impactants des parois concaves sont fortement dependantes de la turbulence et des effets instationnaires. Une etude experimentale fut realisee a l'institut PPRIME a l'Universite de Poitiers afin d'observer le phenomene d'oscillation dans le jet. Une serie d'essais ont verifie les conditions d'ecoulement laminaires et turbulentes, toutefois le cout des essais experimentaux a seulement permis d'avoir un apercu du phenomene global. Une deuxieme serie d'essais fut realisee numeriquement a l'Universite de Moncton avec l'outil OpenFOAM pour des conditions d'ecoulement laminaire et bidimensionnel. Cette etude a donc comme but de poursuivre l'enquete de l'aerodynamique oscillatoire des jets impactant des parois courbes, mais pour un regime d'ecoulement transitoire, turbulent, tridimensionnel. Les nombres de Reynolds utilises dans l'etude numerique, bases sur le diametre du jet lineaire observe, sont de Red = 3333 et 6667, consideres comme etant en transition vers la turbulence. Dans cette etude, un montage numerique est construit. Le maillage, le schema numerique, les conditions frontiere et la discretisation sont discutes et choisis. Les resultats sont ensuite valides avec des donnees turbulentes experimentales. En modelisation numerique de turbulence, les modeles de Moyennage Reynolds des Equations Naviers Stokes (RANS) presentent des difficultes avec des ecoulements instationnaires en regime transitionnel. La Simulation des Grandes Echelles (LES) presente une solution plus precise, mais au cout encore hors de portee pour cette etude. La methode employee pour cette etude est la Simulation des Tourbillons Detaches (DES), qui est un hybride des deux methodes (RANS et LES). Pour analyser la topologie de l'ecoulement, la decomposition des modes propres (POD) a ete egalement ete effectuee sur les resultats numeriques. L'etude a demontre d'abord le temps de calcul relativement eleve associe a des essais DES pour garder le nombre de Courant faible. Les resultats numeriques ont cependant reussi a reproduire correctement le basculement asynchrone observe dans les essais experimentaux. Le basculement observe semble etre cause par des effets transitionnels, ce qui expliquerait la difficulte des modeles RANS a correctement reproduire l'aerodynamique de l'ecoulement. L'ecoulement du jet, a son tour, est pour la plupart du temps tridimensionnel et turbulent sauf pour de courtes periodes de temps stable et independant de la troisieme dimension. L'etude topologique de l'ecoulement a egalement permit la reconaissances de structures principales sousjacentes qui etaient brouillees par la turbulence. Mots cles : jet impactant, paroi concave, turbulence, transitionnel, simulation des tourbillons detaches (DES), OpenFOAM.

  2. Folds and Etudes

    ERIC Educational Resources Information Center

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  3. Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite

    NASA Astrophysics Data System (ADS)

    Dumoulin, Benoit

    Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l'instabilite spin-Peierls apparait ensuite vers 60K. Notre etude theorique montre qu'un modele d'electrons en interaction de type "g-ologie" avec possibilite de processus umklapp permet de bien rendre compte des proprietes physiques de ce systeme. Finalement, la troisieme partie de cette these porte sur l'etude des premiers composes organiques quasi-unidimensionnels a avoir ete synthetises: les composes de la famille du TTF-TCNQ. Notre etude theorique des instabilites structurales que presentent ces composes n'est evidemment pas la premiere. L'originalite de cette derniere est qu'elle tient compte des fortes interactions entre les electrons, presentent dans ces composes. Pour tenir compte de telles interactions, nous avons choisi la formulation "liquide de Luttinger" qui nous permet de mieux traiter ce regimne dit de couplage fort.

  4. French Research in Acoustics and Signal Processing: Report on Introductory Visit

    DTIC Science & Technology

    1986-05-01

    CEPHAG (Centre d’Etude des Phenomenes Aleatoires et Geophysiques ), which is associated with the Institut National Polytechnique at Grenoble. We were...measurement programs. Centre d’Etude des Phenomenes Aleatoires et Geophysiques (CEPHAG), Institut National Polytechnique, Universite de Grenoble, 23 May...69288 Lyon Cedex, France, Tel 72.32.50.67. CENTRE D’ETUDE DES PHENOMENES ALEATOIRES ET GEOPHYSIQUES (CEPHAG), Grenoble. Prof. J. L. Lacoume

  5. Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard

    NASA Astrophysics Data System (ADS)

    Plouffe, Dany

    Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique, antiferromagnetisme, supraconductivite, methodes numeriques, larges matrices

  6. Advances in X-Ray Simulator Technology

    DTIC Science & Technology

    1995-07-01

    d’Etudes de Gramat ; I. Vitkovitsky, Logicon RDA INTRODUCTION DNA’s future x-ray simulators are based upon inductive energy storage, a technology which...switch. SYRINX, a proposed design to be built by the Centre d’Etudes de Gramat (CEG) in France would employ a modular approach, possibly with a...called SYRINX, would be built at the Centred’ Etudes de Gramat (CEG). It would employ a modular.long conduction time current source to drive a PRS

  7. French research program on the physiological problems caused by weightlessness. Use of the primate model

    NASA Astrophysics Data System (ADS)

    Pesquies, P. C.; Milhaud, C.; Nogues, C.; Klein, M.; Cailler, B.; Bost, R.

    The need to acquire a better knowledge of the main biological problems induced by microgravity implies—in addition to human experimentation—the use of animal models, and primates seem to be particularly well adapted to this type of research. The major areas of investigation to be considered are the phospho-calcium metabolism and the metabolism of supporting tissues, the hydroelectrolytic metabolism, the cardiovascular function, awakeness, sleep-awakeness cycles, the physiology of equilibrium and the pathophysiology of space sickness. Considering this program, the Centre d'Etudes et de Recherches de Medecine Aerospatiale, under the sponsorship of the Centre National d'Etudes Spatiales, developed both a program of research on restrained primates for the French-U.S. space cooperation (Spacelab program) and for the French-Soviet space cooperation (Bio-cosmos program), and simulation of the effects of microgravity by head-down bedrest. Its major characteristics are discussed in the study.

  8. 4TH International Topical Conference on High-Power Electron and Ion-Beam Research and Technology, held in Palaiseau, France, 29 June - 3 July 1981.

    DTIC Science & Technology

    1981-10-09

    N. Camarcat (Centre d’Etudes de Valduc ) noted that the French were new in this field and presented the results of the experiments on LIB production...Beam Production on Low Impedance Generators" N. Camarcat et al. C.E.A.-D.A.M.-S.E.C.R. Centre d’Etudes de Valduc , France 7...Acceleration on the Thalie Generator" J. Cortella et al. C.E.A.-D.A.M.-S.E.C.R. Centre d’Etudes de Valduc , France ION PRODUCTION II "The Work on High

  9. On Comparing Precision Orbit Solutions of Geodetic Satellites Given Several Atmospheric Density Models

    DTIC Science & Technology

    2014-08-01

    Astrodynamics, drag, atmospheric density, geodesy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 12 19a...Translation of ’Le satellite de geodesie ’Starlette’,’ Groupe de Recherches de Geodesie Spatiale, Centre National d’Etudes Spatiales, Bretigny-sur-Orge

  10. Singing as a Therapeutic Agent, inThe Etude, 1891-1949.

    PubMed

    Hunter

    1999-01-01

    The Etude music magazine, founded by Theodore Presser, was one of a number of popular music magazines published in the years prior to the establishment of the music therapy profession in 1950. During its publication run from 1883 to 1957, over 100 music therapy related articles appeared, including 13 on the health benefits of singing published between 1891 and 1949. Written by authors with diverse backgrounds, such as the famous Battle Creek, Michigan physician John Harvey Kellogg and Boston music critic Louis C. Elson, the articles contained consistent and adamant support regarding the health benefits of singing. The advantages described were both physical and psychological, and were recommended prophylactically for well persons and therapeutically for ill persons. Although the articles varied in perspective, from philosophical to theoretical to pedagogical, there is a consistent holistic medicine theme that appeared almost ahead of its time and no doubt linked to the push for vocal music education in that era. The importance of The Etude in promulgating ideas that helped shape the early practice of music therapy should not be underestimated. For much of its publication run The Etude was the largest music periodical in print, reaching its peak circulation of 250,000 copies per month in 1924.

  11. Etude vibroacoustique d'un systeme coque-plancher-cavite avec application a un fuselage simplifie

    NASA Astrophysics Data System (ADS)

    Missaoui, Jemai

    L'objectif de ce travail est de developper des modeles semi-analytiques pour etudier le comportement structural, acoustique et vibro-acoustique d'un systeme coque-plancher-cavite. La connection entre la coque et le plancher est assuree en utilisant le concept de rigidite artificielle. Ce concept de modelisation flexible facilite le choix des fonctions de decomposition du mouvement de chaque sous-structure. Les resultats issus de cette etude vont permettre la comprehension des phenomenes physiques de base rencontres dans une structure d'avion. Une approche integro-modale est developpee pour calculer les caracteristiques modales acoustiques. Elle utilise une discretisation de la cavite irreguliere en sous-cavites acoustiques dont les bases de developpement sont connues a priori. Cette approche, a caractere physique, presente l'avantage d'etre efficace et precise. La validite de celle-ci a ete demontree en utilisant des resultats disponibles dans la litterature. Un modele vibro-acoustique est developpe dans un but d'analyser et de comprendre les effets structuraux et acoustiques du plancher dans la configuration. La validite des resultats, en termes de resonance et de fonction de transfert, est verifiee a l'aide des mesures experimentales realisees au laboratoire.

  12. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  13. Actes du colloque sur le bilinguisme, Universite de Neuchatel, 14/15 Septembre, 1981 (Proceedings of the Colloquium on Bilingualism, University of Neuchatel, September 14-15, 1981).

    ERIC Educational Resources Information Center

    TRANEL, 1982

    1982-01-01

    This issue contains proceedings of a colloquium on linguistics at the University of Neuchatel: (1) "Propositions epistemologiques pour une etude du bilinguisme (Epistemological Propositions for a Study of Bilingualism)," by B. Py; (2) "Comment on di ca? Prolegomenes a une etude de la composante semantique du langage des migrants (How Do You Say…

  14. Plates-formes de microscopie et fluorescence par resonance de plasmons de surface appliquees a l'imagerie cellulaire

    NASA Astrophysics Data System (ADS)

    Chabot, Vincent

    L'elaboration de nouveaux medicaments repose sur les etudes pharmacologiques, dont le role est d'identifier de nouveaux composes actifs ou de nouvelles cibles pharmacologiques agissant entre autres au niveau cellulaire. Recemment, la detection basee sur la resonance des plasmons de surface (SPR) a ete appliquee a l'etude de reponses cellulaires. Cette methode de detection, permettant d'observer des variations d'indice de refraction associes a de faibles changements de masse a la surface d'un metal, a l'avantage de permettre l'etude d'une population de cellules vivantes en temps reel, sans necessiter l'introduction d'agents de marquage. Pour effectuer la detection au niveau de cellules individuelles, on peut employer la microscopie SPR, qui consiste a localiser spatialement la detection par un systeme d'imagerie. Cependant, la detection basee sur la SPR est une mesure sans marquage et les signaux mesures sont attribues a une reponse moyennee des differentes sources cellulaires. Afin de mieux comprendre et identifier les composantes cellulaires generant le signal mesure en SPR, il est pertinent de combiner la microscopie SPR avec une modalite complementaire, soit l'imagerie de fluorescence. C'est dans cette problematique que s'insere ce projet de these, consistant a concevoir deux plates-formes distinctes de microscopie SPR et de fluorescence optimisees pour l'etude cellulaire, de sorte a evaluer les possibilites d'integration de ces deux modalites en un seul systeme. Des substrats adaptes pour chaque plate-forme ont ete concus et realises. Ces substrats employaient une couche d'argent passivee par l'ajout d'une mince couche d'or. La stabilite et la biocompatibilite des substrats ont ete validees pour l'etude cellulaire. Deux configurations permettant d'ameliorer la sensibilite en sondant les cellules plus profondement ont ete evaluees, soit l'emploi de plasmons de surface a longue portee et de guides d'onde a gaine metallique. La sensibilite accrue de ces configurations a aussi ete demontree pour un usage en biodetection cellulaire. Une plate-forme permettant de mesurer la spectroscopie SPR simultanement avec l'acquisition d'images de fluorescence a ete realisee. Cette plate-forme a ensuite ete validee par l'etude de reponses cellulaires suite a une stimulation pharmacologique. Puis, un systeme base sur la microscopie SPR a ete concu et caracterise. Son emploi pour l'etude de reponses au niveau de cellules individuelles a ete demontre. Finalement, les forces et faiblesses des substrats et des plates-formes realisees au cours de la these ont ete evaluees. Des possibilites d'amelioration sont mises de l'avant et l'integration des modalites de microscopie SPR et de fluorescence suite aux travaux de la these est discutee. Les realisations au cours de cette etude ont donc permis d'identifier les composantes cellulaires impliquees dans la generation du signal mesure en biodetection SPR. Mots-cles : Resonance des plasmons de surface, microscopie SPR, plasmons de surface a longue portee LRSPR, guide d'onde a gaine metallique MCWG, fluorescence exaltee par plasmons de surface SPEF, biodetection cellulaire, imagerie SPR.

  15. Propulsion and Energetics Panel Working Group 14 on Suitable Averaging Techniques in Non-Uniform Internal Flows

    DTIC Science & Technology

    1983-06-01

    PANEL WORKING GROUP 14 on SUITABLE AVERAGING TECHNIQUES IN NON-UNIFORM INTERNAL FLOWS Edited by M.Pianko Office National d’Etudes et de...d’Etudes et de Recherches Aerospatiales Pratt and Whitney Government Products Division Rocketdyne Division of Rockwell International , Inc. Teledyne CAE...actions exerted by individual components on the gas flow must be known. These specific component effects are distributed internally within the

  16. Hazard Studies for Solid Propellant Rocket Motors (Etude des Risque pour les Moteurs-Fusees a Propergols Solides)

    DTIC Science & Technology

    1990-09-01

    RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE LATIANTIOUF NORD) AGARDograph No.3 16 Hazard Studies for Solid Propellant Rocket Motors (Etudes de...member nations to use their research and development capabilities for the common benefit of the NATO community; - Providing scientific and technical...advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application

  17. Reanalysis of European Flight Loads Data

    DTIC Science & Technology

    1994-05-01

    DATA 6. Pulornig Ogaiation Cods 7. Authus) 8. Peronming Organization Report No. J. B. de Jonge, P.A. Hol and P.A. van Gelder NLR TP 93�L 9...containing data on aircraft operated by British Airways was obtained from the Office National d’etudes et de researches aerospatiales in France. A database...by British Airways. This data base was kept at Office National d’etudes et de recherches aerospatiales (ONERA) and was acquired from that institute

  18. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  19. Instrumentation and telemetry systems for free-flight drop model testing

    NASA Technical Reports Server (NTRS)

    Hyde, Charles R.; Massie, Jeffrey J.

    1993-01-01

    This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.

  20. The Effects of Corona on Current Surges Induced on Conducting Lines by EMP (Electromagnetic Pulse): A Comparison of Experiment Data with Results of Analytic Corona Models

    DTIC Science & Technology

    1987-09-01

    196. M. Schechter, A.D.A., P. 0. Box 2250 (81), Haifa, 31021, ISRAEL 197. D. Serafin, Cente d’Etudes de Gramat , 46500 Gramst, FRANCE 198. Peter Sevat...Managing Director, GERAC, B.P. 19 - 46500 Gramat FRANCE 202. Carol Smeerdon, Royal Aircraft Establishment, Flight Systems, BLdg. Q153, Farnborough

  1. Theoretical and Experimental Methods in Hypersonic Flows (Les Methodes Theoriques et Experimentales pour l’Etude Des Ecoulements Hypersoniques)

    DTIC Science & Technology

    1993-04-01

    PROCEEDINGS 514 OELECTE f Theoretical and A U Experimental Methods in A Hypersonic Flows (Les Methodes Th6oriques et Experimentales pour 1’Etude des...nitrogen ent for both equilibrium and non -equilibrium chemistry between the two groups . Both groups state that the boundary makes this mode even more...flowfield on control is also m?,ndatory unstable due to the necessary oblate shape of Hermes. when the experimental rebuilding is clearly poor and

  2. Analysis of the free-fall behavior of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. Kevin; Markworth, Alan J.; Collings, E. W.; Brodkey, Robert S.

    1987-01-01

    The free-fall of a liquid-metal drop and heat transfer from the drop to its environment are described for both a gaseous atmosphere and vacuum. A simple model, in which the drop is assumed to fall rectilinearly with behavior like that of a rigid particle, is developed first, then possible causes of deviation from this behavior are discussed. The model is applied to describe solidification of drops in a drop tube. Possible future developments of the model are suggested.

  3. Etude de l'affaiblissement du comportement mecanique du pergelisol du au rechauffement climatique

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie

    Le rechauffement climatique predit pour les prochaines decennies, aura des impacts majeurs sur le pergelisol qui sont tres peu documentes pour l'instant. La presente etude a pour but d'evaluer ces impacts sur les proprietes mecaniques du pergelisol et sa stabilite a long terme. Une nouvelle technique d'essai de penetration au cone a taux de deformation controle, a ete developpee pour caracteriser en place le pergelisol. Ces essais geotechniques et la mesure de differentes proprietes physiques ont ete effectues sur une butte de pergelisol au cours du printemps 2000. Le developpement et l'utilisation d'un modele geothermique 1D tenant compte de la thermodependance du comportement mecanique ont permis d'evaluer que les etendues de pergelisol chaud deviendraient instables a la suite d'un rechauffement de l'ordre de 5°C sur cent ans. En effet, la resistance mecanique du pergelisol diminuera alors rapidement jusqu'a 11,6 MPa, ce qui correspond a une perte relative de 98% de la resistance par rapport a un scenario sans rechauffement.

  4. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  5. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    NASA Astrophysics Data System (ADS)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  6. Etude de l'influence de la temperature et de l'humidite sur les proprietes mecaniques en traction des fibres de chanvre et de coco

    NASA Astrophysics Data System (ADS)

    Ho Thi, Thu Nga

    L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.

  7. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  8. Methode d'identification parametrique pour la surveillance in situ des joints a recouvrement par propagation d'ondes vibratoires

    NASA Astrophysics Data System (ADS)

    Francoeur, Dany

    Cette these de doctorat s'inscrit dans le cadre de projets CRIAQ (Consortium de recherche et d'innovation en aerospatiale du Quebec) orientes vers le developpement d'approches embarquees pour la detection de defauts dans des structures aeronautiques. L'originalite de cette these repose sur le developpement et la validation d'une nouvelle methode de detection, quantification et localisation d'une entaille dans une structure de joint a recouvrement par la propagation d'ondes vibratoires. La premiere partie expose l'etat des connaissances sur l'identification d'un defaut dans le contexte du Structural Health Monitoring (SHM), ainsi que la modelisation de joint a recouvrements. Le chapitre 3 developpe le modele de propagation d'onde d'un joint a recouvrement endommage par une entaille pour une onde de flexion dans la plage des moyennes frequences (10-50 kHz). A cette fin, un modele de transmission de ligne (TLM) est realise pour representer un joint unidimensionnel (1D). Ce modele 1D est ensuite adapte a un joint bi-dimensionnel (2D) en faisant l'hypothese d'un front d'onde plan incident et perpendiculaire au joint. Une methode d'identification parametrique est ensuite developpee pour permettre a la fois la calibration du modele du joint a recouvrement sain, la detection puis la caracterisation de l'entaille situee sur le joint. Cette methode est couplee a un algorithme qui permet une recherche exhaustive de tout l'espace parametrique. Cette technique permet d'extraire une zone d'incertitude reliee aux parametres du modele optimal. Une etude de sensibilite est egalement realisee sur l'identification. Plusieurs resultats de mesure sur des joints a recouvrements 1D et 2D sont realisees permettant ainsi l'etude de la repetabilite des resultats et la variabilite de differents cas d'endommagement. Les resultats de cette etude demontrent d'abord que la methode de detection proposee est tres efficace et permet de suivre la progression d'endommagement. De tres bons resultats de quantification et de localisation d'entailles ont ete obtenus dans les divers joints testes (1D et 2D). Il est prevu que l'utilisation d'ondes de Lamb permettraient d'etendre la plage de validite de la methode pour de plus petits dommages. Ces travaux visent d'abord la surveillance in-situ des structures de joint a recouvrements, mais d'autres types de defauts. (comme les disbond) et. de structures complexes sont egalement envisageables. Mots cles : joint a recouvrement, surveillance in situ, localisation et caracterisation de dommages

  9. Le recours aux modeles dans l'enseignement de la biologie au secondaire : Conceptions d'enseignantes et d'enseignants et modes d'utilisation

    NASA Astrophysics Data System (ADS)

    Varlet, Madeleine

    Le recours aux modeles et a la modelisation est mentionne dans la documentation scientifique comme un moyen de favoriser la mise en oeuvre de pratiques d'enseignement-apprentissage constructivistes pour pallier les difficultes d'apprentissage en sciences. L'etude prealable du rapport des enseignantes et des enseignants aux modeles et a la modelisation est alors pertinente pour comprendre leurs pratiques d'enseignement et identifier des elements dont la prise en compte dans les formations initiale et disciplinaire peut contribuer au developpement d'un enseignement constructiviste des sciences. Plusieurs recherches ont porte sur ces conceptions sans faire de distinction selon les matieres enseignees, telles la physique, la chimie ou la biologie, alors que les modeles ne sont pas forcement utilises ou compris de la meme maniere dans ces differentes disciplines. Notre recherche s'est interessee aux conceptions d'enseignantes et d'enseignants de biologie au secondaire au sujet des modeles scientifiques, de quelques formes de representations de ces modeles ainsi que de leurs modes d'utilisation en classe. Les resultats, que nous avons obtenus au moyen d'une serie d'entrevues semi-dirigees, indiquent que globalement leurs conceptions au sujet des modeles sont compatibles avec celle scientifiquement admise, mais varient quant aux formes de representations des modeles. L'examen de ces conceptions temoigne d'une connaissance limitee des modeles et variable selon la matiere enseignee. Le niveau d'etudes, la formation prealable, l'experience en enseignement et un possible cloisonnement des matieres pourraient expliquer les differentes conceptions identifiees. En outre, des difficultes temporelles, conceptuelles et techniques peuvent freiner leurs tentatives de modelisation avec les eleves. Toutefois, nos resultats accreditent l'hypothese que les conceptions des enseignantes et des enseignants eux-memes au sujet des modeles, de leurs formes de representation et de leur approche constructiviste en enseignement representent les plus grands obstacles a la construction des modeles en classe. Mots-cles : Modeles et modelisation, biologie, conceptions, modes d'utilisation, constructivisme, enseignement, secondaire.

  10. Etude hyperfrequence et ultrasonore des supraconducteurs organiques kappa-(ET)(2)X (X = copper(thiocyanogen), copper[N(CN)(2)]bromine)

    NASA Astrophysics Data System (ADS)

    Frikach, Kamal

    2001-09-01

    Dans ce travail je presente une etude de l'impedance de surface, ainsi que de l'attenuation et la variation de la vitesse ultrasonores dans les etats normal et supraconducteur sur les composes organiques k-(ET)2X (X = Cu(SCN) 2, Cu[N(CN)2]Br). A partir des mesures d'impedance de surface, les deux composantes sigma 1 et sigma2 de la conductivite complexe sont extraites en utilisant le modele de Drude. Ces mesures montrent que la symetrie du parametre d'ordre dans ces composes est differente de celle du cas BCS. Afin de comprendre le profil de sigma1 (T) nous avons etudie les fluctuations supraconductrices a partir de la paraconductivite sigma'( T). Cette etude est rendue possible grace a la structure quasi-2D des composes k-(ET)2X dans lesquelles les fluctuations supraconductrices sont fortes. Ces dernieres sont observees sur deux decades de temperatures dans le Cu(SCN)2. L'application du modele de Aslamazov-Larkin 2D et 3D montre la possibilite du passage du regime 2D a haute temperature au regime 3D au voisinage de Tc. En se basant sur ce resultat, nous avons calcule la paraconductivite en utilisant une approche a l'ordre d'une boucle a partir du modele de Lawrence-Doniach. En tenant compte de la correction par la self energie dans la limite dynamique (17 GHz), l'ajustement de la paraconductivite calculee est en bon accord avec les donnees experimentales. Le couplage interplan obtenu est compatible avec le caractere quasi-2D des composes organiques. Le temps de relaxation des quasi-particules dans l'etat supraconducteur est ensuite extrait pour la premiere fois dans ces composes dont le comportement en fonction de la temperature est compatible avec la presence des noeuds dans le gap. Dans l'etat normal, la variation de la vitesse ultrasonore presente un comportement anormal caracterise par un fort ramollissement a T = 38 K et 50 K dans k-(ET) 2Cu(SCN)2 et k-(ET)2Cu[N(CN) 2]Br respectivement dont l'amplitude est independante du champ magnetique jusqu'a H = Hc 2. Cette anomalie semble exister seulement dans les modes qui sondent le couplage interplan. Ce comportement est attribue au couplage entre les fluctuations antiferromagnetiques et les phonons acoustiques.

  11. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs

    NASA Astrophysics Data System (ADS)

    Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.

    Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.

  12. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  13. Model of Mixing Layer With Multicomponent Evaporating Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2004-01-01

    A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner. The model is used to perform Direct Numerical Simulations in continuing studies directed toward understanding the behavior of liquid petroleum fuel sprays. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and the drops, respectively. This representation is consistent with the expected volumetrically small loading of the drops in gas (of the order of 10 3), although the mass loading can be substantial because of the high ratio (of the order of 103) between the densities of liquid and gas. The drops are treated as point sources of mass, momentum, and energy; this representation is consistent with the drop size being smaller than the Kolmogorov scale. Unsteady drag, added-mass effects, Basset history forces, and collisions between the drops are neglected, and the gas is assumed calorically perfect. The model incorporates the concept of continuous thermodynamics, according to which the chemical composition of a fuel is described probabilistically, by use of a distribution function. Distribution functions generally depend on many parameters. However, for mixtures of homologous species, the distribution can be approximated with acceptable accuracy as a sole function of the molecular weight. The mixing layer is initially laden with drops in its lower stream, and the drops are colder than the gas. Drop evaporation leads to a change in the gas-phase composition, which, like the composition of the drops, is described in a probabilistic manner

  14. Droplet combustion experiment drop tower tests using models of the space flight apparatus

    NASA Technical Reports Server (NTRS)

    Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.

    1989-01-01

    The Droplet Combustion Experiment (DCE) is an experiment that is being developed to ultimately operate in the shuttle environment (middeck or Spacelab). The current experiment implementation is for use in the 2.2 or 5 sec drop towers at NASA Lewis Research Center. Initial results were reported in the 1986 symposium of this meeting. Since then significant progress was made in drop tower instrumentation. The 2.2 sec drop tower apparatus, a conceptual level model, was improved to give more reproducible performance as well as operate over a wider range of test conditions. Some very low velocity deployments of ignited droplets were observed. An engineering model was built at TRW. This model will be used in the 5 sec drop tower operation to obtain science data. In addition, it was built using the flight design except for changes to accommodate the drop tower requirements. The mechanical and electrical assemblies have the same level of complexity as they will have in flight. The model was tested for functional operation and then delivered to NASA Lewis. The model was then integrated into the 5 sec drop tower. The model is currently undergoing initial operational tests prior to starting the science tests.

  15. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  16. Self-propulsion of Leidenfrost Drops between Non-Parallel Structures.

    PubMed

    Luo, Cheng; Mrinal, Manjarik; Wang, Xiang

    2017-09-20

    In this work, we explored self-propulsion of a Leidenfrost drop between non-parallel structures. A theoretical model was first developed to determine conditions for liquid drops to start moving away from the corner of two non-parallel plates. These conditions were then simplified for the case of a Leidenfrost drop. Furthermore, ejection speeds and travel distances of Leidenfrost drops were derived using a scaling law. Subsequently, the theoretical models were validated by experiments. Finally, three new devices have been developed to manipulate Leidenfrost drops in different ways.

  17. T2L2 on JASON-2: First Evaluation of the Flying Model

    DTIC Science & Technology

    2007-01-01

    Para, J.-M. Torre R&D Metrology CNRS/GEMINI Observatoire de la Côte d’Azur Caussol, France E-mail: philippe.guillemot@cnes.fr Abstract...Laser Link” experiment T2L2 [1], under development at OCA (Observatoire de la Côte d’Azur) and CNES (Centre National d’Etudes Spatiales), France, will be...Experimental Astronomy, 7, 191-207. [2] P. Fridelance and C. Veillet, 1995, “Operation and data analysis in the LASSO experiment,” Metrologia

  18. NASA Cryogenic Propellant Systems Technology Development and Potential Opportunities for Discussion

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    2015-01-01

    Members of the eCryo Team are traveling to France to meet with CNES (Centre National d'Etudes Spatiales) on the benchmarking of CFM (Cryogenic Fluids Management) analytical models the week of January 26th, 2015. Mike Meyer is representing the Agency and eCryo Project and will conduct a conversation to explore future work. This slide package (28 charts and 3 movies) requires approval via a 1676. ISS data in this chart set has been copied from public websites.

  19. Spreading of a pendant liquid drop underneath a textured substrate

    NASA Astrophysics Data System (ADS)

    Mistry, Aashutosh; Muralidhar, K.

    2018-04-01

    A pendant drop spreading underneath a partially wetting surface from an initial shape to its final equilibrium configuration and contact angle is studied. A mathematical formulation that quantifies spreading behavior of liquid drops over textured surfaces is discussed. The drop volume and the equilibrium contact angle are treated as parameters in the study. The unbalanced force at the three-phase contact line is modeled as being proportional to the degree of departure from the equilibrium state. Model predictions are verified against the available experimental data in the literature. Results show that the flow dynamics is strongly influenced by the fluid properties, drop volume, and contact angle of the liquid with the partially wetting surface. The drop exhibits rich dynamical behavior including inertial oscillations and gravitational instability, given that gravity tries to detach the drop against wetting contributions. Flow characteristics of drop motion, namely, the radius of the footprint, slip length, and dynamic contact angle in the pendant configuration are presented. Given the interplay among the competing time-dependent forces, a spreading drop can momentarily be destabilized and not achieve a stable equilibrium shape. Instability is then controlled by the initial drop shape as well. The spreading model is used to delineate stable and unstable regimes in the parameter space. Predictions of the drop volume based on the Young-Laplace equation are seen to be conservative relative to the estimates of the dynamical model discussed in the present study.

  20. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: Data analysis and modeling with artificial neural network

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Nadooshan, Afshin Ahmadi; Arshi, Ali; Alirezaie, Ali

    2018-03-01

    In this study, experimental data related to the Nusselt number and pressure drop of aqueous nanofluids of Titania is modeled and estimated by using ANN with 2 hidden layers and 8 neurons in each layer. Also in this study the effect of various effective variables in the Nusselt number and pressure drop is surveyed. This study indicated that the neural network modeling has been able to model experimental data with great accuracy. The modeling regression coefficient for the data of Nusselt number and relative pressure drop is 99.94% and 99.97% respectively. Besides, it represented that the increment of the Reynolds number and concentration made the increment of Nusselt number and pressure drop of aqueous nanofluid.

  1. Modeling drop impacts on inclined flowing soap films

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Small drops impinging on soap films flowing at an angle primarily exhibit three fundamental regimes of post-impact dynamics: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow, and (c) it pierces through the film. During impact, the drop deforms along with a simultaneous, almost elastic deformation of the film transverse to the stream direction. Hence, the governing dynamics for this interaction present the rare opportunity to explore the in-tandem effects of elasticity and hydrodynamics alike. In this talk, we outline the analytical framework to study the drop impact dynamics. The model assumes a deformable drop and a deformable three-dimensional soap film and invokes a parametric study to qualify the three mentioned impact types. The physical parameters include the impact angle, drop impact speed, and the diameters of the drop prior to and during impact when it deforms and spreads out. Our model system offers a path towards optimization of interactions between a spray and a flowing liquid.

  2. A deformable surface model for real-time water drop animation.

    PubMed

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  3. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    NASA Astrophysics Data System (ADS)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  4. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2015-03-28

    Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.

  5. Stress drop inferred from dynamic rupture simulations consistent with Moment-Rupture area empirical scaling models: Effects of week shallow zone

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Miyake, H.; Irikura, K.; Wu, H., Sr.

    2016-12-01

    Empirical scaling models of seismic moment and rupture area provide constraints to parameterize source parameters, such as stress drop, for numerical simulations of ground motion. There are several scaling models published in the literature. The effect of the finite width seismogenic zone and the free-surface have been attributed to cause the breaking of the well know self-similar scaling (e.g. Dalguer et al, 2008) given origin to the so called L and W models for large faults. These models imply the existence of three-stage scaling relationship between seismic moment and rupture area (e.g. Irikura and Miyake, 2011). In this paper we extend the work done by Dalguer et al 2008, in which these authors calibrated fault models that match the observations showing that the average stress drop is independent of earthquake size for buried earthquakes, but scale dependent for surface-rupturing earthquakes. Here we have developed additional sets of dynamic rupture models for vertical strike slip faults to evaluate the effect of the weak shallow layer (WSL) zone for the calibration of stress drop. Rupture in the WSL zone is expected to operate with enhanced energy absorption mechanism. The set of dynamic models consists of fault models with width 20km and fault length L=20km, 40km, 60km, 80km, 100km, 120km, 200km, 300km and 400km and average stress drop values of 2.0MPa, 2.5MPa, 3.0MPa, 3.5MPa, 5.0MPa and 7.5MPa. For models that break the free-surface, the WSL zone is modeled assuming a 2km width with stress drop 0.0MPa or -2.0 MPa. Our results show that depending on the characterization of the WSL zone, the average stress drop at the seismogenic zone that fit the empirical models changes. If WSL zone is not considered, that is, stress drop at SL zone is the same as the seismogenic zone, average stress drop is about 20% smaller than models with WSL zone. By introducing more energy absorption at the SL zone, that could be the case of large mature faults, the average stress drop in the seismogenic zone increases. Suggesting that large earthquakes need higher stress drop to break the fault than buried and moderate earthquakes. Therefore, the value of the average stress drop for large events that break the free-source depend on the definition of the WSL. Suggesting that the WSL plays an important role on the prediction of final slip and fault displacement.

  6. Structural Basis for Methylarginine-dependent Recognition of Aubergine by Tudor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Wang, J; Huang, Y

    2010-01-01

    Piwi proteins are modified by symmetric dimethylation of arginine (sDMA), and the methylarginine-dependent interaction with Tudor domain proteins is critical for their functions in germline development. Cocrystal structures of an extended Tudor domain (eTud) of Drosophila Tudor with methylated peptides of Aubergine, a Piwi family protein, reveal that sDMA is recognized by an asparagine-gated aromatic cage. Furthermore, the unexpected Tudor-SN/p100 fold of eTud is important for sensing the position of sDMA. The structural information provides mechanistic insights into sDMA-dependent Piwi-Tudor interaction, and the recognition of sDMA by Tudor domains in general.

  7. Analysis of the convective evaporation of nondilute clusters of drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1987-01-01

    The penetration distance of an outer flow into a drop cluster volume is the critical, evaporation mode-controlling parameter in the present model for nondilute drop clusters' convective evaporation. The model is found to perform well for such low penetration distances as those obtained for dense clusters in hot environments and low relative velocities between the outer gases and the cluster. For large penetration distances, however, the predictive power of the model deteriorates; in addition, the evaporation time is found to be a weak function of the initial relative velocity and a strong function of the initial drop temperature. The results generally show that the interior drop temperature was transient throughout the drop lifetime, although temperature nonuniformities persisted up to the first third of the total evaporation time at most.

  8. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    PubMed

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  9. Drop "impact" on an airfoil surface.

    PubMed

    Wu, Zhenlong

    2018-06-01

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  11. Why Doesn't the "High School Drop Out Rate" Drop?

    ERIC Educational Resources Information Center

    Truby, William F.

    2016-01-01

    This article provides information, questions, and answers about current approaches to dropping the dropout rate of our students. For example, our current model of education is based on the mass production or assembly line model promoted by Henry Ford back in early years of the 1900s (1900-1920). This model served both factory production and…

  12. Structural Equation Modeling of Retention and Overage Effects on Dropping Out of School.

    ERIC Educational Resources Information Center

    Grissom, James B.; Shepard, Lorrie A.

    This study addresses the effect that grade retention has on dropping out of school. A structural model was developed to test the effect of grade retention on dropping out while controlling for the effects of other possible mediating variables, especially achievement. This model with slight modifications was applied across four different school…

  13. Morphology of viscoplastic drop impact on viscoplastic surfaces.

    PubMed

    Chen, Simeng; Bertola, Volfango

    2017-01-25

    The impact of viscoplastic drops onto viscoplastic substrates characterized by different magnitudes of the yield stress is investigated experimentally. The interaction between viscoplastic drops and surfaces has an important application in additive manufacturing, where a fresh layer of material is deposited on a partially cured or dried layer of the same material. So far, no systematic studies on this subject have been reported in literature. The impact morphology of different drop/substrate combinations, with yield stresses ranging from 1.13 Pa to 11.7 Pa, was studied by high speed imaging for impact Weber numbers between 15 and 85. Experimental data were compared with one of the existing models for Newtonian drop impact onto liquid surfaces. Results show the magnitude of the yield stress of drop/substrate strongly affects the final shape of the impacting drop, permanently deformed at the end of impact. The comparison between experimental data and model predictions suggests the crater evolution model is only valid when predicting the evolution of the crater at sufficiently high Weber numbers.

  14. An experimental design for total container impact response modeling at extreme temperatures

    NASA Technical Reports Server (NTRS)

    Kobler, V. P.; Wyskida, R. M.; Johannes, J. D.

    1979-01-01

    An experimental design (a drop test) was developed to test the effects of confinement upon cushions. The drop test produced consistent corner void cushion data from which mathematical models were developed. A mathematical relationship between temperature and drop height was found.

  15. Le niobate de lithium a haute temperature pour les applications ultrasons =

    NASA Astrophysics Data System (ADS)

    De Castilla, Hector

    L'objectif de ce travail de maitrise en sciences appliquees est de trouver puis etudier un materiau piezoelectrique qui est potentiellement utilisable dans les transducteurs ultrasons a haute temperature. En effet, ces derniers sont actuellement limites a des temperatures de fonctionnement en dessous de 300°C a cause de l'element piezoelectrique qui les compose. Palier a cette limitation permettrait des controles non destructifs par ultrasons a haute temperature. Avec de bonnes proprietes electromecaniques et une temperature de Curie elevee (1200°C), le niobate de lithium (LiNbO 3) est un bon candidat. Mais certaines etudes affirment que des processus chimiques tels que l'apparition de conductivite ionique ou l'emergence d'une nouvelle phase ne permettent pas son utilisation dans les transducteurs ultrasons au-dessus de 600°C. Cependant, d'autres etudes plus recentes ont montre qu'il pouvait generer des ultrasons jusqu'a 1000°C et qu'aucune conductivite n'etait visible. Une hypothese a donc emerge : une conductivite ionique est presente dans le niobate de lithium a haute temperature (>500°C) mais elle n'affecte que faiblement ses proprietes a hautes frequences (>100 kHz). Une caracterisation du niobate de lithium a haute temperature est donc necessaire afin de verifier cette hypothese. Pour cela, la methode par resonance a ete employee. Elle permet une caracterisation de la plupart des coefficients electromecaniques avec une simple spectroscopie d'impedance electrochimique et un modele reliant de facon explicite les proprietes au spectre d'impedance. Il s'agit de trouver les coefficients du modele permettant de superposer au mieux le modele avec les mesures experimentales. Un banc experimental a ete realise permettant de controler la temperature des echantillons et de mesurer leur impedance electrochimique. Malheureusement, les modeles actuellement utilises pour la methode par resonance sont imprecis en presence de couplages entre les modes de vibration. Cela implique de posseder plusieurs echantillons de differentes formes afin d'isoler chaque mode principal de vibration. De plus, ces modeles ne prennent pas bien en compte les harmoniques et modes en cisaillement. C'est pourquoi un nouveau modele analytique couvrant tout le spectre frequentiel a ete developpe afin de predire les resonances en cisaillement, les harmoniques et les couplages entre les modes. Neanmoins, certains modes de resonances et certains couplages ne sont toujours pas modelises. La caracterisation d'echantillons carres a pu etre menee jusqu'a 750°C. Les resultats confirment le caractere prometteur du niobate de lithium. Les coefficients piezoelectriques sont stables en fonction de la temperature et l'elasticite et la permittivite ont le comportement attendu. Un effet thermoelectrique ayant un effet similaire a de la conductivite ionique a ete observe ce qui ne permet pas de quantifier l'impact de ce dernier. Bien que des etudes complementaires soient necessaires, l'intensite des resonances a 750°C semble indiquer que le niobate de lithium peut etre utilise pour des applications ultrasons a hautes frequences (>100 kHz).

  16. Research on the F/A-18E/F Using a 22%-Dynamically-Scaled Drop Model

    NASA Technical Reports Server (NTRS)

    Croom, M.; Kenney, H.; Murri, D.; Lawson, K.

    2000-01-01

    Research on the F/A-18E/F configuration was conducted using a 22%-dynamically-scaled drop model to study flight dynamics in the subsonic regime. Several topics were investigated including longitudinal response, departure/spin resistance, developed spins and recoveries, and the failing leaf mode. Comparisons to full-scale flight test results were made and show the drop model strongly correlates to the airplane even under very dynamic conditions. The capability to use the drop model to expand on the information gained from full-scale flight testing is also discussed. Finally, a preliminary analysis of an unusual inclined spinning motion, dubbed the "cartwheel", is presented here for the first time.

  17. Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops.

    PubMed

    Chini, S F; Amirfazli, A

    2017-05-01

    This paper resolves an ostensible inconsistency in the literature in calculating the evaporation rate for sessile drops in a quiescent environment. The earlier models in the literature have shown that adapting the evaporation flux model for a suspended spherical drop to calculate the evaporation rate of a sessile drop needs a correction factor; the correction factor was shown to be a function of the drop contact angle, i.e. f(θ). However, there seemed to be a problem as none of the earlier models explicitly or implicitly mentioned the evaporation flux variations along the surface of a sessile drop. The more recent evaporation models include this variation using an electrostatic analogy, i.e. the Laplace equation (steady-state continuity) in a domain with a known boundary condition value, or known as the Dirichlet problem for Laplace's equation. The challenge is that the calculated evaporation rates using the earlier models seemed to differ from that of the recent models (note both types of models were validated in the literature by experiments). We have reinvestigated the recent models and found that the mathematical simplifications in solving the Dirichlet problem in toroidal coordinates have created the inconsistency. We also proposed a closed form approximation for f(θ) which is valid in a wide range, i.e. 8°≤θ≤131°. Using the proposed model in this study, theoretically, it was shown that the evaporation rate in the CWA (constant wetted area) mode is faster than the evaporation rate in the CCA (constant contact angle) mode for a sessile drop. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Part 2 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.

  19. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  20. Developpement D'un Modele Climatique Regional: Fizr Simulation des Conditions de Janvier de la Cote Ouest Nord Americaine

    NASA Astrophysics Data System (ADS)

    Goyette, Stephane

    1995-11-01

    Le sujet de cette these concerne la modelisation numerique du climat regional. L'objectif principal de l'exercice est de developper un modele climatique regional ayant les capacites de simuler des phenomenes de meso-echelle spatiale. Notre domaine d'etude se situe sur la Cote Ouest nord americaine. Ce dernier a retenu notre attention a cause de la complexite du relief et de son controle sur le climat. Les raisons qui motivent cette etude sont multiples: d'une part, nous ne pouvons pas augmenter, en pratique, la faible resolution spatiale des modeles de la circulation generale de l'atmosphere (MCG) sans augmenter a outrance les couts d'integration et, d'autre part, la gestion de l'environnement exige de plus en plus de donnees climatiques regionales determinees avec une meilleure resolution spatiale. Jusqu'alors, les MCG constituaient les modeles les plus estimes pour leurs aptitudes a simuler le climat ainsi que les changements climatiques mondiaux. Toutefois, les phenomenes climatiques de fine echelle echappent encore aux MCG a cause de leur faible resolution spatiale. De plus, les repercussions socio-economiques des modifications possibles des climats sont etroitement liees a des phenomenes imperceptibles par les MCG actuels. Afin de circonvenir certains problemes inherents a la resolution, une approche pratique vise a prendre un domaine spatial limite d'un MCG et a y imbriquer un autre modele numerique possedant, lui, un maillage de haute resolution spatiale. Ce processus d'imbrication implique alors une nouvelle simulation numerique. Cette "retro-simulation" est guidee dans le domaine restreint a partir de pieces d'informations fournies par le MCG et forcee par des mecanismes pris en charge uniquement par le modele imbrique. Ainsi, afin de raffiner la precision spatiale des previsions climatiques de grande echelle, nous developpons ici un modele numerique appele FIZR, permettant d'obtenir de l'information climatique regionale valide a la fine echelle spatiale. Cette nouvelle gamme de modeles-interpolateurs imbriques qualifies d'"intelligents" fait partie de la famille des modeles dits "pilotes". L'hypothese directrice de notre etude est fondee sur la supposition que le climat de fine echelle est souvent gouverne par des forcages provenant de la surface plutot que par des transports atmospheriques de grande echelle spatiale. La technique que nous proposons vise donc a guider FIZR par la Dynamique echantillonnee d'un MCG et de la forcer par la Physique du MCG ainsi que par un forcage orographique de meso-echelle, en chacun des noeuds de la grille fine de calculs. Afin de valider la robustesse et la justesse de notre modele climatique regional, nous avons choisi la region de la Cote Ouest du continent nord americain. Elle est notamment caracterisee par une distribution geographique des precipitations et des temperatures fortement influencee par le relief sous-jacent. Les resultats d'une simulation d'un mois de janvier avec FIZR demontrent que nous pouvons simuler des champs de precipitations et de temperatures au niveau de l'abri beaucoup plus pres des observations climatiques comparativement a ceux simules a partir d'un MCG. Ces performances sont manifestement attribuees au forcage orographique de meso-echelle de meme qu'aux caracteristiques de surface determinees a fine echelle. Un modele similaire a FIZR peut, en principe, etre implante sur l'importe quel MCG, donc, tout organisme de recherche implique en modelisation numerique mondiale de grande echelle pourra se doter d'un el outil de regionalisation.

  1. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    NASA Astrophysics Data System (ADS)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.

  2. Outcome regimes of binary raindrop collisions

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.

    2009-11-01

    This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.

  3. Analysis of Drop Shapes during Electrowetting on a Dielectric

    NASA Astrophysics Data System (ADS)

    Daneshbod, Yousef

    2005-03-01

    Electrowetting refers to the electrostatic control of the interfacial energy of a liquid on a solid, primarily used for the transport of micro-liter volumes of drops on surfaces with embedded electrode arrays. In the present work, the drop is modeled as a two-dimensional lens-like conductor immersed in an infinite dielectric medium slightly above a planar conductor. A matched asymptotic expansion is used to approximate the electrostatic field surrounding the drop. The outer problem models the drop as a conducting circular segment resting on the conducting plane, each maintained at a separate constant potential. The inner problem corrects the region near the edge of the drop by modeling it as an infinite planar conducting wedge lying slightly above the conducting plane. By matching the inner and outer solutions, the charge density along the entire surface of the drop can be approximated, enabling the calculation of the total capacitance of the system. An energy minimization method similar to that of Shapiro et al. [J. Appl. Phys., 93, 5794 (2003)] is applied to the total energy consisting of the liquid/gas, liquid/solid and solid/gas surface energies, together with the electrostatic contribution, subject to the constraint that the drop volume remains constant. A modified form of the Young-Lippmann equation is thus derived that includes the contribution from the extra capacitance of the drop obtained via matched asymptotics.

  4. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    NASA Astrophysics Data System (ADS)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  5. A theoretical and experimental study of turbulent nonevaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent nonevaporating sprays injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogenous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well with no modifications in the prescription of eddy properties from its original calibration. Some effects of drops on turbulence properties were observed near the dense regions of the sprays.

  6. Experiments on the Motion of Drops on a Horizontal Solid Surface due to a Wettability Gradient

    NASA Technical Reports Server (NTRS)

    Moumen, Nadjoua; Subramanian, R, Shankar; MLaughlin, john B.

    2006-01-01

    Results from experiments performed on the motion of drops of tetraethylene glycol in a wettability gradient present on a silicon surface are reported and compared with predictions from a recently developed theoretical model. The gradient in wettability was formed by exposing strips cut from a silicon wafer to decyltrichlorosiland vapors. Video images of the drops captured during the experiments were subsequently analyzed for drop size and velocity as functions of position along the gradient. In separate experiments on the same strips, the static contact angle formed by small drops was measured and used to obtain the local wettability gradient to which a drop is subjected. The velocity of the drops was found to be a strong function of position along the gradient. A quasi-steady theoretical model that balances the local hydrodynamic resistance with the local driving force generally describes the observations; possible reasons for the remaining discrepancies are discussed. It is shown that a model in which the driving force is reduced to accomodate the hysteresis effect inferred from the data is able to remove most of the discrepancy between the observed and predicted velocities.

  7. Shaping liquid drops by vibration

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2018-02-01

    We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in the horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragment into smaller drops.

  8. Solidification Dynamics of Spherical Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.

    2006-01-01

    Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105 meter drop tube in helium - 6% hydrogen and pure argon atmospheres. By varying a drop s initial superheat the extent of solidification prior to impact ranged from complete to none during the approx. 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance ,of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  9. Solidification Dynamics of Metal Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Brush, L. N.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Comparison of experimental observations were made with numerical solutions to a model of the heat transfer and solidification kinetics associated with the cooling of a molten drop during free fall, particularly with regard to the fraction of liquid transformed. Experimentally, silver drops (99.9%, 4-9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105m drop tube in helium - 6% hydrogen and argon atmospheres. By systematically varying the drops initial superheat the extent of solidification prior to impact ranged from complete to none during the approximately 4.6s of free fall time. Analysis reveals the relative importance of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  10. Problemes theoriques et methodologiques dans l'etude des langues/dialectes en contact aux niveaux macrologique et micrologique = Theoretical and Methodological Issues in the Study of Languages/Dialects in Contact at Macro- and Micro-Logical Levels of Analysis. Proceedings of the International Conference DALE (University of London)/ICRB (Laval University, Quebec)/ICSBT (Vrije Universiteit te Brussel) (London, England, May 23-26, 1985).

    ERIC Educational Resources Information Center

    Blanc, Michel, Ed.; Hamers, Josiane F., Ed.

    Papers from an international conference on the interaction of languages and dialects in contact are presented in this volume. Papers include: "Quelques reflexions sur la variation linguistique"; "The Investigation of 'Language Continuum' and 'Diglossia': A Macrological Case Study and Theoretical Model"; "A Survey of…

  11. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  12. Ground-states for the liquid drop and TFDW models with long-range attraction

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Choksi, Rustum; Topaloglu, Ihsan

    2017-10-01

    We prove that both the liquid drop model in R 3 with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-states for all masses as long as the external potential V(x) in these models is of long range, that is, it decays slower than Newtonian (e.g., V ( x ) ≫ | x | - 1 for large |x|.) For the TFDW model, we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction, we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.

  13. Head-on collision of drops: A numerical investigation

    NASA Technical Reports Server (NTRS)

    Nobari, M. R.; Jan, Y.-J.; Tryggvason, G.

    1993-01-01

    The head-on collision of equal sized drops is studied by full numerical simulations. The Navier-Stokes equations are solved for fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin later bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform and in several of the calculations this double layer is artificially removed once it is thin enough, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again.

  14. [Pharmacodynamics Study on Gualou Xiebai Dropping Pills and Its Medicinal Ingredients in Prescription].

    PubMed

    Yan, Hai-yan; Zou, Chun-cai; Wei, Mei-ling; Gao, Zheng-zheng; Yang, Yang

    2015-03-01

    To study the pharmacodynamics of Gualou Xiebai Dropping Pills and its medicinal ingredients in prescription on anti-myocardial ischemia. SPF Rats were divided randomly into eleven groups with ten rats in each group and half male and half female, the rats were respectively given the physiological saline(blank group and model group), Gualou, Xiebai, Gualou Xiebai Baijiutang (all equivalent to the crude herb of 22. 5 g/kg), Gualou Xiebai. Dropping Pills in the doses of 3. 75,11. 25,22. 5,33. 75 and 45 g/kg and Compound Danshen Drop Pills of 0. 085 g/kg by gavage one time a day for seven days. Except blank group, other rats were given by intraperitoneal injection of isoproterenol to establish myocardial ischemia models, changes of ST segments in ECG were observed in all groups, and the levels of SOD, NO, HDL-C, MDA, CAT, LDH and CK in blood plasma were detected, and the pathological changes of myocardial tissues were observed under light microscope by HE staining. Compared with model group, ST segments in ECG dropped markedly at different time point which included 10,11 and 12 (P <0. 05) in Gualou Xiebai Drop Pills groups of 22. 5, 33. 75 and 45 g/kg, time points were more than those of other groups. Gualou Xiebai Dropping Pills groups of 22. 5 and 33. 75 g/kg improved the levels of SOD, MDA, CAT, NO, HDL-C, LDH and CK in blood plasma in model rats significantly (P <0. 01 or P <0. 05). Gualou Xeibai Dropping Pills improved the pathological changes of myocardial tissues at all dosages. Gualou Xiebai Drop Pills can effectively restrain the acute myocardial ischemia induced by isoproterenol in rats, compared with Gualou, Xiebai or Gualou Xiebai Baijiutang, Gualou Xiebai Drop Pills obtains a favourable effect.

  15. Academic Fatalism: Applying Durkheim's Fatalistic Suicide Typology to Student Drop-Out and the Climate of Higher Education

    ERIC Educational Resources Information Center

    Godor, Brian P.

    2017-01-01

    Student drop-out remains a critical issue facing educational professionals. For higher education, the vast research in the past 40 years has been influenced by the work of Tinto and his model of student persistence. In this model are several elements that have proven to sharpen the focus of student drop-out research such as the concept of…

  16. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  17. Cooling and solidification of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. K.; Markworth, A. J.; Collings, E. W.; Brodkey, R. S.

    1992-01-01

    The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behavior like that of a rigid particle, is developed to describe cooling behavior. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.

  18. Solidification Dynamics of Silver Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.

    1999-01-01

    Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105m drop tube in helium - 6% hydrogen and pure argon atmospheres. By systematically varying the initial superheat condition of the drop the extent of solidification prior to impact ranged from complete to none during the approximately 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  19. Stress drop with constant, scale independent seismic efficiency and overshoot

    USGS Publications Warehouse

    Beeler, N.M.

    2001-01-01

    To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].

  20. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  1. Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Xie, Haiqiong; Zeng, Zhong; Zhang, Liangqi; Yokota, Yuui; Kawazoe, Yoshiyuki; Yoshikawa, Akira

    2016-04-01

    A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop's motion and coalescence were investigated.

  2. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  3. Facilitators and Barriers of Drop-In Center Use Among Homeless Youth.

    PubMed

    Pedersen, Eric R; Tucker, Joan S; Kovalchik, Stephanie A

    2016-08-01

    Drop-in centers for homeless youth address basic needs for food, hygiene, and clothing but can also provide critical services that address youth's "higher level" needs (e.g., substance use treatment, mental health care, HIV-related programs). Unlike other services that have restrictive rules, drop-in centers typically try to break down barriers and take a "come as you are" approach to engaging youth in services. Given their popularity, drop-in centers represent a promising location to deliver higher level services to youth that may not seek services elsewhere. A better understanding of the individual-level factors (e.g., characteristics of homeless youth) and agency-level factors (e.g., characteristics of staff and environment) that facilitate and impede youth engagement in drop-in centers will help inform research and outreach efforts designed to engage these at-risk youth in services. Thus, the goal of this review was to develop a preliminary conceptual model of drop-in center use by homeless youth. Toward this goal, we reviewed 20 available peer-reviewed articles and reports on the facilitators and barriers of drop-in center usage and consulted broader models of service utilization from both youth and adult studies to inform model development. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  4. Facilitators and barriers of drop-in center use among homeless youth

    PubMed Central

    Pedersen, Eric R.; Tucker, Joan S.; Kovalchik, Stephanie A.

    2016-01-01

    Drop-in centers for homeless youth address basic needs for food, hygiene, and clothing, but can also provide critical services that address youth’s “higher-level” needs (e.g., substance use treatment, mental health care, HIV-related programs). Unlike other services that have restrictive rules, drop-in centers typically try to break down barriers and take a “come as you are” approach to engaging youth in services. Given their popularity, drop-in centers represent a promising location to deliver higher level services to youth that may not seek services elsewhere. A better understanding of the individual-level factors (e.g., characteristics of homeless youth) and agency-level factors (e.g., characteristics of staff and environment) that facilitate and impede youth engagement in drop-in centers will help inform research and outreach efforts designed to engage these at-risk youth in services. Thus, the goal of this review was to develop a preliminary conceptual model of drop-in center use by homeless youth. Towards this goal, we reviewed 20 available peer-reviewed papers and reports on the facilitators and barriers of drop-in center usage and consulted broader models of service utilization from both youth and adult studies to inform model development. PMID:27238839

  5. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    NASA Astrophysics Data System (ADS)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  6. Phase segregation due to simultaneous migration and coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Wang, Hua; Hawker, Debra

    1994-01-01

    Ground-based modeling and experiments have been performed on the interaction and coalescence of drops leading to macroscopic phase separation. The focus has been on gravity-induced motion, with research also initiated on thermocapillary motion of drops. The drop size distribution initially shifts toward larger drops with time due to coalescence, and then a back towards smaller drops due to the larger preferentially settling out. As a consequence, the phase separation rate initially increases with time and then decreases.

  7. Statistics of acoustic emissions and stress drops during granular shearing using a stick-slip fiber bundle mode

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Michlmayr, G.; Or, D.

    2012-04-01

    Shearing of dense granular materials appears in many engineering and Earth sciences applications. Under a constant strain rate, the shearing stress at steady state oscillates with slow rises followed by rapid drops that are linked to the build up and failure of force chains. Experiments indicate that these drops display exponential statistics. Measurements of acoustic emissions during shearing indicates that the energy liberated by failure of these force chains has power-law statistics. Representing force chains as fibers, we use a stick-slip fiber bundle model to obtain analytical solutions of the statistical distribution of stress drops and failure energy. In the model, fibers stretch, fail, and regain strength during deformation. Fibers have Weibull-distributed threshold strengths with either quenched and annealed disorder. The shape of the distribution for drops and energy obtained from the model are similar to those measured during shearing experiments. This simple model may be useful to identify failure events linked to force chain failures. Future generalizations of the model that include different types of fiber failure may also allow identification of different types of granular failures that have distinct statistical acoustic emission signatures.

  8. Electrowetting-driven spreading and jumping of drops in oil

    NASA Astrophysics Data System (ADS)

    Hong, Jiwoo; Lee, Sang Joon

    2013-11-01

    Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.

  9. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  10. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  11. Electrochemistry in an acoustically levitated drop.

    PubMed

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%.

  12. The Role of Hemiwicking on the Shape of a Blood Drop Stain

    NASA Astrophysics Data System (ADS)

    Shiri, Samira; Martin, Kenneth; Bird, James

    2017-11-01

    Blood pattern analysis (BPA) typically assumes that an elliptical stain is due to oblique drop impact. From the eccentricity of the elliptical stain - while also accounting for gravity and drag - the source and trajectory of the blood drops can be estimated. Yet, these models generally neglect any fluid motion following impact that could influence the shape of the stain. Here we demonstrate that under certain conditions on certain materials, a blood drop will undergo anisotropic hemiwicking. Through systemic experiments and modeling, we aim to better understand this phenomenon with the goal of ultimately decreasing the uncertainty in crime scene reconstruction.

  13. Modeling evaporation of Jet A, JP-7 and RP-1 drops at 1 to 15 bars

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    2003-01-01

    A model describing the evaportion of an isolated drop of a multicomponent fuel containing hundreds of species has been developed. The model is based on Continuous Thermodynamics concepts wherein the composition of a fuel is statistically described using a Probability Distribution Function (PDF).

  14. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    PubMed

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  15. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  16. Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production.

    PubMed

    Williams, Monique; Talbot, Prue

    2011-12-01

    This study investigated the performance of electronic cigarettes (e-cigarettes), compared different models within a brand, compared identical copies of the same model within a brand, and examined performance using different protocols. Airflow rate required to generate aerosol, pressure drop across e-cigarettes, and aerosol density were examined using three different protocols. First 10 puff protocol: The airflow rate required to produce aerosol and aerosol density varied among brands, while pressure drop varied among brands and between the same model within a brand. Total air hole area correlated with pressure drop for some brands. Smoke-out protocol: E-cigarettes within a brand generally performed similarly when puffed to exhaustion; however, there was considerable variation between brands in pressure drop, airflow rate required to produce aerosol, and the total number of puffs produced. With this protocol, aerosol density varied significantly between puffs and gradually declined. CONSECUTIVE TRIAL PROTOCOL: Two copies of one model were subjected to 11 puffs in three consecutive trials with breaks between trials. One copy performed similarly in each trial, while the second copy of the same model produced little aerosol during the third trial. The different performance properties of the two units were attributed to the atomizers. There was significant variability between and within brands in the airflow rate required to produce aerosol, pressure drop, length of time cartridges lasted, and production of aerosol. Variation in performance properties within brands suggests a need for better quality control during e-cigarette manufacture.

  17. Predictors of Weapon Carrying in Youth Attending Drop-in Centers

    ERIC Educational Resources Information Center

    Blumberg, Elaine J.; Liles, Sandy; Kelley, Norma J.; Hovell, Melbourne F.; Bousman, Chad A.; Shillington, Audrey M.; Ji, Ming; Clapp, John

    2009-01-01

    Objective: To test and compare 2 predictive models of weapon carrying in youth (n=308) recruited from 4 drop-in centers in San Diego and Imperial counties. Methods: Both models were based on the Behavioral Ecological Model (BEM). Results: The first and second models significantly explained 39% and 53% of the variance in weapon carrying,…

  18. Reply to Discussion by Zekai Șen on "Modeling karst spring hydrograph recession based on head drop at sinkholes"

    NASA Astrophysics Data System (ADS)

    Field, Malcolm S.; Goldscheider, Nico; Li, Guangquan

    2018-02-01

    We are pleased to learn that the model presented in our paper dealing with the "modeling karst spring hydrograph recession based on head drop at sinkholes," published in the Journal of Hydrology in 2016 (Li et al., 2016), is of interest to readers of this journal. Our study presented a new non-exponential model for assessing spring hydrographs in terms of head drop at flooded sinkholes, as an extension of an earlier model proposed by Li and Field (2014). In both papers, we used two spring hydrographs measured in the St. Marks Karst Watershed in northwest Florida to test the applicability and to verify the validity of our models.

  19. Introduction A l'Etude de la Médecine Expérimentale--surgical revolution part II.

    PubMed

    Toledo-Pereyra, Luis H

    2009-01-01

    The book that Claude Bernard (1813-1878) published in 1865, the Introduction à l'Etude de la Médecine Expérimentale, fostered a revolution that we believe influenced the practice of surgery when the discipline became a scientific enterprise. In Part I, we set the stage by presenting the life and accomplishments of Bernard, by reviewing his science, and introducing his experimental medicine work. In this issue in Part II, we further analyze his book and determine the "why" of a genuine surgical revolution. What were the factors that generated this revolution, and how a new generation of surgeons learned to become better researchers, and thus better surgeons, were the main objectives of this work. Science, research, and surgery became highly intertwined and the surgeon pursued these fields of knowledge more effectively.

  20. Etude de faisabilite d'un systeme eolien diesel avec stockage d'air comprime

    NASA Astrophysics Data System (ADS)

    Benchaabane, Youssef

    Le Systeme Hybride Eolien-Diesel avec Stockage d'Air Comprime (SHEDAC) utilise l'hybridation pneumatique pour remplacer la consommation des combustibles fossiles par de l'energie renouvelable, plus particulierement de l'energie eolienne. Le surplus de l'energie eolienne est utilise pour comprimer et stocker de l'air qui est utilise ensuite pour suralimenter le moteur diesel. Le memoire de maitrise est constitue de deux articles scientifiques. Le premier article presente le developpement d'un logiciel dedie a l'etude de faisabilite d'un systeme eolien-diesel avec stockage d'air comprime. Cette etude est basee sur l'analyse des couts et des revenus, des couts des equipements (eolienne, moteur diesel, systeme de stockage d'air). Elle est completee par une analyse de sensibilite aux differents parametres, une analyse des risques et des emissions des gaz a effet de serre (GES). Le deuxieme article est une application de ce logiciel pour l'installation d'un systeme SHEDAC au camp minier Esker au Quebec en remplacement des sources actuelles de production d'energie. L'utilisation du stockage d'air comprime a l'aide d'un systeme SHEDAC est le plus rentable par rapport a l'utilisation de l'energie eolienne seule ou d'une centrale thermique au diesel seule ou des deux combinees. Avec une valeur actuelle nette et un taux de rendement interne plus eleves, cette solution permet d'obtenir le plus bas cout de l'energie pour cette region eloignee. None None None

  1. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    USGS Publications Warehouse

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  2. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).

    PubMed

    Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith

    2016-05-15

    Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution

    NASA Astrophysics Data System (ADS)

    McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn

    2002-06-01

    Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.

  4. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Directional motion of impacting drops on dual-textured surfaces.

    PubMed

    Vaikuntanathan, V; Sivakumar, D

    2012-09-01

    In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.

  6. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors.

    PubMed

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.

  7. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors

    PubMed Central

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus. PMID:18466597

  8. STS093-S-002

    NASA Image and Video Library

    1998-09-01

    STS093-S-002 (September 1998) --- The five astronauts assigned to fly aboard the Space Shuttle Columbia early next year for the STS-93 mission pose with a small model of their primary payload-the Advanced X-ray Astrophysics Facility (AXAF). From the left are astronauts Eileen M. Collins, mission commander; Steven A. Hawley, mission specialist; Jeffrey S. Ashby, pilot; Michel Tognini and Catherine G. Coleman, both mission specialists. Tognini represents France's Centre National d'Etudes Spatiales (CNES). The scheduled five-day mission will feature the deployment of AXAF, which will enable scientists to conduct comprehensive studies of exotic phenomena in the universe. Among bodies studied will be exploding stars, quasars and black holes.

  9. "Active" drops as phantom models for living cells: a mesoscopic particle-based approach.

    PubMed

    Dallavalle, Marco; Lugli, Francesca; Rapino, Stefania; Zerbetto, Francesco

    2016-04-21

    Drops and biological cells share some morphological features and visco-elastic properties. The modelling of drops by mesoscopic non-atomistic models has been carried out to a high degree of success in recent years. We extend such treatment and discuss a simple, drop-like model to describe the interactions of the outer layer of cells with the surfaces of materials. Cells are treated as active mechanical objects that are able to generate adhesion forces. They appear with their true size and are made of "parcels of fluids" or beads. The beads are described by (very) few quantities/parameters related to fundamental chemical forces such as hydrophilicity and lipophilicity that represent an average of the properties of a patch of material or an area of the cell(s) surface. The investigation of adhesion dynamics, motion of individual cells, and the collective behavior of clusters of cells on materials is possible. In the simulations, the drops become active soft matter objects and different from regular droplets they do not fuse when in contact, their trajectories are not Brownian, and they can be forced "to secrete" molecules, to name some of the properties targeted by the modeling. The behavior that emerges from the simulations allows ascribing some cell properties to their mechanics, which are related to their biological features.

  10. Breakup of a thin drop under a stagnation point flow

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon; Shelley, Michael

    2017-11-01

    Recent studies by Hooshanginejad and Lee (2017) have demonstrated complex depinning behaviors of a partially wetting droplet under wind. Motivated by this study, we examine the coupled evolution of a 2D thin drop and external wind, when it is initially held against a fast stagnation point flow. Our drop lubrication model employs the potential flow and Prandtl boundary layer theory for outer flow to compute the internal drop flow corresponding to drop deformations. Furthermore, both the analytical and numerical steady state solutions provide a partial prediction for the drop's final shape and help identify the range of droplet sizes that undergo a breakup for the given flow condition.

  11. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  12. Wedge filter imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Bernardi, Pernelle; Bonafous, M.; Motisi, M.; Reess, J.-M.; Tanrin, J.; Laubier, D.

    2017-11-01

    LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Meudon) has an extensive experience in visible and infrared imaging spectrometry with several instruments onboard planetary space missions (MarsExpress/OMEGA, VenusExpress/VIRTIS, Rosetta/VIRTIS).

  13. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.

  14. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  15. Lubrication model for evaporation of binary sessile drops

    NASA Astrophysics Data System (ADS)

    Williams, Adam; Sáenz, Pedro; Karapetsas, George; Matar, Omar; Sefiane, Khellil; Valluri, Prashant

    2017-11-01

    Evaporation of a binary mixture sessile drop from a solid substrate is a highly dynamic and complex process with flow driven both thermal and solutal Marangoni stresses. Experiments on ethanol/water drops have identified chaotic regimes on both the surface and interior of the droplet, while mixture composition has also been seen to govern drop wettability. Using a lubrication-type approach, we present a finite element model for the evaporation of an axisymmetric binary drop deposited on a heated substrate. We consider a thin drop with a moving contact line, taking also into account the commonly ignored effects of inertia which drives interfacial instability. We derive evolution equations for the film height, the temperature and the concentration field considering that the mixture comprises two ideally mixed volatile components with a surface tension linearly dependent on both temperature and concentration. The properties of the mixture such as viscosity also vary locally with concentration. We explore the parameter space to examine the resultant effects on wetting and evaporation where we find qualitative agreement with experiments in both these areas. This enables us to understand the nature of the instabilities that spontaneously emerge over the drop lifetime. EPSRC - EP/K00963X/1.

  16. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  17. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  18. The effect of mining data k-means clustering toward students profile model drop out potential

    NASA Astrophysics Data System (ADS)

    Purba, Windania; Tamba, Saut; Saragih, Jepronel

    2018-04-01

    The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

  19. Queues with Dropping Functions and General Arrival Processes

    PubMed Central

    Chydzinski, Andrzej; Mrozowski, Pawel

    2016-01-01

    In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171

  20. Commensurability-driven structural defects in double emulsions produced with two-step microfluidic techniques.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2014-07-14

    The combination of two drop makers such as flow focusing geometries or ┬ junctions is commonly used in microfluidics to fabricate monodisperse double emulsions and novel fluid-based materials. Here we investigate the physics of the encapsulation of small droplets inside large drops that is at the core of such processes. The number of droplets per drop studied over time for large sequences of consecutive drops reveals that the dynamics of these systems are complex: we find a succession of well-defined elementary patterns and defects. We present a simple model based on a discrete approach that predicts the nature of these patterns and their non-trivial scheme of arrangement in a sequence as a function of the ratio of the two timescales of the problem, the production times of droplets and drops. Experiments validate our model as they concur very well with predictions.

  1. Numerical simulations of sessile droplet evaporating on heated substrate

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng

    2017-04-01

    Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.

  2. Prediction du profil de durete de l'acier AISI 4340 traite thermiquement au laser

    NASA Astrophysics Data System (ADS)

    Maamri, Ilyes

    Les traitements thermiques de surfaces sont des procedes qui visent a conferer au coeur et a la surface des pieces mecaniques des proprietes differentes. Ils permettent d'ameliorer la resistance a l'usure et a la fatigue en durcissant les zones critiques superficielles par des apports thermiques courts et localises. Parmi les procedes qui se distinguent par leur capacite en terme de puissance surfacique, le traitement thermique de surface au laser offre des cycles thermiques rapides, localises et precis tout en limitant les risques de deformations indesirables. Les proprietes mecaniques de la zone durcie obtenue par ce procede dependent des proprietes physicochimiques du materiau a traiter et de plusieurs parametres du procede. Pour etre en mesure d'exploiter adequatement les ressources qu'offre ce procede, il est necessaire de developper des strategies permettant de controler et regler les parametres de maniere a produire avec precision les caracteristiques desirees pour la surface durcie sans recourir au classique long et couteux processus essai-erreur. L'objectif du projet consiste donc a developper des modeles pour predire le profil de durete dans le cas de traitement thermique de pieces en acier AISI 4340. Pour comprendre le comportement du procede et evaluer les effets des differents parametres sur la qualite du traitement, une etude de sensibilite a ete menee en se basant sur une planification experimentale structuree combinee a des techniques d'analyse statistiques eprouvees. Les resultats de cette etude ont permis l'identification des variables les plus pertinentes a exploiter pour la modelisation. Suite a cette analyse et dans le but d'elaborer un premier modele, deux techniques de modelisation ont ete considerees, soient la regression multiple et les reseaux de neurones. Les deux techniques ont conduit a des modeles de qualite acceptable avec une precision d'environ 90%. Pour ameliorer les performances des modeles a base de reseaux de neurones, deux nouvelles approches basees sur la caracterisation geometrique du profil de durete ont ete considerees. Contrairement aux premiers modeles predisant le profil de durete en fonction des parametres du procede, les nouveaux modeles combinent les memes parametres avec les attributs geometriques du profil de durete pour refleter la qualite du traitement. Les modeles obtenus montrent que cette strategie conduit a des resultats tres prometteurs.

  3. Motion and shape of partially non-wetting drops on inclined surfaces

    NASA Astrophysics Data System (ADS)

    Puthenveettil, Baburaj A.; Senthilkumar K, Vijaya; Hopfinger, E. J.; IIT Madras-LEGI Collaboration

    2011-11-01

    We study high Reynolds number (Re) motion of partially non- wetting liquid drops on inclined surfaces using (i) water on Fluoro-Alkyl Silane (FAS) coated glass and (ii) mercury on glass. The high hysteresis (35°) water drop experiments have been conducted for a range of inclination angles 26° < α <62° which give a range of Capillary numbers 0 . 0003 < Ca < 0 . 0075 and 137 < Re < 3142 . For low hysteresis (6°) mercury on glass experiments, 5 .5° < α < 14 .3° so that 0 . 0002 < Ca < 0 . 0023 and 3037 < Re < 20069 . It is shown that when Re >>103 for water and Re >> 19 for mercury, the observed velocities are accounted for by a boundary layer flow model. The dimensionless velocity in the inertial regime, Ca√{ Re } scales as the modified Bond number (Bom), while Ca Bom at low Re . We show that even at high Re , the dynamic contact angles (θd) depend only on Ca , similar to that in low Re drops. Only the model by Shikhmurzaev is consistent with the variation of dynamic contact angles in both mercury and water drops. We show that the corner transition at the rear of the mercury drop occurs at a finite, receding contact angle, which is predicted by a wedge flow model that we propose. For water drops, there is a direct transition to a rivulet from the oval shape at a critical ratio of receding to static contact angles.

  4. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bohn, Mark S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440 C and air inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/sq m/s air flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.

  5. Shear-lag analysis about an internally-dropped ply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizzini, A.J.

    1995-12-31

    The region around a terminated ply is modeled as several elastic layers separated by shear regions. A shear-lag analysis is then performed allowing for the thickness of the elastic and shear layers to vary. Boundary conditions, away for the ply drop, are based on the deflections determined by a finite element model. The interlaminar stresses are compared against those generated by the finite element model for tapered laminates under pure extension, pure bending, and extension-bending coupling. The shear-lag analysis predicts the interlaminar shear at and near the ply drop for pure extension and in cases involving bending if the deflectionsmore » due to bending are removed. The interlaminar shear stress and force equilibrium are used to determine the interlaminar normal stress. The trends in the interlaminar normal stress shown by the finite element model are partially captured by the shear-lag analysis. This simple analysis indicates that the mechanism for load transfer about a ply drop is primarily due to shear transfer through the resin rich areas.« less

  6. Official portrait of STS-65 backup Payload Specialist Jean-Jacques Favier

    NASA Image and Video Library

    1993-09-30

    Official portrait of STS-65 International Microgravity Laboratory 2 (IML-2) backup Payload Specialist Jean-Jacques Favier. Favier is a member of the Centre National D'Etudes Spatiales (CNES), the French space agency.

  7. Fractal dimension analysis of complexity in Ligeti piano pieces

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  8. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    PubMed

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  9. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  10. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.

  11. The 2005 Tarapaca, Chile, Intermediate-depth Earthquake: Evidence of Heterogeneous Fluid Distribution Across the Plate?

    NASA Astrophysics Data System (ADS)

    Kuge, K.; Kase, Y.; Urata, Y.; Campos, J.; Perez, A.

    2008-12-01

    The physical mechanism of intermediate-depth earthquakes remains unsolved, and dehydration embrittlement in subducting plates is a candidate. An earthquake of Mw7.8 occurred at a depth of 115 km beneath Tarapaca, Chile. In this study, we suggest that the earthquake rupture can be attributed to heterogeneous fluid distribution across the subducting plate. The distribution of aftershocks suggests that the earthquake occurred on the subhorizontal fault plane. By modeling regional waveforms, we determined the spatiotemporal distribution of moment release on the fault plane, testing a different suite of velocity models and hypocenters. Two patches of high slip were robustly obtained, although their geometry tends to vary. We tested the results separately by computing the synthetic teleseismic P and pP waveforms. Observed P waveforms are generally modeled, whereas two pulses of observed pP require that the two patches are in the WNW-ESE direction. From the selected moment-release evolution, the dynamic rupture model was constructed by means of Mikumo et al. (1998). The model shows two patches of high dynamic stress drop. Notable is a region of negative stress drop between the two patches. This was required so that the region could lack wave radiation but propagate rupture from the first to the second patches. We found from teleseismic P that the radiation efficiency of the earthquake is relatively small, which can support the existence of negative stress drop during the rupture. The heterogeneous distribution of stress drop that we found can be caused by fluid. The T-P condition of dehydration explains the locations of double seismic zones (e.g. Hacker et al., 2003). The distance between the two patches of high stress drop agrees with the distance between the upper and lower layers of the double seismic zone observed in the south (Rietbrock and Waldhauser, 2004). The two patches can be parts of the double seismic zone, indicating the existence of fluid from dehydration, whereas the region of negative stress drop is in the absence of fluid. In the background environment of negative stress drop, fluid can change the negative stress drop to positive, due to pore pressure variation (e.g. thermal pressurization).

  12. Mixed Cassie-Baxter wetting states on a porous material stabilized by electrowetting

    NASA Astrophysics Data System (ADS)

    Lambert, Jérôme; Gauchet, Lucien; Crassous, Jérôme

    2017-07-01

    Electrowetting is used to force imbibition in model porous plates. These porous plates are sintered disordered bronze bead packings that are homogeneously coated with a constant-thickness layer of parylene. Cycles of increasing and decreasing voltage trigger the imbibition of a ionized water sessile drop by changing its contact angle with the porous material from non-wetting to wetting shapes. During a cycle, a drop experiences partial imbibition and a strong hysteresis of its contact angle with the porous plate. Since the imbibition process quickly stabilizes, we adopt an equilibrium description of the wetting properties of the drop on the porous plate. Our model, based on the Cassie-Baxter approach, shows that three different wetting states are experienced by the drop, one of which being made possible only by the modification of the contact angle inside the pores. Our model describes the experimental results very well.

  13. Coalescence of viscous drops translating through a capillary tube

    NASA Astrophysics Data System (ADS)

    AlMatroushi, Eisa; Borhan, Ali

    2014-03-01

    An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.

  14. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  15. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  16. Electrohydrodynamic deformation and interaction of a pair of emulsion drops

    NASA Technical Reports Server (NTRS)

    Baygents, James C.

    1994-01-01

    The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.

  17. Energy dissipation in twelve-foot broken-back culverts using laboratory models : final report.

    DOT National Transportation Integrated Search

    2013-09-01

    This report represents Phase IV of broken-back culverts with a drop of 12 feet. The first phase of this research was performed with a drop of 24 feet, the second phase of this research was carried with for a drop of 6 feet, and the third phase of thi...

  18. Value Conflicts as a Cause for Drop Outs.

    ERIC Educational Resources Information Center

    McDonald, Arthur

    The basic causes for the high rate at which American Indians drop out of college were listed and discussed in this paper. Information gathered from interviews with Indian students was presented along with the author's personal interpretations. The stated causes of the high drop-out rate were education, finances, racism, role models, and cultural…

  19. Non-contact temperature measurement of a falling drop

    NASA Technical Reports Server (NTRS)

    Hofmeister, William; Bayuzick, R. J.; Robinson, M. B.

    1989-01-01

    The 105 meter drop tube at NASA-Marshall has been used in a number of experiments to determine the effects of containerless, microgravity processing on the undercooling and solidification behavior of metals and alloys. These experiments have been limited, however, because direct temperature measurement of the falling drops has not been available. Undercooling and nucleation temperatures are calculated from thermophysical properties based on droplet cooling models. In most cases these properties are not well known, particularly in the undercooled state. This results in a large amount of uncertainty in the determination of nucleation temperatures. If temperature measurement can be accomplished then the thermal history of the drops could be well documented. This would lead to a better understanding of the thermophysical and thermal radiative properties of undercooled melts. An effort to measure the temperature of a falling drop is under way. The technique uses two color pyrometry and high speed data acquisition. The approach is presented along with some preliminary data from drop tube experiments. The results from droplet cooling models is compared with noncontact temperature measurements.

  20. The structure of dilute combusting sprays

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.

    1985-01-01

    An experimental and theoretical study of drop processes in a turbulent flame is described. The experiments involved a monodisperse (105 and 180 micro m initial diameter) stream of methanol drops injected at the base of a turbulent methane-fueled diffusion flame burning in still air. The following measurements were made: mean and fluctuating phase velocities, mean drop number flux, drop-size distributions and mean gas-phase temperatures. Measurements were compared with predictions of two separated flow models: (1) deterministic separated flow, where drop-turbulence interactions are ignored; and (2) stochastic separated flow, where drop-turbulence interactions are considered using random-walk computations. The stochastic separated flow analysis yielded best agreement with measurements, since it provides for turbulent dispersion of drops which was important for present test conditions (and probably for most combusting sprays as well). Distinguishing the presence or absence of envelope flames around the drops, however, was relatively unimportant for present test conditions, since the drops spent most of their lifetime in fuel-rich regions of the flow where this distinction is irrelevant.

  1. Drop Breakup in Fixed Bed Flows as Model Stochastic Flow Fields

    NASA Technical Reports Server (NTRS)

    Shaqfeh, Eric S. G.; Mosler, Alisa B.; Patel, Prateek

    1999-01-01

    We examine drop breakup in a class of stochastic flow fields as a model for the flow through fixed fiber beds and to elucidate the general mechanisms whereby drops breakup in disordered, Lagrangian unsteady flows. Our study consists of two parallel streams of investigation. First, large scale numerical simulations of drop breakup in a class of anisotropic Gaussian fields will be presented. These fields are generated spectrally and have been shown in a previous publication to be exact representations of the flow in a dilute disordered bed of fibers if close interactions between the fibers and the drops are dynamically unimportant. In these simulations the drop shape is represented by second and third order small deformation theories which have been shown to be excellent for the prediction of drop breakup in steady strong flows. We show via these simulations that the mechanisms of drop breakup in these flows are quite different than in steady flows. The predominant mechanism of breakup appears to be very short lived twist breakups. Moreover, the occurrence of breakup events is poorly predicted by either the strength of the local flow in which the drop finds itself at breakup, or the degree of deformation that the drop achieves prior to breakup. It is suggested that a correlation function of both is necessary to be predictive of breakup events. In the second part of our research experiments are presented where the drop deformation and breakup in PDMS/polyisobutylene emulsions is considered. We consider very dilute emulsions such that coalescence is unimportant. The flows considered are simple shear and the flow through fixed fiber beds. Turbidity, small angle light scattering, dichroism and microscopy are used to interrogate the drop deformation process in both flows. It is demonstrated that breakup at very low capillary numbers occurs in both flows but larger drop deformation occurs in the fixed bed flow. Moreover, it is witnessed that breakup in the bed occurs continuously during flow and apparently with uniform probability through the bed length. The drop deformations witnessed in our experiments are larger than those predicted by the numerical simulations, and future plans to investigate these differences are discussed.

  2. Influence of interfacial viscosity on the dielectrophoresis of drops

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Chakraborty, Suman

    2017-05-01

    The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.

  3. Conception d'un outil d'aide a la decision de technologies de fabrication additive en milieu aeronautique

    NASA Astrophysics Data System (ADS)

    Buvat, Gael

    La fabrication additive offre une opportunite d'amelioration des methodes de productions de pieces. Cependant, les technologies de fabrication additive sont diverses, les fournisseurs de services sont multiples et peu de personnel est forme pour operer sur ces technologies. L'objectif de cette etude est d'emettre une suggestion de concepts d'outils d'aide a la decision de technologies, de materiaux et de post-traitements de fabrication additive en milieu aeronautique. Trois sous-objectifs sont employes. Premierement, la definition des criteres de decision de technologies, de materiaux et de post-traitements de fabrication additive. Ensuite, l'elaboration d'un cahier des charges de l'outil d'aide a la decision en accord avec les besoins industriels du secteur aeronautique. Et enfin, la suggestion de trois concepts d'outils d'aide a la decision et leur evaluation par comparaison au cahier des charges etabli. Les criteres captures aupres de 11 industriels concernent des criteres de couts, de qualite, de conception et de delai d'obtention. Ensuite, nous avons elabore un cahier des charges permettant de reunir les besoins des industriels du secteur aeronautique selon trois axes qui constituent la colonne vertebrale des outils d'aide a la decision : une suggestion d'interface utilisateur, une suggestion de bases de donnees et un moteur de selection des technologies, des materiaux et des post-traitements de fabrication additive. La convivialite de l'interface utilisateur, l'evaluation de la qualite souhaitee par l'utilisateur et la prise en compte des etudes de cas realisees par le moteur de selection sont exemples de besoins que nous avons identifie au sein de cette etude. Nous avons ensuite transcrit ces besoins en specifications techniques pour permettre une evaluation du niveau de satisfaction des industriels au travers d'un pointage des trois concepts suggeres. Ces trois concepts d'outils d'aide a la decision ont ete realises respectivement grâce a Microsoft ExcelRTM, Microsoft AccessRTM ainsi qu'une plateforme en ligne associee a l'outil d'apprentissage statistique RapidMinerRTM. Ce dernier outil en ligne a retenu l'attention des ingenieurs qui l'ont evalue principalement du fait de la prise en compte des etudes de cas dans la suggestion preferentielle de technologies, de materiaux et de post-traitements.

  4. The motion of bubbles inside drops in containerless processing

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.

  5. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    PubMed Central

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  6. A soft porous drop in linear flows

    NASA Astrophysics Data System (ADS)

    Young, Yuan-Nan; Miksis, Michael; Mori, Yoichiro; Shelley, Michael

    2017-11-01

    The cellular cytoplasm consists a viscous fluid filled with fibrous networks that also have their own dynamics. Such fluid-structure interactions have been modeled as a soft porous material immersed in a viscous fluid. In this talk we focus on the hydrodynamics of a viscous drop filled with soft porous material inside. Suspended in a Stokes flow, such a porous viscous drop is allowed to deform, both the drop interface and the porous structures inside. Special focus is on the deformation dynamics of both the porosity and the shape of the drop under simple flows such as a uniform streaming flow and linear flows. We examine the effects of flow boundary conditions at interface between the porous drop and the surrounding viscous fluid. We also examine the dynamics of a porous drop with active stress from the porous network.

  7. Thermally Driven Oscillations and Wave Motion of a Liquid Drop

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Hendricks, R. C.; Schoessow, G. J.

    1977-01-01

    In the state of Leidenfrost boiling, liquid drops are observed to vibrate in a variety of modal patterns. Theories are presented which predict the frequency of oscillation and show that the observed model patterns of drops correspond to the minimum energy oscillatory excitation state. High-speed photographic techniques were used to record these motions and substantiate the theories. An incipient temperature was also found for water drops in film boiling below which free oscillations do not exist. In addition to these oscillations, photographic sequences are presented which show that wave motion can exist along the circumference of the drop. Following the study of free oscillations, the system was mounted on a shaker table and the drop subjected to a range of forced frequencies and accelerations.

  8. Educational Subculture and Dropping out in Higher Education: A Longitudinal Case Study

    ERIC Educational Resources Information Center

    Venuleo, C.; Mossi, P.; Salvatore, S.

    2016-01-01

    The paper tests longitudinally the hypothesis that educational subcultures in terms of which students interpret their role and their educational setting affect the probability of dropping out of higher education. A logistic regression model was performed to predict drop out at the beginning of the second academic year for the 823 freshmen of a…

  9. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  10. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boreyko, Jonathan B; Collier, Pat

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effectmore » dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.« less

  12. The Haiti research-based model of international public health collaboration: the GHESKIO Centers.

    PubMed

    Pape, Jean W; Severe, Patrice D; Fitzgerald, Daniel W; Deschamps, Marie M; Joseph, Patrice; Riviere, Cynthia; Rouzier, Vanessa; Johnson, Warren D

    2014-01-01

    For 3 decades, GHESKIO (the Groupe Haitien d'Etude du Sarcome de Kaposi et des Infections Opportunistes), the Haitian Ministry of Health, and Weill Cornell have pursued a tripartite mission of service, training, and translational research. The initial focus was on AIDS and tuberculosis. The mission has expanded to include the local community and now provides maternal-child health, family planning, cancer prevention and treatment, immunizations (including human papillomavirus, cholera), and primary education through vocational and microcredit programs. Outcome measures include a reduction in HIV prevalence from 6.2% to the current 2.2%, extensive tuberculosis and cholera prevention and treatment programs, and national training programs for biomedical and community health workers.

  13. Vapor condensation onto a non-volatile liquid drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the coremore » of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.« less

  14. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Chowdhury, P. Roy; Basu, D. N.

    2006-06-01

    The coefficients of the volume, surface, Coulomb, asymmetry and pairing energy terms of the semiempirical liquid drop model mass formula have been determined by furnishing best fit to the observed mass excesses. Slightly different sets of the weighting parameters for liquid drop model mass formula have been obtained from minimizations of \\chi 2 and mean square deviation. The most recent experimental and estimated mass excesses from Audi-Wapstra-Thibault atomic mass table have been used for the least square fitting procedure. Equation of state, nuclear incompressibility, nuclear mean free path and the most stable nuclei for corresponding atomic numbers, all are in good agreement with the experimental results.

  15. Comparison of experimental proton-induced fluorescence spectra for a selection of thin high-Z samples with Geant4 Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Incerti, S.; Barberet, Ph.; Dévès, G.; Michelet, C.; Francis, Z.; Ivantchenko, V.; Mantero, A.; El Bitar, Z.; Bernal, M. A.; Tran, H. N.; Karamitros, M.; Seznec, H.

    2015-09-01

    The general purpose Geant4 Monte Carlo simulation toolkit is able to simulate radiative and non-radiative atomic de-excitation processes such as fluorescence and Auger electron emission, occurring after interaction of incident ionising radiation with target atomic electrons. In this paper, we evaluate the Geant4 modelling capability for the simulation of fluorescence spectra induced by 1.5 MeV proton irradiation of thin high-Z foils (Fe, GdF3, Pt, Au) with potential interest for nanotechnologies and life sciences. Simulation results are compared to measurements performed at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan AIFIRA nanobeam line irradiation facility in France. Simulation and experimental conditions are described and the influence of Geant4 electromagnetic physics models is discussed.

  16. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  17. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  18. The rate of collisions due to Brownian or gravitational motion of small drops

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoguang; Davis, Robert H.

    1991-01-01

    Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.

  19. Drop Fragmentation at Impact onto a Bath of an Immiscible Liquid

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Sun, C.; Prosperetti, A.; Lohse, D.

    2013-06-01

    The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

  20. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  1. How Well Does the Theory of Planned Behavior Predict Graduation among College and University Students with Disabilities?

    ERIC Educational Resources Information Center

    Fichten, Catherine S.; Nguyen, Mai Nhu; Amsel, Rhonda; Jorgensen, Shirley; Budd, Jillian; Jorgensen, Mary; Asuncion, Jennison; Barile, Maria

    2014-01-01

    The goal of this research was to develop a model to predict which students with disabilities will drop out before graduation and to investigate the drop out pattern of students with disabilities. To accomplish this we evaluated potential predictors of persistence and drop-out among 611 college and university students with various disabilities and…

  2. Anti-inflammatory and Antihistaminic Study of a Unani Eye Drop Formulation.

    PubMed

    Abdul, Latif; Abdul, Razique; Sukul, R R; Nazish, Siddiqui

    2010-01-01

    The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and antiallergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.

  3. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    NASA Astrophysics Data System (ADS)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  4. The Larger the Viscosity, the Higher the Bounce

    NASA Astrophysics Data System (ADS)

    Stern, Menachem; Klein Schaarsberg, Martin; Peters, Ivo; Dodge, Kevin; Zhang, Wendy; Jaeger, Heinrich

    A low-viscosity liquid drop can bounce upon impact onto a solid. A high-viscosity drop typically just flattens, i.e., it splats. Surprisingly, our experiments with a droplet made of densely packed glass beads in silicone oil display the opposite behavior: the low-viscosity oil suspension drop splats. The high-viscosity oil suspension bounces. Increasing solvent viscosity increases the rebound energy. To gain insight into the underlying mechanism, we model the suspension as densely packed elastic spheres experiencing viscous lubrication drag between neighbors. The model reproduces the observed trends. Plots of elastic compression and drag experienced by the particles show that rebounds are made possible by (1) a fraction of the impact energy being stored during initial contact via elastic compression, (2) a rapid broadening of local lubrication drag interactions at the initial impact site into a spatially uniform upward force throughout the drop. Including finite wall drag due to the presence of ambient air into the numerical model diminishes and eventually cuts off the rebound.

  5. Directly Estimating Earthquake Rupture Area using Second Moments to Reduce the Uncertainty in Stress Drop

    NASA Astrophysics Data System (ADS)

    McGuire, Jeffrey J.; Kaneko, Yoshihiro

    2018-06-01

    The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress-drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer [2014,2015] demonstrated that standard spectral fitting techniques can lead to roughly 1 order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner frequency based stress-drop estimates vary by a factor of 5-10 even for noise free data. Alternatively, we simulated inversions for the rupture area as parameterized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A=πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10% between the models but are slightly larger than the true area-averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally-averaged corner-frequency based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular dataset at the 95% confidence level. For the Kaneko and Shearer models with 20+ randomly distributed observations and ˜10% noise levels, we find that the maximum and minimum bounds on rupture area typically vary by a factor of two and that the minimum stress drop is often more tightly constrained than the maximum.

  6. French payload specialist Patrick Baudry prepares a meal

    NASA Image and Video Library

    1985-06-17

    51G-08-021 (17-24 June 1985) --- Patrick Baudry, payload specialist representing the Centre National d'Etudes Spatiales of France, prepares to open a can of lobster. The bag attached to a nearby locker door appears to contain several other French snacks.

  7. Des journees d'etudes sur les techniques d'expression (Days of Study on Expression Techniques)

    ERIC Educational Resources Information Center

    Roumette, Sylvain

    1975-01-01

    Describes the discussions which took place at a two-day conference on the instruction of expression techniques. Discussion centered around the role of linguistics, of the media, and of psychological factors. (Text is in French.) (AM)

  8. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  9. Etudes optiques de nouveaux materiaux laser: Des orthosilicates dopes a l'ytterbium: Le yttrium (lutetium,scandium) pentoxide de silicium

    NASA Astrophysics Data System (ADS)

    Denoyer, Aurelie

    La decouverte et l'elaboration de nouveaux materiaux laser solides suscitent beaucoup d'interet parmi la communaute scientifique. En particulier les lasers dans la gamme de frequence du micron debouchent sur beaucoup d'applications, en telecommunication, en medecine, dans le domaine militaire, pour la, decoupe des metaux (lasers de puissance), en optique non lineaire (doublage de frequence, bistabilite optique). Le plus couramment utilise actuellement est le Nd:YAG dans cette famille de laser, mais des remplacants plus performants sont toujours recherches. Les lasers a base d'Yb3+ possedent beaucoup d'avantages compares aux lasers Nd3+ du fait de leur structure electronique simple et de leur deterioration moins rapide. Parmi les matrices cristallines pouvant accueillir l'ytterbium, les orthosilicates Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5 se positionnent tres bien, du fait de leur bonne conductivite thermique et du fort eclatement de leur champ cristallin necessaire a l'elaboration de lasers quasi-3 niveaux. De plus l'etude fine et systematique des proprietes microscopiques de nouveaux materiaux s'avere toujours tres interessante du point de vue de la recherche fondamentale, c'est ainsi que de nouveaux modeles sont concus (par exemple pour le champ cristallin) ou que de nouvelles proprietes inhabituelles sont decouvertes, menant a de nouvelles applications. Ainsi d'autres materiaux dopes a l'ytterbium sont connus pour leurs proprietes de couplage electron-phonon, de couplage magnetique, d'emission cooperative ou encore de bistabilite optique, mais ces proprietes n'ont encore jamais ete mises en evidence dans Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5. Ainsi, cette these a pour but l'etude des proprietes optiques et des interactions microscopiques dans Yb:Y2SiO 5, Yb:Lu2SiO5 et Yb:Sc2SiO5. Nous utilisons principalement les techniques d'absorption IR et de spectroscopie Raman pour determiner les excitations du champ cristallin et les modes de vibration dans le materiau. Des mesures optiques sous champ magnetique ont egalement ete effectuees dans le but de caracteriser le comportement de ces excitations lorsqu'elles sont soumises a l'effet Zeeman. La resonance paramagnetique electronique a permis de completer cette etude de l'eclatement Zeeman suivant toutes les orientations du cristal. Enfin la fluorescence par excitation selective et la fluorescence induite par Raman FT, completent la description des niveaux d'energie et revelent l'existence d'emission cooperative de deux ions Yb3+ et de transferts d'energie. Les resultats de cette these apportent une contribution originale dans le domaine des nouveaux materiaux lasers par l'etude et la comprehension des interactions fines et des proprietes microscopiques d'un materiau en particulier. Ils debouchent a la fois sur des applications possibles dans le domaine de l'optique et des lasers, et sur la comprehension d'aspects fondamentaux. Cette these a prouve l'interet de ces matrices pour leur utilisation comme lasers solides: un fort eclatement du champ cristallin favorable a l'elaboration de laser quasi-3 niveaux, et de larges bandes d'absorption (dues a un fort couplage electron-phonon et a des raies satellites causees par une interaction d'echange entre deux ions Yb3+) qui permettent la generation d'impulsions laser ultra-courtes, l'accordabilite du laser, etc. De plus la miniaturisation des lasers est possible pour l'optique integree grace a des couches minces synthetisees par epitaxie en phase liquide dont nous avons demontre la tres bonne qualite structurale et l'ajustement possible de certains parametres. Nous avons reconstruit le tenseur g du niveau fondamental (qui donne des informations precieuses sur les fonctions d'onde), ceci dans le but d'aider les theoriciens a concevoir un modele de champ cristallin valide. Plusieurs mecanismes de transferts d'energie ont ete mis en evidence: un mecanisme de relaxation d'un site vers l'autre, un mecanisme d'emission cooperative, et un mecanisme d'excitation de l'Yb3+ par le Tm3+ (impurete presente dans le materiau). Ces transferts sont plutot nefastes pour la fabrication d'un laser mais sont interessants pour l'optique non lineaire (doublage de frequence, memoires optiques). Enfin, plusieurs elements (le couplage magnetique de paire, le couplage electron-phonon et l'emission cooperative) nous ont permis de conclure sur le caractere covalent de la matrice. Nous avons d'ailleurs demontre ici le role de la covalence dans l'emission cooperative, transition habituellement attribuee aux interactions multipolaires electriques.

  10. Comparison of actual and seismologically inferred stress drops in dynamic models of microseismicity

    NASA Astrophysics Data System (ADS)

    Lin, Y. Y.; Lapusta, N.

    2017-12-01

    Estimating source parameters for small earthquakes is commonly based on either Brune or Madariaga source models. These models assume circular rupture that starts from the center of a fault and spreads axisymmetrically with a constant rupture speed. The resulting stress drops are moment-independent, with large scatter. However, more complex source behaviors are commonly discovered by finite-fault inversions for both large and small earthquakes, including directivity, heterogeneous slip, and non-circular shapes. Recent studies (Noda, Lapusta, and Kanamori, GJI, 2013; Kaneko and Shearer, GJI, 2014; JGR, 2015) have shown that slip heterogeneity and directivity can result in large discrepancies between the actual and estimated stress drops. We explore the relation between the actual and seismologically estimated stress drops for several types of numerically produced microearthquakes. For example, an asperity-type circular fault patch with increasing normal stress towards the middle of the patch, surrounded by a creeping region, is a potentially common microseismicity source. In such models, a number of events rupture the portion of the patch near its circumference, producing ring-like ruptures, before a patch-spanning event occurs. We calculate the far-field synthetic waveforms for our simulated sources and estimate their spectral properties. The distribution of corner frequencies over the focal sphere is markedly different for the ring-like sources compared to the Madariaga model. Furthermore, most waveforms for the ring-like sources are better fitted by a high-frequency fall-off rate different from the commonly assumed value of 2 (from the so-called omega-squared model), with the average value over the focal sphere being 1.5. The application of Brune- or Madariaga-type analysis to these sources results in the stress drops estimates different from the actual stress drops by a factor of up to 125 in the models we considered. We will report on our current studies of other types of seismic sources, such as repeating earthquakes and foreshock-like events, and whether the potentially realistic and common sources different from the standard Brune and Madariaga models can be identified from their focal spectral signatures and studied using a more tailored seismological analysis.

  11. [Bloodstain pattern analysis on examples from practice: Are calculations with application parabolic trajectory usable?].

    PubMed

    Makovický, Peter; Matlach, Radek; Pokorná, Olga; Mošna, František; Makovický, Pavol

    2015-01-01

    The bloodstain pattern analysis (BPA) is useful in the forensic medicine. In Czechoslovakian criminology is this method not commonly used. The objective of this work is to calculate the impact length, height and distance splashing of blood drops. The results are compared with the real values for specific cases. It is also compared to calculate the angle of incidence of blood drops, using sinα with a form using tgα. For this purposes we used two different character cases from practice with well-preserved condition and readable blood stains. Selected blood stains were documented in order to calculate the angle of incidence of blood drops and to calculateorigin splashes. For this drop of blood, the distance of impact of the drops of blood (x), the height of the sprayed blood drops (y) and the length of the flight path the drop of blood (l). The obtained data was retrospectively analysed for the two models. The first straight line is represented by the triangle (M1) and the other is the parabolic model (M2). The formulae were derived using the Euler substitution. The results show that the angle of incidence of the drop of blood can be calculated as sinα and the tgα. When applying, the triangle is appropriate to consider the application and sinα parabolic requires the calculation of the angle of incidence drops of blood tgα. Parabola is useful for the BPA. In Czechoslovakian should be providing workplace training seminars BPA primarily intended for forensic investigators.We recommend the use of this method during investigations, verification of acts in forensic practice.

  12. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  13. Unstable bidimensional grids of liquid filaments: Drop pattern after breakups

    NASA Astrophysics Data System (ADS)

    Diez, Javier; Cuellar, Ingrith; Ravazzoli, Pablo; Gonzalez, Alejandro

    2017-11-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops. We acknowledge support from CONICET-Argentina (Grant PIP 844/2012) and ANPCyT-Argentina (Grant PICT 931/2012).

  14. Attempting to bridge the gap between laboratory and seismic estimates of fracture energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Beeler, N.M.

    2004-01-01

    To investigate the behavior of the fracture energy associated with expanding the rupture zone of an earthquake, we have used the results of a large-scale, biaxial stick-slip friction experiment to set the parameters of an equivalent dynamic rupture model. This model is determined by matching the fault slip, the static stress drop and the apparent stress. After confirming that the fracture energy associated with this model earthquake is in reasonable agreement with corresponding laboratory values, we can use it to determine fracture energies for earthquakes as functions of stress drop, rupture velocity and fault slip. If we take account of the state of stress at seismogenic depths, the model extrapolation to larger fault slips yields fracture energies that agree with independent estimates by others based on dynamic rupture models for large earthquakes. For fixed stress drop and rupture speed, the fracture energy scales linearly with fault slip.

  15. Wetting and Coalescence of Drops of Self-Healing Agents on Electrospun Nanofiber Mats.

    PubMed

    An, Seongpil; Kim, Yong Il; Lee, Min Wook; Yarin, Alexander L; Yoon, Sam S

    2017-10-10

    Here we study experimentally the behavior of liquid healing agents released in vascular core-shell nanofiber mats used in self-healing engineered materials. It is shown that wettability-driven spreading of liquid drops is accompanied by the imbibition into the nanofiber matrix, and its laws deviate from those known for spreading on an intact surface. We also explore coalescence of the released drops on nanofiber mats, in particular, coalescence of drops of resin monomer and cure important for self-healing. The coalescence process is also affected by the imbibition into the pores of an underlying nanofiber mat. A theoretical model is developed to account for the imbibition effect on drop coalescence.

  16. Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    NASA Technical Reports Server (NTRS)

    Apfel, R. E.; Holt, R. G.

    1990-01-01

    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1.

  17. Oscillations of a sessile droplet in open air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less

  18. Etude numerique et experimentale de la reponse vibro-acoustique des structures raidies a des excitations aeriennes et solidiennes

    NASA Astrophysics Data System (ADS)

    Mejdi, Abderrazak

    Les fuselages des avions sont generalement en aluminium ou en composite renforces par des raidisseurs longitudinaux (lisses) et transversaux (cadres). Les raidisseurs peuvent etre metalliques ou en composite. Durant leurs differentes phases de vol, les structures d'avions sont soumises a des excitations aeriennes (couche limite turbulente : TBL, champs diffus : DAF) sur la peau exterieure dont l'energie acoustique produite se transmet a l'interieur de la cabine. Les moteurs, montes sur la structure, produisent une excitation solidienne significative. Ce projet a pour objectifs de developper et de mettre en place des strategies de modelisations des fuselages d'avions soumises a des excitations aeriennes et solidiennes. Tous d'abord, une mise a jour des modeles existants de la TBL apparait dans le deuxieme chapitre afin de mieux les classer. Les proprietes de la reponse vibro-acoustique des structures planes finies et infinies sont analysees. Dans le troisieme chapitre, les hypotheses sur lesquelles sont bases les modeles existants concernant les structures metalliques orthogonalement raidies soumises a des excitations mecaniques, DAF et TBL sont reexamines en premier lieu. Ensuite, une modelisation fine et fiable de ces structures est developpee. Le modele est valide numeriquement a l'aide des methodes des elements finis (FEM) et de frontiere (BEM). Des tests de validations experimentales sont realises sur des panneaux d'avions fournis par des societes aeronautiques. Au quatrieme chapitre, une extension vers les structures composites renforcees par des raidisseurs aussi en composites et de formes complexes est etablie. Un modele analytique simple est egalement implemente et valide numeriquement. Au cinquieme chapitre, la modelisation des structures raidies periodiques en composites est beaucoup plus raffinee par la prise en compte des effets de couplage des deplacements planes et transversaux. L'effet de taille des structures finies periodiques est egalement pris en compte. Les modeles developpes ont permis de conduire plusieurs etudes parametriques sur les proprietes vibro-acoustiques des structures d'avions facilitant ainsi la tache des concepteurs. Dans le cadre de cette these, un article a ete publie dans le Journal of Sound and Vibration et trois autres soumis, respectivement aux Journal of Acoustical Society of America, International Journal of Solid Mechanics et au Journal of Sound and Vibration Mots cles : structures raidies, composites, vibro-acoustique, perte par transmission.

  19. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop...

  20. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop...

  1. A Realtime Active Feedback Control System For Coupled Nonlinear Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan; Fraden, Seth

    2012-02-01

    We study the manipulation and control of oscillatory networks. As a model system we use an emulsion of Belousov-Zhabotinsky (BZ) oscillators packed on a hexagonal lattice. Each drop is observed and perturbed by a Programmable Illumination Microscope (PIM). The PIM allows us to track individual BZ oscillators, calculate the phase and order parameters of every drop, and selectively perturb specific drops with photo illumination, all in realtime. To date we have determined the native attractor patterns for drops in 1D arrays and 2D hexagonal packing as a function of coupling strength as well as determined methods to move the system from one attractor basin to another. Current work involves implementing these attractor control methods with our experimental system and future work will likely include implementing a model neural network for use with photo controllable BZ emulsions.

  2. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  3. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  4. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage.

    PubMed

    Lulli, Matteo; Witort, Ewa; Papucci, Laura; Torre, Eugenio; Schipani, Christian; Bergamini, Christian; Dal Monte, Massimo; Capaccioli, Sergio

    2012-12-17

    To evaluate if coenzyme Q10 (CoQ10) can protect retinal ganglion cells (RGCs) from apoptosis and, when instilled as eye drops on the cornea, if it can reach the retina and exert its antiapoptotic activity in this area in a mouse model of kainate (KA)-induced retinal damage. Rat primary or cultured RGCs were subjected to glutamate (50 μM) or chemical hypoxia (Antimycin A, 200 μM) or serum withdrawal (FBS, 0.5%) in the presence or absence of CoQ10 (10 μM). Cell viability was evaluated by light microscopy and fluorescence-activated cell sorting analyses. Apoptosis was evaluated by caspase 3/7 activity and mitochondrion depolarization tetramethylrhodamine ethyl ester analysis. CoQ10 transfer to the retina following its instillation as eye drops on the cornea was quantified by HPLC. Retinal protection by CoQ10 (10 μM) eye drops instilled on the cornea was then evaluated in a mouse model of KA-induced excitotoxic retinal cell apoptosis by cleaved caspase 3 immunohistofluorescence, caspase 3/7 activity assays, and quantification of inhibition of RGC loss. CoQ10 significantly increased viable cells by preventing RGC apoptosis. Furthermore, when topically applied as eye drops to the cornea, it reached the retina, thus substantially increasing local CoQ10 concentration and protecting retinal layers from apoptosis. The ability of CoQ10 eye drops to protect retinal cells from apoptosis in the mouse model of KA-induced retinal damage suggests that topical CoQ10 may be evaluated in designing therapies for treating apoptosis-driven retinopathies.

  5. Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine

    NASA Technical Reports Server (NTRS)

    Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William

    2006-01-01

    As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.

  6. Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2006-01-01

    Using information provided by slip models and the methodology of McGarr and Fletcher (2002), we map static stress drop, stiffness (k = ????/u, where ???? is static stress drop and u is slip), and fracture energy over the slip surface to investigate the earthquake rupture process and energy budget. For the 1994 M6.7 Northridge, 1992 M7.3 Landers, and 1995 M6.9 Kobe earthquakes, the distributions of static stress drop show strong heterogeneity, emphasizing the importance of asperities in the rupture process. Average values of static stress drop are 17, 11, and 4 Mpa for Northridge, Landers, and Kobe, respectively. These values are substantially higher than estimates based on simple crack models, suggesting that the failure process involves the rupture of asperities within the larger fault zone. Stress drop as a function of depth for the Northridge and Landers earthquakes suggests that stress drops are limited by crustal strength. For these two earthquakes, regions of high slip are surrounded by high values of stiffness. Particularly for the Northridge earthquake, the prominent patch of high slip in the central part of the fault is bordered by a ring of high stiffness and is consistent with expectations based on the failure of an asperity loaded at its edge due to exterior slip. Stiffness within an asperity is inversely related to its dimensions. Estimates of fracture energy, based on static stress drop, slip, and rupture speed, were used to investigate the nature of slip weakening at four locations near the hypocenter of the Kobe earthquake for comparison with independent results based on a dynamic model of this earthquake. One subfault updip and to the NE of the hypocenter has a fracture energy of 1.1 MJ/m2 and a slip-weakening distance, Dc, of 0.66 m. Right triangles, whose base and height are Dc and the dynamic stress drop, respectively, approximately overlie the slip-dependent stress given by Ide and Takeo (1997) for the same locations near the hypocenter. The total fracture energy for the Kobe earthquake, 3.7 ?? 1014 J, is about the same as the seismic energy (Ea = 3.2 ?? 1014 J.

  7. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  8. On the collapse pressure of armored bubbles and drops.

    PubMed

    Pitois, O; Buisson, M; Chateau, X

    2015-05-01

    Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02-0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

  9. Spall Strength of Tungsten Carbide

    DTIC Science & Technology

    2004-09-01

    1 PCS GROUP CAVENDISH LABORATORY W G PROUD MADINGLEY RD CAMBRIDGE UNITED KINGDOM 1 CENTRE D ETUDES DE GRAMAT J Y TRANCHET...46500 GRAMAT FRANCE 1 MINISTERE DE LA DEFENSE DR G BRAULT DGA DSP STTC 4 RUE DE LA PORTE DISSY 75015 PARIS FRANCE 1 SPART

  10. Stochastic Pseudo-Boolean Optimization

    DTIC Science & Technology

    2011-07-31

    Right-Hand Side,” 2009 IN- FORMS Annual Meeting, San Diego, CA, October 11-14, 2009. 113 References [1] A.-Ghouila-Houri. Caracterisation des matrices...Optimization, 10:7–21, 2005. [30] P. Camion. Caracterisation des matrices unimodulaires. Cahiers Centre Etudes Rech., 5(4), 1963. [31] P. Camion

  11. A New Approach to Electrical Characterization of Exploding Foil Initiators

    DTIC Science & Technology

    1998-12-01

    processed to illustrate the methodology. RESUME Dans une etude precedente de 1a caracterisation electrique des detonateurs a element projete (DEP), on a...applicable a 1a caracterisation electrique des DEP et decrit la methodologie experimentale adequate. Cette methodologie est illustree par la

  12. Analysis of models for two solution crystal growth problems

    NASA Technical Reports Server (NTRS)

    Fehribach, Joseph D.; Rosenberger, Franz

    1989-01-01

    Two diffusive solution crystal growth models are considered which are characterized by two phases separated by an interface, a lack of convective mixing in either phase, and the presence of diffusion components differing widely in diffusivity. The first model describes precipitant-driven solution crystal growth and the second model describes a hanging drop evaporation problem. It is shown that for certain proteins sharp concentration gradients may develop in the drop during evaporation, while under the same conditions the concentrations of other proteins remain uniform.

  13. Study of the Tributyl Phosphate--30 Percent Dodecane Solvent; ETUDE DU SOLVANT PHOSPHATE TRIBUTYLIQUE 30 PERCENT--DODECANE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, P.

    1967-07-01

    This study, originating mainly from a literature survey, gives the principal chemical and physical features of the tributyl-phosphate (TBP) agent diluted at 30 volumes per cent in dodecane. The mixture is a very commonly used extractant in nuclear fuel processing. In this paper, the main following points are reported: -) the components (TBP and diluents) -) the TBP-diluents systems (non-loaded), -) the TBP-diluents-water systems, -) TBP-diluents-water-nitric acid systems, and -) industrial solvents. (author) [French] Cette etude, d'origine bibliographique, regroupe les caracteristiques physico-chimiques essentielles du phosphate tributylique (TBP) dilue a 30% en volume dans du dodecane. Ce melange constitue un agentmore » d'extraction tres utilise dans le traitement des combustibles nucleaires. Les principaux points traites sont les suivants: -) les constituants (TBP et diluants), -) les systemes TBP-diluants non charges, -) les systemes TBP-diluants-eau, -) les systemes TBP-diluants-eau-acide nitrique, et -) les solvants industriels. (auteur)« less

  14. Etude spectroscopique des collisions moleculaires (hydrogene-azote et hydrogene-oxygene) a des energies de quelques MeV

    NASA Astrophysics Data System (ADS)

    Plante, Jacinthe

    1998-09-01

    Les resultats presentes ici proviennent d'une etude systematique portant sur les collisions a vitesse constante, entre les projectiles d'hydrogene (H+, H2+ et H3+ a 1 MeV/nucleon) et deux cibles gazeuses (N2 et O2), soumises a differentes pressions. Les collisions sont analysees a l'aide des spectres d'emission (de 400 A a 6650 A) et des graphiques intensite/pression. Les spectres ont revele la presence des raies d'azote atomique, d'azote moleculaire, d'oxygene atomique, d'oxygene moleculaire et d'hydrogene atomique. Les raies d'hydrogene sont observees seulement avec les projectiles H2+ et H3+. Donc les processus responsables de la formation de ces raies sont des mecanismes de fragmentation des projectiles. Pour conclure, il existe une difference notable entre les projectiles et les differentes pressions. Les raies d'azote et d'oxygene augmentent selon la pression et les raies d'hydrogene atomique presentent une relation non lineaire avec la pression.

  15. Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments

    NASA Astrophysics Data System (ADS)

    Cuellar, Ingrith; Ravazzoli, Pablo D.; Diez, Javier A.; González, Alejandro G.

    2017-10-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops, and its predictions are successfully compared with the experimental data as well as with numerical simulations of the full Navier-Stokes equation that provide a detailed time evolution of the dewetting motion of the filament till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing theories for infinite ones.

  16. Modeling merging behavior at lane drops : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-02-01

    A better understanding of the merging behavior of drivers will lead : to the development of better lane-drop traffic-control plans and : strategies, which will provide better guidance to drivers for safer : merging.

  17. Static structure of a pointed charged drop

    NASA Astrophysics Data System (ADS)

    Fernandez de La Mora, Juan

    2017-11-01

    The static equilibrium structure of an equipotential drop with two symmetric Taylor cones is computed by assigning a charge distribution along the z axis q (z) = ∑Bn (L2 -z2)n + 1 / 2 . Taylor's local equilibrium at the poles z = L , - L fixes two of the Bn coefficients as a function of the other, determined by minimizing stress imbalance. Just two optimally chosen terms in the Bn expansion yield imperceptible errors. Prior work has argued that an exploding drop initially carrying Rayleigh's charge qR is quasi static. Paradoxically, quasi-static predictions on the size of the progeny drops emitted during a Coulombic explosion disagree with observations. The static drop structure found here also models poorly a Coulomb explosion having an equatorial over polar length ratio (0.42) and the a drop charge exceeding those observed (0.28-0.36 and qR / 2). Our explanation for this paradox is that, while the duration tc of a Coulomb explosion is much larger than the charge relaxation time, the dynamic time scale for drop elongation is typically far longer than tc. Therefore, the pressure distribution within the exploding drop is not uniform. A similar analysis for a drop in an external field fits well the experimental shape.

  18. Free Radical Scavenging Activity of Drops and Spray Containing Propolis-An EPR Examination.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Ramos, Pawel; Mencner, Lukasz; Olczyk, Krystyna; Pilawa, Barbara

    2017-01-13

    The influence of heating at a temperature of 50 °C and UV-irradiation of propolis drops and spray on their free radical scavenging activity was determined. The kinetics of interactions of the propolis samples with DPPH free radicals was analyzed. Interactions of propolis drops and propolis spray with free radicals were examined by electron paramagnetic resonance spectroscopy. A spectrometer generating microwaves of 9.3 GHz frequency was used. The EPR spectra of the model DPPH free radicals were compared with the EPR spectra of DPPH in contact with the tested propolis samples. The antioxidative activity of propolis drops and propolis spray decreased after heating at the temperature of 50 °C. A UV-irradiated sample of propolis drops more weakly scavenged free radicals than an untreated sample. The antioxidative activity of propolis spray increased after UV-irradiation. The sample of propolis drops heated at the temperature of 50 °C quenched free radicals faster than the unheated sample. UV-irradiation weakly changed the kinetics of propolis drops or spray interactions with free radicals. EPR analysis indicated that propolis drops and spray should not be stored at a temperature of 50 °C. Propolis drops should not be exposed to UV-irradiation.

  19. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.

    PubMed

    Tan, Huanshu; Diddens, Christian; Versluis, Michel; Butt, Hans-Jürgen; Lohse, Detlef; Zhang, Xuehua

    2017-04-12

    Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.

  20. Factors Contributing to Pelvis Instability in Female Adolescent Athletes During Unilateral Repeated Partial Squat Activity

    PubMed Central

    Scarborough, Donna Moxley; Linderman, Shannon; Berkson, Eric M.; Oh, Luke S.

    2017-01-01

    Objectives: Unilateral partial squat tasks are often used to assess athletes’ lower extremity (LE) neuromuscular control. Single squat biomechanics such as lateral drop of the non-stance limb’s pelvis have been linked to knee injury risk. Yet, there are limited studies on the factors contributing to pelvic instability during the unilateral partial squat such as anatomical alignment of the knee and hip strength. The purpose of this study was 1) to assess the influence of leg dominance on pelvic drop among female athletes during the repeated unilateral partial squat activity and 2) to investigate the contributions that lower limb kinematics and hip strength have on pelvis drop. Methods: 42 female athletes (27= softball pitchers, 15=gymnasts, avg age=16.48 ± 2.54 years) underwent lower limb assessment. The quadriceps angle (Q angle) and the average of 3 trials for hip abduction and extension strength (handheld dynamometer measurements) were used for analyses. 3D biomechanical analysis of the repeated unilateral partial squat activity followed using a 20 motion capture camera system which created a 15 segment model of each subject. The subject stood on one leg at the lateral edge of a 17.78 cm box with hands placed on the hips and squatted so that the free hanging contralateral limb came as close to the ground without contact for 5 continuous repetitions. One trial for each limb was performed. Peak pelvic drop and ankle, knee and hip angles and torques (normalized by weight) at this time point were calculated using Visual 3D (C-Motion) biomechanical software. Paired T-test, Spearman correlations and multiple regression model statistical analyses were performed. Results: Peak pelvic drop during the unilateral partial squat did not differ significantly on the basis of limb dominance (p=0.831, Dom: -3.40 ± 5.10° , ND: -3.46 ± 4.44°). Peak pelvic drop displayed a Spearman correlation with the functional measure of hip abduction/adduction (ABD/ADD) angle (rs= 0.627, p< 0.001) (Figure 1). No association was noted between peak pelvic drop and anatomical measures of Q angle or isometric hip extension strength. A multiple regression was performed to predict pelvis drop angle from the following 6 variables: isometric hip ABD strength, hip ABD/ADD angle, hip internal/external rotation angle, ankle supination/pronation (S/P) angle, height and weight. These variables statistically predicted pelvis drop, F(6,73) = 17.848, p < .0005, R2 = 0.595. The strongest combined predictor variables for pelvic drop in the female athletes were hip abduction/ adduction angle and strength followed by subject’s weight and ankle S/P angle (Table 1). Conclusion: Peak pelvic drop during the repeated unilateral partial squat activity did not correlate significantly with Q angle and hip extension strength. Instead, peak pelvic drop appears more related to a combination of biomechanical limb positioning, hip ABD strength and subject demographics. The regression model run on the repeated unilateral partial squat demonstrates predictive power of this dynamic assessment tool based on kinematic measures across multiple joints. Results could guide clinician screening for excessive pelvic drop in female athletes and based on the predictive model make recommendations for corrective conditioning to help prevent knee injury and guide return to sport following LE surgery. Table 1: Multivariate linear regression model for pelvic drop, Isometric hip strength and lower extremity kinematics during repeated partial squat activity among female athletes. Variable P Isometric hip abduction strength 0.034* Hip Abduction/Adduction Angle <0.001* Hip Internal/External Rotation Angle 0.936 Ankle Internal/External Rotation Angle 0.072 Height 0.398 Weight 0.011* * Level of significance established at p<0.05

  1. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    PubMed

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  2. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  3. A relationship between peak temperature drop and velocity differential in a microburst

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1989-01-01

    Results from numerical microburst simulations using the Terminal Area Simulation System (Proctor, 1987) are used to develop a relationship between wind velocity differential and peak temperature drop. The numerical model and the relationships derived from the model are described. The relationship between peak temperature drop and differential wind velocity is shown to be valid during microburst development, for all precipitation shaft intensities and diameters. It is found that the relationship is not valid for low-reflectivity microburst events or in the presence of ground-based stable layers. The use of the relationship in IR wind shear detection systems is considered.

  4. Comment on "An alternative theory to explain the effects of coalescing oil drops on mouthfeel" by B. Le Reverend and J. Engmann, Soft Matter, 2015, 11, 7077.

    PubMed

    Xia, Qiuyang

    2016-03-28

    In a recent paper by B. Le Reverend and J. Engmann, they used a model to explain the change in the perceived viscosity by phase separation. We improved this model by adding the drop in viscosity in the aqueous phase to it and we show how this will significantly change the conclusion in the original paper. The increase in viscosity due to phase separation is highly unlikely to happen because the drop in viscosity due to loss of oil is faster at a high oil concentration.

  5. Containerless processing of undercooled melts

    NASA Technical Reports Server (NTRS)

    Shong, D. S.; Graves, J. A.; Ujiie, Y.; Perepezko, J. H.

    1987-01-01

    Containerless drop tube processing allows for significant levels of liquid undercooling through control of parameters such as sample size, surface coating and cooling rate. A laboratory scale (3 m) drop tube has been developed which allows the undercooling and solidification behavior of powder samples to be evaluated under low gravity free-fall conditions. The level of undercooling obtained in an InSb-Sb eutectic alloy has been evaluated by comparing the eutectic spacing in drop tube samples with a spacing/undercooling relationship established using thermal analysis techniques. Undercoolings of 0.17 and 0.23 T(e) were produced by processing under vacuum and He gas conditions respectively. Alternatively, the formation of an amorphous phase in a Ni-Nb eutectic alloy indicates that undercooling levels of approximately 500 C were obtained by drop tube processing. The influence of droplet size and gas environment on undercooling behavior in the Ni-Nb eutectic was evaluated through their effect on the amorphous/crystalline phase ratio. To supplement the structural analysis, heat flow modeling has been developed to describe the undercooling history during drop tube processing, and the model has been tested experimentally.

  6. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  7. Numerical investigation of sliding drops on an inclined surface

    NASA Astrophysics Data System (ADS)

    Legendre, Dominique; Pedrono, Annaig; Interface Group Team

    2017-11-01

    Despite it apparent simplicity, the behavior of a drop on an inclined solid surface is far to be properly reproduced by numerical simulation. It involves static, hysteresis and dynamic contact line behaviors. Depending on the fluid properties, the hysteresis and the wall inclination, different drop shapes (rounded, corner or pearling drop) can be observed. The 3D numerical simulations of sliding droplets presented in this work are based on a Volume of Fluid (VoF) solver without any interface reconstruction developed in the JADIM code. The surface tension is solved using the classical CSF (Continuum Surface Force) model and a sub grid model is used to describe under hysteresis conditions both the shape, the dissipation of the non resolved scales of a moving contact line. Numerical simulations are compared with the experiments of. The agreement with experiments is found to be very good for both he critical angle of inclination for siding as well as for the specific shapes: rounded, corner and pearling drops. The simulations have been used to extend the range of hysteresis covered by the experiments.

  8. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  9. On the Relationship of the Fractal Dimension of Structure with the State of Drying Drops of Crystallizing Solutions (Thermodynamic and Experimental Modeling)

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.; Fedoseev, V. B.

    2018-05-01

    The processes occurring in aqueous salt solutions have been investigated based on thermodynamic and experimental modeling. The self-organization in a drying drop of dehydrated liquids is analyzed using the fractal theory, due to which the quantitative characteristics of the crystallization processes in a small volume are obtained.

  10. A Theoretical Model and Analysis of the Effect of Self-Regulation on Attrition from Voluntary Online Training

    ERIC Educational Resources Information Center

    Sitzmann, Traci

    2012-01-01

    A theoretical model is presented that examines self-regulatory processes and trainee characteristics as predictors of attrition from voluntary online training in order to determine who is at risk of dropping out and the processes that occur during training that determine when they are at risk of dropping out. Attrition increased following declines…

  11. 40 CFR Table 3 to Subpart Ffff of... - Model Rule-Operating Limits for Incinerators and Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...

  12. 40 CFR Table 3 to Subpart Ffff of... - Model Rule-Operating Limits for Incinerators and Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...

  13. Shaping drops with textured surfaces

    NASA Astrophysics Data System (ADS)

    Ehlinger, Quentin; Biance, Anne-Laure; Ybert, Christophe

    2017-11-01

    When a drop impacts a substrate, it can behave differently depending on the nature of the surface and of the liquid (spreading, bouncing, resting, splashing ...). Understanding these behaviors is crucial to predict the drop morphology during and after impact. Whereas surface wettability has extensively been studied, the effect of surface roughness remains hardly explored. In this work, we consider the impact of a drop in a pure non-wetting situation by using superheated substrates i.e. in the Leidenfrost regime. The surface texture consists of a well-controlled microscopic defect shaped with photolithography on a smooth silicon wafer. Different regimes are observed, depending on the distance between the defect and the impact point and the defect size. Comparing the lamella thickness versus the defect height proves relevant as the transition criteria between regimes. Others characteristics of the drop behavior (direction of satellite droplet ejection, lamella rupture) are also well captured by inertial/capillary models. Drop impacts on multiple defects are also investigated and drop shape well predicted considering the interactions between the local flow and the defects.

  14. Wrapping a liquid drop with a thin elastic sheet

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Chris; Russell, Thomas; Menon, Narayanan

    2014-11-01

    We study the wrapping of a liquid drop by an initially-planar ultrathin (~ 100 nm) circular sheet. These elastic sheets can completely relax compressive stresses by forming wrinkles. In the experiment, we find that when a small fraction of the drop is covered, the overall shape of the sheet (i.e. averaging over the wrinkles) is axisymmetric. As we shrink the drop further, the sheet develops radial folds that break the axisymmetry of the sheet and the drop. Our data are consistent with a model where the sheet selects the shape that minimizes the exposed liquid surface area. We thus identify a ``geometric wrapping'' regime, where the partially-wrapped shape depends only on the relative radii of the sheet and the drop; the global breaking of axisymmetry is independent of the elastic energy of the deformed sheet. This regime requires that bending energy is negligible compared to surface energy, in contrast to the ``capillary origami'' regime where the static shape of the drop comes from a balance of bending and capillary forces.

  15. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  16. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  17. Drop Spreading with Random Viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  18. Design of a Dual Waveguide Normal Incidence Tube (DWNIT) Utilizing Energy and Modal Methods

    NASA Technical Reports Server (NTRS)

    Betts, Juan F.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    This report investigates the partition design of the proposed Dual Waveguide Normal Incidence Tube (DWNIT). Some advantages provided by the DWNIT are (1) Assessment of coupling relationships between resonators in close proximity, (2) Evaluation of "smart liners", (3) Experimental validation for parallel element models, and (4) Investigation of effects of simulated angles of incidence of acoustic waves. Energy models of the two chambers were developed to determine the Sound Pressure Level (SPL) drop across the two chambers, through the use of an intensity transmission function for the chamber's partition. The models allowed the chamber's lengthwise end samples to vary. The initial partition design (2" high, 16" long, 0.25" thick) was predicted to provide at least 160 dB SPL drop across the partition with a compressive model, and at least 240 dB SPL drop with a bending model using a damping loss factor of 0.01. The end chamber sample transmissions coefficients were set to 0.1. Since these results predicted more SPL drop than required, a plate thickness optimization algorithm was developed. The results of the algorithm routine indicated that a plate with the same height and length, but with a thickness of 0.1" and 0.05 structural damping loss, would provide an adequate SPL isolation between the chambers.

  19. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  20. Coupling analysis of high Q resonators in add-drop configuration through cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.

    2018-06-01

    An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.

  1. Fuel-Air Explosive Simulation of Far-Field Nuclear Airblasts.

    DTIC Science & Technology

    1979-12-31

    Blastwave Simulator," Sixieme Symposium International sur Les A19 plications Militaires de La Simulation de Souffle, Centre D’Etudes de Gramat , Gramat ... Gramat , Gramat , France, p. 4.2.1, June 1979. 207 7............................. 64. Cooperwaithe, M. and Zwisler, W. H., "TIGER Computer Program

  2. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de la phenomenologie entourant le comportement des resistances longitudinale et de Hall dans YBa2Cu3Oy, avec des systemes dans lesquels l'existence d'un ordre du type DW est etablie, notamment des cuprates a structure tetragonale a basse temperature ("Low Temperature Tetragonal", LTT), indique que l'ordre causant la reconstruction de la surface de Fermi est stabilise au voisinage du dopage p = 1/8, et est en competition directe avec la supraconductivite.

  3. Des proprietes de l'etat normal du modele de Hubbard bidimensionnel

    NASA Astrophysics Data System (ADS)

    Lemay, Francois

    Depuis leur decouverte, les etudes experimentales ont demontre que les supra-conducteurs a haute temperature ont une phase normale tres etrange. Les proprietes de ces materiaux ne sont pas bien decrites par la theorie du liquide de Fermi. Le modele de Hubbard bidimensionnel, bien qu'il ne soit pas encore resolu, est toujours considere comme un candidat pour expliquer la physique de ces composes. Dans cet ouvrage, nous mettons en evidence plusieurs proprietes electroniques du modele qui sont incompatibles avec l'existence de quasi-particules. Nous montrons notamment que la susceptibilite des electrons libres sur reseau contient des singularites logarithmiques qui influencent de facon determinante les proprietes de la self-energie a basse frequence. Ces singularites sont responsables de la destruction des quasi-particules. En l'absence de fluctuations antiferromagnetiques, elles sont aussi responsables de l'existence d'un petit pseudogap dans le poids spectral au niveau de Fermi. Les proprietes du modele sont egalement etudiees pour une surface de Fermi similaire a celle des supraconducteurs a haute temperature. Un parallele est etabli entre certaines caracteristiques du modele et celles de ces materiaux.

  4. On the scale dependence of earthquake stress drop

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Tinti, Elisa; Cirella, Antonella

    2016-10-01

    We discuss the debated issue of scale dependence in earthquake source mechanics with the goal of providing supporting evidence to foster the adoption of a coherent interpretative framework. We examine the heterogeneous distribution of source and constitutive parameters during individual ruptures and their scaling with earthquake size. We discuss evidence that slip, slip-weakening distance and breakdown work scale with seismic moment and are interpreted as scale dependent parameters. We integrate our estimates of earthquake stress drop, computed through a pseudo-dynamic approach, with many others available in the literature for both point sources and finite fault models. We obtain a picture of the earthquake stress drop scaling with seismic moment over an exceptional broad range of earthquake sizes (-8 < MW < 9). Our results confirm that stress drop values are scattered over three order of magnitude and emphasize the lack of corroborating evidence that stress drop scales with seismic moment. We discuss these results in terms of scale invariance of stress drop with source dimension to analyse the interpretation of this outcome in terms of self-similarity. Geophysicists are presently unable to provide physical explanations of dynamic self-similarity relying on deterministic descriptions of micro-scale processes. We conclude that the interpretation of the self-similar behaviour of stress drop scaling is strongly model dependent. We emphasize that it relies on a geometric description of source heterogeneity through the statistical properties of initial stress or fault-surface topography, in which only the latter is constrained by observations.

  5. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  6. On the relationship between tectonic plates and thermal mantle plume morphology

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  7. Maximum spreading of liquid drop on various substrates with different wettabilities

    NASA Astrophysics Data System (ADS)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  8. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.

  9. Solving for source parameters using nested array data: A case study from the Canterbury, New Zealand earthquake sequence

    USGS Publications Warehouse

    Neighbors, Corrie; Cochran, Elizabeth S.; Ryan, Kenneth; Kaiser, Anna E.

    2017-01-01

    The seismic spectrum can be constructed by assuming a Brune spectral model and estimating the parameters of seismic moment (M0), corner frequency (fc), and high-frequency site attenuation (κ). Using seismic data collected during the 2010–2011 Canterbury, New Zealand, earthquake sequence, we apply the non-linear least-squares Gauss–Newton method, a deterministic downhill optimization technique, to simultaneously determine the M0, fc, and κ for each event-station pair. We fit the Brune spectral acceleration model to Fourier-transformed S-wave records following application of path and site corrections to the data. For each event, we solve for a single M0 and fc, while any remaining residual kappa, κr">κrκr, is allowed to differ per station record to reflect varying high-frequency falloff due to path and site attenuation. We use a parametric forward modeling method, calculating initial M0 and fc values from the local GNS New Zealand catalog Mw, GNS magnitudes and measuring an initial κr">κrκr using an automated high-frequency linear regression method. Final solutions for M0, fc, and κr">κrκr are iteratively computed through minimization of the residual function, and the Brune model stress drop is then calculated from the final, best-fit fc. We perform the spectral fitting routine on nested array seismic data that include the permanent GeoNet accelerometer network as well as a dense network of nearly 200 Quake Catcher Network (QCN) MEMs accelerometers, analyzing over 180 aftershocks Mw,GNS ≥ 3.5 that occurred from 9 September 2010 to 31 July 2011. QCN stations were hosted by public volunteers and served to fill spatial gaps between existing GeoNet stations. Moment magnitudes determined using the spectral fitting procedure (Mw,SF) range from 3.5 to 5.7 and agree well with Mw,GNS, with a median difference of 0.09 and 0.17 for GeoNet and QCN records, respectively, and 0.11 when data from both networks are combined. The majority of events are calculated to have stress drops between 1.7 and 13 MPa (20th and 80th percentile, correspondingly) for the combined networks. The overall median stress drop for the combined networks is 3.2 MPa, which is similar to median stress drops previously reported for the Canterbury sequence. We do not observe a correlation between stress drop and depth for this region, nor a relationship between stress drop and magnitude over the catalog considered. Lateral spatial patterns in stress drop, such as a cluster of aftershocks near the eastern extent of the Greendale fault with higher stress drops and lower stress drops for aftershocks of the 2011 Mw,GNS 6.2 Christchurch mainshock, are found to be in agreement with previous reports. As stress drop is arguably a method-dependent calculation and subject to high spatial variability, our results using the parametric Gauss–Newton algorithm strengthen conclusions that the Canterbury sequence has stress drops that are more similar to those found in intraplate regions, with overall higher stress drops that are typically observed in tectonically active areas.

  10. Climate impact on malaria in northern Burkina Faso.

    PubMed

    Tourre, Yves M; Vignolles, Cécile; Viel, Christian; Mounier, Flore

    2017-11-27

    The Paluclim project managed by the French Centre National d'Etudes Spatiales (CNES) found that total rainfall for a 3-month period is a confounding factor for the density of malaria vectors in the region of Nouna in the Sahel administrative territory of northern Burkina Faso. Following the models introduced in 1999 by Craig et al. and in 2003 by Tanser et al., a climate impact model for malaria risk (using different climate indices) was created. Several predictions of this risk at different temporal scales (i.e. seasonal, inter-annual and low-frequency) were assessed using this climate model. The main result of this investigation was the discovery of a significant link between malaria risk and low-frequency rainfall variability related to the Atlantic Multi-decadal Oscillation (AMO). This result is critical for the health information systems in this region. Knowledge of the AMO phases would help local authorities to organise preparedness and prevention of malaria, which is of particular importance in the climate change context.

  11. TOPEX/POSEIDON - Mapping the ocean surface

    NASA Technical Reports Server (NTRS)

    Yamarone, C. A.; Rosell, S.; Farless, D. L.

    1986-01-01

    Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.

  12. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  13. Specifying initial stress for dynamic heterogeneous earthquake source models

    USGS Publications Warehouse

    Andrews, D.J.; Barall, M.

    2011-01-01

    Dynamic rupture calculations using heterogeneous stress drop that is random and self-similar with a power-law spatial spectrum have great promise of producing realistic ground-motion predictions. We present procedures to specify initial stress for random events with a target rupture length and target magnitude. The stress function is modified in the depth dimension to account for the brittle-ductile transition at the base of the seismogenic zone. Self-similar fluctuations in stress drop are tied in this work to the long-wavelength stress variation that determines rupture length. Heterogeneous stress is related to friction levels in order to relate the model to physical concepts. In a variant of the model, there are high-stress asperities with low background stress. This procedure has a number of advantages: (1) rupture stops naturally, not at artificial barriers; (2) the amplitude of short-wavelength fluctuations of stress drop is not arbitrary: the spectrum is fixed to the long-wavelength fluctuation that determines rupture length; and (3) large stress drop can be confined to asperities occupying a small fraction of the total rupture area, producing slip distributions with enhanced peaks.

  14. Effects of viscoelasticity on drop impact and spreading on a solid surface

    NASA Astrophysics Data System (ADS)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  15. Three-dimensional culture of buffalo granulosa cells in hanging drop mimics the preovulatory follicle stage.

    PubMed

    Yadav, Monica; Agrawal, Himanshu; Pandey, Mamta; Singh, Dheer; Onteru, Suneel K

    2018-03-01

    Granulosa cell (GC) culture models mimicking the intrafollicular environment are limited. Such models have a great potential in reproductive toxicity studies. The buffalo, a monovulatory species like humans, could be a better model than polyovulatory rodents. Therefore, we targeted the development and characterization of three-dimensional (3D) culture systems for buffalo GCs. The GCs from small ovarian follicles (SF) maintained the CYP19 gene expression for 144 hr in a 2D culture system. Hence, GCs from SF were cultured directly in 3D using hanging drop and Poly-([2-hydroxyethyl methacrylate]) (polyHEMA) methods in the DMEM media containing 1 ng/ml FSH and 10 ng/ml IGF-1 for 144 hr. The expression profile of nine GC-specific transcripts; CYP19, TNFAIP6, AMH, PTI, NR4A1, FSHR, RUNX, LHR, and COX2/PTGS2; revealed that 3D-spheroids developed in hanging drop method maintained the GC phenotype of preovulatory follicles. Therefore, hanging drop method is a best method for culturing GCs to mimic the intrafollicular environment. © 2017 Wiley Periodicals, Inc.

  16. Network-based H.264/AVC whole frame loss visibility model and frame dropping methods.

    PubMed

    Chang, Yueh-Lun; Lin, Ting-Lan; Cosman, Pamela C

    2012-08-01

    We examine the visual effect of whole frame loss by different decoders. Whole frame losses are introduced in H.264/AVC compressed videos which are then decoded by two different decoders with different common concealment effects: frame copy and frame interpolation. The videos are seen by human observers who respond to each glitch they spot. We found that about 39% of whole frame losses of B frames are not observed by any of the subjects, and over 58% of the B frame losses are observed by 20% or fewer of the subjects. Using simple predictive features which can be calculated inside a network node with no access to the original video and no pixel level reconstruction of the frame, we developed models which can predict the visibility of whole B frame losses. The models are then used in a router to predict the visual impact of a frame loss and perform intelligent frame dropping to relieve network congestion. Dropping frames based on their visual scores proves superior to random dropping of B frames.

  17. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate that the freezing times are shorter the lower the temperatures are. For evaluation and comparisons of the data, two models of heterogeneous freezing are applied, the stochastic and the time-independent singular description. The nucleation rate coefficients J(T) as well as the surface densities of active sites ns(T) or the numbers of active sites nm(T) are determined from the experimental data. It is shown that both models are suited to describe the present heterogeneous freezing results for the range of investigated particle masses or surface areas per drop. The comparison of the results from the two experimental techniques evaluated with the time-independent singular model indicates an excellent agreement within the measurement errors.

  18. Modeling merging behavior at lane drops.

    DOT National Transportation Integrated Search

    2015-02-01

    In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In : addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improvin...

  19. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  20. Dropping Out of High School: An Application of the Theory of Reasoned Action.

    ERIC Educational Resources Information Center

    Prestholdt, Perry H.; Fisher, Jack L.

    To develop and test a theoretical model, based on the Theory of Reasoned Action (Fishbein and Ajzen, 1975), for understanding and predicting the decision to stay in or drop out of school, to identify the specific beliefs that are the basis of that decision, and to evaluate the use of moderator variables (sex, race) to individualize the model,…

  1. Prediction of friction pressure drop for low pressure two-phase flows on the basis of approximate analytical models

    NASA Astrophysics Data System (ADS)

    Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.

    2017-12-01

    Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.

  2. The Normative Effects of Higher Education Policy in France

    ERIC Educational Resources Information Center

    Langan, Elise

    2012-01-01

    This student survey was a response to the French youth unrest in 2005 and 2006. It considers the degree to which French higher and secondary education institutions create social cohesion. Focusing on three distinct higher-education institutions: "L'institut d'etudes politiques de Paris" (Sciences Po), "Ecole Normale…

  3. The Effect of Material Strength on Segment Penetration Behavior

    DTIC Science & Technology

    1993-04-01

    Muenchen GERMANY Royal Armament R&D Establishment ATTN: I. Cullis Fort Halstead Sevenoaks, Kent TN14 7BJ ENGLAND Centre d’Etudes de Gramat ATTN...SOLVE Gerald 46500 Gramat FRANCE 2 Defense Research Establishment Suffield ATTN: C. Weickert D. Mackay Ralston, Alberta, TOJ 2N0 Ralston CANADA Defense

  4. Initial Evaluation of Advanced Powder Metallurgy Magnesium Alloys for Armor Development

    DTIC Science & Technology

    2009-05-01

    28911 LEGANES MADRID SPAIN 1 CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT ...J CAGNOUX C GALLIC J TRANCHET GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY

  5. Predictors of Weapon Carrying in Youth Attending Drop-in Centers

    PubMed Central

    Blumberg, Elaine J.; Liles, Sandy; Kelley, Norma J.; Hovell, Melbourne F.; Bousman, Chad A.; Shillington, Audrey M.; Ji, Ming; Clapp, John

    2012-01-01

    Objective To test and compare 2 predictive models of weapon carrying in youth (n=308) recruited from 4 drop-in centers in San Diego and Imperial counties. Methods Both models were based on the Behavioral Ecological Model (BEM). Results The first and second models significantly explained 39% and 53% of the variance in weapon carrying, respectively, and both full models shared the significant predictors of being black(−), being Hispanic (−), peer modeling of weapon carrying/jail time(+), and school suspensions(+). Conclusions Results suggest that the BEM offers a generalizable conceptual model that may inform prevention strategies for youth at greatest risk of weapon carrying. PMID:19320622

  6. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  7. Drops moving along and across a filament

    NASA Astrophysics Data System (ADS)

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2013-11-01

    The present work is devoted to the experimental study of oil drop motion both along and across a filament due to the air jet blowing. In case of drop moving along the filament, phenomena such as drop stick-slip motion, shape oscillations, shedding of a tail along the filament, the tail capillary instability and drop recoil motion were observed which were rationalized in the framework of simplified models. Experiments with cross-flow of the surrounding gas relative to the filament with an oil drop on it were conducted, with air velocity in the range of 7.23 to 22.7 m s-1. The Weber number varied from 2 to 40 and the Ohnesorge number varied from 0.07 to 0.8. The lower and upper critical Weber numbers were introduced to distinguish between the beginning of the drop blowing off the filament and the onset of the bag-stamen breakup. The range of the Weber number between these two critical values is filled with three types of vibrational breakup: V1 (a balloon-like drop being blown off), V2 (a drop on a single stamen being blown off), and V3 (a drop on a double stamen being blown off). The Weber number/Ohnesorge number plane was delineated into domains of different breakup regimes. The work is supported by the Nonwovens Cooperative Research Center (NCRC).

  8. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOEpatents

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  9. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  10. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  11. Atomistic modeling of dropwise condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L.; Muralidhar, K.

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smallermore » sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.« less

  12. Mise au point du rheometre a cisaillement annulaire pour l'etude de rheologie d'un mastic bitumineux avec verre incorpore =

    NASA Astrophysics Data System (ADS)

    El Mansouri, Souleimane

    Dans le domaine viscoelastique lineaire (VEL, domaine des petites deformations), le comportement thermomecanique du bitume et du mastic bitumineux (melange uniforme de bitume et de fillers) a ete caracterise au Laboratoire des Chaussees et Materiaux Bitumineux (LCMB) de l'Ecole de technologie superieure (ETS) avec l'appui de nos partenaires externes : la Societe des Alcools du Quebec (SAQ) et Eco Entreprises Quebec (EEQ). Les proprietes rheologiques des bitumes et des mastics ont ete mesurees grâce a un nouvel outil d'investigation appele, Rheometre a Cisaillement Annulaire (RCA), sous differentes conditions de chargement. Cet appareil permet non seulement de solliciter des eprouvettes de tailles importantes par rapport a celles utilisees lors des essais classiques, mais aussi d'effectuer des essais en conditions quasi-homogenes, ce qui permet de donner acces a la loi de comportement des materiaux. Les essais sont realises sur une large gamme de temperatures et de frequences (de -15 °C a 45°C et de 0,03Hz a 10 Hz). Cette etude a ete menee principalement pour comparer le comportement d'un bitume avec celui d'un mastic bitumineux dans le domaine des petites deformations. neanmoins, dans une seconde perspective, on s'interesse a l'influence des fillers de verre de post-consommation sur le comportement d'un mastic a faibles niveaux de deformations en comparant l'evolution des modules complexes de cisaillements (G*) d'un mastic avec fillers de verre et un mastic avec fillers conventionnels (calcaire). Enfin, le modele analogique 2S2P1D est utilise pour simuler le comportement viscoelastique lineaire des bitumes et des mastics bitumineux testes lors de la campagne experimentale.

  13. Mechanical Aspects of Interfaces and Surfaces in Ceramic Containing Systems.

    DTIC Science & Technology

    1984-12-14

    of a computer model to simulate the crack damage. The model is based on the fracture mechanics of cracks engulfed by the short stress pulse generated...by drop impact. Inertial effects of the crack faces are a particularly important aspect of the model. The computer scheme thereby allows the stress...W. R. Beaumont, "On the Toughness of Particulate Filled Polymers." Water Drop Impact X. E. D. Case and A. G. Evans, "A Computer -Generated Simulation

  14. Point force singularities outside a drop covered with an incompressible surfactant: Image systems and their applications

    NASA Astrophysics Data System (ADS)

    Shaik, Vaseem A.; Ardekani, Arezoo M.

    2017-11-01

    In this work we derive the image flow fields for point force singularities placed outside a stationary drop covered with an insoluble, nondiffusing, and incompressible surfactant. We assume the interface to be Newtonian and use the Boussinesq-Scriven constitutive law for the interfacial stress tensor. We use this analytical solution to investigate two different problems. First, we derive the mobility matrix for two drops of arbitrary sizes covered with an incompressible surfactant. In the second example, we calculate the velocity of a swimming microorganism (modeled as a Stokes dipole) outside a drop covered with an incompressible surfactant.

  15. Unsteady spot heating of a drop in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.; Wagner, Paul

    1992-01-01

    The unsteady localized spot heating of a liquid drop under zero-g conditions is examined theoretically. This pertains to space experiments to measure thermal properties of materials and the purpose here is to predict the thermal behavior of such systems. Spot heating can be achieved by a laser beam focused on a small region of the drop surface. The present theoretical model deals with situations of weak Marangoni flows, whereby the thermal transport is conduction dominated. The heat flow in the drop is treated as unsteady while the surrounding gaseous region is considered to be quasisteady. The ensuing thermally driven flow is analyzed in the Stokes regime.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    The Los Alamos RP-SVS Radiation Protection Services group designed and constructed a drop tower facility for TA- 55 support work. The drop mechanism was supplied by the Lansmont company in Monterey CA. Los Alamos staffers Murray Moore and Yong Tao have noticed that the system is not dropping loads correctly, and they have photographed aspects of the PDT- 80 model system. The first 10 photos show the platen loaded with a cylindrical steel bar. The next 10 photos are of the roller-cam mechanism in the drop tower, and the last 2 photos indicate the amount of looseness in the platenmore » when it is being pulled by a person.« less

  17. Earthquake stress drops and inferred fault strength on the Hayward Fault, east San Francisco Bay, California

    USGS Publications Warehouse

    Hardebeck, J.L.; Aron, A.

    2009-01-01

    We study variations in earthquake stress drop with respect to depth, faulting regime, creeping versus locked fault behavior, and wall-rock geology. We use the P-wave displacement spectra from borehole seismic recordings of M 1.0-4.2 earthquakes in the east San Francisco Bay to estimate stress drop using a stack-and-invert empirical Green's function method. The median stress drop is 8.7 MPa, and most stress drops are in the range between 0.4 and 130 MPa. An apparent correlation between stress drop and magnitude is entirely an artifact of the limited frequency band of 4-55 Hz. There is a trend of increasing stress drop with depth, with a median stress drop of ~5 MPa for 1-7 km depth, ~10 MPa for 7-13 km depth, and ~50 MPa deeper than 13 km. We use S=P amplitude ratios measured from the borehole records to better constrain the first-motion focal mechanisms. High stress drops are observed for a deep cluster of thrust-faulting earthquakes. The correlation of stress drops with depth and faulting regime implies that stress drop is related to the applied shear stress. We compare the spatial distribution of stress drops on the Hayward fault to a model of creeping versus locked behavior of the fault and find that high stress drops are concentrated around the major locked patch near Oakland. This also suggests a connection between stress drop and applied shear stress, as the locked patch may experience higher applied shear stress as a result of the difference in cumulative slip or the presence of higher-strength material. The stress drops do not directly correlate with the strength of the proposed wall-rock geology at depth, suggesting that the relationship between fault strength and the strength of the wall rock is complex.

  18. Laboratory constraints on models of earthquake recurrence

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian; Goldsby, David

    2014-12-01

    In this study, rock friction "stick-slip" experiments are used to develop constraints on models of earthquake recurrence. Constant rate loading of bare rock surfaces in high-quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip-rate-dependent process that also determines the size of the stress drop and, as a consequence, stress drop varies weakly but systematically with loading rate. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. The experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a nonlinear slip predictable model. The fault's rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence covary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability, and successive stress drops are strongly correlated indicating a "memory" of prior slip history that extends over at least one recurrence cycle.

  19. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  20. Disdrometer and Tipping Bucket Rain Gauge Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomew. MJ

    2009-12-01

    The Distromet disdrometer model RD-80 and NovaLynx tipping bucket rain gauge model 260-2500E-12 are two devices deployed a few meters apart to measure the character and amount of liquid precipitation. The main purpose of the disdrometer is to measure drop size distribution, which it does over 20 size classes from 0.3 mm to 5.4 mm. The data from both instruments can be used to determine rain rate. The disdrometer results can also be used to infer several properties including drop number density, radar reflectivity, liquid water content, and energy flux. Two coefficients, N0 and Λ, from an exponential fit betweenmore » drop diameter and drop number density, are routinely calculated. Data are collected once a minute. The instruments make completely different kinds of measurements. Rain that falls on the disdrometer sensor moves a plunger on a vertical axis. The disdrometer transforms the plunger motion into electrical impulses whose strength is proportional to drop diameter. The rain gauge is the conventional tipping bucket type. Each tip collects an amount equivalent to 0.01 in. of water, and each tip is counted by a data acquisition system anchored by a Campbell CR1000 data logger.« less

  1. An evaporation model of multicomponent solution drops

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  2. Parachute Drag Model

    NASA Technical Reports Server (NTRS)

    Cuthbert, Peter

    2010-01-01

    DTV-SIM is a computer program that implements a mathematical model of the flight dynamics of a missile-shaped drop test vehicle (DTV) equipped with a multistage parachute system that includes two simultaneously deployed drogue parachutes and three main parachutes deployed subsequently and simultaneously by use of pilot parachutes. DTV-SIM was written to support air-drop tests of the DTV/parachute system, which serves a simplified prototype of a proposed crew capsule/parachute landing system.

  3. Analysis of driver merging behavior at lane drops on freeways.

    DOT National Transportation Integrated Search

    2013-12-01

    Lane changing assistance systems advise drivers on safe gaps for making mandatory lane changes at lane drops. In this : study, such a system was developed using a Bayes classifier and a decision tree to model lane changes. Detailed vehicle : trajecto...

  4. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  5. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  6. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  7. Experimental determination of forces applied by liquid water drops at high drop velocities impacting a glass plate with and without a shallow water layer using wavelet deconvolution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Hopkins, C.

    2018-05-01

    Time-dependent forces applied by 2 and 4.5 mm diameter drops of water (with velocities up to terminal velocity) impacting upon a glass plate with or without a water layer (up to 10 mm depth) have been measured using two different approaches, force transduction and wavelet deconvolution. Both approaches are in close agreement for drops falling on dry glass. However, only the wavelet approach is able to measure natural features of the splash on shallow water layers that impart forces to the plate after the initial impact. At relatively high velocities (including terminal velocity) the measured peak force from the initial impact is significantly higher than that predicted by idealised drop shape models and models from Roisman et al. and Marengo et al. Hence empirical formulae are developed for the initial time-dependent impact force from drops falling at (a) different velocities up to and including terminal velocity onto a dry glass surface, (b) terminal velocity onto dry glass or glass with a water layer and (c) different velocities below terminal velocity onto dry glass or glass with a water layer. For drops on dry glass, the empirical formulae are applicable to a glass plate or a composite layered plate with a glass surface, although they apply to other plate thicknesses and are applicable to any plate material with a similar surface roughness and wettability. The measurements also indicate that after the initial impact there can be high level forces when bubbles are entrained in the water layer.

  8. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  9. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  10. Osmolarity of prevalent eye drops, side effects, and therapeutic approaches.

    PubMed

    Dutescu, Ralf M; Panfil, Claudia; Schrage, Norbert

    2015-05-01

    Little is known about how the osmolarity of ophthalmic formulations affects the ocular surface. Because hyperosmolar eye drops could be therapeutic for treating corneal edema, this article presents an ex vivo model of corneal edema for testing ophthalmic drugs based on their osmolarity. The respective osmolarity of common eye drops found in the German market is also analyzed here. For modeling corneal edema, an Ex Vivo Eye Irritation Test was used to simulate an ocular anterior chamber with a physiological corneal barrier. To induce corneal edema, the anterior chamber was supplied with a hypoosmolar medium (148 mOsm/L) for 24 hours. Preserved and preservative-free 5% sodium chloride (hyperosmolar Omnisorb and Ocusalin 5% UD) were used for 1 hour, on 5 corneas each, to test their efficiency to reduce corneal edema in this model. Corneal thickness was determined by optical coherence tomography. Osmolarity of 87 common eye drops was measured by freezing point osmometry. Ex vivo, the tested hypoosmolar condition induced corneal edema from 450 μm (±50 μm) at baseline to 851 μm (±94 μm, P < 0.0001). Omnisorb and Ocusalin 5% UD significantly reduced the corneal thickness by 279 μm (±28 μm, P < 0.001) for Omnisorb and 258 μm (±29 μm, P < 0.001) for Ocusalin 5% UD. Forty-three (49%) of the tested products had an osmolarity below and 44 (51%) above the physiological tear osmolarity of 289 mOsm/L. Osmolarity values of less than 200 mOsm/L were found in lubricant drops. The highest osmolarity was detected in Omnisorb (1955 mOsm/L). The Ex Vivo Eye Irritation Test has proven to be a reliable novel model of corneal edema for evaluating osmotic eye drops. Osmolarity measurements revealed a wide range from hypotonic to hypertonic formulations for commonly marketed ophthalmic drugs.

  11. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  12. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  13. Source spectral properties of small-to-moderate earthquakes in southern Kansas

    USGS Publications Warehouse

    Trugman, Daniel T.; Dougherty, Sara L.; Cochran, Elizabeth S.; Shearer, Peter M.

    2017-01-01

    The source spectral properties of injection-induced earthquakes give insight into their nucleation, rupture processes, and influence on ground motion. Here we apply a spectral decomposition approach to analyze P-wave spectra and estimate Brune-type stress drop for more than 2000 ML1.5–5.2 earthquakes occurring in southern Kansas from 2014 to 2016. We find that these earthquakes are characterized by low stress drop values (median ∼0.4MPa) compared to natural seismicity in California. We observe a significant increase in stress drop as a function of depth, but the shallow depth distribution of these events is not by itself sufficient to explain their lower stress drop. Stress drop increases with magnitude from M1.5–M3.5, but this scaling trend may weaken above M4 and also depends on the assumed source model. Although we observe a nonstationary, sequence-specific temporal evolution in stress drop, we find no clear systematic relation with the activity of nearby injection wells.

  14. Computational analysis of drop formation before and after the first singularity: the fate of free and satellite drops during simple dripping and DOD drop formation

    NASA Astrophysics Data System (ADS)

    Chen, Alvin U.; Basaran, Osman A.

    2000-11-01

    Drop formation from a capillary --- dripping mode --- or an ink jet nozzle --- drop-on-demand (DOD) mode --- falls into a class of scientifically challenging yet practically useful free surface flows that exhibit a finite time singularity, i.e. the breakup of an initially single liquid mass into two or more fragments. While computational tools to model such problems have been developed recently, they lack the accuracy needed to quantitatively predict all the dynamics observed in experiments. Here we present a new finite element method (FEM) based on a robust algorithm for elliptic mesh generation and remeshing to handle extremely large interface deformations. The new algorithm allows continuation of computations beyond the first singularity to track fates of both primary and any satellite drops. The accuracy of the computations is demonstrated by comparison of simulations with experimental measurements made possible with an ultra high-speed digital imager capable of recording 100 million frames per second.

  15. A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans

    PubMed Central

    Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.

    2016-01-01

    To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001

  16. Lifetime of oil drops pressed by buoyancy against a planar interface: Large drops

    NASA Astrophysics Data System (ADS)

    Rojas, Clara; García-Sucre, Máximo; Urbina-Villalba, Germán

    2010-11-01

    In a previous report [C. Rojas, G. Urbina-Villalba, and M. García-Sucre, Phys. Rev. E 81, 016302 (2010)10.1103/PhysRevE.81.016302] it was shown that emulsion stability simulations are able to reproduce the lifetime of micrometer-size drops of hexadecane pressed by buoyancy against a planar water-hexadecane interface. It was confirmed that small drops (ri<10μm) stabilized with β -casein behave as nondeformable particles, moving with a combination of Stokes and Taylor tensors as they approach the interface. Here, a similar methodology is used to parametrize the potential of interaction of drops of soybean oil stabilized with bovine serum albumin. The potential obtained is then employed to study the lifetime of deformable drops in the range 10≤ri≤1000μm . It is established that the average lifetime of these drops can be adequately replicated using the model of truncated spheres. However, the results depend sensibly on the expressions of the initial distance of deformation and the maximum film radius used in the calculations. The set of equations adequate for large drops is not satisfactory for medium-size drops (10≤ri≤100μm) , and vice versa. In the case of large particles, the increase in the interfacial area as a consequence of the deformation of the drops generates a very large repulsive barrier which opposes coalescence. Nevertheless, the buoyancy force prevails. As a consequence, it is the hydrodynamic tensor of the drops which determine the characteristic behavior of the lifetime as a function of the particle size. While the average values of the coalescence time of the drops can be justified by the mechanism of film thinning, the scattering of the experimental data of large drops cannot be rationalized using the methodology previously described. A possible explanation of this phenomenon required elaborate simulations which combine deformable drops, capillary waves, repulsive interaction forces, and a time-dependent surfactant adsorption.

  17. Experimental and numerical study of drill bit drop tests on Kuru granite

    NASA Astrophysics Data System (ADS)

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  18. Effect of Glyceraldehyde Cross-Linking on a Rabbit Bullous Keratopathy Model.

    PubMed

    Wang, Mengmeng

    2015-01-01

    Background. To evaluate the effects of corneal glyceraldehyde CXL on the rabbit bullous keratopathy models established by descemetorhexis. Methods. Fifteen rabbits were randomly divided into five groups. Group A (n = 3) is the control group. The right eyes of animals in Groups B,C, D, and E (n = 3, resp.) were suffered with descemetorhexis procedures. From the 8th day to the 14th day postoperatively, the right eyes in Groups C and D were instilled with hyperosmolar drops and glyceraldehyde drops, respectively; the right eyes in Group E were instilled with both hyperosmolar drops and glyceraldehyde drops. Central corneal thickness (CCT), corneal transparency score, and histopathological analysis were applied on the eyes in each group. Results. Compared with Group A, statistically significant increase in CCT and corneal transparency score was found in Groups B, C, D, and E at 7 d postoperatively (P < 0.05) and in Groups C, D, and E at 14 d postoperatively (P < 0.05). Conclusion. Chemical CXL technique using glyceraldehyde improved the CCT and corneal transparency of the rabbit bullous keratopathy models. Topical instillation with glyceraldehyde and hyperosmolar solutions seems to be a good choice for the bullous keratopathy treatment.

  19. Environmental Indicators. A Preliminary Set = Indicateurs d'environnement. Une etude pilote.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    This document provides a preliminary set of environmental indicators by which to measure environmental performance. The indicators are patterned on the outline of the Organisation for Economic Cooperation and Development (OECD) "Report on the State of the Environment," a companion volume published in the same year. This volume is…

  20. Centenary Birth Anniversary of E. W. Beth (1908-1964)

    ERIC Educational Resources Information Center

    Bagni, Giorgio T.

    2008-01-01

    Evert Willem Beth (1908-1964) was a Dutch logician, mathematician and philosopher, whose work mainly concerned the foundations of mathematics. Beth was among the founders of the Commission Internationale pour l'Etude et l'Amelioration de l'Enseignement des Mathematiques and was a member of the Central Committee of the International Commission on…

  1. An Analysis of Magnesium Alloy AZ31B-H24 for Ballistic Applications

    DTIC Science & Technology

    2007-12-01

    CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT J CAGNOUX C GALLIC J TRANCHET... GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY 00460 ARMEES F 75015 PARIS FRANCE 1

  2. Radiolocation Techniques (Les Techniques de Radiolocalisation

    DTIC Science & Technology

    1992-11-01

    Dr R. Klemm DrD Rother FGAN- FFM SEL/LS/E Neuenahrer Strasse 20 Lorenzstrasse 10 D-5307 Wachtberg 7 D-7000 Stuttgart 40 Germany Germany Prof. G...des solutions. accas I lFionograinme, donc: aui profil. Cat article rapporte tine partie des Etudes mendes an La indthodo proposde s’inspirc de cette

  3. Communication linguistique: Etude comparative faite sur le terrain (Linguistic Communication: A Comparative Field Study).

    ERIC Educational Resources Information Center

    Piron, Claude

    2002-01-01

    Compares the four international systems of linguistic communication used in the field (systems used in the United Nations, multinationals, the European Union, and Esperanto organizations) on select criteria (e.g., previous government investment). Discusses research that shows unilingual systems (English used alone, Esperanto) are those that…

  4. Pratique d'apprentissage en ligne aux etudes superieures (Online Learning for Higher Education).

    ERIC Educational Resources Information Center

    Marchand, Louise

    2001-01-01

    Online learning requires new approaches to teaching and learning. At the University of Montreal, 28 graduate students in education and adult students specializing in educational technology attended an experimental distance education course. Students identified advantages and disadvantages of online learning/teaching and reflected on how the course…

  5. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.

    PubMed

    Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali

    2017-02-28

    Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).

  6. Effects of turbulence on a kinetic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Chiu, Y. T.

    1981-01-01

    A plasma kinetic model of an inverted-V auroral arc structure which includes the effects of electrostatic turbulence is proposed. In the absence of turbulence, a parallel potential drop is supported by magnetic mirror forces and charge quasi neutrality, with energetic auroral ions penetrating to low altitudes; relative to the electrons, the ions' pitch angle distribution is skewed toward smaller pitch angles. The electrons energized by the potential drop form a current which excites electrostatic turbulence. In equilibrium the plasma is marginally stable. The conventional anomalous resistivity contribution to the potential drop is very small. Anomalous resistivity processes are far too dissipative to be powered by auroral particles. It is concluded that under certain circumstances equilibrium may be impossible and relaxation oscillations set in.

  7. Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode

    NASA Astrophysics Data System (ADS)

    Fu, Benyuan; Liao, Changrong; Li, Zhuqiang; Xie, Lei; Zhang, Peng; Jian, Xiaochun

    2017-02-01

    High viscosity linear polysiloxane magnetorheological fluid (HVLP MRF) was demonstrated with excellent suspension stability. Such material is suitable for application in the magnetorheological energy absorbers (MREAs) under axial impact loading conditions. On this basis, a new energy absorber incorporating a radial valve with high magnetic field utilization and a corrugated tube is proposed. In energy absorption applications where the MREA is rarely if ever used, our MREA takes the ultra-stable HVLP MRF as controlled medium in order for a long-term stability. For MREA performing at very high shear rates where the minor losses are important contributing factors to damping, a nonlinear analytical model, based on the Herschel-Bulkley flow model (HB model), is developed taking into account the effects of minor losses (called HBM model). The HB model parameters are determined by rheological experiments with a commercial shear rheometer. Then, continuity equation and governing differential equation of the HVLP MRF in radial flow are established. Based on the HB model, the expressions of radial velocity distribution are deduced. The influences of minor losses on pressure drop are analyzed with mean fluid velocities. Further, mechanical behavior of the corrugated tube is investigated via drop test. In order to verify the theoretical methodology, a MREA is fabricated and tested using a high-speed drop tower facility with a 600 kg mass at different drop heights and in various magnetic fields. The experiment results show that the HBM model is capable of well predicting the impact behavior of the proposed MREA.

  8. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  9. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  10. A model for multiple-drop-impact erosion of brittle solids

    NASA Technical Reports Server (NTRS)

    Engel, O. G.

    1971-01-01

    A statistical model for the multiple-drop-impact erosion of brittle solids was developed. An equation for calculating the rate of erosion is given. The development is not complete since two quantities that are needed to calculate the rate of erosion with use of the equation must be assessed from experimental data. A partial test of the equation shows that it gives results that are in good agreement with experimental observation.

  11. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  12. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  13. How merging droplets jump off a superhydrophobic surface: Measurements and model

    NASA Astrophysics Data System (ADS)

    Mouterde, Timothée; Nguyen, Thanh-Vinh; Takahashi, Hidetoshi; Clanet, Christophe; Shimoyama, Isao; Quéré, David

    2017-11-01

    We investigate how drops merging on a nonwettable surface jump off this surface, for both symmetric and asymmetric coalescences. For this purpose, we design and build a microelectromechanical system sensor able to quantify forces down to the micro-Newton scale at a high acquisition rate (200 kHz). Using this device, we perform direct force measurements of self-propelled droplets coupled to high-speed imaging. Experimental data show that the total momentum of the drop after coalescence mainly depends on the size of the smaller drop. Exploiting this finding, we quantitatively predict the takeoff speed of jumping drop pairs and show how to correct the usual argument based on energy conservation.

  14. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    DTIC Science & Technology

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  15. Updating the Standard Spatial Observer for Contrast Detection

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.; Watson, Andrew B.

    2011-01-01

    Watson and Ahmuada (2005) constructed a Standard Spatial Observer (SSO) model for foveal luminance contrast signal detection based on the Medelfest data (Watson, 1999). Here we propose two changes to the model, dropping the oblique effect from the CSF and using the cone density data of Curcio et al. (1990) to estimate the variation of sensitivity with eccentricity. Dropping the complex images, and using medians to exclude outlier data points, the SSO model now accounts for essentially all the predictable variance in the data, with an RMS prediction error of only 0.67 dB.

  16. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    NASA Astrophysics Data System (ADS)

    Kallolimath, Sharan Chandrashekar

    For the past several years, many researchers are constantly developing and improving board level drop test procedures and specifications to quantify the solder joint reliability performance of consumer electronics products. Predictive finite element analysis (FEA) by utilizing simulation software has become widely acceptable verification method which can reduce time and cost of the real-time test process. However, due to testing and metrological limitations it is difficult not only to simulate exact drop condition and capture critical measurement data but also tedious to calibrate the system to improve test methods. Moreover, some of the important ever changing factors such as board flexural rigidity, damping, drop height, and drop orientation results in non-uniform stress/strain distribution throughout the test board. In addition, one of the most challenging tasks is to quantify uniform stress and strain distribution throughout the test board and identify critical failure factors. The major contributions of this work are in the four aspects of the drop test in electronics as following. First of all, an analytical FEA model was developed to study the board natural frequencies and responses of the system with the consideration of dynamic stiffness, damping behavior of the material and effect of impact loading condition. An approach to find the key parameters that affect stress and strain distributions under predominate mode responses was proposed and verified with theoretical solutions. Input-G method was adopted to study board response behavior and cut boundary interpolation methods was used to analyze local model solder joint stresses with the development of global/local FEA model in ANSYS software. Second, no ring phenomenon during the drop test was identified theoretically when the test board was modeled as both discrete system and continuous system. Numerical analysis was then conducted by FEA method for detailed geometry of attached chips with solder-joints. No ring test conditions was proposed and verified for the current widely used JEDEC standard. The significance of impact loading parameters such as pulse magnitude, pulse duration, pulse shapes and board dynamic parameter such as linear hysteretic damping and dynamic stiffness were discussed. Third, Kirchhoff's plate theory by principle of minimum potential energy was adopted to develop the FEA formulation to consider the effect of material hysteretic damping for the currently used JEDEC board test and proposed no-ring response test condition. Fourth, a hexagonal symmetrical board model was proposed to address the uniform stress and strain distribution throughout the test board and identify the critical failure factors. Dynamic stress and strain of the hexagonal board model were then compared with standard JEDEC board for both standard and proposed no-ring test conditions. In general, this line of research demonstrates that advanced techniques of FEA analysis can provide useful insights concerning the optimal design of drop test in microelectronics.

  17. Investigation de l'anisotropie du gap supraconducteur dans les composes Ba(Fe(1-x)Co(x))2As2, Ba(1-x)K(x)Fe2As2, LiFeAs et Fe1-deltaTe(1-x)Se(x)

    NASA Astrophysics Data System (ADS)

    Reid, Jean-Philippe

    ommaire La structure du gap supraconducteur et sa modulation sont intimement liees au potentiel d'interaction responsable de l'appariement des electrons d'un supraconducteur. Ainsi, l'etude de la structure du gap-SC et de sa modulation permettent de faire la lumiere sur la nature du mecanisme d'appariement des electrons. A cet egard, les resultats experimentaux des supraconducteurs a base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous presenterons une etude systematique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivite thermique, une sonde directionnelle du gap-SC, nous avons ete en mesure de reveler la structure du gap-SC pour les composes suivants : Ba1-xKxFe 2As2, Ba(Fe1-xCo x)2As2, LiFeAs et Fe1-deltaTe 1-xSex. L'etude de ces quatre composes, de trois differentes familles structurales, a pu etablir un tableau partiel mais tres exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustre dans cette these, ces quatre composes ne possedent aucun noeud dans leur structure du gap-SC a dopage optimal. Toutefois, a une concentration differente de celle optimale pour les composes K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extremites 'du dome supraconducteur. Ceci suggere fortement que, pour ces composes, la presence de noeuds sur la surface de Fermi est nuisible a la phase supraconductrice. Mots-cles: Supraconducteurs a base de fer, Pnictides, Structure du gap supraconducteur, Conductivite thermique

  18. Laboratory constraints on models of earthquake recurrence

    USGS Publications Warehouse

    Beeler, Nicholas M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian D.; Goldsby, David L.

    2014-01-01

    In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.

  19. Microscopic treatment of a barrel drop on fibers and nanofibers.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2005-06-15

    The microscopic approach of Berim and Ruckenstein (J. Phys. Chem. B 108 (2004) 19330, 19339) regarding the shape and stability of a liquid drop on a planar bare solid surface is extended to a liquid barrel drop on the bare surface of a solid cylinder (fiber) of arbitrary radius. Assuming the interaction potentials of the liquid molecules between themselves and with the molecules of the solid of the London-van der Waals form, the potential energy of a liquid molecule with an infinitely long fiber was calculated analytically. A differential equation for the drop profile was derived by the variational minimization of the total potential energy of the drop by taking into account the structuring of the liquid near the fiber. This equation was solved in quadrature and the shape and stability of the barrel drop were analyzed as functions of the radius of the fiber and the microscopic contact angle theta(0) which the drop profile makes with the surface of the fiber. The latter angle is dependent on the fiber radius and on the microscopic parameters of the model (strength of the intermolecular interactions, densities of the liquid and solid phases, hard core radii, etc.). Expressions for the evaluation of the microcontact angle from experimentally measurable characteristics of the drop profile (height, length, volume, location of inflection point) are obtained. All drop characteristics, such as stability, shape, are functions of theta(0) and a certain parameter a which depends on the model parameters. In particular, the range of drop stability consists of three domains in the plane theta(0)-a, separated by two critical curves a=a(c)(theta(0)) and a=a(c1)(theta(0)) [a(c)(theta(0))h(m1) cannot exist, whereas in the third domain (between those curves) the drop can have values of h(m) either smaller than h(m1) or larger than h(m2), where h(m2)>h(m1) is a second critical height. For sufficiently large fiber radii, R(f)1 >/= microm, the critical curves almost coincide and only two domains, the first and the second, remain. The smaller the radius, the larger is the difference between the critical curves and the larger is the second domain of drop stability. The shape of the drop depends on whether the point (theta(0),a) on the theta(0)-a plane is far from the critical curve or near it. In the first case the drop profile has generally a large circular part, while in the second case the shape is either almost planar or contains a long manchon that is similar to a film on the fiber.

  20. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.

    PubMed

    Lee, Choongyeop; Nam, Youngsuk; Lastakowski, Henri; Hur, Janet I; Shin, Seungwon; Biance, Anne-Laure; Pirat, Christophe; Kim, Chang-Jin C J; Ybert, Christophe

    2015-06-21

    Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact.

  1. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.

    PubMed

    Bleka, Øyvind; Storvik, Geir; Gill, Peter

    2016-03-01

    We have released a software named EuroForMix to analyze STR DNA profiles in a user-friendly graphical user interface. The software implements a model to explain the allelic peak height on a continuous scale in order to carry out weight-of-evidence calculations for profiles which could be from a mixture of contributors. Through a properly parameterized model we are able to do inference on mixture proportions, the peak height properties, stutter proportion and degradation. In addition, EuroForMix includes models for allele drop-out, allele drop-in and sub-population structure. EuroForMix supports two inference approaches for likelihood ratio calculations. The first approach uses maximum likelihood estimation of the unknown parameters. The second approach is Bayesian based which requires prior distributions to be specified for the parameters involved. The user may specify any number of known and unknown contributors in the model, however we find that there is a practical computing time limit which restricts the model to a maximum of four unknown contributors. EuroForMix is the first freely open source, continuous model (accommodating peak height, stutter, drop-in, drop-out, population substructure and degradation), to be reported in the literature. It therefore serves an important purpose to act as an unrestricted platform to compare different solutions that are available. The implementation of the continuous model used in the software showed close to identical results to the R-package DNAmixtures, which requires a HUGIN Expert license to be used. An additional feature in EuroForMix is the ability for the user to adapt the Bayesian inference framework by incorporating their own prior information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Laboratory modeling of energy dissipation in broken-back culverts - phase II.

    DOT National Transportation Integrated Search

    2011-05-01

    This report represents Phase II of broken-back culverts with a drop of 6 feet. The first phase of this research was performed for a drop of 24 feet. This research investigates the reduction in scour downstream of a broken-back culvert by forming a hy...

  3. Dropping fire retardants by helicopter: tests of three new helitanks

    Treesearch

    James B. Davis

    1963-01-01

    Late model helicopters equipped with new helitanks and adequately supplied can accurately deliver as much fire retardant as most fixed-wing air tankers at a potentially lower cost. Viscous water dropped from helicopters clung to fuel surfaces and was concentrated in a narrower pattern than plain water.

  4. The Effects of High School Organization on Dropping Out: An Exploratory Investigation.

    ERIC Educational Resources Information Center

    Bryk, Anthony S.; Thum, Yeow Meng

    1989-01-01

    A hierarchical linear model analysis investigated the effects of structural and normative features of schools on absenteeism and the probability of dropping out. Subjects included 4,450 sophomores in 160 Catholic and public high schools from the High School and Beyond 1980 cohort. (SLD)

  5. Use of Drop-In Clinic Versus Appointment-Based Care for LGBT Youth: Influences on the Likelihood to Access Different Health-Care Structures.

    PubMed

    Newman, Bernie S; Passidomo, Kim; Gormley, Kate; Manley, Alecia

    2014-06-01

    The structure of health-care service delivery can address barriers that make it difficult for lesbian, gay, bisexual, and transgender (LGBT) adolescents to use health services. This study explores the differences among youth who access care in one of two service delivery structures in an LGBT health-care center: the drop-in clinic or the traditional appointment-based model. Analysis of 578 records of LGBT and straight youth (aged 14-24) who accessed health care either through a drop-in clinic or appointment-based care within the first year of offering the drop-in clinic reveals patterns of use when both models are available. We studied demographic variables previously shown to be associated with general health-care access to determine how each correlated with a tendency to use the drop-in structure versus routine appointments. Once the covariates were identified, we conducted a logistic regression analysis to identify its association with likelihood of using the drop-in clinic. Insurance status, housing stability, education, race, and gender identity were most strongly associated with the type of clinic used. Youth who relied on Medicaid, those in unstable housing, and African Americans were most likely to use the drop-in clinic. Transgender youth and those with higher education were more likely to use the appointment-based clinic. Although sexual orientation and HIV status were not related to type of clinic used, youth who were HIV positive used the appointment-based clinic more frequently. Both routes to health care served distinct populations who often experience barriers to accessible, affordable, and knowledgeable care. Further study of the factors related to accessing health care may clarify the extent to which drop-in hours in a youth-friendly context may increase the use of health care by the most socially marginalized youth.

  6. Origin and dynamics of vortex rings in drop splashing

    DOE PAGES

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; ...

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  7. Origin and dynamics of vortex rings in drop splashing.

    PubMed

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  8. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  9. Opening Loads Analyses for Various Disk-Gap-Band Parachutes

    NASA Technical Reports Server (NTRS)

    Cruz, J. R.; Kandis, M.; Witkowski, A.

    2003-01-01

    Detailed opening loads data is presented for 18 tests of Disk-Gap-Band (DGB) parachutes of varying geometry with nominal diameters ranging from 43.2 to 50.1 ft. All of the test parachutes were deployed from a mortar. Six of these tests were conducted via drop testing with drop test vehicles weighing approximately 3,000 or 8,000 lb. Twelve tests were conducted in the National Full-Scale Aerodynamics Complex 80- by 120-foot wind tunnel at the NASA Ames Research Center. The purpose of these tests was to structurally qualify the parachute for the Mars Exploration Rover mission. A key requirement of all tests was that peak parachute load had to be reached at full inflation to more closely simulate the load profile encountered during operation at Mars. Peak loads measured during the tests were in the range from 12,889 to 30,027 lb. Of the two test methods, the wind tunnel tests yielded more accurate and repeatable data. Application of an apparent mass model to the opening loads data yielded insights into the nature of these loads. Although the apparent mass model could reconstruct specific tests with reasonable accuracy, the use of this model for predictive analyses was not accurate enough to set test conditions for either the drop or wind tunnel tests. A simpler empirical model was found to be suitable for predicting opening loads for the wind tunnel tests to a satisfactory level of accuracy. However, this simple empirical model is not applicable to the drop tests.

  10. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  11. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  12. On the relation of earthquake stress drop and ground motion variability

    NASA Astrophysics Data System (ADS)

    Oth, Adrien; Miyake, Hiroe; Bindi, Dino

    2017-07-01

    One of the key parameters for earthquake source physics is stress drop since it can be directly linked to the spectral level of ground motion. Stress drop estimates from moment corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than expected from the between-event ground motion variability. This discrepancy raises the question whether classically determined stress drop variability is too large, which would have significant consequences for seismic hazard analysis. We use a large high-quality data set from Japan with well-studied stress drop data to address this issue. Nonparametric and parametric reference ground motion models are derived, and the relation of between-event residuals for Japan Meteorological Agency equivalent seismic intensity and peak ground acceleration with stress drop is analyzed for crustal earthquakes. We find a clear correlation of the between-event residuals with stress drops estimates; however, while the island of Kyushu is characterized by substantially larger stress drops than Honshu, the between-event residuals do not reflect this observation, leading to the appearance of two event families with different stress drop levels yet similar range of between-event residuals. Both the within-family and between-family stress drop variations are larger than expected from the ground motion between-event variability. A systematic common analysis of these parameters holds the potential to provide important constraints on the relative robustness of different groups of data in the different parameter spaces and to improve our understanding on how much of the observed source parameter variability is likely to be true source physics variability.

  13. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.

    2014-12-01

    Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic effects, non-uniform solidification, surface wrinkling (Schlieren), and rapid separation/fission of dumb-bells via the Rayleigh-Plateau instability. [1] M. R. Stauffer and S. L. Butler, Earth Moon Planets, 107, 169 (2009). [2] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).

  14. Sensitivity of C-Band Polarimetric Radar-Based Drop Size Distribution Measurements to Maximum Diameter Assumptions

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Petersen, Walter A.

    2011-01-01

    The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement Mission (GPM/PMM Science Team)-funded study is to document the sensitivity of DSD measurements, including estimates of D0, from C-band Z(sub dr) and reflectivity to this range of D(sub max) assumptions. For this study, GPM Ground Validation 2DVD's were operated under the scanning domain of the UAHuntsville ARMOR C-band dual-polarimetric radar. Approximately 7500 minutes of DSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSD's were then used as input to a T-matrix model for computation of polarimetric radar moments at C-band. All necessary model parameterizations, such as temperature, drop shape, and drop fall mode, were fixed at typically accepted values while the D(sub max) assumption was allowed to vary in sensitivity tests. By hypothesizing a DSD model with D(sub max) (fit) from which the empirical fit to D0 = F[Z(sub dr)] was derived via non-linear least squares regression and a separate reference DSD model with D(sub max) (truth), bias and standard error in D0 retrievals were estimated in the presence of Z(sub dr) measurement error and hypothesized mismatch in D(sub max) assumptions. Although the normalized standard error for D0 = F[Z(sub dr)r] can increase slightly (as much as from 11% to 16% for all 7500 DSDs) when the D(sub max) (fit) does not match D(sub max) (truth), the primary impact of uncertainty in D(sub max) is a potential increase in normalized bias error in D0 (from 0% to as much as 10% over all 7500 DSDs, depending on the extent of the mismatch between D(sub max) (fit) and D(sub max) (truth)). For DSDs characterized by large Z(sub dr) (Z(sub dr) > 1.5 to 2.0 dB), the normalized bias error for D0 estimation at C-band is sometimes unacceptably large (> 10%), again depending on the extent of the hypothesized D(sub max) mismatch. Modeled errors in D0 retrievals from Z(sub dr) at C-band are demonstrated in detail and comparedo similar modeled retrieval errors at S-band and X-band where the sensitivity to D(sub max) is expected to be less. The impact of D(sub max) assumptions to the retrieval of other DSD parameters such as Nw, the liquid water content normalized intercept parameter, are also explored. Likely implications for DSD retrievals using C-band polarimetric radar for GPM are assessed by considering current community knowledge regarding D(sub max) and quantifying the statistical distribution of Z(sub dr) from ARMOR over a large variety of meteorological conditions. Based on these results and the prevalence of C-band polarimetric radars worldwide, a call for more emphasis on constraining our observational estimate of D(sub max) within a typical radar resolution volume is made

  15. The Relationship between Musical Instrumental Performance Skills and Postsecondary Musical Independence (How Important Are Scales, Etudes, Solos, Sight-Reading, Improvisation, Etc.?)

    ERIC Educational Resources Information Center

    Bobbett, Gordon C.; And Others

    This study examines the relationships among a variety of secondary/postsecondary experiences and activities and postsecondary students' musical independence (MI). The paper reports on the impact Instrumental Performance Skills (IPSs) have on the students" MI development during private lessons, band rehearsal, and individual practicing. The study…

  16. Ballistic Performance Testing of Aluminum Alloy 5059-H131 and 5059-H136 for Armor Applications

    DTIC Science & Technology

    2008-05-01

    LEGANES MADRID SPAIN 1 CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT J...CAGNOUX C GALLIC J TRANCHET GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY 00460 ARMEES

  17. International Symposium on Military Applications of Blast Simulation (5th)

    DTIC Science & Technology

    1977-06-22

    Centre d’Etudes de Grainat, Gramat , France, de- scribed their work in designing a blast simulator with a test section of 12—rn width and 7—rn height...de Gramat , Gramat , France) on the dynamic behavior of limestone. Through a series of high—pressure experiments of the type developed in the recent

  18. Mathematics for Vocational Students in France and England: Contrasting Provision and Consequences. Discussion Paper No. 23.

    ERIC Educational Resources Information Center

    Wolf, Alison

    French postsecondary education for 16- to 19-year-olds is divided into programs that lead to the Baccalaureats--general, technical, and vocational--and to the lower-level Certificat d'Aptitude Professionnel (CAP) and Brevet d'Etudes Professionnelles (BEP). A common mathematics core curriculum is specified for all CAP students, regardless of…

  19. Pedagogy of Notation: Learning Styles Using a Constructivist, Second-Language Acquisition Approach to Dance Notation Pedagogy

    ERIC Educational Resources Information Center

    Heiland, Teresa L.

    2015-01-01

    Four undergraduate dance majors learned Motif Notation and Labanotation using a second-language acquisition, playful, constructivist approach to learning notation literacy in order to learn and dance the "Parsons Etude." Qualitative outcomes were gathered from student journals and pre- and post-tests that assessed for levels of improved…

  20. La Parabole du Gaucher et de la Casserole a Bec Verseur: Etude des Processus d'Apprentissage dans un Environnement de Calculatrices Symboliques.

    ERIC Educational Resources Information Center

    Trouche, Luc

    2000-01-01

    Discusses the problems of conceptualization of the function limit in technological environments (principally graphing calculators today and symbolic calculators tomorrow) that are gradually being adopted in precalculus teaching. Explains how the instrumentation process and the conceptualization process are dependent on each other. Sets forth a…

  1. Modern Data Analysis techniques in Noise and Vibration Problems

    DTIC Science & Technology

    1981-11-01

    Hilbert l’une de l’autre. Cette propriete se retrouve dans l’etude de la causalite : ce qui de- finit un critere pratique caracterisant un signal donc, par...entre Ie champ direct et Ie champ reflechi se caracterisent loca- lement par l’existence de frequences pour lesquelles l’interference est totale

  2. Problemes en enseignement fonctionnel des langues (Problems in the Functional Teaching of Languages). Publication B-103.

    ERIC Educational Resources Information Center

    Alvarez, Gerardo, Ed.; Huot, Diane, Ed.

    Articles include: (1) "L'elaboration du materiel pedagogique pour des publics adultes" (The Elaboration of Teaching Materials for the Adult Public) by G. Painchaud-Leblanc, (2) "L'elaboration d'un programme d'etudes en francais langue seconde a partir des donnees recentes en didactique des langues" (The Elaboration of a Program…

  3. The Work of Ambroise Tardieu: The First Definitive Description of Child Abuse

    ERIC Educational Resources Information Center

    Roche, A.J.; Fortin, G.; Labbe, J.; Brown, J.; Chadwick, D.

    2005-01-01

    The first important monograph describing the battered child syndrome was written in 1860 by Ambroise Tardieu, a French forensic physician. Here is a translation of his article, published in the Annales d'hygiene publique et de medecine legale, with the title ''Etude medico-legale sur les sevices et mauvais traitements exerces sur des enfants.''…

  4. CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor

    NASA Astrophysics Data System (ADS)

    Gelves, R.

    2013-10-01

    In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.

  5. Reliability analysis of different structure parameters of PCBA under drop impact

    NASA Astrophysics Data System (ADS)

    Liu, P. S.; Fan, G. M.; Liu, Y. H.

    2018-03-01

    The establishing process of PCBA is modelled by finite element analysis software ABAQUS. Firstly, introduce the Input-G method and the fatigue life under drop impact are introduced and the mechanism of the solder joint failure in the process of drop is analysed. The main reason of solder joint failure is that the PCB component is suffering repeated tension and compression stress during the drop impact. Finally, the equivalent stress and peel stress of different solder joint and plate-level components under different impact acceleration are also analysed. The results show that the reliability of tin-silver copper joint is better than that of tin- lead solder joint, and the fatigue life of solder joint expectancy decrease as the impact pulse amplitude increases.

  6. Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi

    2006-11-01

    In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.

  7. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  8. A theory of electrophoresis of emulsion drops in aqueous two-phase polymer systems

    NASA Technical Reports Server (NTRS)

    Levine, S.

    1982-01-01

    An electrophoresis study has been carried out in an emulsion formed from an electrically neutral aqueous mixture of dextran and polyethylene glycol equilibrated at sufficient concentrations in the presence of electrolytes. Electrophoresis of a drop of one phase suspended in the other is observed, and the direction of the drop's motion is reversed when the disperse phase and the continuous phase are interchanged. In the presence of sulfate, phosphate, or citrate ions, an electrostatic potential difference of the order of a few mV exists between the two phases. The potential implied by the direction of the electrophoretic motion is opposite to the Donnan potential observed between the two phases. The mobility of an emulsion drop increases with the drop radius and depends on ion concentration. These results are explained in terms of a model postulating an electric dipole layer associated with a mixture of oriented polymer molecules at the surface of a drop, with a potential difference between the interiors of the two phases resulting from the unequal ion distribution.

  9. Preparation and Characterization of Silymarin Synchronized and Sustained Release Dropping Pill.

    PubMed

    Liu, Zhi-Hong; Li, Xue-Jing; Huang, Ai-Wen; Zhang, Jing; Song, Hong-Tao

    2017-01-01

    This study aimed to develop a synchronized and sustained-release silymarin dropping pill, and to evaluate its pharmacokinetic characteristics. Polyoxyethylene stearate, glyceryl monostearate, and stearic acid were used to prepare the dropping pills. X-ray powder diffraction, differential scanning calorimetry, and release were used to evaluate its physicochemical properties. The plasma concentration of silybin in beagle dogs after oral administration of silymarin dropping pills and silymarin capsule was determined by RP-HPLC. Synchronized release was achieved with high similarity factor f2 values between every set of two of the five components. Mean plasma concentration-time curves of silymarin after oral administration of dropping pills in beagle dogs were in accordance with first-order absorption and open twocompartment model. The Tmax, Cmax, and AUC0-∞ of dropping pills in beagle dogs were 0.8750±0.13 h, 0.8183±0.07 μg·ml-1, and 2.274±0.90 μg·h·ml-1, respectively. Silymarin dropping pills prolonged in vivo exposure and reduced maximum in vivo concentration, achieving a stable level in the serum. The combination of solid dispersion technique and dropping pill formulation allowed synchronized release of multiple components in herbal medicine, and has potential application in the development of sustained release in herbal medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  11. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnet, T.; Denis-Petit, D.; Gobet, F.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, amore » model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.« less

  12. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    PubMed

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Experimental and numerical study of drill bit drop tests on Kuru granite.

    PubMed

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-28

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  14. Experimental and numerical study of drill bit drop tests on Kuru granite

    PubMed Central

    Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit–rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist–Johnson–Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956511

  15. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  16. Topex/Poseidon: A United States/France mission. Oceanography from space: The oceans and climate

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The TOPEX/POSEIDON space mission, sponsored by NASA and France's space agency, the Centre National d'Etudes Spatiales (CNES), will give new observations of the Earth from space to gain a quantitative understanding of the role of ocean currents in climate change. Rising atmospheric concentrations of carbon dioxide and other 'greenhouse gases' produced as a result of human activities could generate a global warming, followed by an associated rise in sea level. The satellite will use radar altimetry to measure sea-surface height and will be tracked by three independent systems to yield accurate topographic maps over the dimensions of entire ocean basins. The satellite data, together with the Tropical Ocean and Global Atmosphere (TOGA) program and the World Ocean Circulation Experiment (WOCE) measurements, will be analyzed by an international scientific team. By merging the satellite observations with TOGA and WOCE findings, the scientists will establish the extensive data base needed for the quantitative description and computer modeling of ocean circulation. The ocean models will eventually be coupled with atmospheric models to lay the foundation for predictions of global climate change.

  17. DNS of moderate-temperature gaseous mixing layers laden with multicomponent-fuel drops

    NASA Technical Reports Server (NTRS)

    Clercq, P. C. Le; Bellan, J.

    2004-01-01

    A formulation representing multicomponent-fuel (MC-fuel) composition as a Probability Distribution Function (PDF) depending on the molar weight is used to construct a model of a large number of MC-fuel drops evaporating in a gas flow, so as to assess the extent of fuel specificity on the vapor composition.

  18. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  19. Adapting the Empowerment Evaluation Model: A Mental Health Drop-In Center Case Example

    ERIC Educational Resources Information Center

    Sullins, Carolyn D.

    2003-01-01

    Empowerment evaluation involves a program's stakeholders in designing and implementing an evaluation of their own program, thus contributing to the program's improvement and self-determination (Fetterman, 1994, 1996). It appeared to be an appropriate approach for evaluating a mental health drop-in center, which had congruent goals of collaboration…

  20. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  1. Effects of vascular structures on the pressure drop in stenotic coronary arteries

    NASA Astrophysics Data System (ADS)

    Kim, Jaerim; Choi, Haecheon; Kweon, Jihoon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-11-01

    A stenosis, which is a narrowing of a blood vessel, of the coronary arteries restricts the flow to the heart and it may lead to sudden cardiac death. Therefore, the accurate determination of the severity of a stenosis is a critical issue. Due to the convenience of visual assessments, geometric parameters such as the diameter stenosis and area stenosis have been used, but the decision based on them sometimes under- or overestimates the functional severity of a stenosis, i.e., pressure drop. In this study, patient-specific models that have similar area stenosis but different pressure drops are considered, and their geometries are reconstructed from the coronary computed tomography angiography (CCTA). Both steady and pulsatile inflows are considered for the simulations. Comparison between two models that have a bifurcation right after a stenosis shows that the parent to daughter vessel angle results in different secondary flow patterns and wall shear stress distributions which affect the pressure downstream. Thus, the structural features of the lower and upper parts of a stenosis significantly affect the pressure drop. Supported by 20152020105600.

  2. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity

    PubMed Central

    Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta

    2016-01-01

    Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944

  3. Modeling of Carbon Nanotube Schottky Barrier Reduction for Holes in Air

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes Phi(sub Bh) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We consider that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower Phi(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  4. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  5. Strong Ground Motion Prediction By Composite Source Model

    NASA Astrophysics Data System (ADS)

    Burjanek, J.; Irikura, K.; Zahradnik, J.

    2003-12-01

    A composite source model, incorporating different sized subevents, provides a possible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock). The subevents are distributed randomly over the fault. Each subevent is modeled either as a finite or point source, differences between these choices are shown. The final slip and duration of each subevent is related to its characteristic dimension, using constant stress-drop scaling. Absolute value of subevents' stress drop is free parameter. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally layered crustal model. An estimation of subevents' stress drop is based on fitting empirical attenuation relations for PGA and PGV, as they represent robust information on strong ground motion caused by earthquakes, including both path and source effect. We use the 2000 M6.6 Western Tottori, Japan, earthquake as validation event, providing comparison between predicted and observed waveforms.

  6. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  7. Finite Element Simulations of Two Vertical Drop Tests of F-28 Fuselage Sections

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Annett, Martin S.; Haskin, Ian M.

    2018-01-01

    In March 2017, a vertical drop test of a forward fuselage section of a Fokker F-28 MK4000 aircraft was conducted as part of a joint NASA/FAA project to investigate the performance of transport aircraft under realistic crash conditions. In June 2017, a vertical drop test was conducted of a wing-box fuselage section of the same aircraft. Both sections were configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in seats using standard lap belt restraints. The forward fuselage section was also configured with luggage in the cargo hold. Both sections were outfitted with two hat racks, each with added ballast mass. The drop tests were performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The measured impact velocity for the forward fuselage section was 346.8-in/s onto soil. The wing-box section was dropped with a downward facing pitch angle onto a sloping soil surface in order to create an induced forward acceleration in the airframe. The vertical impact velocity of the wing-box section was 349.2-in/s. A second objective of this project was to assess the capabilities of finite element simulations to predict the test responses. Finite element models of both fuselage sections were developed for execution in LS-DYNA(Registered Trademark), a commercial explicit nonlinear transient dynamic code. The models contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, the luggage in the cargo hold for the forward section, and the detailed under-floor structure in the wing-box section. Initially, concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. However, later simulations were performed that included finite element representations of the seats, restraints, and ATD occupants. These models were developed to more accurately replicate the seat loading of the floor and to enable prediction of occupant impact responses. Models were executed to generate analytical predictions of airframe responses, which were compared with test data to validate the model. Comparisons of predicted and experimental structural deformation and failures were made. Finally, predicted and experimental soil deformation and crater depths were also compared for both drop test configurations.

  8. Budget impact model of Mydrane®, a new intracameral injectable used for intra-operative mydriasis, from a UK hospital perspective.

    PubMed

    Davey, Keith; Chang, Bernard; Purslow, Christine; Clay, Emilie; Vataire, Anne-Lise

    2018-04-19

    During cataract surgery, maintaining an adequate degree of mydriasis throughout the entire operation is critical to allow for visualisation of the capsulorhexis and the crystalline lens. Good anaesthesia is also essential for safe intraocular surgery. Mydrane® is a new injectable intracameral solution containing two mydriatics (tropicamide 0.02% and phenylephrine 0.31%) and one anaesthetic (lidocaine 1%) that was developed as an alternative to the conventional topical pre-operative mydriatics used in cataract surgery. This study aimed to estimate the budget impact across a one year time frame using Mydrane® instead of topical dilating eye drops, for a UK hospital performing 3,000 cataract operations a year. A budget impact model (BIM) was developed to compare the economic outcomes associated with the use of Mydrane® versus topical drops (tropicamide 0.5% and phenylephrine 10%) in patients undergoing cataract surgery in a UK hospital. The outcomes of interest included costs and resource use (e.g. clinician time, mydriasis failures, operating room time, number of patients per vial of therapy etc.) associated with management of mydriasis in patients undergoing cataract surgery. All model inputs considered the UK hospital perspective without social or geographical variables. Deterministic sensitivity analyses were also performed to assess the model uncertainty. Introduction of Mydrane® is associated with a cost saving of £6,251 over 3,000 cataract surgeries in one year. The acquisition costs of the Mydrane® (£18,000 by year vs. £3,330 for eye drops) were balanced by substantial reductions in mainly nurses' costs and time, plus a smaller contribution from savings in surgeons' costs (£20,511) and lower costs associated with auxiliary dilation (£410 due to avoidance of additional dilation methods). Results of the sensitivity analyses confirmed the robustness of the model to the variation of inputs. Except for the duration of one session of eye drop instillation and the cost of Mydrane®, Mydrane® achieved an incremental cost gain compared to tropicamide/phenylephrine eye drops. Despite a higher acquisition cost of Mydrane®, the budget impact of Mydrane® on hospital budgets is neutral. Mydrane® offers a promising alternative to traditional regimes using eye drops, allowing for a better patient flow and optimisation of the surgery schedule with neutral budget impact.

  9. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  10. Modeling strong‐motion recordings of the 2010 Mw 8.8 Maule, Chile, earthquake with high stress‐drop subevents and background slip

    USGS Publications Warehouse

    Frankel, Arthur

    2017-01-01

    Strong‐motion recordings of the Mw 8.8 Maule earthquake were modeled using a compound rupture model consisting of (1) a background slip distribution with large correlation lengths, relatively low slip velocity, and long peak rise time of slip of about 10 s and (2) high stress‐drop subevents (asperities) on the deeper portion of the rupture with moment magnitudes 7.9–8.2, high slip velocity, and rise times of slip of about 2 s. In this model, the high‐frequency energy is not produced in the same location as the peak coseismic slip, but is generated in the deeper part of the rupture zone. Using synthetic seismograms generated for a plane‐layered velocity model, I find that the high stress‐drop subevents explain the observed Fourier spectral amplitude from about 0.1 to 1.0 Hz. Broadband synthetics (0–10 Hz) were calculated by combining deterministic synthetics derived from the background slip and asperities (≤1  Hz) with stochastic synthetics generated only at the asperities (≥1  Hz). The broadband synthetics produced response spectral accelerations with low bias compared to the data, for periods of 0.1–10 s. A subevent stress drop of 200–350 bars for the high‐frequency stochastic synthetics was found to bracket the observed spectral accelerations at frequencies greater than 1 Hz. For most of the stations, the synthetics had durations of the Arias intensity similar to the observed records.

  11. Modeling the Restraint of Liquid Jets by Surface Tension in Microgravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Jacqmim, David A.

    2001-01-01

    An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected 'for model comparison. A mathematical model is developed which includes a free surface. a symmetric centerline and wall boundaries with given contact angles. The model is solved numerically with a compact fourth order stencil on a equally spaced axisymmetric grid. After grid convergence studies, a grid is selected and all drop tower tests modeled. Agreement was assessed by comparing predicted and measured free surface rise. Trend wise agreement is good but agreement in magnitude is only fair. Suspected sources of disagreement are suspected to be lack of a turbulence model and the existence of slosh baffles in the experiment which were not included in the model.

  12. Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces

    PubMed Central

    Liu, Yuan; Tan, Peng; Xu, Lei

    2015-01-01

    When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin–Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces. PMID:25713350

  13. The impact performance of headguards for combat sports.

    PubMed

    McIntosh, Andrew S; Patton, Declan A

    2015-09-01

    To assess the impact energy attenuation performance of a range of headguards for combat sports. Seven headguards worn during combat sport training or competition, including two Association Internationale de Boxe Amateur (AIBA)-approved boxing models, were tested using drop tests. An International Organization for Standardization (ISO) rigid headform was used with a 5.6 kg drop assembly mass. Tests were conducted against a flat rigid anvil both with and without a boxing glove section. The centre forehead and lateral headguard areas were tested. Peak headform acceleration was measured. Tests from a selection of drop heights and repeated tests on the same headguard were conducted. Headguard performance varied by test condition. For the 0.4 m rigid anvil tests, the best model headguard was the thickest producing an average peak headform acceleration over 5 tests of 48 g compared with 456 g for the worst model. The mean peak acceleration for the 0.4, 0.5 and 0.6 frontal and lateral rigid anvil impact tests was between 32% and 40% lower for the Top Ten boxing model compared with the Adidas boxing model. The headguard performance deterioration observed with repeat impact against the flat anvil was reduced for impacts against the glove section. The overall reduction in acceleration for the combination of glove and headguard in comparison to the headguard condition was in the range of 72-93% for 0.6 and 0.8 m drop tests. The impact tests show the benefits of performance testing in identifying differences between headguard models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. A New Method to Predict the Epidemiology of Fungal Keratitis by Monitoring the Sales Distribution of Antifungal Eye Drops in Brazil

    PubMed Central

    Ibrahim, Marlon Moraes; de Angelis, Rafael; Lima, Acacio Souza; Viana de Carvalho, Glauco Dreyer; Ibrahim, Fuad Moraes; Malki, Leonardo Tannus; de Paula Bichuete, Marina; de Paula Martins, Wellington; Rocha, Eduardo Melani

    2012-01-01

    Purpose Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. Methods Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos) were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. Results A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p<0.01). A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R2 = 0.17,p<0.01). Conclusions Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier), when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects. PMID:22457787

  15. Mutations des roles techniques et formation. Etude documentaire (Changes in the Roles and Education of Technicians. Documentary Study).

    ERIC Educational Resources Information Center

    Pinard, Helene

    Drawing from research conducted in 1990-91, this report examines trends affecting the future work of technicians in Quebec, their pre-employment education, and the link between college and work. Part 1 focuses on aspects of the economic, technological, and social environment that will influence the future role of technicians. Economic concerns…

  16. The Role of Women in Foreign-Language Textbooks: A Collection of Essays. Collection d'"Etudes linguistiques" No. 24.

    ERIC Educational Resources Information Center

    Freudenstein, R., Ed.

    Essays that consider the way that women are portrayed in foreign language textbooks are presented. The selected essays were submitted to a competition sponsored by the Federation Internationale des Professeurs de Langues Vivantes, which requested that language teachers assess such concerns as: (1) whether women were described in a stereotyped way;…

  17. Etude RICH Nursing. Plus de connaissances et de preuves scientifiques

    PubMed Central

    SCHUBERT, MARIA

    2009-01-01

    L’importance et la validité des résultats de l’étude RICH-Nursing* ont été récemment mises en cause par certains milieux, ce qui a provoqué certaines incertitudes chez les infirmières. Les auteurs reviennent sur l’impact actuel de cette étude et évoquent les perspectives d’avenir. PMID:25221376

  18. Primary and Secondary Vestibular Connections in the Brain Stem and Cerebellum: An Axoplasmic Transport Study in the Monkey and Cat

    DTIC Science & Technology

    1983-08-25

    Edinger-Westphal nucleus in the cat, Brain Research, 141 (1978) 153-159. Lorente de No, R., Etudes sur le cerveau posterieur. Ill, Sur 1 es connexions...extra-cerebelleuses des fascicules afferents au cerveau , et sur la fontion de cet organe, Trav. Lab. Rech. Biol. Univ. Madrid, 22 (1924) 51-65

  19. L'ilot du reservoir: etude de voisinage en milieu urbain (The Reservoir Block: A Study of a Neighborhood in an Urban Setting).

    ERIC Educational Resources Information Center

    Rey, Jean-Noel

    1983-01-01

    An analysis of a small neighborhood of Paris looks at its layout and spatial constraints, habitats, symbols, sense of territory, and rhythms and styles of the inhabitants and their roles in the group. The description, including photos, is intended for use in the French language classroom. (MSE)

  20. Canadian Mathematics Education Study Group = Groupe Canadien d'etude en didactique des mathematiques. Proceedings of the Annual Meeting (22nd, Vancouver, British Columbia, Canada, May 29-June 2, 1998).

    ERIC Educational Resources Information Center

    Pothier, Yvonne M., Ed.

    This proceedings includes the following papers: (1) "Structure of Attention in Teaching Mathematics" (John Mason); (2) "Communicating Mathematics or Mathematics Storytelling" (Kathy Heinrich); (3) "Assessing Mathematical Thinking" (Florence Glanfield and Pat Rogers); (4) "From Theory to Observational Data (and…

  1. Zone Nationale D'Etude de L'Environnment: Un Guide (National Environmental Study Area: A Guide).

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This booklet, the French version of SE 014 817, is a guide for teachers and resource managers who are interested in establishing National Environmental Study Areas (NESA) or interested in receiving NESA recognition for their on-going environmental study area programs. It outlines the characteristics and procedures of the program; the nature,…

  2. The COROT telescope

    NASA Astrophysics Data System (ADS)

    Viard, Thierry

    2017-11-01

    The COROT telescope, of which the customer is the French "INSU" / "CNES" (Institut National des Sciences de l'Univers / Centre National des Etudes Spatiales) is in fact a very precise and stable imaging instrument, which will be pointed towards fixed areas in the sky (each containing more than 3000 target stars) for periods of at least 5 months, in order to carry out its two missions.

  3. Etude de l'apprentissage par la lecture d'etudiants en contexte d'apprentissage par problemes (APP) (A Study of Student Text-Learning Strategy).

    ERIC Educational Resources Information Center

    Cartier, Sylvie

    2002-01-01

    Examined strategies reported by students during reading to develop knowledge in their area of professional training. Discovered the reading, encoding, self-regulation, and resource management strategies used most often by students, which were not sufficient to attain effective learning. Less frequently used strategies added nuances to the…

  4. School Climate and Dropping Out of School in the Era of Accountability

    ERIC Educational Resources Information Center

    Kotok, Stephen; Ikoma, Sakiko; Bodovski, Katerina

    2016-01-01

    Using data from the High School Longitudinal Study of 2009 (HSLS:09)--a large nationally representative sample of US high school students--we employed multilevel structural equation modeling (SEM) to examine the relationship between school characteristics and the likelihood that a student will drop out of high school. We used a multifaceted…

  5. A Model Recycling Program: UNC Takes Action as Landfill Space Shrinks and Costs Rise.

    ERIC Educational Resources Information Center

    Sherman, Rhonda L.

    1991-01-01

    The University of North Carolina responded to escalating waste disposal costs and shrinking landfill space with a structured program of recycling, including a mobile recycling drop, student family housing recycling, a newspaper drop-off site, high-volume glass pick-up, high-volume newspaper pick-up, and cardboard recycling. Campus-wide cooperation…

  6. Symetrie en energie des spectres de l'onde de densite de charge dans le 2-hydrogene seleniure de niobium

    NASA Astrophysics Data System (ADS)

    Behmand, Behnaz

    Les mecanismes qui menent a la supraconductivite dans les supraconducteurs a haute temperature critique sont encore aujourd'hui mal compris contrairement a ceux dans les supraconducteurs conventionnels. Dans les hauts-Tc, certaines modulations de la densite d'etats electroniques coexistant avec la phase supraconductrice ont ete observees, ce qui engendre des questionnements sur leur role dans la supraconductivite. En fait, plusieurs types de modulation de la densite d'etats electroniques existent, comme par exemple l'onde de densite de charge et l'onde de densite de paires. Ces deux modulations, d'origines differentes et mesurables avec la technique de spectroscopie par effet tunnel, peuvent etre differenciees avec une etude de leur symetrie. Ce memoire consistera donc a presenter l'etude de la symetrie de l'onde de densite de charge dans le 2H-NbSe2 qui est presente dans la phase supraconductrice a 300 mK. Par contre, certaines difficultes liees au principe de mesure, soit l'effet de normalisation, nuisent a l'identification de cette symetrie. La methode, pour contourner ce probleme sera alors l'element clef de ce travail.

  7. A microcosm of musical expression: II. Quantitative analysis of pianists' dynamics in the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-03-01

    Patterns of expressive dynamics were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. The grand average pattern (or dynamic profile) was representative of many performances and highly similar to the average dynamic profile of a group of advanced student performances, which suggests a widely shared central norm of expressive dynamics. The individual dynamic profiles were subjected to principal components analysis, which yielded Varimax-rotated components, each representing a different, nonstandard dynamic profile associated with a small subset of performances. Most performances had dynamic patterns resembling a mixture of several components, and no clustering of of performances into distinct groups was apparent. Some weak relationships of dynamic profiles with sociocultural variables were found, most notably a tendency of female pianists to exhibit a greater dynamic range in the melody. Within the melody, there were no significant relationships between expressive timing [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998)] and expressive dynamics. These two important dimensions seemed to be controlled independently at this local level and thus offer the artist many degrees of freedom in giving a melody expressive shape.

  8. A microcosm of musical expression. III. Contributions of timing and dynamics to the aesthetic impression of pianists' performances of the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-07-01

    Four judges repeatedly assessed the overall aesthetic quality of more than 100 recorded performances of the opening of Chopin's Etude in E major on a 10-point scale. The judgments, which exhibited reasonable reliability and modest intercorrelations, were entered into regression analyses with 16 independent variables derived from earlier objective analyses of the expressive timing and dynamics of the performances [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998); 105, 1972-1988 (1999)]. Only between 9% and 18% of the variance in the judges' ratings was accounted for. By contrast, timing variables accounted for 53% of the variance in one judge's ratings of synthesized performances that varied in timing only and mimicked the timing patterns of the original performances. These results indicate, first, that the aesthetic impression of the original recordings rested primarily on aspects other than those measured (such as texture, tone, or aspects of timing and dynamics that eluded the earlier analyses) and, second, that very different patterns of timing and dynamics are aesthetically acceptable for the same music, provided that other, aesthetically more crucial performance aspects are present.

  9. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  10. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  11. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  12. Microgravity

    NASA Image and Video Library

    1997-04-01

    Apfel's excellent match: This series of photos shows a water drop containing a surfactant (Triton-100) as it experiences a complete cycle of superoscillation on U.S. Microgravity Lab-2 (USML-2; October 1995). The time in seconds appears under the photos. The figures above the photos are the oscillation shapes predicted by a numerical model. The time shown with the predictions is nondimensional. Robert Apfel (Yale University) used the Drop Physics Module on USML-2 to explore the effect of surfactants on liquid drops. Apfel's research of surfactants may contribute to improvements in a variety of industrial processes, including oil recovery and environmental cleanup.

  13. A Bayesian Model and Stochastic Exposure (Dose) Estimation for Relative Exposure Risk Comparison Involving Asbestos-Containing Dropped Ceiling Panel Installation and Maintenance Tasks.

    PubMed

    Boelter, Fred W; Xia, Yulin; Persky, Jacob D

    2017-09-01

    Assessing exposures to hazards in order to characterize risk is at the core of occupational hygiene. Our study examined dropped ceiling systems commonly used in schools and commercial buildings and lay-in ceiling panels that may have contained asbestos prior to the mid to late 1970s. However, most ceiling panels and tiles do not contain asbestos. Since asbestos risk relates to dose, we estimated the distribution of eight-hour TWA concentrations and one-year exposures (a one-year dose equivalent) to asbestos fibers (asbestos f/cc-years) for five groups of workers who may encounter dropped ceilings: specialists, generalists, maintenance workers, nonprofessional do-it-yourself (DIY) persons, and other tradespersons who are bystanders to ceiling work. Concentration data (asbestos f/cc) were obtained through two exposure assessment studies in the field and one chamber study. Bayesian and stochastic models were applied to estimate distributions of eight-hour TWAs and annual exposures (dose). The eight-hour TWAs for all work categories were below current and historic occupational exposure limits (OELs). Exposures to asbestos fibers from dropped ceiling work would be categorized as "highly controlled" for maintenance workers and "well controlled" for remaining work categories, according to the American Industrial Hygiene Association exposure control rating system. Annual exposures (dose) were found to be greatest for specialists, followed by maintenance workers, generalists, bystanders, and DIY. On a comparative basis, modeled dose and thus risk from dropped ceilings for all work categories were orders of magnitude lower than published exposures for other sources of banned friable asbestos-containing building material commonly encountered in construction trades. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  14. Rolling viscous drops on a non-wettable surface containing both micro- and macro-scale roughness

    NASA Astrophysics Data System (ADS)

    Abolghasemibizaki, Mehran; Robertson, Connor J.; Fergusson, Christian P.; McMasters, Robert L.; Mohammadi, Reza

    2018-02-01

    It has previously been shown that when a liquid drop of high viscosity is placed on a non-wettable inclined surface, it rolls down at a constant descent velocity determined by the balance between viscous dissipation and the reduction rate of its gravitational potential energy. Since increasing the roughness of the surface boosts its non-wetting property, the drop should move faster on a surface structured with macrotextures (ribbed surface). Such a surface was obtained from a superhydrophobic soot coating on a solid specimen printed with an extruder-type 3D printer. The sample became superoleophobic after a functionalization process. The descent velocity of glycerol drops of different radii was then measured on the prepared surface for varied tilting angles. Our data show that the drops roll down on the ribbed surface approximately 27% faster (along the ridges) than on the macroscopically smooth counterpart. This faster velocity demonstrates that ribbed surfaces can be promising candidates for drag-reduction and self-cleaning applications. Moreover, we came up with a modified scaling model to predict the descent velocity of viscous rolling drops more accurately than what has previously been reported in the literature.

  15. Dynamics of viscous drops confined in a rough medium

    NASA Astrophysics Data System (ADS)

    Keiser, Ludovic; Gas, Armelle; Jaafar, Khalil; Bico, Jose; Reyssat, Etienne

    2017-11-01

    We focus on the dynamics of viscous and non-wetting ``pancake'' droplets of oil conned in a vertical Hele-Shaw cell filled with a less viscous surfactant solution. These dense drops settle at constant velocity driven by gravity. The surfactant solution completely wets the walls, and a thin lubrication film separates the drops from the walls. With smooth walls, two main dynamical regimes are characterized as the gap between the walls is varied. Viscous dissipation is found to dominate either in the droplet or in the lubrication film, depending on the ratio of viscosities and length scales. A sharp transition between both regimes is observed and successfully captured by asymptotic models. With rough walls, that transition is dramatically altered. Drops are generally much slower in a rough Hele-Shaw cell, in comparison with a similar smooth cell. Building up on the seminal works of Seiwert et al. (J.F.M. 2011) on film deposition by dip coating on a rough surface, we shed light on the non-trivial friction processes resulting from the interplay of viscous dissipation at the front of the drop, in the lubrication film and in the bulk of the drop. We acknowledge funding from Total S.A.

  16. Auxiliary soft beam for the amplification of the elasto-capillary coiling: Towards stretchable electronics.

    PubMed

    Grandgeorge, Paul; Antkowiak, Arnaud; Neukirch, Sébastien

    2017-09-18

    A flexible fiber carrying a liquid drop may coil inside the drop thereby creating a drop-on-fiber system with an ultra-extensible behavior. During compression, the excess fiber is spooled inside the droplet and capillary forces keep the system taut. During subsequent elongation, the fiber is gradually released and if a large number of spools is uncoiled a high stretchability is achieved. This mechanical behaviour is of interest for stretchable connectors but information, may it be electronic or photonic, usually travels through stiff functional materials. These high Young's moduli, leading to large bending rigidity, prevent in-drop coiling. Here we overcome this limitation by attaching a beam of soft elastomer to the functional fiber, thereby creating a composite system which exhibits in-drop coiling and carries information while being ultra-extensible. We present a simple model to explain the underlying mechanics of the addition of the soft beam and we show how it favors in-drop coiling. We illustrate the method with a two-centimeter long micronic PEDOT:PSS conductive fiber joined to a PVS soft beam, showing that the system conveys electricity throughout a 1900% elongation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Spread of pathogens through rain drop impact

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan

    2017-11-01

    Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.

  18. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  19. Modeling the voltage loss mechanisms in lithium-sulfur cells: the importance of electrolyte resistance and precipitation kinetics.

    PubMed

    Zhang, Teng; Marinescu, Monica; O'Neill, Laura; Wild, Mark; Offer, Gregory

    2015-09-21

    Understanding of the complex electrochemical, transport, and phase-change phenomena in Li-S cells requires experimental characterization in tandem with mechanistic modeling. However, existing Li-S models currently contradict some key features of experimental findings, particularly the evolution of cell resistance during discharge. We demonstrate that, by introducing a concentration-dependent electrolyte conductivity, the correct trends in voltage drop due to electrolyte resistance and activation overpotentials are retrieved. In addition, we reveal the existence of an often overlooked potential drop mechanism in the low voltage-plateau which originates from the limited rate of Li2S precipitation.

  20. A Note About HARP's State Trimming Method

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hayhurst, Kelly J.; Johnson, Sally C.

    1998-01-01

    This short note provides some additional insight into how the HARP program works. In some cases, it is possible for HARP to tdm away too many states and obtain an optimistic result. The HARP Version 7.0 manual warns the user that 'Unlike the ALL model, the SAME model can automatically drop failure modes for certain system models. The user is cautioned to insure that no important failure modes are dropped; otherwise, a non-conservative result can be given.' This note provides an example of where this occurs and a pointer to further documentation that gives a means of bounding the error associated with trimming these states.

  1. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    NASA Astrophysics Data System (ADS)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  2. Learning-based Wind Estimation using Distant Soundings for Unguided Aerial Delivery

    NASA Astrophysics Data System (ADS)

    Plyler, M.; Cahoy, K.; Angermueller, K.; Chen, D.; Markuzon, N.

    2016-12-01

    Delivering unguided, parachuted payloads from aircraft requires accurate knowledge of the wind field inside an operational zone. Usually, a dropsonde released from the aircraft over the drop zone gives a more accurate wind estimate than a forecast. Mission objectives occasionally demand releasing the dropsonde away from the drop zone, but still require accuracy and precision. Barnes interpolation and many other assimilation methods do poorly when the forecast error is inconsistent in a forecast grid. A machine learning approach can better leverage non-linear relations between different weather patterns and thus provide a better wind estimate at the target drop zone when using data collected up to 100 km away. This study uses the 13 km resolution Rapid Refresh (RAP) dataset available through NOAA and subsamples to an area around Yuma, AZ and up to approximately 10km AMSL. RAP forecast grids are updated with simulated dropsondes taken from analysis (historical weather maps). We train models using different data mining and machine learning techniques, most notably boosted regression trees, that can accurately assimilate the distant dropsonde. The model takes a forecast grid and simulated remote dropsonde data as input and produces an estimate of the wind stick over the drop zone. Using ballistic winds as a defining metric, we show our data driven approach does better than Barnes interpolation under some conditions, most notably when the forecast error is different between the two locations, on test data previously unseen by the model. We study and evaluate the model's performance depending on the size, the time lag, the drop altitude, and the geographic location of the training set, and identify parameters most contributing to the accuracy of the wind estimation. This study demonstrates a new approach for assimilating remotely released dropsondes, based on boosted regression trees, and shows improvement in wind estimation over currently used methods.

  3. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model.

    PubMed

    Zhang, Wenli; Li, Caibin; Baguley, Bruce C; Zhou, Fang; Zhou, Weisai; Shaw, John P; Wang, Zhen; Wu, Zimei; Liu, Jianping

    2016-12-15

    To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    The focus of this paper is to describe a crash simulation of a 30-ft/s vertical drop test of a Boeing 737 (B737) fuselage section. The drop test of the 10-ft. long fuselage section of a B737 aircraft was conducted in November of 2000 at the FAA Technical Center in Atlantic City, NJ. The fuselage section was outfitted with two different commercial overhead stowage bins. In addition, 3,229-lbs. of luggage were packed in the cargo hold to represent a maximum take-off weight condition. The main objective of the test was to evaluate the response and failure modes of the overhead stowage bins in a narrow-body transport fuselage section when subjected to a severe, but survivable, impact. A secondary objective of the test was to generate experimental data for correlation with the crash simulation. A full-scale 3-dimensional finite element model of the fuselage section was developed and a crash simulation was conducted using the explicit, nonlinear transient dynamic code, MSC.Dytran. Pre-test predictions of the fuselage and overhead bin responses were generated for correlation with the drop test data. A description of the finite element model and an assessment of the analytical/experimental correlation are presented. In addition, suggestions for modifications to the model to improve correlation are proposed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  6. Wetting morphologies on randomly oriented fibers.

    PubMed

    Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.

  7. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  8. Equilibrium and stability of axisymmetric drops on a conical substrate under gravity

    NASA Astrophysics Data System (ADS)

    Nurse, A. K.; Colbert-Kelly, S.; Coriell, S. R.; McFadden, G. B.

    2015-08-01

    Motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., "A model of force generation in a three-dimensional toroidal cluster of cells," J. Appl. Mech. 79, 051013 (2012)], we study a related problem of the determination of the equilibrium and stability of axisymmetric drops on a conical substrate in the presence of gravity. A variational principle is used to characterize equilibrium shapes that minimize surface energy and gravitational potential energy subject to a volume constraint, and the resulting Euler equation is solved numerically using an angle/arclength formulation. The resulting equilibria satisfy a Laplace-Young boundary condition that specifies the contact angle at the three-phase trijunction. The vertical position of the equilibrium drops on the cone is found to vary significantly with the dimensionless Bond number that represents the ratio of gravitational and capillary forces; a global force balance is used to examine the conditions that affect the drop positions. In particular, depending on the contact angle and the cone half-angle, we find that the vertical position of the drop can either increase ("the drop climbs the cone") or decrease due to a nominal increase in the gravitational force. Most of the equilibria correspond to upward-facing cones and are analogous to sessile drops resting on a planar surface; however, we also find equilibria that correspond to downward facing cones that are instead analogous to pendant drops suspended vertically from a planar surface. The linear stability of the drops is determined by solving the eigenvalue problem associated with the second variation of the energy functional. The drops with positive Bond number are generally found to be unstable to non-axisymmetric perturbations that promote a tilting of the drop. Additional points of marginal stability are found that correspond to limit points of the axisymmetric base state. Drops that are far from the tip are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. We have also found a range of completely stable solutions that correspond to small contact angles and cone half-angles.

  9. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  10. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P

  11. The Role of Migration and Single Motherhood in Upper Secondary Education in Mexico

    ERIC Educational Resources Information Center

    Creighton, Mathew J.; Park, Hyunjoon; Teruel, Graciela M.

    2009-01-01

    We investigated the link between migration, family structure, and the risk of dropping out of upper secondary school in Mexico. Using two waves of the Mexican Family Life Survey, which includes 1,080 upper secondary students, we longitudinally modeled the role of family structure in the subsequent risk of dropping out, focusing on the role of…

  12. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25217332','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25217332"><span>Control of stain geometry by drop evaporation of surfactant containing dispersions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Erbil, H Yildirim</p> <p>2015-08-01</p> <p>Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689582','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689582"><span>DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gill, P.; Gusmão, L.; Haned, H.; Mayr, W.R.; Morling, N.; Parson, W.; Prieto, L.; Prinz, M.; Schneider, H.; Schneider, P.M.; Weir, B.S.</p> <p>2015-01-01</p> <p>DNA profiling of biological material from scenes of crimes is often complicated because the amount of DNA is limited and the quality of the DNA may be compromised. Furthermore, the sensitivity of STR typing kits has been continuously improved to detect low level DNA traces. This may lead to (1) partial DNA profiles and (2) detection of additional alleles. There are two key phenomena to consider: allelic or locus ‘drop-out’, i.e. ‘missing’ alleles at one or more genetic loci, while ‘drop-in’ may explain alleles in the DNA profile that are additional to the assumed main contributor(s). The drop-in phenomenon is restricted to 1 or 2 alleles per profile. If multiple alleles are observed at more than two loci then these are considered as alleles from an extra contributor and analysis can proceed as a mixture of two or more contributors. Here, we give recommendations on how to estimate probabilities considering drop-out, Pr(D), and drop-in, Pr(C). For reasons of clarity, we have deliberately restricted the current recommendations considering drop-out and/or drop-in at only one locus. Furthermore, we offer recommendations on how to use Pr(D) and Pr(C) with the likelihood ratio principles that are generally recommended by the International Society of Forensic Genetics (ISFG) as measure of the weight of the evidence in forensic genetics. Examples of calculations are included. An Excel spreadsheet is provided so that scientists and laboratories may explore the models and input their own data. PMID:22864188</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..337a2027I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..337a2027I"><span>Integration of three echelon supply chain (supplier-manufacturer-distributor-drop shipper) with permissible delay in payment and penalty contract</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibrahim, M. F.; Suparno</p> <p>2018-04-01</p> <p>Supply Chain Management (SCM) has to be considered in the company in order to improve the sustainability and competitiveness. SCM executed to integrating any companies on the supply chain in a way of coordinating the flow of goods, information, and financial. Permissible delay in payment is one of the coordination ways with allowing the costumers delay the payments to a vendor in some certain periods without any interest charges. In the supply chain system, drop-shipping player already familiar in this era. In drop-shipping internet retailing, the supplier will hold supplies and also carry out physical distribution service on behalf of drop-shipper. Drop-shipper will just focus on selling, on the other hand, their supplier will be responsible for the physical process. Generally, drop-shipper have information of the customer demands better than the distributor. But, it is also unrare when the drop-shipper send the estimation of demands which bigger than their own estimation in order to maximize their own interest, so they hope supplies of the distributor will always enough to accommodate their demands. Contributions in this research will be focused on integration of three echelons supply chain, which are the supplier, manufacturer, distributor, and drop-shipper. With considering delay in payment on first and second echelons, and also the contract penalty on third echelon. The problem on this research will be modeled in some kind of cases which can represent the problem of real supply chain system. Sensitivity analysis will be done on certain significant variables toward the changes of total supply chain cost. Coordination with delay in payment success to integrate supply chain. Contract penalty plan success to maintain the profit of distributor and drop-shipper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598959-effect-drop-size-impact-thermodynamics-supercooled-large-droplet-aircraft-icing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598959-effect-drop-size-impact-thermodynamics-supercooled-large-droplet-aircraft-icing"><span>Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Chen; Liu, Hong, E-mail: hongliu@sjtu.edu.cn</p> <p></p> <p>Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate ofmore » the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFD.D6007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFD.D6007S"><span>Measurement and characterization of lift forces on drops and bubbles in microchannels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard</p> <p>2013-11-01</p> <p>The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 < CaP < 0.3) and low particle Reynolds numbers (0.0001 < ReP < 0.1). The measured lift forces were often much larger (up to a factor of 1000) than the predictions of analytical models of inertial and deformation-induced lift, indicating that another lift mechanism was the largest contributor to the total lift force. The systems we investigated exhibited either (i) a deformation-induced lift force enhanced by confinement effects, or (ii) a lift force for which to our best knowledge is based on physicochemical effects at the interfaces of drops and bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23145546','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23145546"><span>Experimental measure of retinal impact force resulting from intraocular foreign body dropped onto retina through media of differing viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ernst, Benjamin J; Velez-Montoya, Raul; Kujundzic, Damir; Kujundzic, Elmira; Olson, Jeffrey L</p> <p>2013-07-01</p> <p>To evaluate and compare the perfluorocarbon liquid, silicone oil, and viscoelastic against standard saline, in their ability to dampen the impact force of a foreign body, dropped within the eye. In an experimental surgical model in where cohesive and adhesive forces of the substances are not enough to float heavy-than-water foreign bodies. A model of ophthalmic surgery was constructed. A BB pellet was dropped from 24 mm onto a force transducer through four different fluids: balanced salt solution, perfluoro-n-octane, viscoelastic, and silicone oil. The impact energy (force) for each case was measured and recorded by the force transducer. The mean force of impact for each fluid was compared using the Student t-test. Silicone oil resulted in the lowest force of impact. Both silicone oil and viscoelastic dampened the impact an order of magnitude more than perfluoro-n-octane and balanced salt solution. Silicone oil and viscoelastic cushioned the force from a dropped BB. They may be useful adjuncts to prevent iatrogenic retinal injury during vitrectomy for intraocular foreign body removal. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEMat..46.1396G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEMat..46.1396G"><span>The Failure Models of Lead Free Sn-3.0Ag-0.5Cu Solder Joint Reliability Under Low-G and High-G Drop Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gu, Jian; Lei, YongPing; Lin, Jian; Fu, HanGuang; Wu, Zhongwei</p> <p>2017-02-01</p> <p>The reliability of Sn-3.0Ag-0.5Cu (SAC 305) solder joint under a broad level of drop impacts was studied. The failure performance of solder joint, failure probability and failure position were analyzed under two shock test conditions, i.e., 1000 g for 1 ms and 300 g for 2 ms. The stress distribution on the solder joint was calculated by ABAQUS. The results revealed that the dominant reason was the tension due to the difference in stiffness between the print circuit board and ball grid array, and the maximum tension of 121.1 MPa and 31.1 MPa, respectively, under both 1000 g or 300 g drop impact, was focused on the corner of the solder joint which was located in the outmost corner of the solder ball row. The failure modes were summarized into the following four modes: initiation and propagation through the (1) intermetallic compound layer, (2) Ni layer, (3) Cu pad, or (4) Sn-matrix. The outmost corner of the solder ball row had a high failure probability under both 1000 g and 300 g drop impact. The number of failures of solder ball under the 300 g drop impact was higher than that under the 1000 g drop impact. The characteristic drop values for failure were 41 and 15,199, respectively, following the statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030005545&hterms=good+poster&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgood%2Bposter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030005545&hterms=good+poster&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgood%2Bposter"><span>Motion of Drops on Surfaces with Wettability Gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying</p> <p>2002-01-01</p> <p>A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a desiccator. This is done using an approximate line source of the vapor in the form of a string soaked in the alkylchlorosilane. Ordinarily, many fluids, including water, wet the surface of silicon quite well. This means that the contact angle is small. But the silanized surface resists wetting, with contact angles that are as large as 100 degs. Therefore, a gradient of wettability is formed on the silicon surface. The region near the string is highly hydrophobic, and the contact angle decreases gradually toward a small value at the hydrophilic end away from this region. The change in wettability occurs over a distance of several mm. The strip is placed on a platform within a Plexiglas cell. Drops of a suitable liquid are introduced on top of the strip near the hydrophobic end. An optical system attached to a video camera is trained on the drop so that images of the moving drop can be captured on videotape for subsequent analysis. We have performed preliminary experiments with water as well as ethylene glycol drops. Results from these experiments will be presented in the poster. Future plans include the refinement of the experimental system so as to permit images to be recorded from the side as well as the top, and the conduct of a systematic study in which the drop size is varied over a good range. Experiments will be conducted with different fluids so as to obtain the largest possible range of suitably defined Reynolds and Capillary numbers. Also, an effort will be initiated on theoretical modeling of this motion. The challenges in the development of the theoretical description lie in the proper analysis of the region in the vicinity of the contact line, as well as in the free boundary nature of the problem. It is known that continuum models assuming the no slip condition all the way to the contact line fail by predicting that the stress on the solid surface becomes singular as the contact line is approached. One approach for dealing with this issue has been to relax the no-slip boundary condition using the Navier model. Molecular dynamics simulations of the contact line region show that for a non-polar liquid on a solid surface, the no-slip boundary condition is in fact incorrect near the contact line. Furthermore, the same simulations also show that the usual relationship between stress and the rate of deformation breaks down in the vicinity of the contact line. In developing continuum theoretical models of the system, we shall accommodate this knowledge to the extent possible.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30a1902C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30a1902C"><span>Flow characteristics around a deformable stenosis under pulsatile flow condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon</p> <p>2018-01-01</p> <p>A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160012350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160012350"><span>Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo</p> <p>2016-01-01</p> <p>The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer. However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size distribution both within a given rain event and across different varieties of rain events. Index Terms-drop size distribution, frequency scaling, propagation losses, radiowave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010569','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010569"><span>Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo</p> <p>2016-01-01</p> <p>The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer [1]). However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link [2]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size distribution both within a given rain event and across different varieties of rain events. Index Terms-drop size distribution, frequency scaling, propagation losses, radiowave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011841','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011841"><span>Evaluation of Two Crew Module Boilerplate Tests Using Newly Developed Calibration Metrics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horta, Lucas G.; Reaves, Mercedes C.</p> <p>2012-01-01</p> <p>The paper discusses a application of multi-dimensional calibration metrics to evaluate pressure data from water drop tests of the Max Launch Abort System (MLAS) crew module boilerplate. Specifically, three metrics are discussed: 1) a metric to assess the probability of enveloping the measured data with the model, 2) a multi-dimensional orthogonality metric to assess model adequacy between test and analysis, and 3) a prediction error metric to conduct sensor placement to minimize pressure prediction errors. Data from similar (nearly repeated) capsule drop tests shows significant variability in the measured pressure responses. When compared to expected variability using model predictions, it is demonstrated that the measured variability cannot be explained by the model under the current uncertainty assumptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050205850','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050205850"><span>Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.</p> <p>2005-01-01</p> <p>This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060030230&hterms=oceanography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doceanography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060030230&hterms=oceanography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doceanography"><span>Oceanography in the formal and informal classroom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, A.; Jasnow, M.; Srinivasan, M.; Rosmorduc, V.; Blanc, F.</p> <p>2002-01-01</p> <p>The TOPEX/Poseidon and Jason-1 ocean altimeter missions offer the educator in the middle school or informal education venue a unique opportunity for reinforcing ocean science studies. An educational poster from NASA's Jet Propulsion Laboratory and France's Centre National d'Etudes Spatiales provide teachers and students a tool to examine topics such as the dynamics of ocean circulation, ocean research, and the oceans' role in climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts093-350-008.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts093-350-008.html"><span>STS-93 MS Tognini checks the BRIC experiment petri dishes on the middeck</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-11-18</p> <p>STS093-350-008 (22-27 July 1999) --- Astronaut Michel Tognini, mission specialist representing France’s Centre National d’Etudes Spatiales (CNES), checks the Biological Research in Canisters (BRIC) payload petri dishes on the mid deck of the Space Shuttle Columbia. BRIC was designed to investigate the effects of space flight on small arthropod animals and plant specimens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED319606.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED319606.pdf"><span>Canadian Mathematics Education Study Group = Groupe Canadien d'etude en didactique des matematiques. Proceedings of the Annual Meeting (St. Catharines, Ontario, Canada, May 27-31, 1989).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pereira-Mendoza, Lionel, Ed.; Quigley, Martyn, Ed.</p> <p></p> <p>These conference proceedings include two invited lectures, four working group reports, five topic group reports, a list of participants, and a list of previous proceedings. The invited lectures were: "Teaching Mathematical Proof: Relevance and Complexity of a Social Approach" (Nicolas Balacheff) and "Geometry Is Alive and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED579151.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED579151.pdf"><span>Stakeholder Opinions on Suitability of Cello Etudes Created from Taksims of Tanburi Cemil Bey in Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Avci Akbel, Burcu</p> <p>2017-01-01</p> <p>There is a necessity for listening to and even probing into the recordings of the performers who reached the level of mastery in the performance of Turkish Classical Music, which is based on master-apprentice relationship. In this sense, the recordings of Tanburi Cemil Bey, who opened a new era for the next generations with his performances, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Crawshaw&id=EJ302919','ERIC'); return false;" href="https://eric.ed.gov/?q=Crawshaw&id=EJ302919"><span>Une epreuve orale de francais en fin d'etudes de gestion. Construction et implications pedagogiques (An Oral French Exam at the End of a Marketing Program. Construction and Pedagogical Implications).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Crawshaw, Robert H.</p> <p>1984-01-01</p> <p>An oral language test administered at the end of a four-year program combining business administration and French is described. The test consists of the formal presentation of a report including numbers, graphics, and text, a discussion of a theoretical issue, and interview. (MSE)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED398381.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED398381.pdf"><span>Canadian Journal for the Study of Adult Education = la Revue canadienne pour l'etude de l'education des adultes. 1987-1994.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Canadian Journal for the Study of Adult Education, 1994</p> <p>1994-01-01</p> <p>These 17 issues include feature articles and perspectives on the study of adult education, as well as book reviews/recensions of works related to adult education. Some articles are written in English, and some are written in French. Among the feature articles included are the following: "The Fifties: Pivotal Decade in Canadian Adult…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Class+AND+D+AND+audio&pg=2&id=ED208685','ERIC'); return false;" href="https://eric.ed.gov/?q=Class+AND+D+AND+audio&pg=2&id=ED208685"><span>Language Teaching with the Help of Multiple Methods. Collection d'"Etudes linguistiques," No. 21.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Nivette, Jos, Ed.</p> <p></p> <p>This book presents articles on language teaching media. Among the titles are: (1) "Il Foreign Language Teaching e l'impiego degli audio-visivi" (Foreign Language Teaching and the Use of Audio Visual Methods) by D'Agostino, (2) "Le role et la nature de l'image dans l'enseignement programme de l'anglais, langue seconde" (The Role and Nature of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED344746.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED344746.pdf"><span>Canadian Mathematics Education Study Group = Groupe Canadian d'Etude en Didactique des Mathmatiques. Proceedings of the Annual Meeting (Burnaby, British Columbia, Canada, May 25-29, 1990).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Quigley, Martyn, Ed.</p> <p></p> <p>These conference proceedings include two invited lectures, three working group reports, three topic group reports, two Ad Hoc group reports, a round table report, a list of participants, and a list of previous proceedings. The invited lectures were: "Values in Mathematics Education" (Ubiratan D'Ambrosio) and "Remarks on…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED478431.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED478431.pdf"><span>Adult Literacy: Policies, Programs and Practices. Lessons Learned. Final Report = Alphabetisation des adultes: politiques, programmes et pratiques. Etude bilan. Rapport final.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>2001</p> <p></p> <p>Studies and reports examining the problems associated with adult literacy and efforts to address those problems were reviewed to identify lessons for adult literacy programs in Canada and elsewhere. Low literacy levels were linked to above-average rates of personal and/or learning difficulties, low self-esteem, associated social problems, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24859428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24859428"><span>The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banach, Mateusz; Konieczny, Leszek; Roterman, Irena</p> <p>2014-10-21</p> <p>In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17030418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17030418"><span>Predicting pressure drop in venturi scrubbers with artificial neural networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A</p> <p>2007-05-08</p> <p>In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A51E0162M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A51E0162M"><span>Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, J. A.; Veron, F.</p> <p>2009-12-01</p> <p>At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9..514P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9..514P"><span>Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paukert, M.; Hoose, C.; Simmel, M.</p> <p>2017-03-01</p> <p>In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. In contrast, the immersion freezing of larger drops—"rain"—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. Here we introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation in raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150023063','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150023063"><span>Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nessel, James; Zemba, Michael; Luini, Lorenzo; Riva, Carlo</p> <p>2015-01-01</p> <p>Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790014817','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790014817"><span>Inhomogeneous models of the Venus clouds containing sulfur</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, S. M.; Pollack, J. B.; Giver, L. P.; Cuzzi, J. N.; Podolak, M.</p> <p>1979-01-01</p> <p>Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S22A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S22A..07B"><span>Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.</p> <p>2015-12-01</p> <p>Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada. Preliminary analysis indicates that the induced ground motions appear similar to those from the NGA-West2 database. However, upon consideration of their shallower depths, ground motion behavior from induced events seems to fall in between the West data and that of NGA-East, so we explore the control of stress drop and depth on ground motion in more detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5936785','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5936785"><span>Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L.; Iaizzo, Paul A.; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin</p> <p>2018-01-01</p> <p>The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models. PMID:29760665</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......325M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......325M"><span>Etude thermo-hydraulique de l'ecoulement du moderateur dans le reacteur CANDU-6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehdi Zadeh, Foad</p> <p></p> <p>Etant donne la taille (6,0 m x 7,6 m) ainsi que le domaine multiplement connexe qui caracterisent la cuve des reacteurs CANDU-6 (380 canaux dans la cuve), la physique qui gouverne le comportement du fluide moderateur est encore mal connue de nos jours. L'echantillonnage de donnees dans un reacteur en fonction necessite d'apporter des changements a la configuration de la cuve du reacteur afin d'y inserer des sondes. De plus, la presence d'une zone intense de radiations empeche l'utilisation des capteurs courants d'echantillonnage. En consequence, l'ecoulement du moderateur doit necessairement etre etudie a l'aide d'un modele experimental ou d'un modele numerique. Pour ce qui est du modele experimental, la fabrication et la mise en fonction de telles installations coutent tres cher. De plus, les parametres de la mise a l'echelle du systeme pour fabriquer un modele experimental a l'echelle reduite sont en contradiction. En consequence, la modelisation numerique reste une alternative importante. Actuellement, l'industrie nucleaire utilise une approche numerique, dite de milieu poreux, qui approxime le domaine par un milieu continu ou le reseau des tubes est remplace par des resistances hydrauliques distribuees. Ce modele est capable de decrire les phenomenes macroscopiques de l'ecoulement, mais ne tient pas compte des effets locaux ayant un impact sur l'ecoulement global, tel que les distributions de temperatures et de vitesses a proximite des tubes ainsi que des instabilites hydrodynamiques. Dans le contexte de la surete nucleaire, on s'interesse aux effets locaux autour des tubes de calandre. En effet, des simulations faites par cette approche predisent que l'ecoulement peut prendre plusieurs configurations hydrodynamiques dont, pour certaines, l'ecoulement montre un comportement asymetrique au sein de la cuve. Ceci peut provoquer une ebullition du moderateur sur la paroi des canaux. Dans de telles conditions, le coefficient de reactivite peut varier de maniere importante, se traduisant par l'accroissement de la puissance du reacteur. Ceci peut avoir des consequences majeures pour la surete nucleaire. Une modelisation CFD (Computational Fluid Dynamics) detaillee tenant compte des effets locaux s'avere donc necessaire. Le but de ce travail de recherche est de modeliser le comportement complexe de l'ecoulement du moderateur au sein de la cuve d'un reacteur nucleaire CANDU-6, notamment a proximite des tubes de calandre. Ces simulations servent a identifier les configurations possibles de l'ecoulement dans la calandre. Cette etude consiste ainsi a formuler des bases theoriques a l'origine des instabilites macroscopiques du moderateur, c.-a-d. des mouvements asymetriques qui peuvent provoquer l'ebullition du moderateur. Le defi du projet est de determiner l'impact de ces configurations de l'ecoulement sur la reactivite du reacteur CANDU-6.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3739825','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3739825"><span>Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow patterna)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Davoust, Laurent; Fouillet, Yves; Malk, Rachid; Theisen, Johannes</p> <p>2013-01-01</p> <p>Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz). PMID:24404038</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29892995','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29892995"><span>Evaluating the roles of detailed endocardial structures on right ventricular haemodynamics by means of CFD simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin</p> <p>2018-06-11</p> <p>Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/850150','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/850150"><span>An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ciovati, Gianluigi</p> <p></p> <p>Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusionmore » model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040191338','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040191338"><span>Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, Karen E.; Fasanella, Edwin L.</p> <p>2004-01-01</p> <p>A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720022904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720022904"><span>Project Fog Drops. Part 1: Investigations of warm fog properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pilie, R. J.; Eadie, W.; Mack, E. J.; Rogers, C.; Kocmond, W. C.</p> <p>1972-01-01</p> <p>A detailed study was made of the micrometeorological and microphysical characteristics of eleven valley fogs occurring near Elmira, New York. Observations were made of temperature, dew point, wind speed and direction, dew deposition, vertical wind velocity, and net radiative flux. In fog, visibility was continuously recorded and periodic measurements were made of liquid water content and drop-size distribution. The observations were initiated in late evening and continued until the time of fog dissipation. The vertical distribution of temperature in the lowest 300 meters and cloud nucleus concentration at several heights were measured from an aircraft before fog nucleus concentrations at several heights were measured from an aircraft before fog formation. A numerical model was developed to investigate the life cycle of radiation fogs. The model predicts the temporal evolution of the vertical distributions of temperature, water vapor, and liquid water as determined by the turbulent transfer of heat and moisture. The model includes the nocturnal cooling of the earth's surface, dew formation, fog drop sedimentation, and the absorption of infrared radiation by fog.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033390','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033390"><span>Constitutive relationships and physical basis of fault strength due to flash heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beeler, N.M.; Tullis, T.E.; Goldsby, D.L.</p> <p>2008-01-01</p> <p>We develop a model of fault strength loss resulting from phase change at asperity contacts due to flash heating that considers a distribution of contact sizes and nonsteady state evolution of fault strength with displacement. Laboratory faulting experiments conducted at high sliding velocities, which show dramatic strength reduction below the threshold for bulk melting, are well fit by the model. The predicted slip speed for the onset of weakening is in the range of 0.05 to 2 m/s, qualitatively consistent with the limited published observations. For this model, earthquake stress drops and effective shear fracture energy should be linearly pressure-dependent, whereas the onset speed may be pressure-independent or weakly pressure-dependent. On the basis of the theory, flash weakening is expected to produce large dynamic stress drops, small effective shear fracture energy, and undershoot. Estimates of the threshold slip speed, stress drop, and fracture energy are uncertain due to poor knowledge of the average ontact dimension, shear zone thickness and gouge particle size at seismogenic depths. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ZaMP...68..104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ZaMP...68..104C"><span>Energy stability of droplets and dry spots in a thin film model of hanging drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheung, Ka-Luen; Chou, Kai-Seng</p> <p>2017-10-01</p> <p>The 2-D thin film equation describing the evolution of hang drops is studied. All radially symmetric steady states are classified, and their energy stability is determined. It is shown that the droplet with zero contact angle is the only global energy minimizer and the dry spot with zero contact angle is a strict local energy minimizer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=parenting+AND+style+AND+mental+AND+health&pg=6&id=EJ934404','ERIC'); return false;" href="https://eric.ed.gov/?q=parenting+AND+style+AND+mental+AND+health&pg=6&id=EJ934404"><span>Engaging High-Risk Young Mothers into Effective Programming: The Importance of Relationships and Relentlessness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chablani, Anisha; Spinney, Elizabeth R.</p> <p>2011-01-01</p> <p>This article describes a model designed to engage very high-risk pregnant and parenting young mothers who are not traditionally served by home visiting or other young parent programs. These disengaged young mothers do not live in stable environments: they are street or gang involved, in danger of dropping out of school or have already dropped out,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1547..350H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1547..350H"><span>The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping</p> <p>2013-07-01</p> <p>The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.159...42S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.159...42S"><span>Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.</p> <p>2018-06-01</p> <p>Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections. Although, the scaling can be improved further with the integration of large dataset of microearthquakes and use of a stable and robust approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARB48002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARB48002B"><span>Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Aidan; Rutenberg, Andrew</p> <p>2015-03-01</p> <p>Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830014279','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830014279"><span>The structure of evaporating and combusting sprays: Measurements and predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.</p> <p>1982-01-01</p> <p>An apparatus was constructed to provide measurements in open sprays with no zones of recirculation, in order to provide well-defined conditions for use in evaluating spray models. Measurements were completed in a gas jet, in order to test experimental methods, and are currently in progress for nonevaporating sprays. A locally homogeneous flow (LHF) model where interphase transport rates are assumed to be infinitely fast; a separated flow (SF) model which allows for finite interphase transport rates but neglects effects of turbulent fluctuations on drop motion; and a stochastic SF model which considers effects of turbulent fluctuations on drop motion were evaluated using existing data on particle-laden jets. The LHF model generally overestimates rates of particle dispersion while the SF model underestimates dispersion rates. The stochastic SF flow yield satisfactory predictions except at high particle mass loadings where effects of turbulence modulation may have caused the model to overestimate turbulence levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..96d4606V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..96d4606V"><span>Experimental and evaluated photoneutron cross sections for 197Au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varlamov, V.; Ishkhanov, B.; Orlin, V.</p> <p>2017-10-01</p> <p>There is a serious well-known problem of noticeable disagreements between the partial photoneutron cross sections obtained in various experiments. Such data were mainly determined using quasimonoenergetic annihilation photon beams and the method of neutron multiplicity sorting at Lawrence Livermore National Laboratory (USA) and Centre d'Etudes Nucleaires of Saclay (France). The analysis of experimental cross sections employing new objective physical data reliability criteria has shown that many of those are not reliable. The IAEA Coordinated Research Project (CRP) on photonuclear data evaluation was approved. The experimental and previously evaluated cross sections of the partial photoneutron reactions (γ ,1 n ) and (γ ,2 n ) on 197Au were analyzed using the new data reliability criteria. The data evaluated using the new experimental-theoretical method noticeably differ from both experimental data and data previously evaluated using nuclear modeling codes gnash, gunf, alice-f, and others. These discrepancies needed to be resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......106C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......106C"><span>Modelisation de l'erosion et des sources de pollution dans le bassin versant Iroquois/Blanchette dans un contexte de changements climatiques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coulibaly, Issa</p> <p></p> <p>Principale source d'approvisionnement en eau potable de la municipalite d'Edmundston, le bassin versant Iroquois/Blanchette est un enjeu capital pour cette derniere, d'ou les efforts constants deployes pour assurer la preservation de la qualite de son eau. A cet effet, plusieurs etudes y ont ete menees. Les plus recentes ont identifie des menaces de pollution de diverses origines dont celles associees aux changements climatiques (e.g. Maaref 2012). Au regard des impacts des modifications climatiques annonces a l'echelle du Nouveau-Brunswick, le bassin versant Iroquois/Blanchette pourrait etre fortement affecte, et cela de diverses facons. Plusieurs scenarios d'impacts sont envisageables, notamment les risques d'inondation, d'erosion et de pollution a travers une augmentation des precipitations et du ruissellement. Face a toutes ces menaces eventuelles, l'objectif de cette etude est d'evaluer les impacts potentiels des changements climatiques sur les risques d'erosion et de pollution a l'echelle du bassin versant Iroquois/Blanchette. Pour ce faire, la version canadienne de l'equation universelle revisee des pertes en sol RUSLE-CAN et le modele hydrologique SWAT ( Soil and Water Assessment Tool) ont ete utilises pour modeliser les risques d'erosion et de pollution au niveau dans la zone d'etude. Les donnees utilisees pour realiser ce travail proviennent de sources diverses et variees (teledetections, pedologiques, topographiques, meteorologiques, etc.). Les simulations ont ete realisees en deux etapes distinctes, d'abord dans les conditions actuelles ou l'annee 2013 a ete choisie comme annee de reference, ensuite en 2025 et 2050. Les resultats obtenus montrent une tendance a la hausse de la production de sediments dans les prochaines annees. La production maximale annuelle augmente de 8,34 % et 8,08 % respectivement en 2025 et 2050 selon notre scenario le plus optimiste, et de 29,99 % en 2025 et 29,72 % en 2050 selon le scenario le plus pessimiste par rapport a celle de 2013. Pour ce qui est de la pollution, les concentrations observees (sediment, nitrate et phosphore) connaissent une evolution avec les changements climatiques. La valeur maximale de la concentration en sediments connait une baisse en 2025 et 2050 par rapport a 2013, de 11,20 mg/l en 2013, elle passe a 9,03 mg/l en 2025 puis a 6,25 en 2050. On s'attend egalement a une baisse de la valeur maximale de la concentration en nitrate au fil des annees, plus accentuee en 2025. De 4,12 mg/l en 2013, elle passe a 1,85 mg/l en 2025 puis a 2,90 en 2050. La concentration en phosphore par contre connait une augmentation dans les annees a venir par rapport a celle de 2013, elle passe de 0,056 mg/l en 2013 a 0,234 mg/l en 2025 puis a 0,144 en 2050.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860021488','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860021488"><span>Measurements in liquid fuel sprays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chigier, N.; Mao, C. P.</p> <p>1985-01-01</p> <p>A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...40a2071C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...40a2071C"><span>Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.</p> <p>2016-08-01</p> <p>Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/927429-three-dimensional-simulation-liquid-drop-dynamics-within-unsaturated-vertical-hele-shaw-cells','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/927429-three-dimensional-simulation-liquid-drop-dynamics-within-unsaturated-vertical-hele-shaw-cells"><span>Three-Dimensional Simulation of Liquid Drop Dynamics Within Unsaturated Vertical Hele-Shaw Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hai Huang; Paul Meakin</p> <p></p> <p>A three-dimensional, multiphase fluid flow model with volume of fluid-interface tracking was developed and applied to study the multiphase dynamics of moving liquid drops of different sizes within vertical Hele-Shaw cells. The simulated moving velocities are significantly different from those obtained from a first-order analytical approximation, based on simple force-balance concepts. The simulation results also indicate that the moving drops can exhibit a variety of shapes and that the transition among these different shapes is largely determined by the moving velocities. More important, there is a transition from a linear moving regime at small capillary numbers, in which the capillarymore » number scales linearly with the Bond number, to a nonlinear moving regime at large capillary numbers, in which the moving drop releases a train of droplets from its trailing edge. The train of droplets forms a variety of patterns at different moving velocities.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPS...188..163Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPS...188..163Y"><span>The critical pressure drop for the purge process in the anode of a fuel cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang</p> <p></p> <p>Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1214655','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1214655"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Ji San; Park, Su Ji; Lee, Jun Ho</p> <p></p> <p>A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920051656&hterms=ply&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D.ply','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920051656&hterms=ply&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D.ply"><span>Analysis for delamination initiation in postbuckled dropped-ply laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davila, Carlos G.; Johnson, Eric R.</p> <p>1992-01-01</p> <p>The compression strength of dropped-ply, graphite-epoxy laminated plates for the delamination mode of failure is studied by analysis and corroborated with experiments. The nonlinear response of the test specimens is modeled by a geometrically nonlinear finite element analysis. The methodology for predicting delamination is based on a quadratic interlaminar stress criterion evaluated at a characteristic distance from the ply drop-off. The compression strength of specimens exhibiting a linear response is greater than the compression strength of specimens with the same layup exhibiting a geometrically nonlinear response. The analyses for both linear and nonlinear response show that severe interlaminar stress gradients occur in the interfaces at the drop-off because of the thickness/stiffness discontinuity. However, these interlaminar stress distributions are altered in the geometrically nonlinear response such that, with increasing load, their growth at the center of the laminate is retarded while their growth near the unloaded supported edge is increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22170457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22170457"><span>Violence, schools, and dropping out: racial and ethnic disparities in the educational consequence of student victimization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peguero, Anthony A</p> <p>2011-12-01</p> <p>Without a doubt, exposure to violence and victimization can be profoundly detrimental to the overall well-being and development of all youth. Moreover, violence and victimization that occurs within a school context is particularly alarming because a successful educational process is essential toward establishing socioeconomic success later in life. The educational consequence of exposure to violence and victimization at school is uncertain for racial and ethnic minority students. This study utilizes data from the Education Longitudinal Study of 2002 and incorporates multilevel modeling techniques to examine the impact of violence and victimization at school on dropping out. The results indicate Black/African Americans and Latino American students who are victimized at school are at higher risk of dropping out. The implications of the evident racial and ethnic disparities in the relationship between victimization and dropping out within the U.S. school system are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24398394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24398394"><span>In vitro estimation of pressure drop across tracheal tubes during high-frequency percussive ventilation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ajčević, M; Lucangelo, U; Ferluga, M; Zin, W A; Accardo, A</p> <p>2014-02-01</p> <p>Tracheal tubes (TT) are used in clinical practice to connect an artificial ventilator to the patient's airways. It is important to know the pressure used to overcome tube impedance to avoid lung injury. Although high-frequency percussive ventilation (HFPV) has been increasingly used, the mechanical behavior of TT under HFPV has not yet been described. Thus, we aimed at characterizing in vitro the pressure drop across TT (ΔPTT) by identifying the model that best fits the measured pressure-flow (P-V̇) relationships during HFPV under different working pressures (PWork), percussive frequencies and mechanical loads. Three simple models relating ΔPTT and flow (V̇) were tested. Model 1 is characterized by linear resistive [Rtube ⋅ V̇(t)] and inertial [I · V̈(t)] terms. Model 2 takes into consideration Rohrer's approach [K1· V̇(t) + K2 ⋅V̇(t)] and inertance [I ·V̈(t)]. In model 3 the pressure drop caused by friction is represented by the non-linear Blasius component [Kb· V̇(1.75)(t)] and the inertial term [I· V̈(t)]. Model 1 presented a significantly higher root mean square error of approximation than models 2 and 3, which were similar. Thus, model 1 was not as accurate as the latter, possibly due to turbulence. Model 3 presented the most robust resistance-related coefficient. Estimated inertances did not vary among the models using the same tube. In conclusion, in HFPV ΔPTT can be easily calculated by the physician using model 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDD16008T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDD16008T"><span>Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef</p> <p>2016-11-01</p> <p>Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ11006W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ11006W"><span>Droplet Depinning on Inclined Surfaces at High Reynolds Numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, Edward; Singh, Natasha; Lee, Sungyon</p> <p>2017-11-01</p> <p>Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S51D..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S51D..08B"><span>Stress Drop and Its Relationship to Radiated Energy, Ground Motion and Uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baltay, A.</p> <p>2014-12-01</p> <p>Despite the seemingly diverse circumstances under which crustal earthquakes occur, scale-invariant stress drop and apparent stress, the ratio of radiated seismic energy to moment, is observed. The magnitude-independence of these parameters is central to our understanding of both earthquake physics and strong ground motion genesis. Estimates of stress drop and radiated energy, however, display large amounts of scatter potentially masking any secondary trends in the data. We investigate sources of this uncertainty within the framework of constant stress drop and apparent stress. We first re-visit estimates of energy and stress drop from a variety of earthquake observations and methods, for events ranging from magnitude ~2 to ~9. Using an empirical Green's function (eGf) deconvolution method, which removes the path and site effects, radiated energy and Brune stress drop are estimated for both regional events in the western US and Eastern Honshu, Japan from the HiNet network, as well as teleseismically recorded global great earthquakes [Baltay et al., 2010, 2011, 2014]. In addition to eGf methods, ground-motion based metrics for stress drop are considered, using both KikNet data from Japan [Baltay et al., 2013] and the NGA-West2 data, a very well curated ground-motion database. Both the eGf-based stress drop estimates and those from the NGA-West2 database show a marked decrease in scatter, allowing us to identify deterministic secondary trends in stress drop. We find both an increasing stress drop with depth, as well as a larger stress drop of about 30% on average for mainshock events as compared to on-fault aftershocks. While both of these effects are already included in some ground-motion prediction equations (GMPE), many previous seismological studies have been unable to conclusively uncover these trends because of their considerable scatter. Elucidating these effects in the context of reduced and quantified epistemic uncertainty can help both seismologists and engineers to understand the true aleatory variability of the earthquake source, which may be due to the complex and diverse circumstances under which these earthquake occur and which we are yet unable to model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820015552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820015552"><span>A numerical study of drop-on-demand ink jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fromm, J.</p> <p>1982-01-01</p> <p>Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27913961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27913961"><span>Prediction of Postoperative Clinical Recovery of Drop Foot Attributable to Lumbar Degenerative Diseases, via a Bayesian Network.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takenaka, Shota; Aono, Hiroyuki</p> <p>2017-03-01</p> <p>Drop foot resulting from degenerative lumbar diseases can impair activities of daily living. Therefore, predictors of recovery of this symptom have been investigated using univariate or/and multivariate analyses. However, the conclusions have been somewhat controversial. Bayesian network models, which are graphic and intuitive to the clinician, may facilitate understanding of the prognosis of drop foot resulting from degenerative lumbar diseases. (1) To show a layered correlation among predictors of recovery from drop foot resulting from degenerative lumbar diseases; and (2) to develop support tools for clinical decisions to treat drop foot resulting from lumbar degenerative diseases. Between 1993 and 2013, we treated 141 patients with decompressive lumbar spine surgery who presented with drop foot attributable to degenerative diseases. Of those, 102 (72%) were included in this retrospective study because they had drop foot of recent development and had no diseases develop that affect evaluation of drop foot after surgery. Specifically, 28 (20%) patients could not be analyzed because their records were not available at a minimum of 2 years followup after surgery and 11 (8%) were lost owing to postoperative conditions that affect the muscle strength evaluation. Eight candidate variables were sex, age, herniated soft disc, duration of the neurologic injury (duration), preoperative tibialis anterior muscle strength (pretibialis anterior), leg pain, cauda equina syndrome, and number of involved levels. Manual muscle testing was used to assess the tibialis anterior muscle strength. Drop foot was defined as a tibialis anterior muscle strength score of less than 3 of 5 (5 = movement against gravity and full resistance, 4 = movement against gravity and moderate resistance, 3 = movement against gravity through full ROM, 3- = movement against gravity through partial ROM, 2 = movement with gravity eliminated through full ROM, 1 = slight contraction but no movement, and 0 = no contraction). The two outcomes of interest were postoperative tibialis anterior muscle strength (posttibialis anterior) of 3 or greater and posttibialis anterior strength of 4 or greater at 2 years after surgery. We developed two separate Bayesian network models with outcomes of interest for posttibialis anterior strength of 3 or greater and posttibialis anterior strength of 4 or greater. The two outcomes correspond to "good" and "excellent" results based on previous reports, respectively. Direct predictors are defined as variables that have the tail of the arrow connecting the outcome of interest, whereas indirect predictors are defined as variables that have the tail of the arrow connecting either direct predictors or other indirect predictors that have the tail of the arrow connecting direct predictors. Sevenfold cross validation and receiver-operating characteristic (ROC) curve analyses were performed to evaluate the accuracy and robustness of the Bayesian network models. Both of our Bayesian network models showed that weaker muscle power before surgery (pretibialis anterior ≤ 1) and longer duration of neurologic injury before treatment (> 30 days) were associated with a decreased likelihood of return of function by 2 years. The models for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were the same in terms of the graphs, showing that the two direct predictors were pretibialis anterior muscle strength (score ≤ 1 or ≥ 2) and duration (≤ 30 days or > 30 days). Age, herniated soft disc, and leg pain were identified as indirect predictors. We developed a decision-support tool in which the clinician can enter pretibialis anterior muscle strength and duration, and from this obtain the probability estimates of posttibialis anterior muscle strength. The probability estimates of posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were 94% and 85%, respectively, in the most-favorable conditions (pretibialis anterior ≥ 2; duration ≤ 30 days) and 18% and 14%, respectively, in the least-favorable conditions (pretibialis anterior ≤ 1; duration > 30 days). On the sevenfold cross validation, the area under the ROC curve yielded means of 0.78 (95% CI, 0.68-0.87) and 0.74 (95% CI, 0.64-0.84) for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater, respectively. The results of this study suggest that the clinician can understand intuitively the layered correlation among predictors by Bayesian network models. Based on the models, the decision-support tool successfully provided the probability estimates of posttibialis anterior muscle strength to treat drop foot attributable to lumbar degenerative diseases. These models were shown to be robust on the internal validation but should be externally validated in other populations. Level III, therapeutic study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21655686','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21655686"><span>Factors associated with HIV/AIDS treatment dropouts in a special care unit in the City of Rio de Janeiro, RJ, Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schilkowsky, Louise Bastos; Portela, Margareth Crisóstomo; Sá, Marilene de Castilho</p> <p>2011-06-01</p> <p>This study aimed to identify factors associated with the health care of patients with HIV/AIDS who drop out. The study was developed in a specialized health care unit of a University hospital in Rio de Janeiro, Brazil, considering a stratified sample of adult patients including all dropout cases (155) and 44.0% of 790 cases under regular follow-up. Bivariate analyses were used to identify associations between health care dropout and demographic, socioeconomic and clinical variables. Logistic and Cox regression models were used to identify the independent effects of the explanatory variables on risk for dropout, in the latter by incorporating information on the outcome over time. Patients were, on average, 35 years old, predominantly males (66.4%) and of a low socioeconomic level (45.0%). In both models, health care dropout was consistently associated with being unemployed or having an unstable job, using illicit drugs and having psychiatric background--positive association; and with age, having AIDS, and having used multiple antiretroviral regimens--negative association. In the logistic regression, dropping out was also positively associated with time between diagnosis and the first outpatient visit, while in the Cox model, the hazard for dropping out was positively associated with being single, and negatively associated with a higher educational level. The results of this work allow for the identification of HIV/AIDS patients more likely to drop out from health care.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51O..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51O..06C"><span>Using Large-Eddy Simulation to Explore Microphysical Precursor Conditions for Precipitation Initiation in Marine Stratocumulus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandler, H.; Mechem, D. B.; Fridlind, A. M.; Ackerman, A. S.</p> <p>2016-12-01</p> <p>Although the classical model of how a population of cloud droplets grows to precipitation-sized drops through the condensation and coalescence processes is well accepted, it does not fully address the history of how nascent precipitation drops come about in warm clouds. Precipitation initiation is influenced by the properties of the cloud drop distribution and in bulk large-eddy simulation (LES) models is parameterized by autoconversion. Double-moment formulations of autoconversion rate generally weight cloud water content qc more than cloud drop concentration Nc (e.g., qc2.47Nc-1.79, Khairoutdinov and Kogan 2000) and precipitation rate scalings derived from field campaigns suggest a dominance of thermodynamic over aerosol factors. However, the mechanisms that drive precipitation initiation in any given cloud are still uncertain. From the perspective of autoconversion, do the regions where precipitation onset occurs experience large liquid water content values (large qc), or are they anomalously clean (small Nc)? Recent laboratory measurements suggest that fluctuations in the supersaturation field may also play a role in precipitation initiation. This study explores the nature of precursor conditions to precipitation onset within marine stratocumulus clouds. We apply an LES model with size-resolving microphysics to a case of marine stratocumulus over the eastern north Atlantic. Backward trajectories originating from regions of precipitation initiation are calculated from the time-evolving LES flow fields to examine the history of fluid parcels that ultimately contain embryonic precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22818957','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22818957"><span>Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Promraksa, Arwut; Chen, Li-Jen</p> <p>2012-10-15</p> <p>A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.348..567S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.348..567S"><span>A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto</p> <p>2017-11-01</p> <p>In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S43A2465S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S43A2465S"><span>Stress Drops of Earthquakes on the Subducting Pacific Plate in the South-East off Hokkaido, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Y.; Yamada, T.</p> <p>2013-12-01</p> <p>Large earthquakes have been occurring repeatedly in the South-East of Hokkaido, Japan, where the Pacific Plate subducts beneath the Okhotsk Plate in the north-west direction. For example, the 2003 Tokachi-oki earthquake (Mw8.3 determined by USGS) took place in the region on September 26, 2003. Yamanaka and Kikuchi (2003) analyzed the slip distribution of the earthquake and concluded that the 2003 earthquake had ruptured the deeper half of the fault plane of the 1952 Tokachi-oki earthquake. Miyazaki et al. (2004) reported that a notable afterslip was observed at adjacent areas to the coseismic rupture zone of the 2003 earthquake, which suggests that there would be significant heterogeneities of strength, stress and frictional properties on the surface of the Pacific Plate in the region. In addition, some previous studies suggest that the region with a large slip in large earthquakes permanently have large difference of strength and the dynamic frictional stress level and that it would be able to predict the spatial pattern of slip in the next large earthquake by analyzing the stress drop of small earthquakes (e.g. Allmann and Shearer, 2007 and Yamada et al., 2010). We estimated stress drops of 150 earthquakes (4.2 ≤ M ≤ 5.0), using S-coda waves, or the waveforms from 4.00 to 9.11 seconds after the S wave arrivals, of Hi-net data. The 150 earthquakes were the ones that occurred from June, 2002 to December, 2010 in south-east of Hokkaido, Japan, from 40.5N to 43.5N and from 141.0E to 146.5E. First we selected waveforms of the closest earthquakes with magnitudes between 3.0 and 3.2 to individual 150 earthquakes as empirical Green's functions. We then calculated source spectral ratios of the 150 pairs of interested earthquakes and EGFs by deconvolving the individual S-coda waves. We finally estimated corner frequencies of earthquakes from the spectral ratios by assuming the omega-squared model of Boatwright (1978) and calculated stress drops of the earthquakes by using the model of Madariaga (1976). The estimated values of stress drop range from 1 to 10 MPa with a little number of outliers(Fig.(a)). Fig.(b) shows the spatial distribution of stress drops in south-east off Hokkaido, Japan. We found that earthquakes occurred around 42N 145E had larger stress drops. We are going to analyze smaller earthquakes and investigate the spatial pattern of the stress drop in the future. Fig. (a) Estimated values of stress drop with respect to seismic moments of earthquakes. (b) Spatial distribution of stress drops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982PhDT.........5Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982PhDT.........5Y"><span>Parallel Electric Field on Auroral Magnetic Field Lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeh, Huey-Ching Betty</p> <p>1982-03-01</p> <p>The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Gender+AND+Discrimination+AND+Women+AND+workplace&pg=7&id=ED311202','ERIC'); return false;" href="https://eric.ed.gov/?q=Gender+AND+Discrimination+AND+Women+AND+workplace&pg=7&id=ED311202"><span>Proceedings of the Annual Conference of the Canadian Association for the Study of Adult Education = Les actes du congres annuel de l'association canadienne pour l'etude de l'education des adultes (8th, Cornwall, Ontario, June 1-30, 1989).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bedard, Rene, Ed.</p> <p></p> <p>This proceedings contains 23 papers in French and the following 45 papers in English: "Arthur Lismer" (Barer-Stein); "Bootstrapping and Shoestringing to Academic Respectability" (Baskett); "Teaching by Teleconference" (Boak, Kirby); "Doing What Is Possible" (Butterwick); "Connections between Individual…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED463408.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED463408.pdf"><span>Proceedings of the Annual Conference of the Canadian Association for the Study of Adult Education/L'Association Canadienne pour L'Etude de L'Education des Adultes (17th, Ontario, Canada, May 29-31, 1998).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Taylor, Maurice, Ed.</p> <p></p> <p>These proceedings on the theme, Adult Education Research: Shaping the Future, contain 52 papers. The papers are: "Virtual Adult Education" (W. Archer and D. Conrad); "Reversal Theory Approach to Adult Learning and Education" (M. Atleo); "Objectiver L'Action" (A. Balleux et al.); "Cultural Constructions of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED177867.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED177867.pdf"><span>Contribution a l'etude de la nouvelle immigration libanaise au Quebec (Contribution to the Study of the New Lebanese Immigration to Quebec).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Abou, Selim</p> <p></p> <p>This study, the result of interviews conducted in Quebec and Montreal in the spring of 1975, deals with the adaptation, integration, and acculturation of the Lebanese immigrants in Quebec since the end of World War II. This new immigration wave is contrasted with the one that took place around 1880. Generally speaking, the situation in both the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=societe&pg=4&id=ED036696','ERIC'); return false;" href="https://eric.ed.gov/?q=societe&pg=4&id=ED036696"><span>Adult Education in a Changing Europe: A Survey of Theory and Practice. [L'Education des Adultes dans une Societe en Constante Evolution; Etude sur la Theorie et la Pratique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hutchinson, E. M.; And Others</p> <p></p> <p>This course was held to review research and investigations undertaken in Europe, their significance for the practice of adult education, and the possibility of cooperative action in the future. Delegates reached conclusions calling for the general review of European adult education, bibliographic services, general and joint research, cooperation,…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED445894.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED445894.pdf"><span>Canadian Mathematics Education Study Group = Groupe Canadien d'etude en didactique des mathematiques. Proceedings of the Annual Meeting (23rd, St. Catherine's, ON, June 4-8, 1999).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McLoughlin, John Grant, Ed.</p> <p></p> <p>This document contains the proceedings of 1999 annual meeting of the Canadian Mathematics Education Study Group (CMESG). Papers include: (1) "Mathematics Lecture I: The Impact of Technology on the Doing of Mathematics" (Jonathan Borwein); (2) "Mathematics Lecture II: The Decline and Rise of Geometry in 20th Century North America" (Walter…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA260234','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA260234"><span>Afterrise: Deep Body Temperature Following Exercise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-03-01</p> <p>Egalement, les effets de la posture et des v~tements durant la recuperation et la temperature de la salle de recuperation furent examines. Cinq hommes se...chemise a manches courtes). Les temperatures rectales et de la peau furent mesurees A chaque minute durant les exercices et la r~cup~ration affectaient...overgarment. RESUME Cette etude fut entreprise pour documenter l’augmentation continue de la temperature rectale apres exercice dans la chaleur</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=apprentissage&pg=3&id=ED407243','ERIC'); return false;" href="https://eric.ed.gov/?q=apprentissage&pg=3&id=ED407243"><span>Canadian Mathematics Education Study Group = Groupe Canadien d'etude en didactique des mathematiques. Proceedings of the 1993 Annual Meeting (York, Ontario, Canada, May 28-June 1, 1993).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Quigley, Martyn, Ed.</p> <p></p> <p>These proceedings contain papers presented at the 1993 annual meeting of the Canadian Mathematics Education Study Group. Papers are presented in four sections: (1) invited lectures; (2) working groups; (3) topic groups; and (4) ad hoc groups. Papers include: (1) "What is a Square Root? A Study of Geometrical Representation in Different…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts093-322-017.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts093-322-017.html"><span>STS-93 crewmembers assemble for crew inflight portrait on the middeck</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-11-18</p> <p>STS093-322-017 (23-27 July 1999) --- The five STS-93 astronauts pose for the traditional inflight crew portrait on Columbia's middeck. In front are astronauts Eileen M. Collins, mission commander, and Michel Tognini, mission specialist, representing France's Centre National d'Etudes Spatiales (CNES). Behind them are (from the left) astronauts Steven A. Hawley, mission specialist; Jeffrey S. Ashby, pilot; and Catherine G. (Cady) Coleman, mission specialist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=kieren&pg=3&id=ED407242','ERIC'); return false;" href="https://eric.ed.gov/?q=kieren&pg=3&id=ED407242"><span>Canadian Mathematics Education Study Group = Groupe Canadien d'etude en didactique des mathematiques. Proceedings of the 1994 Annual Meeting (Regina, Saskatchewan, Canada, June 3-7, 1994).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Quigley, Martyn, Ed.</p> <p></p> <p>These proceedings contain papers from the 1994 annual meeting of the Canadian Mathematics Education Study Group. Papers are divided into the following sections: (1) invited lectures; (2) working groups; (3) topic groups; (4) ad hoc groups; and (5) reports on ICMI (International Committee on Mathematical Instruction) studies. Papers include: (1)…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Classical+AND+guitar&id=EJ1014919','ERIC'); return false;" href="https://eric.ed.gov/?q=Classical+AND+guitar&id=EJ1014919"><span>The Pedagogical Value of Leo Brouwer's "Etudes Simples": A Perspective on Preserving an Exquisite, Yet Neglected Custom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kronenberg, Clive W.</p> <p>2013-01-01</p> <p>The decline in the status of the classical guitar is, for many, a cause of concern, calling for viable answers to restore its place in the expressive arts tradition. In this article, I explore a pedagogical style specifically intended for young and/or inexperienced players. It is argued that this endeavor could prospectively benefit a range of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7798601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7798601"><span>The abject gaze and the homosexual body: Flandrin's Figure d'Etude.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camille, M</p> <p>1994-01-01</p> <p>This article charts the history of the reception, reproduction and appropriation of a single image that has recently become a kind of "gay icon"--the Figure d'Etude in the Louvre, painted by Hippolyte Flandrin in 1835. Initially no more than a neo-classical academic exercise, the formal emptiness of this picture meant that it could be re-invested and reinscribed with new meanings and new titles at every turn. Emblematic of the anxious visibility/invisibility of the newly discovered homosexual body during a period when the gaze still had to be kept a dark secret, Flandrin's image only "came out" in its later photographic reworkings by Frederick Holland Day and Baron von Gloeden. After being reproduced for a specifically homosexual audience early this century, the popular Romantic pose of the young man curled-up in profile became a standard one, reappearing recently in the photographs of Robert Mapplethorpe. The inactive, abject and inward-turned isolation of the figure with its narcissistic self-absorption makes it, in my view, a profoundly negative stereotype of the gay gaze and the homosexual body. Flandrin's figure nonetheless appears today on gay merchandise world-wide as a sign of our separate and secluded subject positions and our community's unwillingness to radically alter older imposed and inherited classical stereotypes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9714927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9714927"><span>A microcosm of musical expression. I. Quantitative analysis of pianists' timing in the initial measures of Chopin's Etude in E major.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Repp, B H</p> <p>1998-08-01</p> <p>Patterns of expressive timing were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. These patterns were subjected to principal components analysis, which suggested at least four independent "timing strategies": (1) major ritards at the ends of melodic gestures; (2) acceleration within some of these gestures, without final ritards; (3) extreme lengthening of the initial downbeat; and (4) ritards between as well as within melodic gestures. Strategies 1 and 4 respond in different ways to the melodic-rhythmic grouping structure of the music, and strategy 3 merely represents a local emphasis. Strategy 2 is the one most difficult to rationalize; it does not seem to represent an alternative structural interpretation of the music but rather an alternative gestural shaping. Each individual pianist's timing pattern could be described as a weighted combination of these four strategies plus idiosyncratic variation. A wide variety of combinations was represented, and no two individual patterns were exactly the same. In addition, there was a wide range of basic tempi and of degrees of tempo modulation. There were no strong relationships between any of these variables and sociocultural characteristics of the artists, although some weak trends were observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.2521J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.2521J"><span>The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacquinet-Husson, N.; Lmd Team</p> <p></p> <p>The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated, from GEISA. Its content, will be described, as well. This work is ongoing, with the purpose of assessing the IASI measurements capabilities and the spectroscopic information quality, within the ISSWG (IASI Sounding Science Working Group), in the frame of the CNES (Centre National d'Etudes Spatiales, France)/EUMETSAT (EUropean organization for the exploitation of METeorological SATellites) Polar System (EPS) project, by simulating high resolution radiances and/or using experimental data. EUMETSAT will implement GEISA/IASI into the EPS ground segment. The IASI soundings spectroscopic data archive requirements will be discussed in the context of comparisons between recorded and calculated experimental spectra, using the ARA/4A forward line-by-line radiative transfer modelling code in its latest version.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18433518','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18433518"><span>Deliberate practice predicts performance over time in adolescent chess players and drop-outs: a linear mixed models analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Bruin, Anique B H; Smits, Niels; Rikers, Remy M J P; Schmidt, Henk G</p> <p>2008-11-01</p> <p>In this study, the longitudinal relation between deliberate practice and performance in chess was examined using a linear mixed models analysis. The practice activities and performance ratings of young elite chess players, who were either in, or had dropped out of the Dutch national chess training, were analysed since they had started playing chess seriously. The results revealed that deliberate practice (i.e. serious chess study alone and serious chess play) strongly contributed to chess performance. The influence of deliberate practice was not only observable in current performance, but also over chess players' careers. Moreover, although the drop-outs' chess ratings developed more slowly over time, both the persistent and drop-out chess players benefited to the same extent from investments in deliberate practice. Finally, the effect of gender on chess performance proved to be much smaller than the effect of deliberate practice. This study provides longitudinal support for the monotonic benefits assumption of deliberate practice, by showing that over chess players' careers, deliberate practice has a significant effect on performance, and to the same extent for chess players of different ultimate performance levels. The results of this study are not in line with critique raised against the deliberate practice theory that the factors deliberate practice and talent could be confounded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25791159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25791159"><span>Drop splashing induced by target roughness and porosity: The size plays no role.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roisman, Ilia V; Lembach, Andreas; Tropea, Cameron</p> <p>2015-08-01</p> <p>Drop splash as a result of an impact onto a dry substrate is governed by the impact parameters, gas properties and the substrate properties. The splash thresholds determine the boundaries between various splash modes. Various existing models for the splash threshold are reviewed in this paper. It is shown that our understanding of splash is not yet complete. The most popular, widely used models for splash threshold do not describe well the available experimental data. The scientific part of this paper is focused on the description of drop prompt splash on rough and porous substrates. It is found that the absolute length scales of the substrate roughness, like Ra or Rz, do not have any significant effect on the splash threshold. It is discovered that on rough substrates the main influencing splash parameters are the impact Weber number and the characteristic slope of the roughness of the substrate. The drop deposition without splash on porous substrates is enhanced by the liquid modified Reynolds number. Surprisingly, it is not influenced by the pore size, at least for the impact parameters used in the experiments. Finally, an empirical correlation for the prompt splash on rough and porous substrates is proposed, based on a rather amount of experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12227643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12227643"><span>Monte Carlo simulation of the risk of contamination of apples with Escherichia coli O157:H7.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duffy, Siobain; Schaffner, Donald W</p> <p>2002-10-25</p> <p>Quantitative descriptions of the frequency and extent of contamination of apple cider with pathogenic bacteria were obtained using literature data and computer simulation. Probability distributions were chosen to describe the risk of apple contamination by each suspected pathway. Tree-picked apples may be contaminated by birds infected with Escherichia coli O157:H7 when orchards were located near a sewage source (ocean or landfill). Dropped apples could become contaminated from either infected animal droppings or from contaminated manure if used as fertilizer. A risk assessment model was created in Analytica. The results of worst-case simulations revealed that 6-9 log CFU E. coli O157:H7 might be found on a harvest of 1000 dropped apples, while 3-4 log CFU contamination could be present on 1000 tree-picked apples. This model confirms that practices such as using dropped apples and using animal waste as fertilizer increase risk in the production of apple cider, and that pasteurization may not eliminate all contamination in juice from heavily contaminated fruit. Recently published FDA regulations for juices requiring a 5-log CFU/ml reduction of pathogenic bacteria in fresh juices should be a fail-safe measure for apples harvested in all but the worst-case scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ExFl...59...55B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ExFl...59...55B"><span>From drop impact physics to spray cooling models: a critical review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron</p> <p>2018-03-01</p> <p>Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJST.226.1297B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJST.226.1297B"><span>Dancing drops over vibrating substrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael</p> <p>2017-04-01</p> <p>We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750005995','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750005995"><span>Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ludewig, M.; Omori, S.; Rao, G. L.</p> <p>1974-01-01</p> <p>Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180453"><span>A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meneghini, R.</p> <p>2005-01-01</p> <p>Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860000688&hterms=Glass+bubble&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGlass%2Bbubble','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860000688&hterms=Glass+bubble&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGlass%2Bbubble"><span>Physical Phenomena in Containerless Glass Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Subramanian, R. S.; Cole, R.</p> <p>1985-01-01</p> <p>An investigation into the various physical phenomena of importance in the space experiments is under way. Theoretical models of thermocapillary flow in drops, thermal migration of bubbles and droplets, the motion of bubbles inside drops, and the migration of bubbles in rotating liquid bodies are being developed. Experiments were conducted on the migration of bubbles and droplets to the axis of a rotating liquid body, and the rise of bubbles in molten glass. Also, experiments on thermocapillary motion in silicone oils as well as glass melts were performed. Experiments are currently being conducted on the migration of bubbles in a thermal gradient, and on their motion inside unconstrained liquid drops in a rotating liquid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24746019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24746019"><span>Geometry-based pressure drop prediction in mildly diseased human coronary arteries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schrauwen, J T C; Wentzel, J J; van der Steen, A F W; Gijsen, F J H</p> <p>2014-06-03</p> <p>Pressure drop (△p) estimations in human coronary arteries have several important applications, including determination of appropriate boundary conditions for CFD and estimation of fractional flow reserve (FFR). In this study a △p prediction was made based on geometrical features derived from patient-specific imaging data. Twenty-two mildly diseased human coronary arteries were imaged with computed tomography and intravascular ultrasound. Each artery was modelled in three consecutive steps: from straight to tapered, to stenosed, to curved model. CFD was performed to compute the additional △p in each model under steady flow for a wide range of Reynolds numbers. The correlations between the added geometrical complexity and additional △p were used to compute a predicted △p. This predicted △p based on geometry was compared to CFD results. The mean △p calculated with CFD was 855±666Pa. Tapering and curvature added significantly to the total △p, accounting for 31.4±19.0% and 18.0±10.9% respectively at Re=250. Using tapering angle, maximum area stenosis and angularity of the centerline, we were able to generate a good estimate for the predicted △p with a low mean but high standard deviation: average error of 41.1±287.8Pa at Re=250. Furthermore, the predicted △p was used to accurately estimate FFR (r=0.93). The effect of the geometric features was determined and the pressure drop in mildly diseased human coronary arteries was predicted quickly based solely on geometry. This pressure drop estimation could serve as a boundary condition in CFD to model the impact of distal epicardial vessels. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010047005&hterms=dry+cooler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddry%2Bcooler','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010047005&hterms=dry+cooler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddry%2Bcooler"><span>Modeling Thermal Contact Resistance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kittel, Peter; Sperans, Joel (Technical Monitor)</p> <p>1994-01-01</p> <p>One difficulty in using cryocoolers is making good thermal contact between the cooler and the instrument being cooled. The connection is often made through a bolted joint. The temperature drop associated with this joint has been the subject of many experimental and theoretical studies. The low temperature behavior of dry joints have shown some anomalous dependence on the surface condition of the mating parts. There is also some doubts on how well one can extrapolate from the test samples to predicting the performance of a real system. Both finite element and analytic models of a simple contact system have been developed. The model assumes (a) the contact is dry (contact limited to a small portion of the total available area and the spaces in-between the actual contact patches are perfect insulators), (b) contacts are clean (conductivity of the actual contact is the same as the bulk), (c) small temperature gradients (the bulk conductance may be assumed to be temperature independent), (d) the absolute temperature is low (thermal radiation effects are ignored), and (e) the dimensions of the nominal contact area are small compared to the thickness of the bulk material (the contact effects are localized near the contact). The models show that in the limit of actual contact area much less than the nominal area (a much less than A), that the excess temperature drop due to a single point of contact scales as a(exp -1/2). This disturbance only extends a distance approx. A(exp 1/2) into the bulk material. A group of identical contacts will result in an excess temperature drop that scales as n(exp -1/2), where n is the number of contacts and n dot a is constant. This implies that flat rough surfaces will have a lower excess temperature drop than flat polished surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1347960-redistribution-ice-nuclei-between-cloud-rain-droplets-parameterization-application-deep-convective-clouds-ice-nuclei-rain-droplets','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1347960-redistribution-ice-nuclei-between-cloud-rain-droplets-parameterization-application-deep-convective-clouds-ice-nuclei-rain-droplets"><span>Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Paukert, M.; Hoose, C.; Simmel, M.</p> <p>2017-02-21</p> <p>In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1347960','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1347960"><span>Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Paukert, M.; Hoose, C.; Simmel, M.</p> <p></p> <p>In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28060026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28060026"><span>Exponential Decay Metrics of Topical Tetracaine Hydrochloride Administration Describe Corneal Anesthesia Properties Mechanistically.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ethington, Jason; Goldmeier, David; Gaynes, Bruce I</p> <p>2017-03-01</p> <p>To identify pharmacodynamic (PD) and pharmacokinetic (PK) metrics that aid in mechanistic understanding of dosage considerations for prolonged corneal anesthesia. A rabbit model using 0.5% tetracaine hydrochloride was used to induce corneal anesthesia in conjunction with Cochet-Bonnet anesthesiometry. Metrics were derived describing PD-PK parameters of the time-dependent domain of recovery in corneal sensitivity. Curve fitting used a 1-phase exponential dissociation paradigm assuming a 1-compartment PK model. Derivation of metrics including half-life and mean ligand residence time, tau (τ), was predicted by nonlinear regression. Bioavailability was determined by area under the curve of the dose-response relationship with varying drop volumes. Maximal corneal anesthesia maintained a plateau with a recovery inflection at the approximate time of predicted corneal drug half-life. PDs of recovery of corneal anesthesia were consistent with a first-order drug elimination rate. The mean ligand residence time (tau, τ) was 41.7 minutes, and half-life was 28.89 minutes. The mean estimated corneal elimination rate constant (ke) was 0.02402 minute. Duration of corneal anesthesia ranged from 55 to 58 minutes. There was no difference in time domain PD area under the curve between drop volumes. Use of a small drop volume of a topical anesthetic (as low as 11 μL) is bioequivalent to conventional drop size and seems to optimize dosing regiments with a little effect on ke. Prolongation of corneal anesthesia may therefore be best achieved with administration of small drop volumes at time intervals corresponding to the half-life of drug decay from the corneal compartment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28494491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28494491"><span>Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann</p> <p>2017-05-01</p> <p>To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29372467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29372467"><span>The formation of intestinal organoids in a hanging drop culture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panek, Malgorzata; Grabacka, Maja; Pierzchalska, Malgorzata</p> <p>2018-01-25</p> <p>Recently organoids have become widely used in vitro models of many tissue and organs. These type of structures, originated from embryonic or adult mammalian intestines, are called "mini guts". They organize spontaneously when intestinal crypts or stem cells are embedded in the extracellular matrix proteins preparation scaffold (Matrigel). This approach has some disadvantages, as Matrigel is undefined (the concentrations of growth factors and other biologically active components in it may vary from batch to batch), difficult to handle and expensive. Here we show that the organoids derived from chicken embryo intestine are formed in a hanging drop without embedding, providing an attractive alternative for currently used protocols. Using this technique we obtained compact structures composed of contiguous organoids, which were generally similar to chicken organoids cultured in Matrigel in terms of morphology and expression of intestinal epithelial markers. Due to the simplicity, high reproducibility and throughput capacity of hanging drop technique our model may be applied in various studies concerning the gut biology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.139...85S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.139...85S"><span>Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei</p> <p>2017-10-01</p> <p>A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJTIA.128...85K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJTIA.128...85K"><span>Experimental Analysis of Voltage Drop Compensation in a DC Electrified Railway by Introducing an Energy Storage System Incorporating EDLCs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi</p> <p></p> <p>Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048619&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048619&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle"><span>Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.</p> <p>1986-01-01</p> <p>Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000057062','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000057062"><span>Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)</p> <p>2000-01-01</p> <p>Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past, however none of these studies identified the crucial differences between the subcritical and supercritical behavior. In fact, in two of these studies, it was found that the subcritical and supercritical behavior is similar as the drop diameter decreased according to the classical d(exp 2)-law over a wide range of pressures and drop diameters. The present study is devoted to the exploration of differences in fluid-behavior characteristics under subcritical and supercritical conditions in the particular case of heptane fluid drops in nitrogen; these substances were selected because of the availability of experimental observations for model validation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S31C0826M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S31C0826M"><span>Spatial and Temporal Variations in Earthquake Stress Drop on Gofar Transform Fault, East Pacific Rise: Implications for Fault Strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.</p> <p>2017-12-01</p> <p>During the last five seismic cycles on Gofar transform fault on the East Pacific Rise, the largest earthquakes (6.0 ≤ Mw ≤ 6.2) have repeatedly ruptured the same fault segment (rupture asperity), while intervening fault segments host swarms of microearthquakes. Previous studies on Gofar have shown that these segments of low (≤10%) seismic coupling contain diffuse zones of seismicity and P-wave velocity reduction compared with the rupture asperity; suggesting heterogeneous fault properties control earthquake behavior. We investigate the role systematic differences in material properties have on earthquake rupture along Gofar using waveforms from ocean bottom seismometers that recorded the end of the 2008 Mw 6.0 seismic cycle.We determine stress drop for 117 earthquakes (2.4 ≤ Mw ≤ 4.2) that occurred in and between rupture asperities from corner frequency derived using an empirical Green's function spectral ratio method and seismic moment obtained by fitting the omega-square source model to the low frequency amplitude of earthquake spectra. We find stress drops from 0.03 to 2.7 MPa with significant spatial variation, including 2 times higher average stress drop in the rupture asperity compared to fault segments with low seismic coupling. We interpret an inverse correlation between stress drop and P-wave velocity reduction as the effect of damage on earthquake rupture. Earthquakes with higher stress drops occur in more intact crust of the rupture asperity, while earthquakes with lower stress drops occur in regions of low seismic coupling and reflect lower strength, highly fractured fault zone material. We also observe a temporal control on stress drop consistent with log-time healing following the Mw 6.0 mainshock, suggesting a decrease in stress drop as a result of fault zone damage caused by the large earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430024-strong-correlation-between-stress-drop-peak-ground-acceleration-recent-m14-earthquakes-san-francisco-bay-area','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430024-strong-correlation-between-stress-drop-peak-ground-acceleration-recent-m14-earthquakes-san-francisco-bay-area"><span>Strong correlation between stress drop and peak ground acceleration for recent M1–4 earthquakes in the San Francisco Bay Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Trugman, Daniel Taylor; Shearer, Peter M.</p> <p>2018-03-06</p> <p>Theoretical and observational studies suggest that between-event variability in the median ground motions of larger ( M≥5 ) earthquakes is controlled primarily by the dynamic properties of the earthquake source, such as Brune-type stress drop. Analogous results remain equivocal for smaller events due to the lack of comprehensive and overlapping ground-motion and source-parameter datasets in this regime. Here in this paper, we investigate the relationship between peak ground acceleration (PGA) and dynamic stress drop for a new dataset of 5297 earthquakes that occurred in the San Francisco Bay area from 2002 through 2016. For each event, we measure PGA onmore » horizontal-component channels of stations within 100 km and estimate stress drop from P-wave spectra recorded on vertical-component channels of the same stations. We then develop a nonparametric ground-motion prediction equation (GMPE) applicable for the moderate (M 1–4) earthquakes in our study region, using a mixed-effects generalization of the Random Forest algorithm. We use the Random Forest GMPE to model the joint influence of magnitude, distance, and near-site effects on observed PGA. We observe a strong correlation between dynamic stress drop and the residual PGA of each event, with the events with higher-than-expected PGA associated with higher values of stress drop. The strength of this correlation increases as a function of magnitude but remains significant even for smaller magnitude events with corner frequencies that approach the observable bandwidth of the acceleration records. Mainshock events are characterized by systematically higher stress drop and PGA than aftershocks of equivalent magnitude. Coherent local variations in the distribution of dynamic stress drop provide observational constraints to support the future development of nonergodic GMPEs that account for variations in median stress drop at different source locations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1430024-strong-correlation-between-stress-drop-peak-ground-acceleration-recent-m14-earthquakes-san-francisco-bay-area','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1430024-strong-correlation-between-stress-drop-peak-ground-acceleration-recent-m14-earthquakes-san-francisco-bay-area"><span>Strong correlation between stress drop and peak ground acceleration for recent M1–4 earthquakes in the San Francisco Bay Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Trugman, Daniel Taylor; Shearer, Peter M.</p> <p></p> <p>Theoretical and observational studies suggest that between-event variability in the median ground motions of larger ( M≥5 ) earthquakes is controlled primarily by the dynamic properties of the earthquake source, such as Brune-type stress drop. Analogous results remain equivocal for smaller events due to the lack of comprehensive and overlapping ground-motion and source-parameter datasets in this regime. Here in this paper, we investigate the relationship between peak ground acceleration (PGA) and dynamic stress drop for a new dataset of 5297 earthquakes that occurred in the San Francisco Bay area from 2002 through 2016. For each event, we measure PGA onmore » horizontal-component channels of stations within 100 km and estimate stress drop from P-wave spectra recorded on vertical-component channels of the same stations. We then develop a nonparametric ground-motion prediction equation (GMPE) applicable for the moderate (M 1–4) earthquakes in our study region, using a mixed-effects generalization of the Random Forest algorithm. We use the Random Forest GMPE to model the joint influence of magnitude, distance, and near-site effects on observed PGA. We observe a strong correlation between dynamic stress drop and the residual PGA of each event, with the events with higher-than-expected PGA associated with higher values of stress drop. The strength of this correlation increases as a function of magnitude but remains significant even for smaller magnitude events with corner frequencies that approach the observable bandwidth of the acceleration records. Mainshock events are characterized by systematically higher stress drop and PGA than aftershocks of equivalent magnitude. Coherent local variations in the distribution of dynamic stress drop provide observational constraints to support the future development of nonergodic GMPEs that account for variations in median stress drop at different source locations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2g3906C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2g3906C"><span>Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comiskey, P. M.; Yarin, A. L.; Attinger, D.</p> <p>2017-07-01</p> <p>A theoretical model describing the blood spatter pattern resulting from a blunt bullet gunshot is proposed. The predictions are compared to experimental data acquired in the present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the pressure impulse generating the blood flow. At the free surface, the latter is directed outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the flow of blood occurs, which is responsible for the formation of blood drops of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood drops can be determined. Then, the equations of motion are solved, describing drop trajectories in air accounting for gravity, and air drag. Also considered are the drop-drop interactions through air, which diminish air drag on the subsequent drops. Accordingly, deposition of two-phase (blood-drop and air) jets on a vertical cardstock sheet located between the shooter and the target (and perforated by the bullet) is predicted and compared with experimental data. The experimental data were acquired with a porous polyurethane foam sheet target impregnated with swine blood, and the blood drops were collected on a vertical cardstock sheet which was perforated by the blunt bullet. The highly porous target possesses a low hydraulic resistance and therefore resembles a pool of blood shot by a blunt bullet normally to its free surface. The back spatter pattern was predicted numerically and compared to the experimental data for the number of drops, their area, the total stain area, and the final impact angle as functions of radial location from the bullet hole in the cardstock sheet (the collection screen). Comparisons of the predicted results with the experimental data revealed satisfactory agreement. The predictions also allow one to find the impact Weber number on the collection screen, which is necessary to predict stain shapes and sizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950018486','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950018486"><span>Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bousman, William Scott</p> <p>1995-01-01</p> <p>Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23433819','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23433819"><span>Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hull, Jeffrey E; Balakin, Boris V; Kellerman, Brad M; Wrolstad, David K</p> <p>2013-07-01</p> <p>The goal of this research was to compare side-to-side (STS) and end-to-side (ETS) anastomoses in a computer model of the arteriovenous fistula with computational fluid dynamic analysis. A matrix of 17 computer arteriovenous fistula models (SolidWorks, Dassault Systèmes, France) of artery-vein pairs (3-mm-diameter artery + 3-mm-diameter vein and 4-mm-diameter artery +6-mm-diameter vein elliptical anastomoses) in STS, 45° ETS, and 90° ETS configurations with cross-sectional areas (CSAs) of 3.5 to 18.8 mm(2) were evaluated with computational fluid dynamic software (STAR-CCM+; CD-adapco, Melville, NY) in simulations at defined flow rates from 600 to 1200 mL/min and mean arterial pressures of 50 to 140 mm Hg. Models and configurations were evaluated for pressure drop across the anastomosis, arterial inflow, venous outflow, arterial outflow, velocity vector, and wall shear stress (WSS) profile. Pressure drop across the anastomosis was inversely proportional to anastomotic CSA and to venous outflow and was proportional to arterial inflow. Pressure drop was greater in 3 + 3 models than in 4 + 6 STS models; 90° ETS configurations had the lowest pressure drops and were nearly identical, whereas 45° ETS configurations had the highest pressure drops. Venous outflow in the 4 + 6 model in STS configurations, evaluated at 100 mm Hg arterial inflow pressure, was 390, 592, 610, and 886 mL/min in anastomotic CSAs of 3.5, 5.3, 7.1, and 18.8 mm(2), respectively, and was similar in 90° ETS (609 and 908 mL/min) and lower in 45° ETS (534 and 562 mL/min) configurations at CSAs of 5.3 and 18.8 mm(2). The mean increase in venous outflow was 69 mL/min (range, -59 to 134) between 3 + 3 and 4 + 6 models at 100 mm Hg arterial inflow. The most uniform WSS profile occurs in STS anastomoses followed by 45° ETS and then 90° ETS anastomoses. The STS and 90° ETS anastomoses have high venous outflow and a tendency toward reversed arterial outflow. The 45° ETS anastomosis has reduced venous outflow but resists reversed arterial outflow. The STS anastomosis has more uniform WSS characteristics compared with the 45° and 90° ETS anastomoses. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040053568','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040053568"><span>Low Stretch Solid-Fuel Flame Transient Response to a Step Change in Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Armstrong, J. B.; Olson, S. L.; T'ien, J. S.</p> <p>2003-01-01</p> <p>The effect of a step change in gravity level on the stability of low stretch diffusion flames over a solid fuel is studied both numerically and experimentally. Drop tower experiments have been conducted in NASA Glenn Research Center's 5.2 Zero Gravity Facility. In the experiments burning PMMA cylinders, a dynamic transition is observed when the steadily burning 1g flame is dropped and becomes a 0g flame. To understand the physics behind this dynamic transition, a transient stagnation point model has been developed which includes gas-phase radiation and solid phase coupling to describe this dynamic process. In this paper, the experimental results are compared with the model predictions. Both model and experiment show that the interior of the solid phase does not have time to change significantly in the few seconds of drop time, so the experimental results are pseudo-steady in the gas-phase, but the solid is inherently unsteady over long time scales. The model is also used to examine the importance of fractional heat losses on extinction, which clearly demonstrates that as the feedback from the flame decreases, the importance of the ongoing heat losses becomes greater, and extinction is observed when these losses represent 80% or more of the flame feedback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhyA..391.1445D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhyA..391.1445D"><span>Self-organized criticality in a network of economic agents with finite consumption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Cruz, João P.; Lind, Pedro G.</p> <p>2012-02-01</p> <p>We introduce a minimal agent model to explain the emergence of heavy-tailed return distributions as a result of self-organized criticality. The model assumes that agents trade their economic outputs with each other composing a complex network of agents and connections. Further, the incoming degree of an agent is proportional to the demand on its goods, while its outgoing degree is proportional to the supply. The model considers a collection of economic agents which are attracted to establish connections among them to make an exchange at a price formed by supply and demand. With our model we are able to reproduce the evolution of the return of macroscopic quantities (indices) and to correctly retrieve the non-trivial exponent value characterizing the amplitude of drops in several indices in financial markets, relating it to the underlying topology of connections. The distribution of drops in empirical data is obtained by counting the number of successive time-steps for which a decrease in the index value is observed. All eight financial indexes show an exponent m˜5/2. Finally, we present mean-field calculations of the critical exponents, and of the scaling relation m=3/2 γ-1 between the exponent m for the distribution of drops and the topological exponent γ for the degree distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..311a2018B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..311a2018B"><span>Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei</p> <p>2018-02-01</p> <p>Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12005764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12005764"><span>Model and observations of Schottky-noise suppression in a cold heavy-ion beam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Danared, H; Källberg, A; Rensfelt, K-G; Simonsson, A</p> <p>2002-04-29</p> <p>Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPlPh..81a9009Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPlPh..81a9009Z"><span>Electrical potential difference during laser welding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zohm, H.; Ambrosy, G.; Lackner, K.</p> <p>2015-01-01</p> <p>We present a new model for the generation of thermoelectric currents during laser welding, taking into account sheath effects at both contact points as well as the potential drop within the quasi-neutral plasma generated by the laser. We show that the model is in good agreement with experimentally measured electric potential difference between the hot and the cold parts of the welded workpiece. In particular, all three elements of the model are needed to correctly reproduce the sign of the measured voltage difference. The mechanism proposed relies on the temperature dependence of the electron flux from the plasma to the workpiece and hence does not need thermoemission from the workpiece surface to explain the experimentally observed sign and magnitude of the potential drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......303M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......303M"><span>Elaboration de revetements nanocomposites avec des proprietes superhydrophobes, semi-conductrices et photocatalytiques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madidi, Fatima Zahra</p> <p></p> <p>Les lignes aeriennes de transport et de distribution de l'energie electrique sont souvent exposees a diverses contraintes. Parmi celles-ci, la pollution des isolateurs constitue l'un des facteurs de premiere importance dans la fiabilite du transport d'energie. En effet, la presence de pollution sur les isolateurs lorsqu'elle est humidifiee entraine la diminution de leur performance electrique en favorisant l'apparition d'arcs de contournement. De telles pannes peuvent parfois causer des impacts socioeconomiques importants. Par ailleurs, le developpement de nouveaux revetements pour ces isolateurs peut s'averer un moyen efficace pour les proteger contre l'apparition de l'arc de contournement. Les revetements superhydrophobes ont fait l'objet de nombreuses etudes au cours de ces dernieres annees. Ces surfaces sont preparees en combinant une rugosite nano-microstructuree avec une faible energie de surface. En outre, de telles surfaces ont de nombreuses applications si elles sont durables et n'ont pas d'effets nocifs sur l'environnement. L'objectif principal de la presente etude vise d'abord l'elaboration de revetements superhydrophobes, puis l'etude de leur duree de vie, leurs proprietes dielectriques et photocatalytiques. Une grande variete de materiaux a faible energie de surface peuvent etre utilises pour le developpement de ces revetements. Dans cette recherche, le caoutchouc de silicone (CS) est employe car il presente de nombreuses proprietes, notamment une forte hydrophobie, une resistance aux rayonnements ultraviolets, et une bonne tenue au feu sans degagement de produits toxiques. Toutefois, le point faible de ces materiaux est la degradation de leurs proprietes hydrophobes. Afin d'ameliorer certaines proprietes du caoutchouc de silicone, des nanoparticules seront additionnees au polymere de base. La technique d'elaboration des revetements consiste a ajouter des nanoparticules de dioxyde de titane (TiO2) au polymere de base, par des methodes ayant un potentiel d'applications industrielles. Les parametres d'elaboration ont ete optimises afin d'obtenir des revetements stables presentant des angles de contact eleves avec des gouttelettes d'eau et de faibles hysteresis. Apres avoir obtenu des surfaces superhydrophobes, des tests de stabilite ont ete effectues dans des conditions de vieillissement accelere tels que l'immersion dans des solutions aqueuses avec differents pH et conductivites ou la degradation par rayonnement UV. Les resultats obtenus ont montre que l'ajout de nanoparticules de dioxyde de titane au caoutchouc de silicone permet d'ameliorer l'hydrophobie et la stabilite de ce polymere. Les revetements superhydrophobes obtenus ont pu maintenir leur superhydrophobicite apres plusieurs jours d'immersion dans differentes solutions aqueuses. Ils presentent aussi une bonne stabilite lorsqu'ils sont exposes aux rayons UV ainsi qu'une stabilite mecanique. De plus, on a pu developper des revetements nanocomposites et microcomposites avec de bonnes proprietes dielectriques. L'etude des proprietes photocatalytiques des revetements superhydrophobes ont montre que l'adsorption des molecules reactives (polluants) sur la surface du catalyseur (TiO2) est le parametre cle de l'activite photocatalytique. L'augmentation de la concentration de TiO2 conduit a une diminution de la concentration du polluant et par consequent a un excellent rendement photocatalytique.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>