Low Gravity Freefall Facilities
NASA Technical Reports Server (NTRS)
1981-01-01
Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.
Zero-Gravity Research Facility Drop Test (2/4)
NASA Technical Reports Server (NTRS)
1995-01-01
An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
Zero-Gravity Research Facility Drop Test (1/4)
NASA Technical Reports Server (NTRS)
1995-01-01
An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
Zero-Gravity Research Facility Drop Test (3/4)
NASA Technical Reports Server (NTRS)
1995-01-01
An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
Zero-Gravity Research Facility Drop Test (4/4)
NASA Technical Reports Server (NTRS)
1995-01-01
An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
1981-03-30
Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.
Extension of drop experiments with the MIKROBA balloon drop facility
NASA Astrophysics Data System (ADS)
Sommer, K.; Kretzschmar, K.; Dorn, C.
1992-12-01
The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.
TRACT 2 Frame Drop Test AT NASA Langley Research Center's Landin
2014-05-09
(Tract)2 Transport Rotorcraft Airframe Crash Testbed; Full Frame Drop Test: rotary wing crash worthiness, impact research at NASA Langley Research Center's Landing and Impact Research (LandIR) Facility Building 1297
Short Duration Reduced Gravity Drop Tower Design and Development
NASA Astrophysics Data System (ADS)
Osborne, B.; Welch, C.
The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, C.B.; Haglund, R.C.; Miller, M.E.
1996-12-31
The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, C.B.; Haglund, R.C.; Miller, M.E.
1996-12-31
The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less
Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test
NASA Technical Reports Server (NTRS)
Shreves, Christopher M.
2011-01-01
The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.
Capabilities and constraints of NASA's ground-based reduced gravity facilities
NASA Technical Reports Server (NTRS)
Lekan, Jack; Neumann, Eric S.; Sotos, Raymond G.
1993-01-01
The ground-based reduced gravity facilities of NASA have been utilized to support numerous investigations addressing various processes and phenomina in several disciplines for the past 30 years. These facilities, which include drop towers, drop tubes, aircraft, and sounding rockets are able to provide a low gravity environment (gravitational levels that range from 10(exp -2)g to 10(exp -6)g) by creating a free fall or semi-free fall condition where the force of gravity on an experiment is offset by its linear acceleration during the 'fall' (drop or parabola). The low gravity condition obtained on the ground is the same as that of an orbiting spacecraft which is in a state of perpetual free fall. The gravitational levels and associated duration times associated with the full spectrum of reduced gravity facilities including spaced-based facilities are summarized. Even though ground-based facilities offer a relatively short experiment time, this available test time has been found to be sufficient to advance the scientific understanding of many phenomena and to provide meaningful hardware tests during the flight experiment development process. Also, since experiments can be quickly repeated in these facilities, multistep phenomena that have longer characteristic times associated with them can sometimes be examined in a step-by-step process. There is a large body of literature which has reported the study results achieved through using reduced-gravity data obtained from the facilities.
Department of Defense In-House RDT and E Activities
1976-10-30
BALLISTIC TESTS.FAC AVAL FCR TESIS OF SP ELELTRONIC’ FIl’ CON EQUIP 4 RELATED SYSTEMS E COMPONFNTZ, 35 INSTALLATION: MEDICAL BIOENGINEERINC- R&D LABORATORY...ANALYSIS OF CHEMICAL AND METALLOGRAPHIC EFFECTS, MICROBIOLOGICAL EFFECTS, CLIMATIC ENVIRONMENTAL EFFECTS. TEST AND EVALUATE WARHEADS AND SPECIAL...CCMMUNICATI’N SYST:M INSTRUMENTED DROP ZONES ENGINEERING TEST FACILITY INSTRUMENTATION CALIBRATICN FACILITY SCIENTIFIC COMPUTER CENTER ENVIRONMENTAL TESY
Rectangular Drop Vehicle in the Zero Gravity Research Facility
1969-03-21
A rectangular drop test vehicle perched above 450-foot shaft at the Zero Gravity Research Facility at NASA Lewis Research Center. The drop tower was designed to provide five seconds of microgravity during a normal drop, but had a pneumatic gun that could quickly propel the vehicle to the top of the shaft prior to its drop, thus providing ten seconds of microgravity. The shaft contained a steel-lined vacuum chamber 20 feet in diameter and 469 feet deep. The package was stopped at the bottom of the pit by a 15-foot deep deceleration cart filled with polystyrene pellets. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the ten second drops. After the test vehicle was prepared it was suspended above the shaft from the top of the chamber. A lid was used to seal the top of the chamber. The vacuum system reduced the pressure levels inside the chamber. The bolt holding the vehicle was then sheared and the vehicle plummeted into the deceleration cart.
Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity
NASA Technical Reports Server (NTRS)
Stephens, T.; Adams, R.
1972-01-01
A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.
Multi-Terrain Vertical Drop Tests of a Composite Fuselage Section
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.
2008-01-01
A 5-ft-diameter composite fuselage section was retrofitted with four identical blocks of deployable honeycomb energy absorber and crash tested on two different surfaces: soft soil, and water. The drop tests were conducted at the 70-ft. drop tower at the Landing and Impact Research (LandIR) Facility of NASA Langley. Water drop tests were performed into a 15-ft-diameter pool of water that was approximately 42-in. deep. For the soft soil impact, a 15-ft-square container filled with fine-sifted, unpacked sand was located beneath the drop tower. All drop tests were vertical with a nominally flat attitude with respect to the impact surface. The measured impact velocities were 37.4, and 24.7-fps for soft soil and water, respectively. A fuselage section without energy absorbers was also drop tested onto water to provide a datum for comparison with the test, which included energy absorbers. In order to facilitate this type of comparison and to ensure fuselage survivability for the no-energy-absorber case, the velocity of the water impact tests was restricted to 25-fps nominal. While all tests described in this paper were limited to vertical impact velocities, the implications and design challenges of utilizing external energy absorbers during combined forward and vertical impact velocities are discussed. The design, testing and selection of a honeycomb cover, which was required in soft surface and water impacts to transmit the load into the honeycomb cell walls, is also presented.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
Flowrate testing of the bag filter LANCS-BOP 6CPVC-1.5-2SPVC (LANCS Industries) at 1 psig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Currie, Karissa Lyn; Berg, Charlotte Katherine
2016-09-13
The air flowrate through a flexible HEPA grade filter (Part LANCS-BOP 6CPVC-1.5-2SPVC www.lancsindustries.com) was measured at 48 ALPM for a differential pressure drop of 1.0 psig (28 inWC, 7.0 kPa). These filters are rated by the manufacturer to have a flowrate of 3 ALPM at a differential pressure drop of 1 inWC (0.25 kPa). The Los Alamos National Laboratory Aerosol Engineering Facility used one of their test rigs (originally developed to measure the pressure drop in capsule HEPA filters) to measure the airflow through the LANCS bag filter.
Assessment of the MHD capability in the ATHENA code using data from the ALEX facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1989-03-01
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1985-01-01
A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.
Calibration and use of filter test facility orifice plates
NASA Astrophysics Data System (ADS)
Fain, D. E.; Selby, T. W.
1984-07-01
There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.
NASA Astrophysics Data System (ADS)
Wong, Thiam
In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.
Test Package Plummets in the Zero Gravity Research Facility
1966-09-21
National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying the behavior of liquid in microgravity for several years using ballistic rocket flights, aircraft flying series of parabolas, and in the 2.2-Second Drop Tower. It was easier to control experiments and repeat tests based on almost instantaneous test results in the Zero Gravity Research Facility than missiles or aircraft. It also more than doubled the microgravity time of the original drop tower. The experiments were enclosed in a large experiment package that was suspended inside the chamber. A vacuum was introduced to the chamber before the package was released. The test equipment allowed researchers to film and take measurements of the experiment as it was falling. The 2500‐pound package was slowed by special Styrofoam‐like pellets in a decelerator cart. An experiment, traveling 176 feet per second, was stopped in about 15 feet of deceleration material. The facility’s designers struggled to determine the correct type of deceleration pellets to use. For several years Lewis engineers tested various samples from manufacturers. The final selection was not made until the facility’s completion in May 1966, just before the facility made its public debut at the 1966 Inspection of the Center.
LOX/Hydrogen Coaxial Injector Atomization Test Program
NASA Technical Reports Server (NTRS)
Zaller, M.
1990-01-01
Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.
NASA Technical Reports Server (NTRS)
Montoya, R. J.; Jai, A. R.; Parker, C. D.
1979-01-01
A ground based, general purpose, real time, digital control system simulator (CSS) is specified, developed, and integrated with the existing instrumentation van of the testing facility. This CSS is built around a PDP-11/55, and its operational software was developed to meet the dual goal of providing the immediate capability to represent the F-18 drop model control laws and the flexibility for expansion to represent more complex control laws typical of control configured vehicles. Overviews of the two CSS's developed are reviewed as well as the overall system after their integration with the existing facility. Also the latest version of the F-18 drop model control laws (REV D) is described and the changes needed for its incorporation in the digital and analog CSS's are discussed.
Before the Drop: Engineers Ready Supersonic Decelerator
2014-05-21
A saucer-shaped vehicle part of NASA Low-Density Supersonic Decelerator LDSD project designed to test interplanetary landing devices hangs on a tower in preparation for launch at the Pacific Missile Range Facility in Kauai, Hawaii.
Modified friction factor correlation for CICC's based on a porous media analogy
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Bagnasco, Maurizio
2011-09-01
A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.
2012-06-01
AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi
Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft, volume 1
NASA Technical Reports Server (NTRS)
Shane, S. J.
1985-01-01
A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is explored. An energy-absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests were conducted. The vertical drop tests were used to obtain comparative data between the energy-absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series.
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous ``sources`` and ``targets`` requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to ``calibrate`` the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous sources'' and targets'' requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to calibrate'' the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1988-10-28
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less
Technical activities report: Heat, water, and mechanical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, W.K.
1951-10-04
Topics in the heat studies section include: front and rear face reflector shields at the C-pile; process tube channel thermocouples; water temperature limits for horizontal rods; slug temperature and thermal conductivity calculations; maximum slug-end cap temperature; boiling consideration studies; scram time limit for Panellit alarm; heat transfer test; slug stresses; thermal insulation of bottom tube row at C-pile; flow tests; present pile enrichment; electric analog; and measurement of thermal contact resistance. Topics in the water studies section include: 100-D flow laboratory; process water studies; fundamental studies on film formation; coatings on tip-offs; can difference tests; slug jacket abrasion at highmore » flow rates; corrosion studies; front tube dummy slugs; metallographic examination of tubes from H-pile; fifty-tube mock-up; induction heating facility; operational procedures and standards; vertical safety rod dropping time tests; recirculation; and power recovery. Mechanical development studies include: effect of Sphincter seal and lubricant VSR drop time; slug damage; slug bubble tester; P-13 removal; chemical slug stripper; effect of process tube rib spacing and width; ink facility installation; charging and discharging machines; process tube creep; flapper nozzle assembly test; test of single gun barrel assembly; pigtail fixture test; horizontal rod gland seal test; function test of C-pile; and intermediate test of Ball 3-X and VSR systems.« less
Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer
Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.
2016-01-01
Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726
Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Peter N.; Ganni, Venkatarao
2015-12-01
Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less
Clean Room in the Zero Gravity Research Facility
1968-07-21
A technician prepares a test sample in the Zero Gravity Research Facility clean room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Zero Gravity Research Facility contained a drop tower which provided five seconds of microgravity during freefall in its 450-foot deep vacuum chamber. The facility has been used for a variety of studies relating to the behavior of fluids and flames in microgravity. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the special ten-second drops in which the package was pneumatically shot to the top of the tower then dropped. The facility also contained a control room, shop offices, tool and equipment rooms, and this clean room. The 242.5-foot long and 19.5-foot wide clean room was equipped with specialized cleaning equipment. In the 1960s the room was rated as a class 10,000 clean room, but I was capable of meeting the class 100 requirements. The room included a fume hood, ultrasonic cleaner, and a laminar flow station which operated as a class 100 environment. The environment in the clean room was maintained at 71° F and a relative humidity of 45- percent.
Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems
NASA Technical Reports Server (NTRS)
Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.
2008-01-01
High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.
MGBX - PS Crouch with experiment module
2016-08-12
STS083-346-024 (4-8 April 1997) --- Payload specialist Roger K. Crouch performs the activation for the Mid Deck Glove Box (MGBX). Made to accommodate a variety of hardware and materials testing, the facility offers physical isolation and a negative air pressure environment so that items that are not suitable for handling in the open Spacelab can be protected. One experiment that was performed on STS-83 is the Internal Flows in a Free Drop (IFFD), an experiment that investigates rotation and position control of drops by varying acoustic pressures.
NASA Technical Reports Server (NTRS)
1982-01-01
A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.
Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility
NASA Astrophysics Data System (ADS)
Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos
2016-12-01
Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a complex system with many interdependencies between all of the components, several engineering challenges had to be addressed. For example, initial disturbances that are caused by the release mechanism are a common issue that arises at drop tower facilities. These vibrations may decrease the quality of microgravity during the initial segment of free fall. Because this would reduce the free fall time experiencing high quality microgravity, a mechanism has been developed to provide a soft release. Challenges and proposed solutions for all components are highlighted in this paper.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
NASA Technical Reports Server (NTRS)
Shane, S. J.
1985-01-01
Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1999-01-01
A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.
Measurements in liquid fuel sprays
NASA Technical Reports Server (NTRS)
Chigier, N.; Mao, C. P.
1985-01-01
A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.
1967-01-01
This photograph shows a test firing of the the Saturn V S-II (second) stage at the Mississippi Test Facility's (MTF) S-II test stand. When the Saturn V booster stage (S-IC) burns out and drops away, power for the Saturn will be provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engines used liquid oxygen and liquid hydrogen as propellants. Static test of ground test versions of the S-II stage were conducted at North American Aviation's Santa Susana, California test site. All flight stages were tested at the Mississippi Test Facility, Bay St. Louis, Mississippi. MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Sternis Space Center in May 1988.
1967-01-01
This photograph shows a test firing of the the Saturn V S-II (second) stage at the Mississippi Test Facility's (MTF) S-II test stand. When the Saturn V booster stage (S-IC) burns out and drops away, power for the Saturn will be provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engine used liquid oxygen and liquid hydrogen as its propellants. Static test of ground test versions of the S-II stage were conducted at North American Aviation's Santa Susana, California test site. All flight stages were tested at the Mississippi Test Facility, Bay St. Louis, Mississippi. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Sternis Space Center (SSC) in May 1988.
NASA Astrophysics Data System (ADS)
Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.
2012-11-01
Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.
Small Liquid Hydrogen Tank for Drop Tower Tests
1964-11-21
A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.
Determinants of educational performance in India: Role of home and family
NASA Astrophysics Data System (ADS)
Desai, Uday
1991-06-01
This paper addresses the impacts of family and pupil characteristics on children's academic learning in primary schools in India. The present study focuses on the children who have dropped out before completing primary schooling. The study is based on a random sample of two hundred children from twenty villages in two districts in the state of Andhra Pradesh in south India. A special test was developed and administered to measure the academic achievement of the children. Our study found that education supplies and the sanitary facilities at home have a remarkable relationship with the academic performance of children. In addition, the locale of a child's home, its distance from the source of drinking water, the child's father's work status and literacy and the level (grade) of schooling that the child has completed before dropping out, also have significant influence on child's performance. Our study also found that the child's gender, age at enrollment, reason for dropping out, and parents' income, literacy and caste do not have significant influence on performance. These findings have important public policy implications for the provision of basic sanitary facilities to all households, subsidized educational supplies, free uniforms, text-books, and mid-day meals.
Bal, Harit K; Adams, Christopher; Grieshop, Matthew
2017-12-05
It has been suggested that fruit wastes including dropped and unharvested fruits, and fruit byproducts (i.e., pomace) found in fruit plantings and cideries or wine-making facilities could serve as potential off-season breeding sites for spotted wing Drosophila (Drosophila suzukii Matsumura (Diptera: Drosophilidae)). This idea, however, has yet to be widely tested. The goal of our study was to determine the potential of dropped fruit and fruit wastes as Fall spotted wing Drosophila breeding resources in Michigan, USA. Fruit waste samples were collected from 15 farms across the lower peninsula of Michigan and were evaluated for spotted wing Drosophila and other drosophilid emergence and used in host suitability bioassays. All of the dropped apples, pears, grapes, and raspberries and 40% of apple and 100% of grape fruit pomace evaluated were found to contain spotted wing Drosophila with the highest numbers collected from dropped grapes and pears. Greater spotted wing Drosophila recovery was found in fruit wastes at sites attached with cideries and wine-making facilities and with multiple cultivated fruit crops than sites with no cideries and only one crop. Females oviposited in raspberry, pear, apple, grape, apple pomace and grape pomace samples with the highest rates of reproduction in raspberries. Our results demonstrate that fruit wastes including dropped berry, pomme and stone fruits, as well as fruit compost may be important late season reproductive resources for spotted wing Drosophila. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Progress on Concepts for Next-Generation Drop Tower Systems
NASA Astrophysics Data System (ADS)
Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich
2016-07-01
The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher experiment repetition rates are discussed.
2011-10-15
Stennis Space Center Director Patrick Scheuermann (right) and Naval Meteorology and Oceanography Command Chief of Staff James Pettigrew drop the first shovelfuls of dirt on a time capsule to be opened on the rocket engine test facility's 100th anniversary in 2061. The time capsule was placed in front of the Roy S. Estess Building on Oct. 25 as Stennis concluded celebrations of its 50th anniversary. NASA publicly announced plans to build the rocket engine test site Oct. 25, 1961.
NASA Technical Reports Server (NTRS)
Shane, S. J.
1985-01-01
The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.
2011-10-15
Stennis Space Center Director Patrick Scheuermann (right) and Naval Meteorology and Oceanography Command Chief of Staff James Pettigrew drop the first shovelfuls of dirt on a time capsule to be opened on the rocket engine test facility's 100th anniversary in 2061. The time capsule was placed in front of the Roy S. Estess Building on Oct. 25 as Stennis concluded celebrations of its 50th anniversary.
Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)
NASA Astrophysics Data System (ADS)
Phillips, Kyle G.
West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via experimentation provided repeatability characteristics of the facility. Based on checkout instrumentation, Initial repeatability results indicated a drop time of 1.26 seconds at an average of 0.06g, with a standard deviation of 0.085g over the period of the drop, and a peak impact load of 28.72g, with a standard deviation of 10.73g, for a payload weight of 113.8 lbs. In order to thoroughly check out the facility, a full-scale, fully operational experiment was developed to create an experience that provides a comprehensive perspective of the end-user experience to the developer, so as to incorporate the details that may have been overlooked to the designer and/or developer, in this case, Kyle Phillips. The experiment that was chosen was to determine the effects of die swell, or extrudate swell, in reduced gravity. Die swell is a viscoelastic phenomenon that occurs when a dilatant, or shear-thickening substance is forced through a sufficient constriction, or "die," such that the substance expands, or "swells," downstream of the constriction, even while forming and maintaining a free jet at ambient sea level conditions. A wide range of dilatants exhibit die swell when subjected to the correct conditions, ranging from simple substances such as ketchup, oobleck, and shampoo to complex specially-formulated substances to be used for next generation body armor and high performance braking systems. To date, very few, if any, have researched the stabilizing effect that gravity may have on the phenomenon of die swell. By studying a fluid phenomenon in a reduced gravity environment, both the effect of gravity can be studied and the predominant forces acting on the fluid can be concluded. Furthermore, a hypothesis describing the behavior of a viscoelastic fluid particle employing the viscous Navier-Stokes Equations was derived to attempt to push the fluid mechanics community toward further integrating more fluid behavior into a unified mathematical model of fluid mechanics. While inconclusive in this experiment, several suggestions for future research were made in order to further the science behind die swell, and a comprehensive checkout of the facility and its operations were characterized. As a result of this checkout experience, several details were modified or added to the facility in order for the drop tower to be properly operated and provide the optimal user experience, such that open operation of the WVU SMiRF may begin in the Fall of 2014.
NASA Technical Reports Server (NTRS)
Workman, G. L.
1986-01-01
Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.
Solid surface wetting and the deployment of drops in microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Depew, J.
1994-01-01
The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.
Solid Surface Wetting and the Deployment of Drops in Microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Depew, J.
1994-01-01
The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.
The Drop Tower Bremen -An Overview
NASA Astrophysics Data System (ADS)
von Kampen, Peter; Könemann, Thorben; Rath, Hans J.
The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100Hz) demonstrates a perfect experimental environment for unperturbed investigations of scientific phenomena. Motivated by these prospects many national and international groups have initialized research programs taking advantage of this drop tower facility. In respect thereof the spectrum of research fields and technologies in space-related conditions can be continuously enhanced at ZARM. In the first of our two talks we will give you an overview about the inner structure of ZARM, as well as the service and the operation offered by the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH). The ZARM FAB mbH owned by the State Government of Bremen is a public company maintaining the drop tower facility and supporting experimentalists in scientific and technical questions before, during and after their drop or catapult campaigns. In detail, we will present you important technical drop tower informations, our support and the idea, how you can proceed with your microgravity-related experiment including all your requirements to successfully accomplish an entire drop or catapult campaign. In summary, we will illustrate the complete procedure, how to drop or to catapult an experiment capsule at the Drop Tower Bremen.
State deregulation and Medicare costs for acute cardiac care.
Ho, Vivian; Ku-Goto, Meei-Hsiang
2013-04-01
Past literature suggests that Certificate of Need (CON) regulations for cardiac care were ineffective in improving quality, but less is known about the effect of CON on patient costs. We analyzed Medicare data for 1991-2002 to test whether states that dropped CON experienced changes in costs or reimbursements for coronary artery bypass graft (CABG) surgery or percutaneous coronary interventions. We found that states that dropped CON experienced lower costs per patient for CABG but not for percutaneous coronary intervention. Average Medicare reimbursement was lower for both procedures in states that dropped CON. The cost savings from removing CON regulations slightly exceed the total fixed costs of new CABG facilities that entered after deregulation. Assuming continued cost savings past 2002, the savings from deregulating CABG surgery outweigh the fixed costs of new entry. Thus, CON regulations for CABG may not be justified in terms of either improving quality or controlling cost growth.
1995-04-06
An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
1995-04-06
An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
1995-04-06
An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
1995-04-06
An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)
Finite Element Simulations of Two Vertical Drop Tests of F-28 Fuselage Sections
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Littell, Justin D.; Annett, Martin S.; Haskin, Ian M.
2018-01-01
In March 2017, a vertical drop test of a forward fuselage section of a Fokker F-28 MK4000 aircraft was conducted as part of a joint NASA/FAA project to investigate the performance of transport aircraft under realistic crash conditions. In June 2017, a vertical drop test was conducted of a wing-box fuselage section of the same aircraft. Both sections were configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in seats using standard lap belt restraints. The forward fuselage section was also configured with luggage in the cargo hold. Both sections were outfitted with two hat racks, each with added ballast mass. The drop tests were performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The measured impact velocity for the forward fuselage section was 346.8-in/s onto soil. The wing-box section was dropped with a downward facing pitch angle onto a sloping soil surface in order to create an induced forward acceleration in the airframe. The vertical impact velocity of the wing-box section was 349.2-in/s. A second objective of this project was to assess the capabilities of finite element simulations to predict the test responses. Finite element models of both fuselage sections were developed for execution in LS-DYNA(Registered Trademark), a commercial explicit nonlinear transient dynamic code. The models contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, the luggage in the cargo hold for the forward section, and the detailed under-floor structure in the wing-box section. Initially, concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. However, later simulations were performed that included finite element representations of the seats, restraints, and ATD occupants. These models were developed to more accurately replicate the seat loading of the floor and to enable prediction of occupant impact responses. Models were executed to generate analytical predictions of airframe responses, which were compared with test data to validate the model. Comparisons of predicted and experimental structural deformation and failures were made. Finally, predicted and experimental soil deformation and crater depths were also compared for both drop test configurations.
A new testing station about full-scale testing for rockfall protection systems
NASA Astrophysics Data System (ADS)
Bost, Marion; Dubois, Laurent; Rocher-Lacoste, Frédéric
2010-05-01
Rock blocks which detach from slopes overhanging urban areas, roads, railways and other infrastructures create one of the most frequent hazards in mountainous areas. Some of protection systems against rockfalls are designed to mitigate the effects of a foreseen movement by intercepting and stopping falling rock blocks. Despite the worldwide application of this kind of protections, the global behaviour of such a system has been poorly investigated, for the time being, and only at a reduced scale. The behaviour of these protection systems at real scale has been widely extrapolated, however these theories have still not been investigated by performing relating test at scale 1. The French Public Work Laboratory (LCPC) has decided to build a new testing station to work on that topic. This new testing station located in French Alps is able to drop heavy loads (up to 20 tons) from the top of a cliff down to structural systems in order to test their resistance to big shocks and study their dynamical behaviour at this high energy level. As the fall height can reach near 70m, the impact velocity can actually reach 35 metres per second and the energy released during the impact can be as large as 13 500 kilojoules. The experimental area at the bottom of the cliff which can be impacted by a block is 12 metres wide. This allows to test not only rockfall protection systems at scale 1 but also some parts of building structures too. To avoid damaging test-structure during a block drop due to dynamical effects, the dropping hook was designed with a special system. This one consists of a reversed mass which can be adapted to the dropped block and dropped together with the block. Moreover, it is very important to pay attention on repeatability of results concerning new devices for experiments. Whatever fall height the impact point is hit so with a precision of 50 centimetres. Such an experimental facility needs to be equipped with a relevant instrumentation. High capacity stress sensors, accelerometers and high speed cameras are available for experiments. They have been chosen for their capacity to work with an important length of cables. The monitoring with these experimental devices is performed at a high sample frequency suitable and for a very short load like an impact. A radio controlled system allows triggering monitoring and dropping at the same time. Due to bounce risk with the dropped block the safety of personal is ensured by strict operating rules. An observation platform has been located on an embankment along the test-site in order to follow experiments without risk. Two years were necessary for the test-site construction and its equipment. First tests on rockfall nets fences were performed at the end of 2009.
Emulation of Condensed Fuel Flames Using a Burning Rate Emulator (BRE) in Microgravity
NASA Technical Reports Server (NTRS)
Markan, A.; Quintiere, J. G.; Sunderland, P. B.; De Ris, J. L.; Stocker, D. P.
2017-01-01
The Burning Rate Emulator (BRE) is a gaseous fuel burner developed to emulate the burning of condensed phase fuels. The current study details several tests at the NASA Glenn 5-s drop facility to test the BRE technique in microgravity conditions. The tests are conducted for two burner diameters, 25 mm and 50 mm respectively, with methane and ethylene as the fuels. The ambient pressure, oxygen content and fuel flow rate are additional parameters. The microgravity results exhibit a nominally hemispherical flame with decelerating growth and quasi-steady heat flux after about 5 seconds. The BRE burner was evaluated with a transient analysis to assess the extent of steady-state achieved. The burning rate and flame height recorded at the end of the drop are correlated using two steady-state purely diffusive models. A higher burning rate for the bigger burner as compared to theory indicates the significance of gas radiation. The effect of the ambient pressure and oxygen concentration on the heat of gasification are also examined.
Ballistocraft: a novel facility for microgravity research.
Mesland, D; Paris, D; Huijser, R; Lammertse, P; Postema, R
1995-05-01
One of ESA's aims is to provide the microgravity research community with various microgravity exposure facilities. Those facilities include drop towers, sounding rockets, and parabolic flights on board aircraft, in addition to orbital spacecraft. Microgravity flights are usually achieved using large aircraft like the French 'Caravelle' that offer a large payload volume and where a person can be present to perform the experiments and to participate as a human test-subject. However, the microgravity community is also very interested in a flexible, complementary facility that would allow frequent and repetitive exposure to microgravity for a laboratory-type of payload. ESA has therefore undertaken a study of the potential of using a 'ballistocraft', a small unmanned aircraft, to provide a low-cost facility for short-duration (30-40 seconds) microgravity experimentation. Fokker Space & Systems performed the study under an ESA contract, supported by Dutch national funding. To assess the ballistocraft, a simple breadboard of the facility was built and flight tests were performed. The ability of the on-board controller to achieve automated parabolic flights was demonstrated, and the performance of the controller in one-g level flights, and in flights with both zero-g and partial-g setpoints, was evaluated. The partial-g flights are a unique and valuable feature of the facility.
Proposed Space Flight Experiment Hardware
NASA Technical Reports Server (NTRS)
2003-01-01
The primary thrust for this plan is to develop design tools and fundamental understanding that are timely and consistent with the goal of the various exploration initiatives. The plan will utilize ISS facilities, such as the Fluids Integrated Rack (FIR) and the Microgravity Science Glovebox (MSG). A preliminary flow schematic of Two-Phase Flow Facility (T(phi)FFy) which would utilize FIR is shown in Figure 3. MSG can be utilized to use the Boiling eXperiment Facility (BXF) and Contact Line Dynamics Experiment (CLiDE) Facility. The T(phi)FFy system would have multiple test sections whereby different configurations of heat exchangers could be used to study boiling and condensation phenomena. The test sections would be instrumented for pressure drop, void fraction, heat fluxes, temperatures, high-speed imaging and other diagnostics. Besides a high-speed data acquisition system with a large data storage capability, telemetry could be used to update control and test parameters and download limited amounts of data. In addition, there would be multiple accumulators that could be used to investigate system stability and fluid management issues. The system could accommodate adiabatic tests through either the space station nitrogen supply or have an experiment-specific compressor to pressurize a sufficient amount of air or other non-condensable gas for reuse as the supply bottle is depleted.
Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
Gimbel, Sarah; Voss, Joachim; Mercer, Mary Anne; Zierler, Brenda; Gloyd, Stephen; Coutinho, Maria de Joana; Floriano, Florencia; Cuembelo, Maria de Fatima; Einberg, Jennifer; Sherr, Kenneth
2014-10-21
The objective of the prevention of Mother-to-Child Transmission (pMTCT) cascade analysis tool is to provide frontline health managers at the facility level with the means to rapidly, independently and quantitatively track patient flows through the pMTCT cascade, and readily identify priority areas for clinic-level improvement interventions. Over a period of six months, five experienced maternal-child health managers and researchers iteratively adapted and tested this systems analysis tool for pMTCT services. They prioritized components of the pMTCT cascade for inclusion, disseminated multiple versions to 27 health managers and piloted it in five facilities. Process mapping techniques were used to chart PMTCT cascade steps in these five facilities, to document antenatal care attendance, HIV testing and counseling, provision of prophylactic anti-retrovirals, safe delivery, safe infant feeding, infant follow-up including HIV testing, and family planning, in order to obtain site-specific knowledge of service delivery. Seven pMTCT cascade steps were included in the Excel-based final tool. Prevalence calculations were incorporated as sub-headings under relevant steps. Cells not requiring data inputs were locked, wording was simplified and stepwise drop-offs and maximization functions were included at key steps along the cascade. While the drop off function allows health workers to rapidly assess how many patients were lost at each step, the maximization function details the additional people served if only one step improves to 100% capacity while others stay constant. Our experience suggests that adaptation of a cascade analysis tool for facility-level pMTCT services is feasible and appropriate as a starting point for discussions of where to implement improvement strategies. The resulting tool facilitates the engagement of frontline health workers and managers who fill out, interpret, apply the tool, and then follow up with quality improvement activities. Research on adoption, interpretation, and sustainability of this pMTCT cascade analysis tool by frontline health managers is needed. ClinicalTrials.gov NCT02023658, December 9, 2013.
Experimental Methods Using Photogrammetric Techniques for Parachute Canopy Shape Measurements
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Downey, James M.; Lunsford, Charles B.; Desabrais, Kenneth J.; Noetscher, Gregory
2007-01-01
NASA Langley Research Center in partnership with the U.S. Army Natick Soldier Center has collaborated on the development of a payload instrumentation package to record the physical parameters observed during parachute air drop tests. The instrumentation package records a variety of parameters including canopy shape, suspension line loads, payload 3-axis acceleration, and payload velocity. This report discusses the instrumentation design and development process, as well as the photogrammetric measurement technique used to provide shape measurements. The scaled model tests were conducted in the NASA Glenn Plum Brook Space Propulsion Facility, OH.
The NASA, Marshall Space Flight Center drop tube user's manual
NASA Technical Reports Server (NTRS)
Rathz, Thomas J.; Robinson, Michael B.
1990-01-01
A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.
The Drop Tower Bremen -Experiment Operation
NASA Astrophysics Data System (ADS)
Könemann, Thorben; von Kampen, Peter; Rath, Hans J.
The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a microgravity project at the Drop Tower Bremen, interesting experimentalists should keep in mind generally reducing dimensions and masses of their common laboratory setups to meet the capsule constraints: overall payload height 980mm/1730mm (short/long drop capsule) and 950mm (catapult capsule); area of each capsule platform 0,359sqm; maximum payload mass 274kg/234kg (short/long drop capsule) and 163,8kg (catapult capsule). The base equipments of each capsule are the Capsule Control System (CCS) to remote control the experiment and the rechargeable battery pack (24V/40A) for the experiment operation. Moreover, the exper-iment components must be able to withstand maximum decelerations of 50g while the short capsule impact of about 200ms, and maximum accelerations of 30g while catapult launch with a duration of about 300ms. In our second talk concerning ZARM`s drop tower facility we will go on with detailed infor-mations about the technical base setups of the drop and the catapult capsule structure to completely handle a freely falling experiment. Furthermore, we will summarize interesting current drop tower projects as an outlook to present you the range of opportunities at the ground-based short-term microgravity laboratory of ZARM.
The USML-1 wire insulation flammability glovebox experiment
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi
1995-01-01
Flame spreading tests have been conducted using thin fuels in microgravity where buoyant convection is suppressed. In spacecraft experiments flames were ignited in quiescent atmospheres with an elevated oxygen content, demonstrating that diffusional mechanisms can be sufficient alone to sustain flame spreading. In ground-based facilities (i.e. drop towers and parabolic aircraft) low-speed convection sustains flames at much lower concentrations of atmospheric oxygen than in quiescent microgravity. Ground-based experiments are limited to very thin fuels (e.g., tissue paper); practical fuels, which are thicker, require more test time than is available. The Glovebox Facility provided for the USML 1 mission provided an opportunity to obtain flame spreading data for thicker fuel Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility. This experiment explored the heating, ignition and burning of 0.65 mm thick polyethylene wire insulation in low-speed flows in a reduced gravity environment. Four tests were conducted, two each in concurrent flow (WIF A and C) and opposed flow (WIF B and D), providing the first demonstration of flame spreading in controlled forced convection conducted in space.
Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML
NASA Technical Reports Server (NTRS)
Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian
2012-01-01
This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.
NASA Technical Reports Server (NTRS)
Lee, Jin-Ho; Krivanek, Thomas M.
2005-01-01
The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.
Performance Characterization of the Production Facility Prototype Helium Flow System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen
2015-12-16
The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less
Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS
NASA Technical Reports Server (NTRS)
Urban, David L.; Singh, Bhim S.; Kohl, Fred J.
2007-01-01
Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The B-52B-008 drop test consisted of one takeoff roll to 60 KCAS, two captive flights to accomplish limited safety of flight flutter and structural demonstration testing, and seven drop test flights. Of the seven drop test missions, one flight was aborted due to the failure of the hook mechanism to release the drop test vehicle (DTV); but the other six flights successfully dropped the DTV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Aaron J.; Salko, Robert K.
This report summarizes the work done to validate the droplet entrainment and de-entrainment models as well as two-phase closure models in the CTF code by comparison with experimental data obtained at Riso National Laboratory. The Riso data included a series of over 250 steam/water experiments that were performed in both tube and annulus geometries over a range of various pressures and outlet qualities. Experimental conditions were set so that the majority of cases were in the annular/mist ow regime. Measurements included liquid lm ow rate, droplet ow rate, lm thickness, and two-phase pressure drop. CTF was used to model 180more » of the tubular geometry cases, matching experimental geometry, outlet pressure, and outlet ow quality to experimental values. CTF results were compared to the experimental data at the outlet of the test section in terms of vapor and entrained liquid ow fractions, pressure drop per unit length, and liquid lm thickness. The entire process of generating CTF input decks, running cases, extracting data, and generating comparison plots was scripted using Python and Matplotlib for a completely automated validation process. All test cases and scripting tools have been committed to the COBRA-TF master repository and selected cases have been added to the continuous testing system to serve as regression tests. The dierences between the CTF- and experimentally-calculated ow fraction values were con- sistent with previous calculations by Wurtz, who applied the same entrainment correlation to the same data. It has been found that CTF's entrainment/de-entrainment predictive capability in the annular/mist ow regime for this particular facility is comparable to the licensed industry code, COBRAG. While lm and droplet predictions are generally good, it has been found that accuracy is diminished at lower ow qualities. This nding is consistent with the noted deciencies in the Wurtz entrainment model employed by CTF. The CTF predicted two-phase pressure drop in the annular/mist ow regime has been found to be highly inaccurate, exhibiting a clear bias with respect to the experimental data. This inaccuracy led to an investigation that revealed deciencies in the implementation of the annular/mist interfacial friction model, which should be investigated further in the future. Looking to published COBRAG results for this same facility reveal it exhibits no bias with regard to experimental pressure drop results. In addition to the problems with pressure drop prediction, the lm thickness was also signicantly under-predicted by CTF compared to both experimental data and Wurtz's analytical calculations. Film thickness is calculated using a simple geometric relationship and lm void fraction in CTF, which is dependent on slip ratio and interfacial friction. It is possible that the issues aecting the pressure drop and lm void prediction are related.« less
Vertical drop test of a transport fuselage section located aft of the wing
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Alfaro-Bou, E.
1986-01-01
A 12-foot long Boeing 707 aft fuselage section with a tapering cross section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crash laods and to provide data for nonlinear finite element modeling. This was the final test in a series of three different transport fuselage sections tested under identical conditions. The test parameters at impact were: 20 ft/s velocity, and zero pitch, roll, and yaw. In addition, the test was an operational shock test of the data acquisition system used for the Controlled Impact Demonstration (CID) of a remotely piloted Boeing 720 that was crash tested at NASA Ames Dryden Flight Research Facility on December 1, 1984. Post-test measurements of the crush showed that the front of the section (with larger diameter) crushed vertically approximately 14 inches while the rear crushed 18 inches. Analysis of the data traces indicate the maximum peak normal (vertical) accelerations at the bottom of the frames were approximately 109 G at body station 1040 and 64 G at body station 1120. The peak floor acceleration varied from 14 G near the wall to 25 G near the center where high frequency oscillations of the floor were evident. The peak anthropomorphic dummy pelvis normal (vertical) acceleration was 19 G's.
On-sun testing of an advanced falling particle receiver system
NASA Astrophysics Data System (ADS)
Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Siegel, Nathan; Jeter, Sheldon; Golob, Matthew; Abdel-Khalik, Said I.; Nguyen, Clayton; Al-Ansary, Hany
2016-05-01
A 1 MWth high-temperature falling particle receiver was constructed and tested at the National Solar Thermal Test Facility at Sandia National Laboratories. The continuously recirculating system included a particle elevator, top and bottom hoppers, and a cavity receiver that comprised a staggered array of porous chevron-shaped mesh structures that slowed the particle flow through the concentrated solar flux. Initial tests were performed with a peak irradiance of ~300 kW/m2 and a particle mass flow rate of 3.3 kg/s. Peak particle temperatures reached over 700 °C near the center of the receiver, but the particle temperature increase near the sides was lower due to a non-uniform irradiance distribution. At a particle inlet temperature of ~440 °C, the particle temperature increase was 27 °C per meter of drop length, and the thermal efficiency was ~60% for an average irradiance of 110 kW/m2. At an average irradiance of 211 kW/m2, the particle temperature increase was 57.1 °C per meter of drop length, and the thermal efficiency was ~65%. Tests with higher irradiances are being performed and are expected to yield greater particle temperature increases and efficiencies.
Centrifuge in Free Fall: Combustion at Partial Gravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul
2017-01-01
A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.
Delvaux, Thérèse; Konan, Jean-Paul Diby; Aké-Tano, Odile; Gohou-Kouassi, Valérie; Bosso, Patrice Emery; Buvé, Anne; Ronsmans, Carine
2008-08-01
To assess whether implementation of a prevention of mother-to-child HIV transmission (PMTCT) programme in Côte d'Ivoire improved the quality of antenatal and delivery care services. Quality of antenatal and delivery care services was assessed in five urban health facilities before (2002-2003) and after (2005) the implementation of a PMTCT programme through review of facility data; observation of antenatal consultations (n = 606 before; n = 591 after) and deliveries (n = 229 before; n = 231 after) and exit interviews of women; and interviews of health facility staff. HIV testing was never proposed at baseline and was proposed to 63% of women at the first ANC visit after PMTCT implementation. The overall testing rate was 42% and 83% of tested HIV-infected pregnant women received nevirapine. In addition, inter-personal communication and confidentiality significantly improved in all health facilities. In the maternity ward, quality of obstetrical care at admission, delivery and post-partum care globally improved in all facilities after the implementation of the programme although some indicators remained poor, such as filling in the partograph directly during labour. Episiotomy rates among primiparous women dropped from 64% to 25% (P < 0.001) after PMTCT implementation. Global scores for quality of antenatal and delivery care significantly improved in all facilities after the implementation of the programme. Introducing comprehensive PMTCT services can improve the quality of antenatal and delivery care in general.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Finchum, Andy; Hubbs, Whitney; Evans, Steve
2008-01-01
Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
NASA Technical Reports Server (NTRS)
Urban, David
2013-01-01
Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)
NASA Technical Reports Server (NTRS)
Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.;
2016-01-01
A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.
Instrument Development of Real Time Holographic Water Drop Size Measurement System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, Stephen
2007-02-09
BNL participated with multiple correspondences with Physical Optics Corporation (POC) on the design considerations of an airbome instrument. A pod for extemal deployment ofthe POC unit on the DOE Research Aircraft Facility (RAF), an instrumented, Grumman G-1 aircraft was loaned to POC. BNL proposed evaluation flight tests between the POC unit and the BNL Cloud Aerosol Probe Spectrometer (CAPS) as a reference method. BNL's involvement is described in the semi-annual report ofPOC to DOE. Because of unanticipated technical and engineering difficulties, POC was unable to fit their instrument into an aircraft pod. As a result they are now focusing onmore » a ground-based version first. A prototype laboratory version of the Real-Time Holographic Water Drop Size Measurement (WDSM) System has been constructed.« less
Analysis of cryogenic propellant behavior in microgravity and low thrust environments
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; Schmidt, George R.; Martin, James J.
1991-01-01
Predictions of a CFD program calculating a fluid-free surface shape and motion as a function of imposed acceleration are validated against the drop-tower test data collected to support design and performance assessments of the Saturn S-IVB stage liquid-hydrogen tank. The drop-tower facility, experimental package, and experiment procedures are outlined, and the program is described. It is noted that the validation analysis confirms the program's suitability for predicting low-g fluid slosh behavior, and that a similar analysis could examine the effect of incorporating baffles and screens to impede initiation of any unwanted side loads due to slosh. It is concluded that in actual vehicle applications, the engine thrust tailoff profile should be included in computer simulations if the precise interface versus time definition is needed.
CVD facility electrical system captor/dapper study
DOE Office of Scientific and Technical Information (OSTI.GOV)
SINGH, G.
1999-10-28
Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.
Hadlocon, Lara Jane S; Manuzon, Roderick B; Zhao, Lingying
2015-01-01
Significant ammonia emissions from animal facilities need to be controlled due to its negative impacts on human health and the environment. The use of acid spray scrubber is promising, as it simultaneously mitigates and recovers ammonia emission for fertilizer. Its low pressure drop contribution on axial fans makes it applicable on US farms. This study develops a full-scale acid spray scrubber to recover ammonia emissions from commercial poultry facilities and produce nitrogen fertilizer. The scrubber performance and economic feasibility were evaluated at a commercial poultry manure composting facility that released ammonia from exhaust fans with concentrations of 66-278 ppmv and total emission rate of 96,143 kg yr(-1). The scrubber consisted of 15 spray scrubber modules, each equipped with three full-cone nozzles that used dilute sulphuric acid as the medium. Each nozzle was operated at 0.59 MPa with a droplet size of 113 μm and liquid flow rate of 1.8 L min(-1). The scrubber was installed with a 1.3-m exhaust fan and field tested in four seasons. Results showed that the scrubber achieved high NH3 removal efficiencies (71-81%) and low pressure drop (<25 Pa). Estimated water and acid losses are 0.9 and 0.04 ml m(-3) air treated, respectively. Power consumption rate was between 89.48 and 107.48 kWh d(-1). The scrubber effluents containing 22-36% (m/v) ammonium sulphate are comparable to the commercial-grade nitrogen fertilizer. Preliminary economic analysis indicated that the break-even time is one year. This study demonstrates that acid spray scrubbers can economically and effectively recover NH3 from animal facilities for fertilizer.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be filled...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to their...
Development flight tests of the Viking decelerator system.
NASA Technical Reports Server (NTRS)
Murrow, H. N.; Eckstrom, C. V.; Henke, D. W.
1973-01-01
Significant aspects of a low altitude flight test phase of the overall Viking decelerator system development are given. This test series included nine aircraft drop tests that were conducted at the Joint Parachute Test Facility, El Centro, California, between September 1971 and May 1972. The test technique and analytical planning method utilized to best simulate loading conditions in a low density environment are presented and some test results are shown to assess their adequacy. Performance effects relating to suspension line lengths of 1.7 D sub o with different canopy loadings are noted. System hardware developments are described, in particular the utilization of a fabric deployment mortar cover which remained attached to the parachute canopy. Finally, the contribution of this test series to the overall program is assessed.
Systems analysis and improvement to optimize pMTCT (SAIA): a cluster randomized trial
2014-01-01
Background Despite significant increases in global health investment and the availability of low-cost, efficacious interventions to prevent mother-to-child HIV transmission (pMTCT) in low- and middle-income countries with high HIV burden, the translation of scientific advances into effective delivery strategies has been slow, uneven and incomplete. As a result, pediatric HIV infection remains largely uncontrolled. A five-step, facility-level systems analysis and improvement intervention (SAIA) was designed to maximize effectiveness of pMTCT service provision by improving understanding of inefficiencies (step one: cascade analysis), guiding identification and prioritization of low-cost workflow modifications (step two: value stream mapping), and iteratively testing and redesigning these modifications (steps three through five). This protocol describes the SAIA intervention and methods to evaluate the intervention’s impact on reducing drop-offs along the pMTCT cascade. Methods This study employs a two-arm, longitudinal cluster randomized trial design. The unit of randomization is the health facility. A total of 90 facilities were identified in Côte d’Ivoire, Kenya and Mozambique (30 per country). A subset was randomly selected and assigned to intervention and comparison arms, stratified by country and service volume, resulting in 18 intervention and 18 comparison facilities across all three countries, with six intervention and six comparison facilities per country. The SAIA intervention will be implemented for six months in the 18 intervention facilities. Primary trial outcomes are designed to assess improvements in the pMTCT service cascade, and include the percentage of pregnant women being tested for HIV at the first antenatal care visit, the percentage of HIV-infected pregnant women receiving adequate prophylaxis or combination antiretroviral therapy in pregnancy, and the percentage of newborns exposed to HIV in pregnancy receiving an HIV diagnosis eight weeks postpartum. The Consolidated Framework for Implementation Research (CFIR) will guide collection and analysis of qualitative data on implementation process. Discussion This study is a pragmatic trial that has the potential benefit of improving maternal and infant outcomes by reducing drop-offs along the pMTCT cascade. The SAIA intervention is designed to provide simple tools to guide decision-making for pMTCT program staff at the facility level, and to identify low cost, contextually appropriate pMTCT improvement strategies. Trial registration ClinicalTrials.gov NCT02023658 PMID:24885976
Systems analysis and improvement to optimize pMTCT (SAIA): a cluster randomized trial.
Sherr, Kenneth; Gimbel, Sarah; Rustagi, Alison; Nduati, Ruth; Cuembelo, Fatima; Farquhar, Carey; Wasserheit, Judith; Gloyd, Stephen
2014-05-08
Despite significant increases in global health investment and the availability of low-cost, efficacious interventions to prevent mother-to-child HIV transmission (pMTCT) in low- and middle-income countries with high HIV burden, the translation of scientific advances into effective delivery strategies has been slow, uneven and incomplete. As a result, pediatric HIV infection remains largely uncontrolled. A five-step, facility-level systems analysis and improvement intervention (SAIA) was designed to maximize effectiveness of pMTCT service provision by improving understanding of inefficiencies (step one: cascade analysis), guiding identification and prioritization of low-cost workflow modifications (step two: value stream mapping), and iteratively testing and redesigning these modifications (steps three through five). This protocol describes the SAIA intervention and methods to evaluate the intervention's impact on reducing drop-offs along the pMTCT cascade. This study employs a two-arm, longitudinal cluster randomized trial design. The unit of randomization is the health facility. A total of 90 facilities were identified in Côte d'Ivoire, Kenya and Mozambique (30 per country). A subset was randomly selected and assigned to intervention and comparison arms, stratified by country and service volume, resulting in 18 intervention and 18 comparison facilities across all three countries, with six intervention and six comparison facilities per country. The SAIA intervention will be implemented for six months in the 18 intervention facilities. Primary trial outcomes are designed to assess improvements in the pMTCT service cascade, and include the percentage of pregnant women being tested for HIV at the first antenatal care visit, the percentage of HIV-infected pregnant women receiving adequate prophylaxis or combination antiretroviral therapy in pregnancy, and the percentage of newborns exposed to HIV in pregnancy receiving an HIV diagnosis eight weeks postpartum. The Consolidated Framework for Implementation Research (CFIR) will guide collection and analysis of qualitative data on implementation process. This study is a pragmatic trial that has the potential benefit of improving maternal and infant outcomes by reducing drop-offs along the pMTCT cascade. The SAIA intervention is designed to provide simple tools to guide decision-making for pMTCT program staff at the facility level, and to identify low cost, contextually appropriate pMTCT improvement strategies. ClinicalTrials.gov NCT02023658.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960. (c...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point of...
BDPU, Favier places new test chamber into experiment module in LMS-1 Spacelab
1996-07-09
STS078-301-021 (20 June - 7 July 1996) --- Payload specialist Jean-Jacques Favier, representing the French Space Agency (CNES), holds up a test container to a Spacelab camera. The test involves the Bubble Drop Particle Unit (BDPU), which Favier is showing to ground controllers at the Marshall Space Flight Center (MSFC) in order to check the condition of the unit prior to heating in the BDPU facility. The test container holds experimental fluid and allows experiment observation through optical windows. BDPU contains three internal cameras that are used to continuously downlink BDPU activity so that behavior of the bubbles can be monitored. Astronaut Richard M. Linnehan, mission specialist, conducts biomedical testing in the background.
Tank Pressure Control Experiment on the Space Shuttle
NASA Technical Reports Server (NTRS)
1989-01-01
The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.
Review on drop towers and long drop tubes
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.; Hofmeister, W. H.; Robinson, M. B.
1987-01-01
A drop tube is an enclosure in which a molten sample can be solidified while falling; three such large tubes are currently in existence, all at NASA research facilities, and are engaged in combustion and fluid physics-related experiments rather than in materials research. JPL possesses smaller tubes, one of which can be cryogenically cooled to produce glass and metal microshells. A new small drop tube will soon begin operating at NASA Lewis that is equipped with four high-speed two-color pyrometers spaced equidistantly along the column.
Radiative Heat Loss Measurements During Microgravity Droplet Combustion in a Slow Convective Flow
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Kaib, Nathan; Easton, John; Nayagam, Vedha; Williams, Forman A.
2003-01-01
Radiative heat loss from burning droplets in a slow convective flow under microgravity conditions is measured using a broad-band (0.6 to 40 microns) radiometer. In addition, backlit images of the droplet as well as color images of the flame were obtained using CCD cameras to estimate the burning rates and the flame dimensions, respectively. Tests were carried out in air at atmospheric pressure using n-heptane and methanol fuels with imposed forced flow velocities varied from 0 to 10 centimeters per second and initial droplet diameters varied from 1 to 3 millimeters. Slow convective flows were generated using three different experimental configurations in three different facilities in preparation for the proposed International Space Station droplet experiments. In the 2.2 Second Drop-Tower Facility a droplet supported on the leading edge of a quartz fiber is placed within a flow tunnel supplied by compressed air. In the Zero-Gravity Facility (five-second drop tower) a tethered droplet is translated in a quiescent ambient atmosphere to establish a uniform flow field around the droplet. In the KC 135 aircraft an electric fan was used to draw a uniform flow past a tethered droplet. Experimental results show that the burn rate increases and the overall flame size decreases with increases in forced-flow velocities over the range of flow velocities and droplet sizes tested. The total radiative heat loss rate, Q(sub r), decreases as the imposed flow velocity increases with the spherically symmetric combustion having the highest values. These observations are in contrast to the trends observed for gas-jet flames in microgravity, but consistent with the observations during flame spread over solid fuels where the burning rate is coupled to the forced flow as here.
Development and pilot testing of a mental healthcare plan in Nepal
Jordans, M. J. D.; Luitel, N. P.; Pokhrel, P.; Patel, V.
2016-01-01
Background Mental health service delivery models that are grounded in the local context are needed to address the substantial treatment gap in low- and middle-income countries. Aims To present the development, and content, of a mental healthcare plan (MHCP) in Nepal and assess initial feasibility. Method A mixed methods formative study was conducted. Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from patients (n = 135) during the pilot-testing phase in two health facilities. Results The resulting MHCP consists of 12 packages, divided over community, health facility and organisation platforms. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers and high drop-out rates. Conclusions The MHCP follows a collaborative care model encompassing community and primary healthcare interventions. PMID:26447173
Development and pilot testing of a mental healthcare plan in Nepal.
Jordans, M J D; Luitel, N P; Pokhrel, P; Patel, V
2016-01-01
Mental health service delivery models that are grounded in the local context are needed to address the substantial treatment gap in low- and middle-income countries. To present the development, and content, of a mental healthcare plan (MHCP) in Nepal and assess initial feasibility. A mixed methods formative study was conducted. Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from patients (n = 135) during the pilot-testing phase in two health facilities. The resulting MHCP consists of 12 packages, divided over community, health facility and organisation platforms. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers and high drop-out rates. The MHCP follows a collaborative care model encompassing community and primary healthcare interventions. © The Royal College of Psychiatrists 2016.
B-52B/DTV (Drop Test Vehicle) flight test results: Drop test missions
NASA Technical Reports Server (NTRS)
Doty, L. J.
1985-01-01
The NASA test airplane, B-52B-008, was a carrier for drop tests of the shuttle booster recovery parachute system. The purpose of the test support by Boeing was to monitor the vertical loads on the pylon hooks. The hooks hold the Drop Test Vehicle to the B-52 pylon during drop test missions. The loads were monitored to assure the successful completion of the flight and the safety of the crew.
1985-05-01
minimal. The risk of acquiring syphilis through blood transfusions is so rare that American Association of Blood Bank Standards have dropped the...requirement to test for syphilis , although Federal regulations still require it. Malaria can be effectively screened out by excluding potential donors. 2 9 The...murmur or repair of a congenital defect medical director. Listed below are some does not necessarily disqualify a donor. drugs and medical conditions
Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko
2016-06-01
Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental study of transient liquid motion in orbiting spacecraft
NASA Technical Reports Server (NTRS)
Berry, R. L.; Tegart, J. R.
1975-01-01
The results are presented of a twofold study of transient liquid motion such as that which will be experienced during orbital maneuvers by space tug. A test program was conducted in a low-g test facility involving twenty-two drops. Biaxial, low-g accelerations were applied to an instrumented, model propellant tank during free-fall testing, and forces exerted during liquid reorientation were measured and recorded. Photographic records of the liquid reorientation were also made. The test data were used to verify a mechanical analog which portrays the liquid as a point mass moving on an ellipsoidal constraint surface. The mechanical analog was coded into a FORTRAN IV digital computer program: LAMPS, Large AMPlitude Slosh. Test/analytical correlation indicates that the mechanical analog is capable of predicting the overall force trends measured during testing.
Design of a Helmet Liner for Improved Low Velocity Impact Protection
2013-05-01
FIGURE 14. MONORAIL DROP TEST WITH DOT-SIZE C HEADFORM AND HEMISPHERICAL ANVIL ........................... 14 FIGURE 15. ACH PAD CONFIGURATION. LEFT...materials. In this project, the monorail drop test device, used for the helmeted headform drop test, was modified for material testing as shown in Figure...a guided free fall drop test using a monorail drop test apparatus as shown in Figure 14. All helmets tested in this study were ACH-Size Large and
Low power DC arcjet operation with hydrogen/nitrogen/ammonia mixtures
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Curran, Francis M.
1987-01-01
The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.
Low power dc arcjet operation with hydrogen/nitrogen/ammonia mixtures
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Curran, Francis M.
1986-01-01
The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixtures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.
14 CFR 23.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...
14 CFR 23.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...
14 CFR 23.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...
14 CFR 23.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...
14 CFR 23.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...
Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1993-01-01
A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.
NASA Astrophysics Data System (ADS)
Fu, Benyuan; Liao, Changrong; Li, Zhuqiang; Xie, Lei; Zhang, Peng; Jian, Xiaochun
2017-02-01
High viscosity linear polysiloxane magnetorheological fluid (HVLP MRF) was demonstrated with excellent suspension stability. Such material is suitable for application in the magnetorheological energy absorbers (MREAs) under axial impact loading conditions. On this basis, a new energy absorber incorporating a radial valve with high magnetic field utilization and a corrugated tube is proposed. In energy absorption applications where the MREA is rarely if ever used, our MREA takes the ultra-stable HVLP MRF as controlled medium in order for a long-term stability. For MREA performing at very high shear rates where the minor losses are important contributing factors to damping, a nonlinear analytical model, based on the Herschel-Bulkley flow model (HB model), is developed taking into account the effects of minor losses (called HBM model). The HB model parameters are determined by rheological experiments with a commercial shear rheometer. Then, continuity equation and governing differential equation of the HVLP MRF in radial flow are established. Based on the HB model, the expressions of radial velocity distribution are deduced. The influences of minor losses on pressure drop are analyzed with mean fluid velocities. Further, mechanical behavior of the corrugated tube is investigated via drop test. In order to verify the theoretical methodology, a MREA is fabricated and tested using a high-speed drop tower facility with a 600 kg mass at different drop heights and in various magnetic fields. The experiment results show that the HBM model is capable of well predicting the impact behavior of the proposed MREA.
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.
2017-01-01
Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
75 FR 65669 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...
75 FR 54189 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...
Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.
Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei
2018-02-01
The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Student Design Challenges in Capillary Flow
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.; Wollman, Andrew; Hall, Nancy R.; Weislogel, Mark; DeLombard, Richard
2016-01-01
For some grade 8-12 students, capillary flow has bridged the gap between the classroom and research facility, from normal gravity to microgravity. In the past four years, NASA and the Portland State University (PSU) have jointly challenged students to design test cells, using Computer-Aided Design (CAD), to study capillary action in microgravity as PSU has done on the International Space Station (ISS). Using the student-submitted CAD drawings, the test cells were manufactured by PSU and tested in their 2.1-second drop tower. The microgravity results were made available online for student analysis and reporting. Over 100 such experiments have been conducted, where there has been participation from 15 states plus a German school for the children of U.S. military personnel. In 2016, a related NASA challenge was held in partnership with the ASGSR, again, based on the research conducted by PSU. In this challenge, grade 9-12 students designed and built devices using capillary action to launch droplets as far as possible in NASAs 2.2 Second Drop Tower. Example results will be presented by students at this conference. The challenges engage students in ISS science and technology and can inspire them to pursue technical careers.
2012-09-18
STS083-302-002 (4-8 April 1997) --- At the MidDeck Glove Box (MGBX), astronaut Donald A. Thomas, mission specialist, prepares to conduct the Internal Flows in Free Drops (IFFD) experiment. The IFFD is meant to study drops of several liquids, including water, water/glycerin and silicon oil. Flows within the drops and shape and stability are studied under varying acoustic pressure. The MGBX is the overall facility that holds experiments on materials that are not approved for study in the open Spacelab environment.
Evaluation of Cask Drop Criticality Issues at K Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOLDMANN, L.H.
An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuummore » Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...
14 CFR 29.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...
14 CFR 27.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...
14 CFR 27.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...
14 CFR 27.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...
14 CFR 29.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...
14 CFR 27.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...
14 CFR 27.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...
14 CFR 29.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...
14 CFR 29.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...
14 CFR 29.727 - Reserve energy absorption drop test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...
Drop Tower Facility at Queensland University of Technology
NASA Astrophysics Data System (ADS)
Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong
The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
The Los Alamos RP-SVS Radiation Protection Services group designed and constructed a drop tower facility for TA- 55 support work. The drop mechanism was supplied by the Lansmont company in Monterey CA. Los Alamos staffers Murray Moore and Yong Tao have noticed that the system is not dropping loads correctly, and they have photographed aspects of the PDT- 80 model system. The first 10 photos show the platen loaded with a cylindrical steel bar. The next 10 photos are of the roller-cam mechanism in the drop tower, and the last 2 photos indicate the amount of looseness in the platenmore » when it is being pulled by a person.« less
Metals combustion in normal gravity and microgravity
NASA Technical Reports Server (NTRS)
Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.
1993-01-01
The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.
CPAS Preflight Drop Test Analysis Process
NASA Technical Reports Server (NTRS)
Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.
2015-01-01
Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.
Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.
Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P
2010-10-01
We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.
NASA Technical Reports Server (NTRS)
Johnsen, R. L.; Cullom, R. R.
1977-01-01
A performance test of several experimental afterburner configurations was conducted with a mixed-flow turbofan engine in an altitude facility. The simulated flight conditions were for Mach 1.4 at two altitudes, 12,190 and 14,630 meters. Turbine discharge temperatures of 889 and 1056 K were used. A production afterburner was tested for comparison. The research afterburners included partial forced mixers with V-gutter flameholders, a carburetted V-gutter flameholder, and a triple ring V-gutter flameholder with four swirl-can fuel mixers. Fuel injection variations were included. Performance data shown include augmented thrust ratio, thrust specific fuel consumption, combustion efficiency, and total pressure drop across the afterburner.
NASA Technical Reports Server (NTRS)
Campbell, T. G.; White, W. E.; Gilreath, M. C.
1976-01-01
The Research Support Flight System, a modified Boeing 737, was used to evaluate the performance of several aircraft antennas and locations for the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS). These tests were conducted at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey on December 18, 1975. The flight tests measured the signal strength and all pertinent MLS data during a straight-in approach, a racetrack approach, and ICAO approach profiles using the independent antenna-receiver combinations simultaneously on the aircraft. Signal drop-outs were experienced during the various approaches but only a small percentage could be attributed to antenna pattern effects.
Arno, Matthew; Hamilton, Ian S
2003-10-01
Texas is investigating the idea of building a long term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground, retrievable low-level radioactive waste storage facility. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using MCNP to model the facility in greater detail. Using bounding source term assumptions, the radiation doses and dose rates are found to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma" rooms where the waste with greatest gamma radiation intensity is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is less than the 1 mSv annual limit for exposure of the public. Within the site perimeter, modifying the roof results in an order of magnitude drop in the dose rate for personnel outside the facility and on the facility roof, as well as a significant drop inside the facility. Radiation streaming inside the facility can be lowered almost two orders of magnitude by placing operational restrictions to keep at least two rows of waste containers in front of the high-gamma room to cut down on the size of the path for streaming.
NASA Astrophysics Data System (ADS)
Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas
2009-01-01
Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.
Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler
NASA Astrophysics Data System (ADS)
Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen
2018-01-01
Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
Thermo-hydraulic analysis of the cool-down of the EDIPO test facility
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Bagnasco, Maurizio
2011-09-01
The first cool-down of the EDIPO (European DIPOle) test facility is foreseen to take place in 2011 by means of the existing 1.2 kW cryoplant at EPFL-CRPP Villigen. In this work, the thermo-hydraulic analysis of the EDIPO cool-down is performed in order both to assess the its duration and to optimize the procedure. The cool-down is driven by the helium flowing in both the outer cooling channel and in the windings connected hydraulically in parallel. We take into account limitations due to the pressure drop in the cooling circuit and the refrigerator capacity as well as heat conduction in the iron yoke. Two schemes of the hydraulic cooling circuit in the EDIPO windings are studied (coils connected in series and coils connected in parallel). The analysis is performed by means of an analytical model complemented by and numerical model. The results indicate that the cool-down to 5 K can be achieved in about 12 days.
Droplet Vaporization In A Levitating Acoustic Field
NASA Technical Reports Server (NTRS)
Ruff, G. A.; Liu, S.; Ciobanescu, I.
2003-01-01
Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and levitated prior to ignition. Therefore, the droplets will begin to vaporize in the acoustic field thus forming the "initial conditions" for the combustion process. Understanding droplet vaporization in the acoustic field of this levitator is a necessary step that will help to interpret the experimental results obtained in low-gravity.
NASA Astrophysics Data System (ADS)
Kruizenga, Alan Michael
An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due to the presence of the corners within the channels caused an increase in pressure drop by four to five times the pressure drop measured in the straight channel. Based on the results, more innovative geometries were recommended for future testing to reduce form losses found in the typical prototypic geometries.
Internally damped, self-arresting vertical drop-weight impact test apparatus
NASA Technical Reports Server (NTRS)
Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)
1996-01-01
A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.
Internally damped, self-arresting vertical drop-weight impact test apparatus
NASA Technical Reports Server (NTRS)
Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Water, Manfred A. (Inventor)
1995-01-01
A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.
2017-01-01
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.
Vertical drop test of a transport fuselage center section including the wheel wells
NASA Technical Reports Server (NTRS)
Williams, M. S.; Hayduk, R. J.
1983-01-01
A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.
Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors
NASA Astrophysics Data System (ADS)
Bersano, Andrea
With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be compared to the values predicted by the system code and differences will be discussed with the ultimate goal to qualify RELAP5-3D for the analysis of decay heat removal systems in natural circulation. The numerical data will be also used to understand the key parameters related to the heat transfer in natural circulation and to optimize the operation of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De La Fosse, P.H.; Black, A.D.; DiBona, B.G.
1983-01-01
A major limitation of downhole mud motors for geothermal drilling, as well as straight-hole oil and gas drilling, is the bearing section. Reduced bearing life results from the inability to seal a lubricant in the bearing pack. A reliable rotary seal will extend the bearing life and will allow high pressure drops across the bit for improved bottomhole cleaning and increased drilling rate. This paper summarizes the results of a six-year program funded by the U.S. Department of Energy/Division of Geothermal Energy to develop a sealed bearing pack for use with downhole motors in geothermal applications. Descriptions of the Sealmore » Test Machine, Lubricant Test Machine and Bearing Pack Test Facility are presented. Summaries of all seal tests, lubricant tests and bearing pack tests are provided; and a comprehensive program bibliography is presented.« less
Duku, Stephen Kwasi Opoku; Asenso-Boadi, Francis; Nketiah-Amponsah, Edward; Arhinful, Daniel Kojo
2016-12-01
Utilization of healthcare in Ghana's novel National Health Insurance Scheme (NHIS) has been increasing since inception with associated high claims bill which threatens the scheme's financial sustainability. This paper investigates the presence of adverse selection by assessing the effect of healthcare utilization and frequency of use on NHIS renewal. Routine enrolment and utilization data from 2008 to 2013 in two regions in Ghana was analyzed. Pearson Chi-square test was performed to test if the proportion of insured who utilize healthcare in a particular year and renew membership the following year is significantly different from those who utilize healthcare and drop-out. Logistic regressions were estimated to examine the relationship between healthcare utilization and frequency of use in previous year and NHIS renewal in current year. We found evidence suggestive of the presence of adverse selection in the NHIS. Majority of insured who utilized healthcare renewed their membership whiles most of those who did not utilize healthcare dropped out. The likelihood of renewal was significantly higher for those who utilize healthcare than those who did not and also higher for those who make more health facility visits. The NHIS claims bill is high because high risk individuals who self-select into the scheme makes more health facility visits and creates financial sustainability problems. Policy makers should adopt pragmatic ways of enforcing mandatory enrolment so that low risk individuals remain enrolled; and sustainable ways of increasing revenue whiles ensuring that the societal objectives of the scheme are not compromised.
A summary of existing and planned experiment hardware for low-gravity fluids research
NASA Technical Reports Server (NTRS)
Hill, Myron E.; O'Malley, Terence F.
1991-01-01
NASA's ground-based and space-based low-gravity facilities are summarized, and an overview of selected experiments that have been developed for use in these facilities is presented. A variety of ground-based facilities (drop towers and aircraft) used to conduct low-gravity experiments for in-space experimentation are described. Capabilities that are available to the researcher and future on-orbit fluids facilities are addressed. The payload bay facilities range from the completely self-contained, relatively small get-away-special canisters to the Materials Science Laboratory and to the larger Spacelab facilities that require crew interaction.
An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Idicheria, Cherian; Clemens, Noel
2000-11-01
The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.
NASA Technical Reports Server (NTRS)
Smiley, Robert F; Horne, Walter B
1957-01-01
The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.
Drop Testing Representative Multi-Canister Overpacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Spencer D.; Morton, Dana K.
The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capablemore » of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10 -5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10 -7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.« less
Instrumentation and telemetry systems for free-flight drop model testing
NASA Technical Reports Server (NTRS)
Hyde, Charles R.; Massie, Jeffrey J.
1993-01-01
This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.
NASA Technical Reports Server (NTRS)
Panton, R. L.; Lowery, R. L.; Reischman, M. M.
1967-01-01
The study of pressure fluctuations under a turbulent boundary layer was undertaken with the objective of extending previous work to lower frequencies. Wind tunnel and flight test measurements are invalid at low frequencies because of extraneous acoustic noises and free stream turbulence. A glider was instrumented and used as a test bed to carry microphones into a smooth flow free of acoustic noise. Hodgson had previously measured the spectrum of boundary layer noise on a glider wing. These tests showed a drop off at low frequencies that could not be reproduced in any other facility. The measurements were made on the forward fuselage of a glider where the boundary layer could develop naturally and have some length in a zero pressure gradient before the measurements were made. Two different sets of measurements were made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Reeves, Kirk Patrick
2015-02-24
Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2more » QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .« less
One-Dimensional Spontaneous Raman Measurements of Temperature Made in a Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Locke, Randy J.; DeGroot, Wilhelmus A.; Anderson, Robert C.
2002-01-01
The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.
STS-84 Commander Charles Precourt arriving for TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
STS-84 Commander Charles J. Precourt arrives at KSCs Shuttle Landing Facility for the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. Precourt will lead the six other crew members when they travel to Mir next month aboard the Space Shuttle Atlantis. STS-84 Mission Specialist C. Michael Foale will be dropped off on Mir to become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth on Atlantis after about four months on the orbiting station. STS-84 will be the sixth Shuttle-Mir docking. Liftoff is targeted for May 15.
METAL MEDIA FILTERS, AG-1 SECTION FI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D.
One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures,more » media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.« less
Internal Flows in Free Drops (IFFD)
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Sadhal, Satwindar S.; Thomas, D. A.; Crouch, R. K.
1998-01-01
Within the framework of an Earth-based research task investigating the internal flows within freely levitated drops, a low-gravity technology development experiment has been designed and carried out within the NASA Glovebox facility during the STS-83 and STS-94 Shuttle flights (MSL-1 mission). The goal was narrowly defined as the assessment of the capabilities of a resonant single-axis ultrasonic levitator to stably position free drops in the Shuttle environment with a precision required for the detailed measurement of internal flows. The results of this entirely crew-operated investigation indicate that the approach is fundamentally sound, but also that the ultimate stability of the positioning is highly dependent on the residual acceleration characteristic of the Spacecraft, and to a certain extent, on the initial drop deployment of the drop. The principal results are: the measured dependence of the residual drop rotation and equilibrium drop shape on the ultrasonic power level, the experimental evaluation of the typical drop translational stability in a realistic low-gravity environment, and the semi-quantitative evaluation of background internal flows within quasi-isothermal drops. Based on these results, we conclude that the successful design of a full-scale Microgravity experiment is possible, and would allow accurate the measurement of thermocapillary flows within transparent drops. The need has been demonstrated, however, for the capability for accurately deploying the drop, for a quiescent environment, and for precise mechanical adjustments of the levitator.
3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces
NASA Astrophysics Data System (ADS)
Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen
2016-04-01
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.
3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.
Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen
2016-04-04
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.
Support of gas flowmeter upgrade
NASA Technical Reports Server (NTRS)
Waugaman, Dennis
1996-01-01
A project history review, literature review, and vendor search were conducted to identify a flowmeter that would improve the accuracy of gaseous flow measurements in the White Sands Test Facility (WSTF) Calibration Laboratory and the Hydrogen High Flow Facility. Both facilities currently use sonic flow nozzles to measure flowrates. The flow nozzle pressure drops combined with corresponding pressure and temperature measurements have been estimated to produce uncertainties in flowrate measurements of 2 to 5 percent. This study investigated the state of flowmeter technology to make recommendations that would reduce those uncertainties. Most flowmeters measure velocity and volume, therefore mass flow measurement must be calculated based on additional pressures and temperature measurement which contribute to the error. The two exceptions are thermal dispersion meters and Coriolis mass flowmeters. The thermal dispersion meters are accurate to 1 to 5 percent. The Coriolis meters are significantly more accurate, at least for liquids. For gases, there is evidence they may be accurate to within 0.5 percent or better of the flowrate, but there may be limitations due to inappropriate velocity, pressure, Mach number and vibration disturbances. In this report, a comparison of flowmeters is presented. Candidate Coriolis meters and a methodology to qualify the meter with tests both at WSTF and Southwest Research Institute are recommended and outlined.
An experimental design for total container impact response modeling at extreme temperatures
NASA Technical Reports Server (NTRS)
Kobler, V. P.; Wyskida, R. M.; Johannes, J. D.
1979-01-01
An experimental design (a drop test) was developed to test the effects of confinement upon cushions. The drop test produced consistent corner void cushion data from which mathematical models were developed. A mathematical relationship between temperature and drop height was found.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.
Cocurrent scrubber evaluation TVA's Colbert Lime--Limestone Wet-Scrubbing Pilot Plant. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robards, R.F.; Moore, N.D.; Kelso, T.M.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests of TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of the Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests.« less
Full length view of the Spacelab module
2016-08-12
STS083-312-031 (4-8 April 1997) --- Payload specialist Gregory T. Linteris (left) is seen at the Mid Deck Glove Box (MGBX), while astronaut Donald A. Thomas, mission specialist, works at the Expedite the Processing of Experiments to Space Station (EXPRESS) rack. MGBX is a facility that allows scientists the capability of doing tests on hardware and materials that are not approved to be handled in the open Spacelab. It is equipped with photographic, video and data recording capability, allowing a complete record of experiment operations. Experiments performed on STS-83 were Bubble Drop Nonlinear Dynamics and Fiber Supported Droplet Combustion. EXPRESS is designed to provide accommodations for Sub-rack payloads on Space Station. For STS-83, it held two payloads. The Physics of Hard Colloidal Spheres (PHaSE) and ASTRO-Plant Generic Bioprocessing Apparatus (ASTRO-PGBA), a facility with light and atmospheric controls which supports plant growth for commercial research.
Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael
2018-02-01
Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.
Code of Federal Regulations, 2011 CFR
2011-10-01
... aluminum boxes, Composite packagings which are in the shape of a box Five—(one for each drop) First drop... impact. Where more than one orientation is possible for a given drop test, the orientation most likely to... example a closure or, for some 7 cylindrical drums, the welded longitudinal seam of the drum body. Boxes...
Response of Metals and Metallic Structures to Dynamic Loading
1978-05-01
materials for service by testing under high rates of loading. Impact tests such as the Charpy test, the drop-weight tear test, and the dynamic tear...have clearly shown this for precracked charpy specimens and for the drop-weight tear test. Hence, there is a strong need for additional dynamic...dynamic fracture resistance ( Charpy , dynamic-tear, drop-weight tear test, etc.), normally assures that fracture in dynamically loaded structures is
Evaluation of wheelchair drop seat crashworthiness.
Bertocci, G; Ha, D; van Roosmalen, L; Karg, P; Deemer, E
2001-05-01
Wheelchair seating crash performance is critical to protecting wheelchair users who remain seated in their wheelchairs during transportation. Relying upon computer simulation and sled testing seat loads associated with a 20 g/48 kph (20 g/30 mph) frontal impact and 50th percentile male occupant were estimated to develop test criteria. Using a static test setup we evaluated the performance of various types of commercially available drop seats against the loading test criteria. Five different types of drop seats (two specimens each) constructed of various materials (i.e. plastics, plywood, metal) were evaluated. Two types of drop seats (three of the total 10 specimens) met the 16650 N (3750 lb) frontal impact test criteria. While additional validation of the test protocol is necessary, this study suggests that some drop seat designs may be incapable of withstanding crash level loads.
NASA Technical Reports Server (NTRS)
1988-01-01
The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.
Code of Federal Regulations, 2014 CFR
2014-10-01
... surface when the midsagittal plane is vertical. (4) Drop the headform from the specified height by means... test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...
Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Reeves, Kirk P.
2014-02-03
A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intendedmore » to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and future project milestones are on track for completion« less
Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Woodis, W. R.
1979-01-01
A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.
Internally damped, self-arresting vertical drop-weight apparatus
NASA Technical Reports Server (NTRS)
Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)
1994-01-01
A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.
Turbulent Premixed Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.
1997-01-01
A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The reacting flow facility is also being constructed with planned drop tower experiments in mind. Therefore, issues related to safety and structural integrity are being take into account. Further development of the numerical model will also be carried out to include finite-rate kinetics for representative premixed cases. More detail analysis of the flame structure and propagation nature will be investigated. Simulations will also be compared to the flame properties observed in the experiments.
ERIC Educational Resources Information Center
Karger, Joanne; Currie-Rubin, Rachel
2013-01-01
The education provided to youth in detention and juvenile corrections facilities may be the last opportunity for these youth to reconnect with learning and graduate from high school. A large percentage of youth who exit these facilities do not return to school. Dropping out is associated with a number of negative outcomes, including higher rates…
The construction technology of Chinese ancient city drainage facilities
NASA Astrophysics Data System (ADS)
Hequn, Li; Yufengyun
2018-03-01
In ancient china, according to the local natural environment, a variety of drainage facilities were built in order to excrete rainwater, domestic sewage, production wastewater and so on. These drainage facilities were mainly made of pottery, bricks, wood, stone, etc. For example, ceramic water pipelines, buried in the ground, connect together one by one, and there was a slight drop from one end to the other in favor of drainage. These measures can also be used for reference in today’s urban drainage and flood control.
49 CFR 173.175 - Permeation devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side... stacked to a height of 3 m (10 feet) (including the test sample). (3) Each of the above tests may be...
2017-09-25
Water impact test of an 18,000-pound (8,165 kilogram) test version of the Orion spacecraft at NASA's Langley Research Center. NASA is swing drop testing this Orion capsule mock-up at Langley's Hydro Impact Basin to certify the actual Orion spacecraft for water landings. In a series of tests, Orion is being dropped in a variety of different conditions to help fine-tune NASA's predictions of Orion's landing loads.
Droplet combustion experiment drop tower tests using models of the space flight apparatus
NASA Technical Reports Server (NTRS)
Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.
1989-01-01
The Droplet Combustion Experiment (DCE) is an experiment that is being developed to ultimately operate in the shuttle environment (middeck or Spacelab). The current experiment implementation is for use in the 2.2 or 5 sec drop towers at NASA Lewis Research Center. Initial results were reported in the 1986 symposium of this meeting. Since then significant progress was made in drop tower instrumentation. The 2.2 sec drop tower apparatus, a conceptual level model, was improved to give more reproducible performance as well as operate over a wider range of test conditions. Some very low velocity deployments of ignited droplets were observed. An engineering model was built at TRW. This model will be used in the 5 sec drop tower operation to obtain science data. In addition, it was built using the flight design except for changes to accommodate the drop tower requirements. The mechanical and electrical assemblies have the same level of complexity as they will have in flight. The model was tested for functional operation and then delivered to NASA Lewis. The model was then integrated into the 5 sec drop tower. The model is currently undergoing initial operational tests prior to starting the science tests.
Ground based research in microgravity materials processing
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Rathz, Tom
1994-01-01
The core activities performed during this time period have been concerned with tracking the TEMPEST experiments on the shuttle with drops of Zr, Ni, and Nb alloys. In particular a lot of Zr drops are being made to better define the recalescence characteristics of that system so that accurate comparisons of the drop tube results with Tempest can be made. A new liner, with minimal reflectivity characteristics, has been inserted into the drop tube in order to improve the recalescence measurements of the falling drops. The first installation to make the geometric measurements to ensure a proper fit has been made. The stovepipe sections are currently in the shop at MSFC being painted with low reflectivity black paint. Work has also continued on setting up the MEL apparatus obtained from Oak Ridge in the down stairs laboratory at the Drop Tube Facilities. Some ground-based experiments on the same metals as are being processed on TEMPEST are planned for the MEL. The flight schedules for the KC-135 experiments are still to be determined in the near future.
1997-04-28
STS-84 Mission Specialist C. Michael Foale, who will become the fifth U.S. astronaut to live and work on the Russian Space Station Mir, arrives at KSC’s Shuttle Landing Facility for the STS-84 Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. Foale will be dropped off on Mir when the Space Shuttle Atlantis docks with Mir next month. He will become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth on Atlantis after about four months on the orbiting station. STS-84 will be the sixth Shuttle-Mir docking. Liftoff is targeted for May 15
3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces
Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen
2016-01-01
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483
Digital video timing analyzer for the evaluation of PC-based real-time simulation systems
NASA Astrophysics Data System (ADS)
Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.
2009-05-01
Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.
Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Burggraf, Stefan; Galenko, Peter; Gandin, Charles-André; Garcia-Escorial, Asuncion; Henein, Hani; Karrasch, Christian; Mullis, Andrew; Rettenmayr, Markus; Valloton, Jonas
2017-08-01
Containerless processing of droplets and drops by atomization and electromagnetic levitation are applied to undercool metallic melts and alloys prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. Experiments are performed both under terrestrial (1 g) conditions and in reduced gravity ( µg) as well. Microgravity conditions are realized by the free fall of small droplets during atomization of a spray of droplets, individual drops in a drop tube and by electromagnetic levitation of drops during parabolic flights, sounding rocket missions, and using the electro-magnetic levitator multi-user facility on board the International Space Station. The comparison of both sets of experiments in 1 g and µg leads to an estimation of the influence of forced convection on dendrite growth kinetics and microstructure evolution.
Free-to-Roll Testing of Airplane Models in Wind Tunnels
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Owens, D. Bruce; Hall, Robert M.
2007-01-01
A free-to-roll (FTR) test technique and test rig make it possible to evaluate both the transonic performance and the wingdrop/ rock behavior of a high-strength airplane model in a single wind-tunnel entry. The free-to-roll test technique is a single degree-of-motion method in which the model is free to roll about the longitudinal axis. The rolling motion is observed, recorded, and analyzed to gain insight into wing-drop/rock behavior. Wing-drop/rock is one of several phenomena symptomatic of abrupt wing stall. FTR testing was developed as part of the NASA/Navy Abrupt Wing Stall Program, which was established for the purposes of understanding and preventing significant unexpected and uncommanded (thus, highly undesirable) lateral-directional motions associated with wing-drop/rock, which have been observed mostly in fighter airplanes under high-subsonic and transonic maneuvering conditions. Before FTR testing became available, wingrock/ drop behavior of high-performance airplanes undergoing development was not recognized until flight testing. FTR testing is a reliable means of detecting, and evaluating design modifications for reducing or preventing, very complex abrupt wing stall phenomena in a ground facility prior to flight testing. The FTR test rig was designed to replace an older sting attachment butt, such that a model with its force balance and support sting could freely rotate about the longitudinal axis. The rig (see figure) includes a rotary head supported in a stationary head with a forward spherical roller bearing and an aft needle bearing. Rotation is amplified by a set of gears and measured by a shaft-angle resolver; the roll angle can be resolved to within 0.067 degrees at a rotational speed up to 1,000 degrees/s. An assembly of electrically actuated brakes between the rotary and stationary heads can be used to hold the model against a rolling torque at a commanded roll angle. When static testing is required, a locking bar is used to fix the rotating head rigidly to the stationary head. Switching between the static and FTR test modes takes only about 30 minutes. The FTR test rig was originally mounted in a 16-ft (approximately 4.0-m) transonic wind tunnel, but could just as well be adapted to use in any large wind tunnel. In one series of tests on the FTR rig, static and dynamic characteristics of models of four different fighter airplanes were measured. Two of the models exhibited uncommanded lateral motions; the other two did not. A figure of merit was developed to discern the severity of lateral motions. Using this figure of merit, it was shown that the FTR test technique enabled identification of conditions under which the uncommanded lateral motions occurred. The wind-tunnel conditions thus identified were found to be correlated with flight conditions under which the corresponding full-size airplanes exhibited uncommanded lateral motions.
Combustion Of Interacting Droplet Arrays In Microgravity
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.
2003-01-01
Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Wang, Meng; Gedeon, David
2005-01-01
A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.
Caccese, V.; Ferguson, J.; Lloyd, J.; Edgecomb, M.; Seidi, M.; Hajiaghamemar, M.
2017-01-01
A test method based upon a Hybrid-III head and neck assembly that includes measurement of both linear and angular acceleration is investigated for potential use in impact testing of protective headgear. The test apparatus is based upon a twin wire drop test system modified with the head/neck assembly and associated flyarm components. This study represents a preliminary assessment of the test apparatus for use in the development of protective headgear designed to prevent injury due to falls. By including angular acceleration in the test protocol it becomes possible to assess and intentionally reduce this component of acceleration. Comparisons of standard and reduced durometer necks, various anvils, front, rear, and side drop orientations, and response data on performance of the apparatus are provided. Injury measures summarized for an unprotected drop include maximum linear and angular acceleration, head injury criteria (HIC), rotational injury criteria (RIC), and power rotational head injury criteria (PRHIC). Coefficient of variation for multiple drops ranged from 0.4 to 6.7% for linear acceleration. Angular acceleration recorded in a side drop orientation resulted in highest coefficient of variation of 16.3%. The drop test apparatus results in a reasonably repeatable test method that has potential to be used in studies of headgear designed to reduce head impact injury. PMID:28216804
1977-12-01
The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.
1968-01-01
This image depicts the Saturn V S-IVB (third) stage for the Apollo 10 mission being removed from the Beta Test Stand 1 after its acceptance test at the Douglas Aircraft Company's Sacramento Test Operations (SACTO) facility. After the S-II (second) stage dropped away, the S-IVB (third) stage was ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.
Sampling Challenges in Nursing Home Research
Tilden, Virginia P.; Thompson, Sarah A.; Gajewski, Byron J.; Buescher, Colleen M.; Bott, Marjorie J.
2012-01-01
Background Research on end-of-life care in nursing homes is hampered by challenges in retaining facilities in samples through study completion. Large-scale longitudinal studies in which data are collected on-site can be particularly challenging. Objectives To compare characteristics of nursing homes that dropped from study to those that completed the study. Methods 102 nursing homes in a large geographic 2-state area were enrolled in a prospective study of end-of-life care of residents who died in the facility. The focus of the study was the relationship of staff communication, teamwork, and palliative/end-of-life care practices to symptom distress and other care outcomes as perceived by family members. Data were collected from public data bases of nursing homes, clinical staff on site at each facility at two points in time, and from decedents’ family members in a telephone interview. Results 17 of the 102 nursing homes dropped from the study before completion. These non-completer facilities had significantly more deficiencies and a higher rate of turnover of key personnel compared to completer facilities. A few facilities with a profile typical of non-completers actually did complete the study after an extraordinary investment of retention effort by the research team. Discussion Nursing homes with a high rate of deficiencies and turnover have much to contribute to the goal of improving end-of-life care, and their loss to study is a significant sampling challenge. Investigators should be prepared to invest extra resources to maximize retention. PMID:23041332
Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit
NASA Technical Reports Server (NTRS)
Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.
2012-01-01
The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.
Ferguson, Laura; Grant, Alison D; Watson-Jones, Deborah; Kahawita, Tanya; Ong'ech, John O; Ross, David A
2012-05-01
To quantify attrition between women testing HIV-positive in pregnancy-related services and accessing long-term HIV care and treatment services in low- or middle-income countries and to explore the reasons underlying client drop-out by synthesising current literature on this topic. A systematic search in Medline, EMBASE, Global Health and the International Bibliography of the Social Sciences of literature published 2000-2010. Only studies meeting pre-defined quality criteria were included. Of 2543 articles retrieved, 20 met the inclusion criteria. Sixteen (80%) drew on data from sub-Saharan Africa. The pathway between testing HIV-positive in pregnancy-related services and accessing long-term HIV-related services is complex, and attrition was usually high. There was a failure to initiate highly active antiretroviral therapy (HAART) among 38-88% of known-eligible women. Providing 'family-focused care', and integrating CD4 testing and HAART provision into prevention of mother-to-child HIV transmission services appear promising for increasing women's uptake of HIV-related services. Individual-level factors that need to be addressed include financial constraints and fear of stigma. Too few women negotiate the many steps between testing HIV-positive in pregnancy-related services and accessing HIV-related services for themselves. Recent efforts to stem patient drop-out, such as the MTCT-Plus Initiative, hold promise. Addressing barriers and enabling factors both within health facilities and at the levels of the individual woman, her family and society will be essential to improve the uptake of services. © 2012 Blackwell Publishing Ltd.
A summary of existing and planned experiment hardware for low-gravity fluids research
NASA Technical Reports Server (NTRS)
Hill, Myron E.; Omalley, Terence F.
1991-01-01
An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1984-01-01
An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.
Historic Manhattan Project Sites at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGehee, Ellen
The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device wasmore » pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.« less
Historic Manhattan Project Sites at Los Alamos
McGehee, Ellen
2018-05-11
The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.
Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2017-12-01
Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog stress drops can predict the categories of the 15 events. I find that they cannot, rather the large event stress drops are uncorrelated with the local mean stress drop from the Shearer catalog. These results imply that the regionalization of stress drops of small events does not extend to the larger events, at least with current standard techniques of stress drop estimation.
Inverted drop testing and neck injury potential.
Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam
2003-01-01
Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.
Miller, Renee; Simmons, Sarah; Dale, Charles; Stachowiak, Julie; Stibich, Mark
2015-12-01
Health care-associated transmission of Clostridium difficile has been well documented in long-term acute care facilities. This article reports on 2 interventions aimed at reducing the transmission risk: multidisciplinary care teams and no-touch pulsed-xenon disinfection. C difficile transmission rates were tracked over a 39-month period while these 2 interventions were implemented. After a baseline period of 1 year, multidisciplinary teams were implemented for an additional 1-year period with a focus on reducing C difficile infection. During this time, transmission rates dropped 17% (P = .91). In the following 15-month period, the multidisciplinary teams continued, and pulsed-xenon disinfection was added as an adjunct to manual cleaning of patient rooms and common areas. During this time, transmission rates dropped 57% (P = .02). These results indicate that the combined use of multidisciplinary teams and pulsed-xenon disinfection can have a significant impact on C difficile transmission rates in long-term care facilities. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Drop-Weight Impact Test on U-Shape Concrete Specimens with Statistical and Regression Analyses
Zhu, Xue-Chao; Zhu, Han; Li, Hao-Ran
2015-01-01
According to the principle and method of drop-weight impact test, the impact resistance of concrete was measured using self-designed U-shape specimens and a newly designed drop-weight impact test apparatus. A series of drop-weight impact tests were carried out with four different masses of drop hammers (0.875, 0.8, 0.675 and 0.5 kg). The test results show that the impact resistance results fail to follow a normal distribution. As expected, U-shaped specimens can predetermine the location of the cracks very well. It is also easy to record the cracks propagation during the test. The maximum of coefficient of variation in this study is 31.2%; it is lower than the values obtained from the American Concrete Institute (ACI) impact tests in the literature. By regression analysis, the linear relationship between the first-crack and ultimate failure impact resistance is good. It can suggested that a minimum number of specimens is required to reliably measure the properties of the material based on the observed levels of variation. PMID:28793540
NASA Astrophysics Data System (ADS)
Haji, Kenichi; Shiibara, Daiki; Arata, Yoshihiro; Sakoda, Tatsuya; Otsubo, Masahisa
The dynamic drop test was proposed as a method to evaluate hydrophobicity reduction of polymer materials. In this test, the formation change of a water channel was confirmed, and thereafter, the remained droplets and the dropped droplets on the sampled surface were repulsed each other. The distributions of electrification on the droplet and the sample surface were measured. The influence of the electrified droplet on the hydrophobicity reduction was examined. The results showed that the polarity on the sample surface changed by the dropped droplet, leading to the hydrophobicity loss.
ERIC Educational Resources Information Center
North Carolina State Commission on Higher Education Facilities, Raleigh.
This edition of an annual series of facilities inventory and utilization studies reflects the status of space in North Carolina institutions of higher education at the end of the drop-add period of the 1988 fall term at each college. It gives indications of the uses being made of the space and provides norms and historical information for the past…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast,Jerome; Mei,Fan; Hubbe,John
Most of the instruments were deployed on the ARM Aerial Facility (AAF) Gulfstream-159 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Aerosol microphysical property measurements supplemented routine ARM aerosol measurements made at the surface. The G-1 completed transects over the SGP Central Facility at multiple altitudes within the boundary layer, and within and above clouds.
The structure of dilute combusting sprays
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.
1985-01-01
An experimental and theoretical study of drop processes in a turbulent flame is described. The experiments involved a monodisperse (105 and 180 micro m initial diameter) stream of methanol drops injected at the base of a turbulent methane-fueled diffusion flame burning in still air. The following measurements were made: mean and fluctuating phase velocities, mean drop number flux, drop-size distributions and mean gas-phase temperatures. Measurements were compared with predictions of two separated flow models: (1) deterministic separated flow, where drop-turbulence interactions are ignored; and (2) stochastic separated flow, where drop-turbulence interactions are considered using random-walk computations. The stochastic separated flow analysis yielded best agreement with measurements, since it provides for turbulent dispersion of drops which was important for present test conditions (and probably for most combusting sprays as well). Distinguishing the presence or absence of envelope flames around the drops, however, was relatively unimportant for present test conditions, since the drops spent most of their lifetime in fuel-rich regions of the flow where this distinction is irrelevant.
Combat Helmet-Headform Coupling Characterized from Blunt Impact Events
2011-11-01
Testing was completed on a monorail drop tower to analyze the effect of helmet/headform coupling on the blunt impact behavior of ACH helmets using FMVSS...designates its own methods and test equipment: a drop tower ( monorail or twin- wire), headform (DOT, ISO, NOCSAE), headform CG accelerometer (single or...the more anthropomorphic International Standard Organization (ISO) half headform. Testing was completed on a monorail drop tower to analyze the effect
NASA Technical Reports Server (NTRS)
Moog, R. D.; Bacchus, D. L.; Utreja, L. R.
1979-01-01
The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.
Cocurrent scrubber evaluation: TVA's Colbert lime-limestone wet-scrubbing pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinden, G.A.; Robards, R.F.; Moore, N.D.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests at TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests. The results indicate that commercial application of the cocurrent scrubber concept may save substantial capital investment by reducing the number of scrubber modules and auxiliary equipment. These evaluation tests provided the basis for the design and construction of the 10 MW cocurrent scrubber at the Shawnee Facility. Operation of this scrubber began in August 1978 to develop the scale-up similarities and differences between the Colbert test program (1 MW) and the Shawnee test program (10 MW). It also demonstrated the practicality and reliability of the 10 MW prototype. Detailed results of the prototype test series will be available in late 1979.« less
Development and Capabilities of ISS Flow Boiling and Condensation Experiment
NASA Technical Reports Server (NTRS)
Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George;
2015-01-01
An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.
Experimental study on heat transfer to supercritical water flowing through tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, M.; Gu, H.; Cheng, X.
2012-07-01
A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less
14 CFR 27.725 - Limit drop test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... introduced into the drop test by appropriate energy absorbing devices or by the use of an effective mass. (c... critical from the standpoint of the energy to be absorbed by it. (d) When an effective mass is used in...=specified free drop height (inches). L=ration of assumed rotor lift to the rotorcraft weight. d=deflection...
14 CFR 27.725 - Limit drop test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... introduced into the drop test by appropriate energy absorbing devices or by the use of an effective mass. (c... critical from the standpoint of the energy to be absorbed by it. (d) When an effective mass is used in...=specified free drop height (inches). L=ration of assumed rotor lift to the rotorcraft weight. d=deflection...
14 CFR 27.725 - Limit drop test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... introduced into the drop test by appropriate energy absorbing devices or by the use of an effective mass. (c... critical from the standpoint of the energy to be absorbed by it. (d) When an effective mass is used in...=specified free drop height (inches). L=ration of assumed rotor lift to the rotorcraft weight. d=deflection...
Nazari, Seyed Saeed Hashemi; Noroozi, Mehdi; Soori, Hamid; Noroozi, Alireza; Mehrabi, Yadollah; Hajebi, Ahmad; Sharifi, Hamid; Higgs, Peter; Mirzazadeh, Ali
2016-01-01
Needle and syringe programs (NSPs) are widely used to reduce harms associated with drug injecting. This study assessed the effect of facility-based (on-site services at drop-in centre) and outreach models of NSP on injection risk behaviours. Self-reported data from 455 people who injected drugs (PWID) during 2014 in Kermanshah, Iran, were examined to measure demographic characteristics and risk behaviors. Self-reported and program data were also assessed to identify their main source of injection equipment. Participants were divided into three sub-groups: facility-based NSP users, outreach NSP users and non-users (comparison group). Coarsened exact matching was used to make the three groups statistically equivalent based on age, place of residence, education and income, and groups were compared regarding the proportion of borrowing or lending of syringes/cookers, reusing syringes and recent HIV testing. Overall, 76% of participants reported any NSP service use during the two months prior to interview. Only 23% (95%CI: 17-27) reported outreach NSP as their main source of syringes. Using facility-based NSP significantly decreased recent syringe borrowing (OR: 0.27, 95%CI: 0.10-0.70), recent syringe reuse (OR: 0.38, 95%CI: 0.23-0.68) and increased recent HIV testing (OR: 2.60, 95%CI: 1.48-4.56). Similar effects were observed among outreach NSP users; in addition, the outreach NSP model significantly reduced the chance of lending syringes (OR: 0.31, 95%CI: 0.15-0.60), compared to facility-based NSP (OR: 1.25, 95%CI: 0.74-2.17). These findings suggest that the outreach NSP model is as effective as facility-based NSP in reducing injection risk behaviours and increasing the rate of HIV testing. Outreach NSP was even more effective than facility-based in reducing the lending of syringes to others. Scaling up outreach NSP is an effective intervention to further reduce transmission of HIV via needle sharing. Copyright © 2015 Elsevier B.V. All rights reserved.
1958-06-24
Testing of Mercury Capsule Shape A by the Hydrodynamics Division of Langley. Joseph Shortal wrote (vol. 3, p. 19): The Hydrodynamics Division provided assistance in determining landing loads. In this connection, after PARD engineers had unofficially approached that division to make some water impact tests with the boilerplate capsule, J.B. Parkinson, Hydrodynamics Chief visited Shortal to find out if the request had his support. Finding out that it did, Parkinson said, Its your capsule. If you want us to drop it in the water, we will do it. From Shortal (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.
NASA Astrophysics Data System (ADS)
Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo
Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.
The effect of roof strength on reducing occupant injury in rollovers.
Herbst, Brian; Forrest, Steve; Orton, Tia; Meyer, Steven E; Sances, Anthony; Kumaresan, Srirangam
2005-01-01
Roof crush occurs and potentially contributes to serious or fatal occupant injury in 26% of rollovers. It is likely that glazing retention is related to the degree of roof crush experienced in rollover accidents. Occupant ejection (including partial ejection) is the leading cause of death and injury in rollover accidents. In fatal passenger car accidents involving ejection, 34% were ejected through the side windows. Side window glass retention during a rollover is likely to significantly reduce occupant ejections. The inverted drop test methodology is a test procedure to evaluate the structural integrity of roofs under loadings similar to those seen in real world rollovers. Recent testing on many different vehicle types indicates that damage consistent with field rollover accidents can be achieved through inverted drop testing at very small drop heights. Drop test comparisons were performed on 16 pairs of vehicles representing a large spectrum of vehicle types. Each vehicle pair includes a production vehicle and a vehicle with a reinforced roof structure dropped under the same test conditions. This paper offers several examples of post-production reinforcements to roof structures that significantly increase the crush resistance of the roof as measured by inverted drop tests. These modifications were implemented with minimal impact on vehicle styling, interior space and visual clearances. The results of these modifications indicate that roof crush can be mitigated by nearly an order of magnitude, as roof crush was reduced by 44-91% with only a 1-2.3% increase in vehicle weight. Additionally, this paper analyzes the glazing breakage patterns in the moveable tempered side windows on the side adjacent to the vehicle impact point in the inverted drop tests. A comparison is made between the production vehicles and the reinforced vehicles in order to determine if the amount roof crush is related to glazing integrity in the side windows. Lastly, two drop test pairs, performed with Hybrid III test dummies, indicates that the reduction of roof crush resulted in a direct reduction in neck loading and therefore an increase in occupant protection.
Ice Accretion with Varying Surface Tension
NASA Technical Reports Server (NTRS)
Bilanin, Alan J.; Anderson, David N.
1995-01-01
During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.
Cosmonaut Yuriy Onufriyenko simulates parachute drop into water
1994-10-13
S94-47232 (13 Oct 1994) --- Cosmonaut Yuriy I. Onufriyenko (right), in the United States to participate in training for joint Russia-United States space missions, simulates a parachute drop into water. The training took place in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) because it contains a 25-feet-deep pool. Onufriyenko, a Mir reserve team member, and a number of other cosmonauts and astronauts participating in the joint program were in Houston, Texas to prepare for upcoming missions which involve crewmembers from the two nations.
RP-1 Thermal Stability and Copper Based Materials Compatibility Study
NASA Technical Reports Server (NTRS)
Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.
2005-01-01
A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.
Droplet Combustion in a Slow Convective Flow
NASA Technical Reports Server (NTRS)
Nayagam, V.; Hicks, M. C.; Kaib, N.; Ackerman, M.; Haggard, J. B., Jr.; Williams, F. A.
2001-01-01
The objective of the present flight experiment definition study is to investigate the effects of slow forced convective flows on the dynamics of isolated single droplet combustion and is designed to complement the quiescent, microgravity droplet combustion experiments (DCE-1 and DCE-2) of Williams and Dryer. The fuels selected for this study are the same as those of DCE, namely, a sooting alkane fuel (heptane) and a non-sooting alcohol (methanol), and imposed flow rates are chosen between 0 and 20 cm/s with varying ambient oxygen concentrations and pressures. Within this velocity range, both accelerating and decelerating flow effects will also be investigated. Two different approaches to generate the forced flow are currently under development in ground-based facilities; the first is a flow tunnel concept where the forced flow is imposed against a stationary droplet, and in the second a tethered droplet is translated at a specified velocity in a quiescent ambient medium. Depending upon the engineering feasibility a selection will be made between these two approaches so that the experiment can be accommodated in the Multiple Droplet Combustion Apparatus (MDCA) currently being designed for the International Space Station. Recently, we have finished designing and fabricating the experimental rigs using both the above mentioned concepts. The flow tunnel concept is implemented in a 2.2 second drop tower rig. Preliminary experiments have been carried out using heptane and methanol in air at atmospheric pressure. The translating droplet apparatus is scheduled to be tested in the 5 second drop facility in the near future. This report presents some of the experimental results obtained for heptane.
Code of Federal Regulations, 2010 CFR
2010-10-01
... drums, Plastic drums and Jerricans, Composite packagings which are in the shape of a drum Six—(three for... of natural wood, Plywood boxes, Reconstituted wood boxes, Fiberboard boxes, Plastic boxes, Steel or... Administrator. (c) Special preparation of test samples for the drop test. (1) Testing of plastic drums, plastic...
Use of cellular phone contacts to increase return rates for immunization services in Kenya.
Mokaya, Evans; Mugoya, Isaac; Raburu, Jane; Shimp, Lora
2017-01-01
In Kenya, failure to complete immunization schedules by children who previously accessed immunization services is an obstacle to ensuring that children are fully immunized. Home visit approaches used to track defaulting children have not been successful in reducing the drop-out rate. This study tested the use of phone contacts as an approach for tracking immunization defaulters in twelve purposively-selected facilities in three districts of western Kenya. For nine months, children accessing immunization services in the facilities were tracked and caregivers were asked their reasons for defaulting. In all of the facilities, caregiver phone ownership was above 80%. In 11 of the 12 facilities, defaulter rates between pentavalent1 and pentavalent3 vaccination doses reduced significantly to within the acceptable level of < 10%. Caregivers provided reliable contact information and health workers positively perceived phone-based defaulter communications. Tracking a defaulter required on average 2 minutes by voice and Ksh 6 ($ 0.07). Competing tasks and concerns about vaccinating sick children and side-effects were the most cited reasons for caregivers defaulting. Notably, a significant number of children categorised as defaulters had been vaccinated in a different facility (and were therefore "false defaulters"). Use of phone contacts for follow-up is a feasible and cost-effective method for tracking defaulters. This approach should complement traditional home visits, especially for caregivers without phones. Given communication-related reasons for defaulting, it is important that immunization programs scale-up community education activities. A system for health facilities to share details of defaulting children should be established to reduce "false defaulters".
Use of cellular phone contacts to increase return rates for immunization services in Kenya
Mokaya, Evans; Mugoya, Isaac; Raburu, Jane; Shimp, Lora
2017-01-01
Introduction In Kenya, failure to complete immunization schedules by children who previously accessed immunization services is an obstacle to ensuring that children are fully immunized. Home visit approaches used to track defaulting children have not been successful in reducing the drop-out rate. Methods This study tested the use of phone contacts as an approach for tracking immunization defaulters in twelve purposively-selected facilities in three districts of western Kenya. For nine months, children accessing immunization services in the facilities were tracked and caregivers were asked their reasons for defaulting. Results In all of the facilities, caregiver phone ownership was above 80%. In 11 of the 12 facilities, defaulter rates between pentavalent1 and pentavalent3 vaccination doses reduced significantly to within the acceptable level of < 10%. Caregivers provided reliable contact information and health workers positively perceived phone-based defaulter communications. Tracking a defaulter required on average 2 minutes by voice and Ksh 6 ($ 0.07). Competing tasks and concerns about vaccinating sick children and side-effects were the most cited reasons for caregivers defaulting. Notably, a significant number of children categorised as defaulters had been vaccinated in a different facility (and were therefore “false defaulters”). Conclusion Use of phone contacts for follow-up is a feasible and cost-effective method for tracking defaulters. This approach should complement traditional home visits, especially for caregivers without phones. Given communication-related reasons for defaulting, it is important that immunization programs scale-up community education activities. A system for health facilities to share details of defaulting children should be established to reduce “false defaulters”. PMID:29138660
NASA Astrophysics Data System (ADS)
Sondag, Andrea; Dittus, Hansjörg
2016-08-01
The Weak Equivalence Principle (WEP) is at the basis of General Relativity - the best theory for gravitation today. It has been and still is tested with different methods and accuracies. In this paper an overview of tests of the Weak Equivalence Principle done in the past, developed in the present and planned for the future is given. The best result up to now is derived from the data of torsion balance experiments by Schlamminger et al. (2008). An intuitive test of the WEP consists of the comparison of the accelerations of two free falling test masses of different composition. This has been carried through by Kuroda & Mio (1989, 1990) with the up to date most precise result for this setup. There is still more potential in this method, especially with a longer free fall time and sensors with a higher resolution. Providing a free fall time of 4.74 s (9.3 s using the catapult) the drop tower of the Center of Applied Space Technology and Microgravity (ZARM) at the University of Bremen is a perfect facility for further improvements. In 2001 a free fall experiment with high sensitive SQUID (Superconductive QUantum Interference Device) sensors tested the WEP with an accuracy of 10-7 (Nietzsche, 2001). For optimal conditions one could reach an accuracy of 10-13 with this setup (Vodel et al., 2001). A description of this experiment and its results is given in the next part of this paper. For the free fall of macroscopic test masses it is important to start with precisely defined starting conditions concerning the positions and velocities of the test masses. An Electrostatic Positioning System (EPS) has been developed to this purpose. It is described in the last part of this paper.
14 CFR 29.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 29.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 27.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 27.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 29.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 29.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 27.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 27.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 29.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 29.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 27.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 27.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
Report of the committee on a commercially developed space facility
NASA Technical Reports Server (NTRS)
Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III
1989-01-01
Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.
DIME Students Witness Test Drop
NASA Technical Reports Server (NTRS)
2002-01-01
Students watch a test run on their experiment before the actual drop. They designed and built their apparatus to fit within a NASA-provided drop structure. This was part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.
Wang, De-jun; Sui, Shao-feng; Kong, Fan-ling; Huang, Dong-hai
2012-11-01
To investigate the occupational exposure levels of dust in new suspension preheated dry process (NSP) cement production line and put forward rectification measures for dust-exposed posts, and to provide ideas for the modern cement production enterprises in dust control and occupational health management. Occupational health field investigation combined with field test were used to measure the time-weighted average concentration (C(TWA)) of the dust in the workplace. Rectification measures were taken for the dust-exposed posts with unqualified dust concentration, and the protective effects of dustproof facilities in the rectified workplace were evaluated. The field investigation revealed incompletely closed dustproof facilities, improperly set dust hoods, excess of dust leakage points, and other problems in the dust-exposed posts of an NSP cement production line before rectification, and the dustproof facilities could hardly exert dust removal effect. The field test showed that the vast majority of dust-exposed posts had the dust concentrations exceeding the occupational exposure limits (OELs), with a qualified rate as low as 31.8%. A series of rectification measures were taken for these posts. After the rectification, the dust-exposed posts demonstrated dramatically dropped C(TWA), and the qualified rate of dust concentration in the dust-exposed posts rose to 90.9%. The dust hazards in NSP cement production line cannot be ignored. Taking appropriate protective measures are critical for curbing dust hazards in modern cement production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup
In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot andmore » 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.« less
Ramjet Model and Technicians in the 8- by 6-Foot Supersonic Wind Tunnel
1952-02-21
A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory checks the setup of a RJM-2 ramjet model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel. The 8- by 6 was not only the laboratory’s first large supersonic wind tunnel, but it was also the NACA’s first facility capable of testing an operating engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study engine inlets, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8-foot wide and 6-foot tall test section consisted of 1-inch thick steel plates with hatches on the floor and ceiling to facilitate the installation of the test article. The two windows seen on the right wall allowed photographic equipment to be set up. The test section was modified in 1956 to accommodate transonic research. NACA engineers drilled 4,700 holes into the test section walls to reduce transonic pressure disturbances and shock waves. NACA Lewis undertook an extensive research program on ramjets in the 1940s using several of its facilities. Ramjets provide a very simple source of propulsion. They are basically a tube which ingests high speed air, ignites it, and then expels the heated air at a significantly higher velocity. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore, they require a booster rocket or aircraft drop to accelerate them to high speeds before they can operate.
Interactions Forces and the Flow-Induced Coalescence of Drops and Bubbles
NASA Technical Reports Server (NTRS)
Leal, L. Gary; Israelachvili, J.
2004-01-01
In order to accomplish the proposed macroscale experimental goals, we designed and built a pair of miniaturized computer-controlled four-roll mills, similar but much smaller than the 4-roll mill that had been develop earlier in Prof. Leal's group for studies of drop deformation and breakup. This unique experimental facility allows for controlled experiments on the breakup and coalescence of very small drops in the size range of 20-200 micrometers in diameter for a wide variety of flows and under a wide range of flow conditions including time-dependent flows, etc. The small size of this device is necessary for coalescence studies, since coalescence occurs in viscous fluids at capillary numbers that are large enough to be experimentally accessible only for drops that are smaller than approximately 100_m in diameter. Using these miniaturized 4-roll mills, we have obtained the first quantitative data (so far as we are aware) on the flow-induced coalescence process.
Modified Drop Tower Impact Tests for American Football Helmets.
Rush, G Alston; Prabhu, R; Rush, Gus A; Williams, Lakiesha N; Horstemeyer, M F
2017-02-19
A modified National Operating Committee on Standards for Athletic Equipment (NOCSAE) test method for American football helmet drop impact test standards is presented that would provide better assessment of a helmet's on-field impact performance by including a faceguard on the helmet. In this study, a merger of faceguard and helmet test standards is proposed. The need for a more robust systematic approach to football helmet testing procedures is emphasized by comparing representative results of the Head Injury Criterion (HIC), Severity Index (SI), and peak acceleration values for different helmets at different helmet locations under modified NOCSAE standard drop tower tests. Essentially, these comparative drop test results revealed that the faceguard adds a stiffening kinematic constraint to the shell that lessens total energy absorption. The current NOCSAE standard test methods can be improved to represent on-field helmet hits by attaching the faceguards to helmets and by including two new helmet impact locations (Front Top and Front Top Boss). The reported football helmet test method gives a more accurate representation of a helmet's performance and its ability to mitigate on-field impacts while promoting safer football helmets.
Experimental Measurements at the MASURCA Facility
NASA Astrophysics Data System (ADS)
Assal, W.; Bosq, J. C.; Mellier, F.
2012-12-01
Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.
50 Years of the Radiological Research Accelerator Facility (RARAF)
Marino, Stephen A.
2017-01-01
The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly. PMID:28140790
A Space Station tethered orbital refueling facility
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System
NASA Technical Reports Server (NTRS)
Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.
2009-01-01
Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.
LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development
NASA Technical Reports Server (NTRS)
Rea, S. N.
1979-01-01
A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.
NASA Astrophysics Data System (ADS)
Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.
2018-01-01
The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.
Containment of a silicone fluid free surface in reduced gravity using barrier coatings
NASA Technical Reports Server (NTRS)
Pline, Alexander D.; Jacobson, Thomas P.
1988-01-01
In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.
Managing Challenges in a Multi Contractor Project
NASA Technical Reports Server (NTRS)
King, Ron
2011-01-01
The presentation provides a project description, describes the integrated product team, and review project challenges. The challenges include programmatic, technical, basic drop tests, heavy drop tests, C-17 envelope expansion, and Ares I-X.
Code of Federal Regulations, 2012 CFR
2012-01-01
... drop test height of 36 inches, or a drop test height that produces, upon impact, a velocity equal to the maximum vertical velocity determined in accordance with § 31.19, whichever is higher, must be used...
Code of Federal Regulations, 2013 CFR
2013-01-01
... drop test height of 36 inches, or a drop test height that produces, upon impact, a velocity equal to the maximum vertical velocity determined in accordance with § 31.19, whichever is higher, must be used...
Code of Federal Regulations, 2014 CFR
2014-01-01
... drop test height of 36 inches, or a drop test height that produces, upon impact, a velocity equal to the maximum vertical velocity determined in accordance with § 31.19, whichever is higher, must be used...
Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina
2015-09-01
The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%).
Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina
2014-01-01
The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%). PMID:27134543
49 CFR 178.33b-7 - Design qualification test.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., each new design must be drop tested as follows: Three groups of twenty-five filled containers must be... 49 Transportation 2 2010-10-01 2010-10-01 false Design qualification test. 178.33b-7 Section 178... PACKAGINGS Specifications for Inside Containers, and Linings § 178.33b-7 Design qualification test. (a) Drop...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Approval tests of prototype rescue boat. 160.056-4 Section 160.056-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT... tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.
Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun
2016-01-01
In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the fourth sample). Fifth drop: On a corner (using the fifth sample). Bags—single-ply with a side seam...). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on a wide...) For a bag, neither the outermost ply nor an outer packaging exhibits any damage likely to adversely...
van Diepen, J B; de Groot, I W
2016-01-01
Drop-out is a complex problem in mental health care and in STEPPS. Research has revealed a variety of predicting factors and has produced contradictory results. To investigate whether the information available at the start of STEPPS can pinpoint predictors of drop-out. The ROM data for 150 patients were used to test the link between the following factors: age, gender, education, employment, substance abuse, anxiety, hostility, interpersonal relations, responsibility and social concordance with drop-out. The method used for testing was logistic regression analysis. Factors that contributed significantly to the prediction of drop-out were gender and employment status. These factors made up 16% of the explained variation (R2 Nagelkerkes) in drop-out. Gender was the strongest predictive factor. Concerning the other factors, no differences were found between groups (drop-out and non-dropouts). In its present form STEPPS does not suit a large number of the male participants. Drop-out during STEPPS is hard to predict on the basis of ROM-questionnaires. Future research should focus on preconditions and marginal conditions that influence patients to complete their training.
Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF
NASA Technical Reports Server (NTRS)
Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.
2014-01-01
The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow.
Ni-C-N Nanosheets as Catalyst for Hydrogen Evolution Reaction.
Yin, Jie; Fan, Qiaohui; Li, Yuxuan; Cheng, Fangyi; Zhou, Panpan; Xi, Pinxian; Sun, Shouheng
2016-11-09
We report a facile nitrogenation/exfoliation process to prepare hybrid Ni-C-N nanosheets. These nanosheets are <2 nm thin, chemically stable, and metallically conductive. They serve as a robust catalyst for the hydrogen evolution reaction in 0.5 M H 2 SO 4 , or 1.0 M KOH or 1.0 M PBS (pH = 7). For example, they catalyze the hydrogen evolution reaction in 0.5 M H 2 SO 4 at an onset potential of 34.7 mV, an overpotential of 60.9 mV (at j = 10 mA cm -2 ) and with remarkable long-term stability (∼10% current drop after 70 h testing period). They are promising as a non-Pt catalyst for practical hydrogen evolution reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANGEVIN, A.S.
1999-07-12
This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied themore » effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.« less
49 CFR 173.465 - Type A packaging tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... quarters of each rim from a height of 0.3 m (1 foot). (5) The target for the free drop test must be a flat... Transport Package mass Kilograms (pounds) Free drop distance Meters (Feet) 15,000 (33,000) Mass 0.3 (1) (2... section must be preceded by a free drop from a height of 0.3 m (1 foot) on each corner, or in the case of...
Enhancing Injury Protection Capabilities of Army Combat Helmets
2006-11-01
rate on each material’s energy attenuation characteristics, dynamic compression tests were conducted using a monorail drop tower conforming to ANSI...equipment. An Army combat helmet is fitted to the monorail drop tower (left). The variable weight, flat impactor (right) is fitted to the monorail ...3.3.1 Impact attenuation All impact tests were conducted using the USAARL vertical monorail drop tower (Figure 1, left). Impact sites along with
Tethered orbital propellant depot
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a log tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity given transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
Refinery Upgrading of Hydropyrolysis Oil From Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro
Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located nearmore » biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the hydropyrolysis oils had low acidity and caused almost no corrosion in comparison to pyrolysis oils, which had high acidity and caused significant levels of corrosion.« less
A laboratory measurement of drop impact on a water surface in the presence of wind
NASA Astrophysics Data System (ADS)
Liu, Xinan; Liu, Ren
2014-11-01
The impact of single water drops on a water surface was studied experimentally in a wind tunnel. Water drops were generated from a needle oriented vertically from the top of the wind tunnel test section. After leaving the needle, the drops move downward due to gravity and downstream due to the effect of the wind, eventually impinging obliquely on the surface of a pool of water on the bottom of the test section. The vertical velocities of drops were about 2.0 m/s and the wind speeds varied from 0 to 6.4 m/s. The drop impacts were recorded simultaneously from the side and above with two high-speed movie cameras with frame rates of 1,000 Hz. Our measurements show that both wind speed and initial drop size dramatically affect the drop impacts and subsequent generation of crowns, secondary drops, stalks and ring waves. In the presence of wind, an asymmetric crown forms after the drop hits the water surface and secondary drops are generated from the fragmentation of the leeward side of the crown rim. This is followed by a stalk formation and ring waves at the location of the water drop impact. It is found that the stalks tilt to leeward and the ring waves in the windward direction are stronger than that in those in the leeward. This work is supported by National Science Foundation, Division of Ocean Sciences.
Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1979-01-01
MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.
Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system
NASA Astrophysics Data System (ADS)
James, Mark D.
The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.
Static, Drop, and Flight Tests on Musselman Type Airwheels
NASA Technical Reports Server (NTRS)
Peck, William C; Beard, Albert P
1932-01-01
The purpose of this investigation was to obtain quantitative information on the shock-reducing and energy-dissipating qualities of a set of 30 by 13-6 Musselman type airwheels. The investigation consisted of static, drop, and flight tests. The static tests were made with inflation pressures of approximately 0, 5, 10, 15, 20, and 25 pounds per square inch and loadings up to 9,600 pounds. The drop tests were with the inflation pressures approximately 5, 10, 15, 20, and 25 pounds per square inch and loadings of 1,840, 2,440, 3,050, and 3,585 pounds. The flight tests were made with VE-7 airplane weighing 2,153 pounds, with the tires inflated to 5, 10, and 15 pounds per square inch. The landing gears used in conjunction with airwheels were practically rigid structures. The results of the tests showed that the walls of the tires carried a considerable portion of the load, each tire supporting a load of 600 pounds with a depression of approximately 6 inches. The shock-reducing qualities, under severe tests, and the energy dissipating characteristics of the tires, under all tests, were poor. The latter was evidenced by the rebound present in all landings made. In the severe drop tests, the free rebound reached as much as 60 per cent of the free drop. The results indicate that a shock-reducing and energy-dissipating mechanism should be used in conjunction with airwheels.
NASA Technical Reports Server (NTRS)
Tornabene, Robert
2005-01-01
In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (using the fourth sample). Fifth drop: On a corner (using the fifth sample). Bags—single-ply with a side... samples). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on... the drum is no longer sift-proof; (3) For a bag, neither the outermost ply nor an outer packaging...
NASA Astrophysics Data System (ADS)
Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.
2013-04-01
Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.
ERIC Educational Resources Information Center
Erickson, Paul
2010-01-01
As student enrollment drops, school districts need less learning space and fewer facilities. With cuts in funding, budgets cannot sustain existing building operations and program costs, and buildings must be taken offline or repurposed for financial efficiency. How does a community address this issue? Whether a district is having to shutter…
Critical point wetting drop tower experiment
NASA Technical Reports Server (NTRS)
Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.
1984-01-01
Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.
Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System
NASA Technical Reports Server (NTRS)
Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.
2009-01-01
Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.
Thirumurthy, Harsha; Masters, Samuel H; Mavedzenge, Sue Napierala; Maman, Suzanne; Omanga, Eunice; Agot, Kawango
2016-06-01
Increased uptake of HIV testing by men in sub-Saharan Africa is essential for the success of combination prevention. Self-testing is an emerging approach with high acceptability, but little evidence exists on the best strategies for test distribution. We assessed an approach of providing multiple self-tests to women at high risk of HIV acquisition to promote partner HIV testing and to facilitate safer sexual decision making. In this cohort study, HIV-negative women aged 18-39 years were recruited at two sites in Kisumu, Kenya: a health facility with antenatal and post-partum clinics and a drop-in centre for female sex workers. Participants gave informed consent and were instructed on use of oral fluid based rapid HIV tests. Participants enrolled at the health facility received three self-tests and those at the drop-in centre received five self-tests. Structured interviews were conducted with participants at enrolment and over 3 months to determine how self-tests were used. Outcomes included the number of self-tests distributed by participants, the proportion of participants whose sexual partners used a self-test, couples testing, and sexual behaviour after self-testing. Between Jan 14, 2015, and March 13, 2015, 280 participants were enrolled (61 in antenatal care, 117 in post-partum care, and 102 female sex workers); follow-up interviews were completed for 265 (96%). Most participants with primary sexual partners distributed self-tests to partners: 53 (91%) of 58 participants in antenatal care, 91 (86%) of 106 in post-partum care, and 64 (75%) of 85 female sex workers. 82 (81%) of 101 female sex workers distributed more than one self-test to commercial sex clients. Among self-tests distributed to and used by primary sexual partners of participants, couples testing occurred in 27 (51%) of 53 in antenatal care, 62 (68%) of 91 from post-partum care, and 53 (83%) of 64 female sex workers. Among tests received by primary and non-primary sexual partners, two (4%) of 53 tests from participants in antenatal care, two (2%) of 91 in post-partum care, and 41 (14%) of 298 from female sex workers had positive results. Participants reported sexual intercourse with 235 (62%) of 380 sexual partners who tested HIV-negative, compared with eight (18%) of 45 who tested HIV-positive (p<0·0001); condoms were used in all eight intercourse events after positive results compared with 104 (44%) after of negative results (p<0·0018). Four participants reported intimate partner violence as a result of self-test distribution: two in the post-partum care group and two female sex workers. No other adverse events were reported. Provision of multiple HIV self-tests to women at high risk of HIV infection was successful in promoting HIV testing among their sexual partners and in facilitating safer sexual decisions. This novel strategy warrants further consideration as countries develop self-testing policies and programmes. Bill & Melinda Gates Foundation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.
Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.
Remotely operated high pressure valve protects test personnel
NASA Technical Reports Server (NTRS)
Howland, B. T.
1967-01-01
High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.725 Limit drop test. The... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in... to be absorbed by it. (d) When an effective mass is used in showing compliance with paragraph (b) of...
78 FR 79000 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... damage; repairs a must; asbestos/lead; contact Interior for more info. California Los Banos Field Office... required; contamination; asbestos; contact GSA for more info. Siphon Drop Caretaker's Reside (RPUI...; extensive termite damage; asbestos; mold, lead; escort required; contact Interior for more info. Illinois...
NASA Technical Reports Server (NTRS)
Strehlow, R. A.; Reuss, D. L.
1980-01-01
Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.
Initial basalt target site selection evaluation for the Mars penetrator drop test
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Quaide, W. L.; Polkowski, G.
1976-01-01
Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented.
Football helmet drop tests on different fields using an instrumented Hybrid III head.
Viano, David C; Withnall, Chris; Wonnacott, Michael
2012-01-01
An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.
A Materials Compatibility and Thermal Stability Analysis of Common Hydrocarbon Fuels
NASA Technical Reports Server (NTRS)
Meyer, M. L.; Stiegemeier, B. R.
2005-01-01
A materials compatibility and thermal stability investigation was conducted using five common liquid hydrocarbon fuels and two structural materials. The tests were performed at the NASA Glenn Research Center Heated Tube Facility under environmental conditions similar to those encountered in regeneratively cooled rocket engines. Scanning-electron microscopic analysis in conjunction with energy dispersive spectroscopy (EDS) was utilized to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion that was formed during selected runs. Results show that the carbon deposition process in stainless steel tubes was relatively insensitive to fuel type or test condition. The deposition rates were comparable for all fuels and none of the stainless steel test pieces showed any signs of corrosion. For tests conducted with copper tubing, the sulfur content of the fuel had a significant impact on both the condition of the tube wall and carbon deposition rates. Carbon deposition rates for the lowest sulfur fuels (2 ppm) were slightly higher than those recorded in the stainless steel tubes with no corrosion observed on the inner wall surface. For slightly higher sulfur content (25 ppm) fuels, nodules that intruded into the flow area were observed to form on the inner wall surface. These nodules induced moderate tube pressure drop increases. The highest sulfur content fuels (400 ppm) produced extensive wall pitting and dendritic copper sulfide growth that was continuous along the entire tube wall surface. The result of this tube degradation was the inability to maintain flow rate due to rapidly increasing test section pressure drops. Accompanying this corrosion were carbon deposition rates an order of magnitude greater than those observed in comparable stainless steel tests. The results of this investigation indicate that trace impurities in fuels (i.e. sulfur) can significantly impact the carbon deposition process and produce unacceptable corrosion levels in copper based structural materials.
Daff, Bocar Mamadou; Seck, Cheikh; Belkhayat, Hassan; Sutton, Perri
2014-05-01
Contraceptive use in Senegal is among the lowest in the world and has barely increased over the past 5 years, from 10% of married women in 2005 to 12% in 2011. Contraceptive stockouts in public facilities, where 85% of women access family planning services, are common. In 2011, we conducted a supply chain study of 33 public-sector facilities in Pikine and Guediawaye districts of the Dakar region to understand the magnitude and root causes of stockouts. The study included stock audits, surveys with 156 consumers, and interviews with facility staff, managers, and other stakeholders. At the facility level, stockouts of injectables and implants occurred, on average, 43% and 83% of the year, respectively. At least 60% of stockouts occurred despite stock availability at the national level. Data from interviews revealed that the current "pull-based" distribution system was complex and inefficient. In order to reduce stockout rates to the commercial-sector standard of 2% or less, the Government of Senegal and the Senegal Urban Reproductive Health Initiative developed the informed push distribution model (IPM) and pilot-tested it in Pikine district between February 2012 and July 2012. IPM brings the source of supply (a delivery truck loaded with supplies) closer to the source of demand (clients in health facilities) and streamlines the steps in between. With a professional logistician managing stock and deliveries, the health facilities no longer need to place and pick up orders. Stockouts of contraceptive pills, injectables, implants, and intrauterine devices (IUDs) were completely eliminated at the 14 public health facilities in Pikine over the 6-month pilot phase. The government expanded IPM to all 140 public facilities in the Dakar region, and 6 months later stockout rates throughout the region dropped to less than 2%. National coverage of the IPM is expected by July 2015.
Daff, Bocar Mamadou; Seck, Cheikh; Belkhayat, Hassan; Sutton, Perri
2014-01-01
Contraceptive use in Senegal is among the lowest in the world and has barely increased over the past 5 years, from 10% of married women in 2005 to 12% in 2011. Contraceptive stockouts in public facilities, where 85% of women access family planning services, are common. In 2011, we conducted a supply chain study of 33 public-sector facilities in Pikine and Guediawaye districts of the Dakar region to understand the magnitude and root causes of stockouts. The study included stock audits, surveys with 156 consumers, and interviews with facility staff, managers, and other stakeholders. At the facility level, stockouts of injectables and implants occurred, on average, 43% and 83% of the year, respectively. At least 60% of stockouts occurred despite stock availability at the national level. Data from interviews revealed that the current “pull-based” distribution system was complex and inefficient. In order to reduce stockout rates to the commercial-sector standard of 2% or less, the Government of Senegal and the Senegal Urban Reproductive Health Initiative developed the informed push distribution model (IPM) and pilot-tested it in Pikine district between February 2012 and July 2012. IPM brings the source of supply (a delivery truck loaded with supplies) closer to the source of demand (clients in health facilities) and streamlines the steps in between. With a professional logistician managing stock and deliveries, the health facilities no longer need to place and pick up orders. Stockouts of contraceptive pills, injectables, implants, and intrauterine devices (IUDs) were completely eliminated at the 14 public health facilities in Pikine over the 6-month pilot phase. The government expanded IPM to all 140 public facilities in the Dakar region, and 6 months later stockout rates throughout the region dropped to less than 2%. National coverage of the IPM is expected by July 2015. PMID:25276582
NASA Astrophysics Data System (ADS)
Kallolimath, Sharan Chandrashekar
For the past several years, many researchers are constantly developing and improving board level drop test procedures and specifications to quantify the solder joint reliability performance of consumer electronics products. Predictive finite element analysis (FEA) by utilizing simulation software has become widely acceptable verification method which can reduce time and cost of the real-time test process. However, due to testing and metrological limitations it is difficult not only to simulate exact drop condition and capture critical measurement data but also tedious to calibrate the system to improve test methods. Moreover, some of the important ever changing factors such as board flexural rigidity, damping, drop height, and drop orientation results in non-uniform stress/strain distribution throughout the test board. In addition, one of the most challenging tasks is to quantify uniform stress and strain distribution throughout the test board and identify critical failure factors. The major contributions of this work are in the four aspects of the drop test in electronics as following. First of all, an analytical FEA model was developed to study the board natural frequencies and responses of the system with the consideration of dynamic stiffness, damping behavior of the material and effect of impact loading condition. An approach to find the key parameters that affect stress and strain distributions under predominate mode responses was proposed and verified with theoretical solutions. Input-G method was adopted to study board response behavior and cut boundary interpolation methods was used to analyze local model solder joint stresses with the development of global/local FEA model in ANSYS software. Second, no ring phenomenon during the drop test was identified theoretically when the test board was modeled as both discrete system and continuous system. Numerical analysis was then conducted by FEA method for detailed geometry of attached chips with solder-joints. No ring test conditions was proposed and verified for the current widely used JEDEC standard. The significance of impact loading parameters such as pulse magnitude, pulse duration, pulse shapes and board dynamic parameter such as linear hysteretic damping and dynamic stiffness were discussed. Third, Kirchhoff's plate theory by principle of minimum potential energy was adopted to develop the FEA formulation to consider the effect of material hysteretic damping for the currently used JEDEC board test and proposed no-ring response test condition. Fourth, a hexagonal symmetrical board model was proposed to address the uniform stress and strain distribution throughout the test board and identify the critical failure factors. Dynamic stress and strain of the hexagonal board model were then compared with standard JEDEC board for both standard and proposed no-ring test conditions. In general, this line of research demonstrates that advanced techniques of FEA analysis can provide useful insights concerning the optimal design of drop test in microelectronics.
Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish
2003-01-01
In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.
Usage of drip drops as stimuli in an auditory P300 BCI paradigm.
Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu
2018-02-01
Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p < 0.05, Wilcoxon signed test; p < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1961-01-01
Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.
ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students
NASA Astrophysics Data System (ADS)
Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian
The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an impact on a system over the whole acceleration spectrum, but can address as well specifically problems which require these high g-levels. A wide range of hypergravity exper-iments can be performed in the LDC facility, including biological, biochemical, microbiological, opto-physical, physical, material and fluid sciences, geology or plasma physics. ESA Education Office financially supports the cost of the campaigns, part of the hardware development, as well as necessary travel and accommodation of the student selected teams. An ELGRA (European Low Gravity Research Association) mentor, i.e. a scientist specialized in gravity-related research, support each student team throughout these education programmes. [1] Pletser V., Gharib T., Gai F., Mora C., Rosier P. "The 50 parabolic flight campaigns of the European Space Agency to conduct short duration microgravity research experimentation", Paper IAC-09-A2.5.1, 60th International Astronautical federation Congress, Daejeon, Korea, October 2009. [2] von Kampen P., Kaczmarczik U., Rath H.J. The new Drop Tower catapult system", Acta Astronautica, 59, 1-5, 278-283, 2006. [3] van Loon J. W. A. , Krause J., Cunha H., Goncalves J., Almeida H., Schiller P. "The Large Diameter Centrifuge, LDC, for life and physical sciences and technology", Proc. of the 'Life in Space for Life on Earth Symposium', Angers, France, 22-27 June 2008. (ESA SP-663, December 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anschel, D.
1994-05-06
Levels of atmospheric carbon dioxide have been increasing at an unprecedented rate in modern times. In response to this situation, we have initiated a long-term study of a forest species` response to elevated carbon dioxide levels. We have set up a facility for subjecting P. ponderosa to ambient, ambient + 175 {mu}1 1{sup {minus}1}, and ambient + 350 {mu}1 1{sup {minus}1} CO{sub 2}. This report specifically concentrates on the effects of elevated CO{sub 2} on the photosynthetic system, as indicated by chlorophyll fluorescence and pigment assays. We tested for intraspecific variability by selecting nine different families of trees from fivemore » different geographic areas of California. There are differential responses to carbon dioxide treatments which appear to be dependent upon the tree`s genotype, as indicated by the relative efficiencies of photochemical electron flow in photosystem II (Fv/Fm). During the same testing period Fv/Fm varied by as much as 21.1% relative to ambient in the treated groups. Total chlorophyll, chlorophyll {alpha} and carotenoid values all showed statistically significant (p<0.05) drops in the treatment groups regardless of genotype. Chlorophyll {alpha} at one time showed the most dramatic drop of 3 mg/m2 in the + 350 {mu}1 1{sup {minus}1} CO{sub 2} group versus the ambient. Findings for both photosynthetic pigments and chlorophyll fluorescence vary somewhat over the course of several months.« less
NASA Technical Reports Server (NTRS)
Gooderum, P. B.; Bushnell, D. M.
1972-01-01
Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.
Standardized Sample Preparation Using a Drop-on-Demand Printing Platform
2013-05-07
successful and robust methodology for energetic sample preparation. Keywords: drop-on-demand; inkjet printing; sample preparation OPEN ACCESS...on a similar length scale. Recently, drop-on-demand inkjet printing technology has emerged as an effective approach to produce test materials to...which most of the material is concentrated along the edges, samples prepared using drop-on-demand inkjet technology demonstrate excellent uniform
Log-normal spray drop distribution...analyzed by two new computer programs
Gerald S. Walton
1968-01-01
Results of U.S. Forest Service research on chemical insecticides suggest that large drops are not as effective as small drops in carrying insecticides to target insects. Two new computer programs have been written to analyze size distribution properties of drops from spray nozzles. Coded in Fortran IV, the programs have been tested on both the CDC 6400 and the IBM 7094...
Hazardous Waste Cleanup: General Electric - Hudson Falls in Hudson Falls, New York
This 25-acre site is within an area of residential and industrial zoning in the Village of Hudson Falls. The site is generally flat, but has a near-vertical drop to the Hudson River along its western boundary. The facility has been divided into four areas
Higher Education's Coming Leadership Crisis
ERIC Educational Resources Information Center
Appadurai, Arjun
2009-01-01
The full impact of the current recession on American higher education remains uncertain, but drops in applications, faculty autonomy and job security, frozen salaries and hiring processes, and scaling back of new facilities and programs are already being seen. American colleges face tough times ahead for teaching, research, and capital projects…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gallons of Gasoline or More If you own or operate Then you must 1. A new, reconstructed, or existing GDF... fill tube is used, it shall be provided with a submerged drop tube that extends the same distance from...
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15407 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut Peter J.K. (Jeff) Wisoff, STS-81 mission specialist, simulates a parachute drop into water. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15402 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut John M. Grunsfeld, STS-81 mission specialist, prepares to simulate a parachute drop into water. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
Sen. Gillibrand, Kirsten E. [D-NY
2010-05-24
Senate - 05/24/2010 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
14 CFR 23.725 - Limit drop tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...
14 CFR 23.725 - Limit drop tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...
14 CFR 23.725 - Limit drop tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...
14 CFR 23.725 - Limit drop tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard
2011-01-01
This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.
Dropping In a Microgravity Environment (DIME) contest
NASA Technical Reports Server (NTRS)
2001-01-01
The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.
Japanese plan for SSF utilization
NASA Technical Reports Server (NTRS)
Mizuno, Toshio
1992-01-01
The Japanese Experiment Module (JEM) program has made significant progress. The JEM preliminary design review was completed in July 1992; construction of JEM operation facilities has begun; and the micro-G airplane, drop shaft, and micro-G experiment rocket are all operational. The national policy for JEM utilization was also established. The Space Experiment Laboratory (SEL) opened in June '92 and will function as a user support center. Eight JEM multiuser facilities are in phase B, and scientific requirements are being defined for 17 candidate multiuser facilities. The National Joint Research Program is about to start. Precursor missions and early Space Station utilization activities are being defined. This paper summarizes the program in outline and graphic form.
A drop-tower experiment to determine the threshold of gravity for inducing motion sickness in fish
NASA Astrophysics Data System (ADS)
Anken, R. H.; Hilbig, R.
2004-01-01
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behavior as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish ( Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the video-recordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between: (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests, which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behavior in larval fish).
Research on the F/A-18E/F Using a 22%-Dynamically-Scaled Drop Model
NASA Technical Reports Server (NTRS)
Croom, M.; Kenney, H.; Murri, D.; Lawson, K.
2000-01-01
Research on the F/A-18E/F configuration was conducted using a 22%-dynamically-scaled drop model to study flight dynamics in the subsonic regime. Several topics were investigated including longitudinal response, departure/spin resistance, developed spins and recoveries, and the failing leaf mode. Comparisons to full-scale flight test results were made and show the drop model strongly correlates to the airplane even under very dynamic conditions. The capability to use the drop model to expand on the information gained from full-scale flight testing is also discussed. Finally, a preliminary analysis of an unusual inclined spinning motion, dubbed the "cartwheel", is presented here for the first time.
Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger
NASA Astrophysics Data System (ADS)
Kimura, Randon
The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, Trevor John; Moir, David C.
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
Burris-Mog, Trevor John; Moir, David C.
2018-03-14
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
NASA Technical Reports Server (NTRS)
Leptuch, Peter A.; Agrawal, Ajay K.
2005-01-01
Rainbow schlieren deflectometry combined with high-speed digital imaging was used to study buoyancy effects on flow structure of a helium jet discharged vertically into air. The experimental data were taken using the 2.2-sec drop tower facility at the NASA John H. Glenn Research Center in Cleveland, Ohio. The test conditions pertained to jet Reynolds number of 490 and jet Richardson number of 0.11, for which buoyancy is often considered unimportant. Experimental results show global oscillations at a frequency of 27 Hz in Earth gravity. In microgravity, the jet oscillations vanished and the jet width increased. Results provide a direct physical evidence of the importance of buoyancy on the flow structure of low-density gas jets at a Richardson number considered too small to account for gravity.
Comparison of Seismic Sources and Frequencies in West Texas
NASA Astrophysics Data System (ADS)
Kaip, G.; Harder, S. H.; Karplus, M. S.
2017-12-01
During October 2017 the Seismic Source Facility (SSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at SSF test facility located near Fabens, TX. The project objective was to compare source amplitudes and frequencies of various seismic sources available through the SSF. Selecting the appropriate seismic source is important to reach geological objectives. We compare seismic sources between explosive sources (pentolite and shotgun) and mechanical sources (accelerated weight drop and hammer on plate), focusing on amplitude and frequency. All sources were tested in same geologic environment. Although this is not an ideal geologic formation for source coupling, it does allow an "apples to apples" comparison. Twenty Reftek RT125A seismic recorders with 4.5 Hz geophones were laid out in a line with 3m station separation. Mechanical sources were tested first to minimize changes in the subsurface related to explosive sources Explosive sources, while yielding higher amplitudes, have lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Mechanical sources yield higher frequencies allowing better resolution at shallower depths, but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.
NASA Astrophysics Data System (ADS)
Huang, M. L.; Zhao, N.
2015-10-01
Board-level drop tests of plastic ball grid array (PBGA) packages were performed in accordance with the Joint Electron Devices Engineering Council standard to investigate the effect of electromigration (EM) on the drop reliability of Sn-3.0Ag-0.5Cu solder joints with two substrate surface finishes, organic solderability preservative (OSP) and electroless nickel electroless palladium immersion gold (ENEPIG). In the as-soldered state, drop failures occurred at the substrate sides only, with cracks propagating within the interfacial intermetallic compound (IMC) layer for OSP solder joints and along the IMC/Ni-P interface for ENEPIG solder joints. The drop lifetime of OSP solder joints was approximately twice that of ENEPIG joints. EM had an important effect on crack formation and drop lifetime of the PBGA solder joints. ENEPIG solder joints performed better in drop reliability tests after EM, that is, the drop lifetime of ENEPIG joints decreased by 43% whereas that of OSP solder joints decreased by 91%, compared with the as-soldered cases. The more serious polarity effect, i.e., excessive growth of the interfacial IMC at the anode, was responsible for the sharper decrease in drop lifetime. The different types of drop failure of PBGA solder joints before and after EM, including the position of initiation and the propagation path of cracks, are discussed on the basis of the growth behavior of interfacial IMC.
NASA Astrophysics Data System (ADS)
You, Taehoon; Kim, Yunsung; Kim, Jina; Lee, Jaehong; Jung, Byungwook; Moon, Jungtak; Choe, Heeman
2009-03-01
Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.
Opening Loads Analyses for Various Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Cruz, J. R.; Kandis, M.; Witkowski, A.
2003-01-01
Detailed opening loads data is presented for 18 tests of Disk-Gap-Band (DGB) parachutes of varying geometry with nominal diameters ranging from 43.2 to 50.1 ft. All of the test parachutes were deployed from a mortar. Six of these tests were conducted via drop testing with drop test vehicles weighing approximately 3,000 or 8,000 lb. Twelve tests were conducted in the National Full-Scale Aerodynamics Complex 80- by 120-foot wind tunnel at the NASA Ames Research Center. The purpose of these tests was to structurally qualify the parachute for the Mars Exploration Rover mission. A key requirement of all tests was that peak parachute load had to be reached at full inflation to more closely simulate the load profile encountered during operation at Mars. Peak loads measured during the tests were in the range from 12,889 to 30,027 lb. Of the two test methods, the wind tunnel tests yielded more accurate and repeatable data. Application of an apparent mass model to the opening loads data yielded insights into the nature of these loads. Although the apparent mass model could reconstruct specific tests with reasonable accuracy, the use of this model for predictive analyses was not accurate enough to set test conditions for either the drop or wind tunnel tests. A simpler empirical model was found to be suitable for predicting opening loads for the wind tunnel tests to a satisfactory level of accuracy. However, this simple empirical model is not applicable to the drop tests.
Ober, Allison J; Martino, Steven C; Ewing, Brett; Tucker, Joan S
2012-08-01
Homeless youth are at high risk for human immunodeficiency virus (HIV) and other sexually transmitted infections (STI), yet those at greatest risk may never have been tested for HIV or STI. In a probability sample of sexually active homeless youth in Los Angeles (n = 305), this study identifies factors associated with HIV/STI testing status. Most youth (85%) had ever been tested and 47% had been tested in the past 3 months. Recent testing was significantly more likely among youth who self-identified as gay, were Hispanic, injected drugs, and used drop-in centers, and marginally more likely among youth with more depressive symptoms. Drop-in center use mediated the association of injection drug use with HIV/STI testing. HIV/STI testing was unrelated to sexual risk behavior. Drop-in centers can play an important role in facilitating testing, including among injection drug users, but more outreach is needed to encourage testing in other at-risk subgroups.
Ober, Allison J.; Martino, Steven C.; Ewing, Brett; Tucker, Joan S.
2012-01-01
Homeless youth are at high risk for human immunodeficiency virus (HIV) and other sexually transmitted infections (STI), yet those at greatest risk may never have been tested for HIV or STI. In a probability sample of sexually active homeless youth in Los Angeles (n =305), this study identifies factors associated with HIV/STI testing status. Most youth (85%) had ever been tested and 47% had tested in the past 3 months. Recent testing was significantly more likely among youth who self-identified as gay, were Hispanic, injected drugs, and used drop-in centers, and marginally more likely among youth with more depressive symptoms. Drop-in center use mediated the association of injection drug use with HIV/STI testing. HIV/STI testing was unrelated to sexual risk behavior. Drop-in centers can play an important role in facilitating testing, including among injection drug users, but more outreach is needed to encourage testing in other at-risk subgroups. PMID:22827904
Jin, Jian; Xiang, Chengxiang; Gregoire, John
2017-05-09
Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.
Surface tension propellant control for Viking 75 Orbiter
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.
1976-01-01
The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.
NASA Astrophysics Data System (ADS)
Viktorov, Vladimir; Nimafar, Mohammad
2013-05-01
This study introduces a novel generation of 3D splitting and recombination (SAR) passive micromixer with microstructures placed on the top and bottom floors of microchannels called a ‘chain mixer’. Both experimental verification and numerical analysis of the flow structure of this type of passive micromixer have been performed to evaluate the mixing performance and pressure drop of the microchannel, respectively. We propose here two types of chain mixer—chain 1 and chain 2—and compare their mixing performance and pressure drop with other micromixers, T-, o- and tear-drop micromixers. Experimental tests carried out in the laminar flow regime with a low Reynolds number range, 0.083 ≤ Re ≤ 4.166, and image-based techniques are used to evaluate the mixing efficiency. Also, the computational fluid dynamics code, ANSYS FLUENT-13.0 has been used to analyze the flow and pressure drop in the microchannel. Experimental results show that the chain and tear-drop mixer's efficiency is very high because of the SAR process: specifically, an efficiency of up to 98% can be achieved at the tested Reynolds number. The results also show that chain mixers have a lower required pressure drop in comparison with a tear-drop micromixer.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.
2008-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.
Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol
2010-07-01
Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model
Code of Federal Regulations, 2010 CFR
2010-10-01
... preparation for the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be.... (4) Rigid plastic IBCs and composite IBCs with plastic inner receptacles must be conditioned for... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Experimental and numerical study of drill bit drop tests on Kuru granite
NASA Astrophysics Data System (ADS)
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature
NASA Technical Reports Server (NTRS)
Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.
[Stability of physical state on compound hawthorn dropping pills].
Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan
2008-11-01
To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.
Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber
NASA Technical Reports Server (NTRS)
Wadel, Mary F.; Meyer, Michael L.
1996-01-01
In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.
Predictions of Helmet Pad Suspension System Performance using Isolated Pad Impact Results
2010-09-13
Equation 2 and Equation 3, respectively. 3. METHOD The primary method of data collection for this report is detailed in the 2008 Joint Live Fire ...tests and the helmet system tests (see Figure 3). All testing was performed with a monorail drop tower (see Figure 4) at three conditioning...right) and system test setup (right and center left) Figure 5. MEP monorail drop test setup with a hemispherical impactor (left and center left
Modeling of drop breakup in the bag breakup regime
NASA Astrophysics Data System (ADS)
Wang, C.; Chang, S.; Wu, H.; Xu, J.
2014-04-01
Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.
Majrooh, Muhammad Ashraf; Hasnain, Seema; Akram, Javaid; Siddiqui, Arif; Memon, Zahid Ali
2014-01-01
Antenatal care is a very important component of maternal health services. It provides the opportunity to learn about risks associated with pregnancy and guides to plan the place of deliveries thereby preventing maternal and infant morbidity and mortality. In 'Pakistan' antenatal services to rural population are being provided through a network of primary health care facilities designated as 'Basic Health Units and Rural Health Centers. Pakistan is a developing country, consisting of four provinces and federally administered areas. Each province is administratively subdivided in to 'Divisions' and 'Districts'. By population 'Punjab' is the largest province of Pakistan having 36 districts. This study was conducted to assess the coverage and quality antenatal care in the primary health care facilities in 'Punjab' province of 'Pakistan'. Quantitative and Qualitative methods were used to collect data. Using multistage sampling technique nine out of thirty six districts were selected and 19 primary health care facilities of public sector (seventeen Basic Health Units and two Rural Health Centers were randomly selected from each district. Focus group discussions and in-depth interviews were conducted with clients, providers and health managers. The overall enrollment for antenatal checkup was 55.9% and drop out was 32.9% in subsequent visits. The quality of services regarding assessment, treatment and counseling was extremely poor. The reasons for low coverage and quality were the distant location of facilities, deficiency of facility resources, indifferent attitude and non availability of the staff. Moreover, lack of client awareness about importance of antenatal care and self empowerment for decision making to seek care were also responsible for low coverage. The coverage and quality of the antenatal care services in 'Punjab' are extremely compromised. Only half of the expected pregnancies are enrolled and out of those 1/3 drop out in follow-up visits.
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in the attitude simulating the landing condition that is most critical from the standpoint of the energy...-up attitude considered in the nose-up landing conditions. h=specified free drop height (inches). L...
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in the attitude simulating the landing condition that is most critical from the standpoint of the energy...-up attitude considered in the nose-up landing conditions. h=specified free drop height (inches). L...
Evaluation of a Proposed Drift Reduction Technology High-Speed Wind Tunnel Testing Protocol
2009-03-01
05: “Standard Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light- Scattering Instruments” 15...Method for Determining Liquid Drop Size Characteris- tics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards
Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan
2017-05-09
Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
System design of a 1 MW north-facing, solid particle receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J.; Ho, C.
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
System design of a 1 MW north-facing, solid particle receiver
Christian, J.; Ho, C.
2015-05-01
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
Rathi, Nilesh; Baid, Rutika; Baliga, Sudhindra; Thosar, Nilima
2017-04-01
To evaluate and compare the microhardness of deciduous teeth treated with nano-hydroxyapatite and calcium sucrose phosphate after iron drop exposure. Twenty healthy anterior deciduous teeth were collected and stored in 0.9% saline solution at room temperature. All the teeth were immersed in artificial saliva in an incubator shaker at 37° for an hour and then subjected to Vickers microhardness test at 100g load for 5 seconds. The teeth were then immersed in iron drop for 5 minutes, twice daily, rinsed with distilled water and kept in artificial saliva. This procedure was repeated for 7 days and teeth were subjected to microhardness testing. Further, the teeth were divided in two groups, each group containing 10 teeth. In group I, nanohydroxyapatite preparation and in group II, calcium sucrose phosphate were applied for 10 minutes, twice daily for 7 days and subjected again to microhardness testing again. Vickers microhardness analysis revealed that iron drop exposure to teeth caused significant decrease in microhardness ( p <0.05). Application of nanohydroxyapatite preparation in Group I showed significantly increased enamel microhardness (206.90) than that after iron drop exposure. Similarly, application of calcium sucrose phosphate in Group II showed significantly increased enamel microhardness (200.89) than that after iron drop exposure. Statistical difference was seen between the two groups, with nanohydroxyapatite preparation showing increased microhardness than calcium sucrose phosphate. Nanohydroxyapatite preparation and calcium sucrose phosphate have remineralizing effect over teeth affected by acid challenge of iron drops, nanohydroxyapatite preparation showing better results than calcium sucrose phosphate. Key words: Iron drops, Nanohydroxyapaptite, calcium sucrose phosphate, anticay.
1983-03-01
var. cerifera L. Wax myrtle Onagraceae *Ludiigia aZata Ell. W. - r-priurose Oenothera frticoea L. drops 0. hisniflsa Nuttall Evening primrose... Orchidaceae Spiranthee cernua ver. odorata Nodding ladies’ (Nuttall) Correll. tresses Passiflorarese *PassifZora lutea L. Passion-flower Phytolacaceat POytoZaca
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... taking direct final action to approve revisions to the Maryland State Implementation Plan (SIP) submitted... steelmaking facility (Sparrows Point) is the only sintering plant located in the State of Maryland. The... emissions of particulate matter, continuously monitoring compliance with specified pressure drop and flow...
20 CFR 672.100 - What is YouthBuild?
Code of Federal Regulations, 2014 CFR
2014-04-01
... receive education services that may lead to either a high school diploma or General Educational... school drop outs and are either a member of a low-income family, a foster care youth, a youth offender, a... facilities, or in other high wage, high-demand jobs. The program also benefits the larger community because...
20 CFR 672.100 - What is YouthBuild?
Code of Federal Regulations, 2013 CFR
2013-04-01
... receive education services that may lead to either a high school diploma or General Educational... school drop outs and are either a member of a low-income family, a foster care youth, a youth offender, a... facilities, or in other high wage, high-demand jobs. The program also benefits the larger community because...
20 CFR 672.100 - What is YouthBuild?
Code of Federal Regulations, 2012 CFR
2012-04-01
... receive education services that may lead to either a high school diploma or General Educational... school drop outs and are either a member of a low-income family, a foster care youth, a youth offender, a... facilities, or in other high wage, high-demand jobs. The program also benefits the larger community because...
Ryu, Hee Wook; Cho, Kyung-Suk; Lee, Tae-Ho
2011-04-01
The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H(2)O m(-1)), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m(-3). Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU(-1) and below 50 mm H(2)O m(-1), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Byrne, Clare; Roth, Rachel; Donnelly, Julianne; Dicker, Gill; Palmer, Michelle
2018-06-01
Drop-in clinics may be an alternative patient-centred approach to traditional appointment systems. However patient uptake in Allied Health settings is unknown. Given the limited literature, this observational prospective project tested whether patients with diabetes would present to a drop-in clinic, and whether the types and volume of patients would change due to introduction of a drop-in clinic. Alongside a referral-based booked individual appointment service (standard care (SC)), a drop-in clinic was introduced allowing patients to present without appointment. Patient data was collected from medical chart and outpatient appointment systems over 30 months. High category patient criteria included HbA1c>7.5%. Data was compared between drop-in and SC groups using chi-squared and ANOVA tests. Of 150 eligible patients, more drop-in patients (n = 76) presented over 15 months than SC patients booked in the 15 months before (n = 41) or 15 months after (n = 33) the drop-in clinic commenced. Drop-ins were 12 years older and less likely to have Type 1 Diabetes Mellitus (T1DM) than SC patients (p < 0.001), however the proportion of high category patients was similar across groups (54%, p = 0.731). SC patients were similar before and after drop-in clinic commencement (51%F, baseline HbA1c 9.5% ± 2.2, 34% clinic non-attendance, P = 0.159-0.671). Patients attended a drop-in diabetes outpatient clinic. This included high category patients. The weekday drop-in service may appeal to older patients with Type 2 Diabetes Mellitus, but not to younger patients or patients with T1DM. The types, volume, and attendance rates of SC patients was similar before and after commencement of the drop-in clinic. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Spray drop size is a critical factor in the performance of any agrochemical solution and is a function of spray solution, nozzle selection, and nozzle operation. Applicators generally base their selection of a particular nozzle based on the drop size reported by manufacturers and researchers. Like m...
Dosage variability of topical ocular hypotensive products: a densitometric assessment.
Gaynes, Bruce I; Singa, Ramesh M; Cao, Ying
2009-02-01
To ascertain consequence of variability in drop volume obtained from multiuse topical ocular hypotensive products in terms of uniformity of product dosage. Densitometric assessment of drop volume dispensed from 2 alternative bottle positions. All except one product demonstrated a statistically significant difference in drop volume when administered at either a 45-degree or 90-degree bottle angle (Student t test, P<0.001). Product-specific drop volume ranged from a nadir of 22.36 microL to a high of 53.54 microL depending on bottle angle of administration. Deviation in drop dose was directly proportional to variability in drop volume. Variability in per drop dosage was conspicuous among products with a coefficient of variation from 1.49% to 15.91%. In accordance with drop volume, all products demonstrated a statistically significant difference in drop dose at 45-degree versus 90-degree administration angles. Drop volume was found unrelated to drop uniformity (Spearman r=0.01987 and P=0.9463). Variability and lack of uniformity in drop dosage is clearly evident among select ocular hypotensive products and is related to angle of drop administration. Erratic dosage of topical ocular hypotensive therapy may contribute in part to therapeutic failure and/or toxicity.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The airplane flutter and maneuver-gust load analysis results obtained during B-52B drop test vehicle configuration (with fins) evaluation are presented. These data are presented as supplementary data to that given in Volume 1 of this document. A brief mathematical description of airspeed notation and gust load factor criteria are provided as a help to the user. References are defined which provide mathematical description of the airplane flutter and load analysis techniques. Air-speed-load factor diagrams are provided for the airplane weight configurations reanalyzed for finned drop test vehicle configuration.
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Nystrom, D. M.
1980-01-01
Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Experimental and computation study of liquid droplets impinging on an afterburner
NASA Astrophysics Data System (ADS)
Lavergne, G.; Hebrard, P.; Donnadille, Ph.
The actual development of three-dimensional computation codes of internal reactive flows in combustion chambers needs, for the liquid phase, accurate boundary conditions. A series of experiments was undertaken to identify and then to analyze physical phenomena occurring during spray transport and spray boundary interaction. The purpose of this paper is to investigate drop wall interaction, drop impingement, the liquid film, and the liquid flow rate captured by a flameholder. The experimental approach is divided in two parts: a parametric study on the captured fuel flow rate by a flameholder in an isothermal two-dimensional square facility, and a fundamental study of monosized droplet impingement on a hot plate to determine rebound criteria.
77 FR 37477 - Federal Motor Vehicle Safety Standards; Glazing Materials
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... 4. Half Pound Ball Drop--Tempered Glass 5. Fracture Test 6. Shot Bag and Dart Drop Tests 7. Half... Rapporteurs) that assist WP.29 in researching, analyzing and developing technical regulations. One of the GRs... proposal concerning markings for GTRs in general, at the one-hundred-and- fortieth session of WP.29 in...
40 CFR Table 2 to Subpart Kkkkk of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Maintain the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop established during the performance test; andb. Maintain the average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test...
Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions
NASA Technical Reports Server (NTRS)
Ownby, D. P.; Barsoum, M. W.
1980-01-01
The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.
Transfer, Imaging, and Analysis Plate for Facile Handling of 384 Hanging Drop 3D Tissue Spheroids
Cavnar, Stephen P.; Salomonsson, Emma; Luker, Kathryn E.; Luker, Gary D.; Takayama, Shuichi
2014-01-01
Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated highfidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type–dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging. PMID:24051516
Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids.
Cavnar, Stephen P; Salomonsson, Emma; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi
2014-04-01
Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated high-fidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type-dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging.
2001-04-26
The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.
Nondestructive spot test method for magnesium and magnesium alloys
NASA Technical Reports Server (NTRS)
Wilson, M. L. (Inventor)
1973-01-01
A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.
Evaluation of ENEPIG and Immersion Silver Surface Finishes Under Drop Loading
NASA Astrophysics Data System (ADS)
Pearl, Adam; Osterman, Michael; Pecht, Michael
2016-01-01
The effect of printed circuit board surface finish on the drop loading reliability of ball grid array (BGA) solder interconnects has been examined. The finishes examined include electroless nickel/electroless palladium/immersion gold (ENEPIG) and immersion silver (ImAg). For the ENEPIG finish, the effect of the Pd plating layer thickness was evaluated by testing two different thicknesses: 0.05 μm and 0.15 μm. BGA components were assembled onto the boards using either eutectic Sn-Pb or Sn-3.0Ag-0.5Cu (SAC305) solder. Prior to testing, the assembled boards were aged at 100°C for 24 h or 500 h. The boards were then subjected to multiple 1500-g drop tests. Failure analysis indicated the primary failure site for the BGAs to be the solder balls at the board-side solder interface. Cratering of the board laminate under the solder-attached pads was also observed. In all cases, isothermal aging reduced the number of drops to failure. The components soldered onto the boards with the 0.15- μm-Pd ENEPIG finish with the SAC305 solder had the highest characteristic life, at 234 drops to failure, compared with the other finish-solder combinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, J.H.; Davie, R.L.
1961-05-01
Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less
Sapphire Energy - Integrated Algal Biorefinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Rebecca L.; Tyler, Mike
2015-07-22
Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass productionmore » facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR demonstrated significant year over year yield improvements (2013 to 2014), and reduction in the cost of biomass production. Therefore, the IABR fulfills a number of critical functions in SEI’s integrated development pipeline. These functions are critical in general for the commercialization of algal biomass production and production of biofuels from algal biomass.« less
Osmolarity of prevalent eye drops, side effects, and therapeutic approaches.
Dutescu, Ralf M; Panfil, Claudia; Schrage, Norbert
2015-05-01
Little is known about how the osmolarity of ophthalmic formulations affects the ocular surface. Because hyperosmolar eye drops could be therapeutic for treating corneal edema, this article presents an ex vivo model of corneal edema for testing ophthalmic drugs based on their osmolarity. The respective osmolarity of common eye drops found in the German market is also analyzed here. For modeling corneal edema, an Ex Vivo Eye Irritation Test was used to simulate an ocular anterior chamber with a physiological corneal barrier. To induce corneal edema, the anterior chamber was supplied with a hypoosmolar medium (148 mOsm/L) for 24 hours. Preserved and preservative-free 5% sodium chloride (hyperosmolar Omnisorb and Ocusalin 5% UD) were used for 1 hour, on 5 corneas each, to test their efficiency to reduce corneal edema in this model. Corneal thickness was determined by optical coherence tomography. Osmolarity of 87 common eye drops was measured by freezing point osmometry. Ex vivo, the tested hypoosmolar condition induced corneal edema from 450 μm (±50 μm) at baseline to 851 μm (±94 μm, P < 0.0001). Omnisorb and Ocusalin 5% UD significantly reduced the corneal thickness by 279 μm (±28 μm, P < 0.001) for Omnisorb and 258 μm (±29 μm, P < 0.001) for Ocusalin 5% UD. Forty-three (49%) of the tested products had an osmolarity below and 44 (51%) above the physiological tear osmolarity of 289 mOsm/L. Osmolarity values of less than 200 mOsm/L were found in lubricant drops. The highest osmolarity was detected in Omnisorb (1955 mOsm/L). The Ex Vivo Eye Irritation Test has proven to be a reliable novel model of corneal edema for evaluating osmotic eye drops. Osmolarity measurements revealed a wide range from hypotonic to hypertonic formulations for commonly marketed ophthalmic drugs.
ERIC Educational Resources Information Center
Heckman, James J.; LaFontaine, Paul A.; Rodriguez, Pedro L.
2008-01-01
We exploit an exogenous increase in General Educational Development (GED) testing requirements to determine whether raising the difficulty of the test causes students to finish high school rather than drop out and GED certify. We find that a six point decrease in GED pass rates induces a 1.3 point decline in overall dropout rates. The effect size…
Experimental and numerical study of drill bit drop tests on Kuru granite.
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-28
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Experimental and numerical study of drill bit drop tests on Kuru granite
Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit–rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist–Johnson–Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956511
Educational Subculture and Dropping out in Higher Education: A Longitudinal Case Study
ERIC Educational Resources Information Center
Venuleo, C.; Mossi, P.; Salvatore, S.
2016-01-01
The paper tests longitudinally the hypothesis that educational subcultures in terms of which students interpret their role and their educational setting affect the probability of dropping out of higher education. A logistic regression model was performed to predict drop out at the beginning of the second academic year for the 823 freshmen of a…
Structural Equation Modeling of Retention and Overage Effects on Dropping Out of School.
ERIC Educational Resources Information Center
Grissom, James B.; Shepard, Lorrie A.
This study addresses the effect that grade retention has on dropping out of school. A structural model was developed to test the effect of grade retention on dropping out while controlling for the effects of other possible mediating variables, especially achievement. This model with slight modifications was applied across four different school…
Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions.
Wang, Yong; Zhang, Jun
2013-02-15
The properties of polymer melts will strongly affect the fire hazard of the pool induced by polymer melt flow. In this study the thermal stabilities of eight thermoplastic polymers as well as their melting drops generated under the UL 94 vertical burning test conditions were investigated by thermogravimetric experiments. It was found that the kinetic compensation effect existed for the decomposition reactions of the polymers and their drops. For polymethylmethacrylate (PMMA), high impact polystyrene (HIPS), poly(acrylonitrile-butadiene-styrene) (ABS), polyamide 6 (PA6), polypropylene (PP) and low density polyethylene (LDPE), the onset decomposition temperature and the two decomposition kinetic parameters (the pre-exponential factor and the activation energy) of the drop were less than those of the polymer. However, the onset decomposition temperature and the two kinetic parameters of PC's drop were greater than those of polycarbonate (PC). Interestingly, for polyethylenevinylacetate (EVA18) the drop hardly contained the vinyl acetate chain segments. Similarly, for the PMMA/LDPE blends and the PMMA/PP blends, when the volume fraction of PMMA was less than 50% the drop hardly contained PMMA, implying that the blend would not drip until PMMA burned away and its surface temperature approached the decomposition temperature of the continuous phase composed of LDPE or PP. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of a Device to Deploy Fluid Droplets in Microgravity
NASA Technical Reports Server (NTRS)
Robinson, David W.; Chai, An-Ti
1997-01-01
A free-floating droplet in microgravity is ideal for scientific observation since it is free of confounding factors such as wetting and nonsymmetrical heat transfer introduced by contact with surfaces. However, the technology to reliably deploy in microgravity has not yet been developed. In some recent fluid deployment experiments, droplets are either shaken off the dispenser or the dispenser is quickly retracted from the droplet. These solutions impart random residual motion to deployed droplet, which can be undesirable for certain investigations. In the present study, two new types of droplet injectors were built and tested. Testing of the droplet injectors consisted of neutral buoyancy tank tests, 5-sec drop tower tests at the NASA Lewis Zero Gravity Facility, and DC-9 tests. One type, the concentric injector, worked well in the neutral buoyancy tank but did not do well in low-gravity. However, it appeared that it makes a fine apparatus for constructing bubbles in low-gravity conditions. The other type, the T-injector, showed the most promise for future development. In both neutral buoyancy and DC-9 tests, water droplets were formed and deployed with some control and repeatability, although in low-gravity the residual velocities were higher than desirable. Based on our observations, further refinements are suggested for future development work.
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.
2004-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the higher temperatures and higher frequencies.
A microfluidic biochip for complete blood cell counts at the point-of-care
Hassan, U.; Reddy, B.; Damhorst, G.; Sonoiki, O.; Ghonge, T.; Yang, C.; Bashir, R.
2016-01-01
Complete blood cell counts (CBCs) are one of the most commonly ordered and informative blood tests in hospitals. The results from a CBC, which typically include white blood cell (WBC) counts with differentials, red blood cell (RBC) counts, platelet counts and hemoglobin measurements, can have implications for the diagnosis and screening of hundreds of diseases and treatments. Bulky and expensive hematology analyzers are currently used as a gold standard for acquiring CBCs. For nearly all CBCs performed today, the patient must travel to either a hospital with a large laboratory or to a centralized lab testing facility. There is a tremendous need for an automated, portable point-of-care blood cell counter that could yield results in a matter of minutes from a drop of blood without any trained professionals to operate the instrument. We have developed microfluidic biochips capable of a partial CBC using only a drop of whole blood. Total leukocyte and their 3-part differential count are obtained from 10 μL of blood after on-chip lysing of the RBCs and counting of the leukocytes electrically using microfabricated platinum electrodes. For RBCs and platelets, 1 μL of whole blood is diluted with PBS on-chip and the cells are counted electrically. The total time for measurement is under 20 minutes. We demonstrate a high correlation of blood cell counts compared to results acquired with a commercial hematology analyzer. This technology could potentially have tremendous applications in hospitals at the bedside, private clinics, retail clinics and the developing world. PMID:26909365
A microfluidic biochip for complete blood cell counts at the point-of-care.
Hassan, U; Reddy, B; Damhorst, G; Sonoiki, O; Ghonge, T; Yang, C; Bashir, R
2015-12-01
Complete blood cell counts (CBCs) are one of the most commonly ordered and informative blood tests in hospitals. The results from a CBC, which typically include white blood cell (WBC) counts with differentials, red blood cell (RBC) counts, platelet counts and hemoglobin measurements, can have implications for the diagnosis and screening of hundreds of diseases and treatments. Bulky and expensive hematology analyzers are currently used as a gold standard for acquiring CBCs. For nearly all CBCs performed today, the patient must travel to either a hospital with a large laboratory or to a centralized lab testing facility. There is a tremendous need for an automated, portable point-of-care blood cell counter that could yield results in a matter of minutes from a drop of blood without any trained professionals to operate the instrument. We have developed microfluidic biochips capable of a partial CBC using only a drop of whole blood. Total leukocyte and their 3-part differential count are obtained from 10 μL of blood after on-chip lysing of the RBCs and counting of the leukocytes electrically using microfabricated platinum electrodes. For RBCs and platelets, 1 μL of whole blood is diluted with PBS on-chip and the cells are counted electrically. The total time for measurement is under 20 minutes. We demonstrate a high correlation of blood cell counts compared to results acquired with a commercial hematology analyzer. This technology could potentially have tremendous applications in hospitals at the bedside, private clinics, retail clinics and the developing world.
A Burning Rate Emulator (BRE) for Study in Microgravity
NASA Technical Reports Server (NTRS)
Markan, A.; Sunderland, P. B.; Quintiere, J. G.; DeRis, J.; Stocker, D. P.
2015-01-01
A gas-fueled burner, the Burning Rate Emulator (BRE), is used to emulate condensed-phase fuel flames. The design has been validated to easily measure the burning behavior of condensed-phase fuels by igniting a controlled stream of gas fuel and diluent. Four properties, including the heat of combustion, the heat of gasification, the surface temperature, and the laminar smoke point, are assumed to be sufficient to define the steady burning rate of a condensed-phase fuel. The heat of gasification of the fuel is determined by measuring the heat flux and the fuel flow rate. Microgravity BRE tests in the NASA 5.2 s drop facility have examined the burning of pure methane and ethylene (pure and 50 in N2 balance). Fuel flow rates, chamber oxygen concentration and initial pressure have been varied. Two burner sizes, 25 and 50 mm respectively, are chosen to examine the nature of initial microgravity burning. The tests reveal bubble-like flames that increase within the 5.2s drop but the heat flux received from the flame appears to asymptotically approach steady state. Portions of the methane flames appear to locally detach and extinguish at center, while its shape remains fixed, but growing. The effective heat of gasification is computed from the final measured net heat flux and the fuel flow rate under the assumption of an achieved steady burning. Heat flux (or mass flux) and flame position are compared with stagnant layer burning theory. The analysis offers the prospect of more complete findings from future longer duration ISS experiments.
NASA Helps Keep the Light Burning for the Saturn Car Company
NASA Technical Reports Server (NTRS)
2003-01-01
The Saturn Electronics & Engineering, Inc. (Saturn) facility in Marks, Miss., that produces lamp assemblies was experiencing itermittent problems with its automotive under the hood lamps. After numerous testing and engineering efforts, technicians could not pin down the root of the problem. So Saturn contacted the NASA Technology Assistance Program (TAP) at Stennis Space Center. The Marks production facility had been experiencing intermittent problems with under the hood lamp assemblies for some time. The failure rate, at 2 percent, was unacceptable. Every effort was made to identify the problem so that corrective action could be put in place. The problem was investigated and researched by Saturn's engineering department. In addition, Saturn brought in several independent testing laboratories. Other measures included examining the switch component suppliers and auditing them for compliance to the design specifications and for surface contaminants. All attempts to identify the factors responsible for the failures were inconclusive. In an effort to get to the root of the problem, and at the recommendation of the Mississippi Department of Economic Development, Saturn contacted the NASA TAP at Stennis. The NASA Materials and Contamination Laboratory, with assistance from the Stennis Prototype Laboratory, conducted a materials evaluation study on the switch components. The laboratory findings showed the failures were caused by a build-up of carbon-based contaminants on the switch components. Saturn Electronics & Engineering, Inc., is a minority-owned provider of contract manufacturing services to a diverse global marketplace. Saturn operates manufacturing facilities globally serving the North American, European, and Asian markets. Saturn's production facility in Marks, Mississippi, produces more than 1,000,000 lamps and switches monthly. "Since the NASA recommendations were implemented, our internal failure rate for intermittency has dropped to less than .02 percent. Most importantly, we restored our high-level of customer satisfaction. Stennis provided an invaluable service to our business," Patrick said. Both NASA and Saturn were pleased with the results form this technical assistance project. The Technology Assistance Program at Stennis makes available to the public NASA technical expertise and access to lab facilities. This project provided both services with a positive outcome.
Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Gillet, Christophe; Roux, Maxime; Guéguen, Nils; Chavet, Pascale
2017-11-01
Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8 mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (-73%, p = .005) but increased peak ankle plantarflexors moment (+47%, p = .050) and peak ankle power absorption (+107%, p = .005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.
1977-01-01
An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.
Update on the Purdue University 2-second Drop Tower
NASA Astrophysics Data System (ADS)
Collicott, Steven
A small drop tower of approximately one second drop duration was built in the School of Aero-nautics and Astronautics at Purdue University beginning in 1998 and operated until summer 2007. This inexpensive tower in an old airplane hanger, was built largely by Yongkang Chen, now a Research Professor at Portland State University in Oregon, USA. In about 7 years of operations, the tower generated sufficient science results for Chen's PhD thesis[1] (summarized in three AIAA Journal papers[2-4]), Fitzpatrick's MS thesis[5], two industry projects for since-canceled advanced rodent habitats for ISS, and one project for NASA Marshall. In addition to the science use, Purdue undergraduate students designed, built, and performed simpler fluids experiments for their own career advancement, including a novel investigation of the impact of imperfect repeatability of initial conditions on a zero-g fluids experiment. The tower was also used for outreach to school children. It is most satisfying that Chen's PhD research in this small tower, and subsequent discussions and interactions, helped Weislogel to propose the two Vane Gap tests in his highly successful Capillary Fluids Experiment (CFE) in the International Space Station in 2006 and 2007[6]. Chen as been involved in the remodeling of these two Vane Gap cylinders for subsequent re-launch to ISS for a second round of experiments expected in 2010 and 2011. In August 2007 the School of Aeronautics and Astronautics at Purdue University moved into the new Neil Armstrong Hall of Engineering and construction on a new 2-second drop tower began. A vertical shaft of nearly 23 meters was designed into the building. An approximately 80 m2 general-use fluids lab is at the top level, and a small access room of approximately 9 m2 is at the bottom. However, construction of the new $57M building created only the space for the science facility, not the science facility itself. The science facility is under construction and this paper presents an update on progress for the micro-gravity community. The most noticeable current activity is testing of the air-bag decelerator. The tower is one that will use a free-falling experiment inside of a drag shield to avoid most aerodynamic drag. The airbag is designed from experiences of others yet the small, triangular room in which the tower terminates imposes challenges. The airbag is approximately 1.5m diameter and 1.5m tall. Initial testing led to a desire to increase vent area, and just this week the bag has returned from the shop that was modifying it. On-board computer, battery packs, lighting, and cameras have been acquired. Thanks to Lockheed Martin, one camera is 500 frames per second with 1.3 million 12-bit gray scale pixels per frame. The Spincraft company donated steel hemisphere-cylinders to serve as the nose of the drag shield. Wind tunnel and CFD modeling of the drag shield has been performed by Purdue undergraduate aerospace students. Currently the drag shield structure and experiment package structure are being design and analyzed. The experiment volume is approximately a cylinder 0.45m diameter and 0.6m tall. Tower operation is intended to commence in fall 2010 with inert package drops at full mass and full height. Developing the operations procedures, especially operational safety, are the goals of this work. First science is then expected in the winter. References 1. Y. Chen, "A Study of Capillary Flow in a Vane-wall Gap in Zero Gravity," Ph.D. thesis, School of Aeronautics and Astronautics, Purdue University. August 2003. 2. Y. Chen and S. H. Collicott, "Investigation of the Symmetric Wetting of a Vane-Wall Gap in Propellant Tanks," AIAA Journal, 42, No. 2, pp. 305-314, February 2004. 3. Y. Chen, and S. H. Collicott, "Experimental Study on the Capillary Flow in a Vane-Wall Gap Geometry," AIAA Journal, 43, No. 11, pp. 2395-2403, November, 2005. 4. Y. Chen and S. H. Collicott, "Study of Wetting in an Asymmetrical Vane-Wall Gap in Propellant Tanks," AIAA Journal, 44, 4, pp. 859-867, April 2006. 5. S. L. Fitzpatrick, "A Study of Hydrogen Peroxide Low-Gravity Control for Propellant Management Devices," MS thesis, School of Aeronautics and Astronautics, Purdue Uni-versity. May 2003. 6. M. M. Weislogel, R. Jenson, Y. Chen, S. H. Collicott, J. Klatte, and M. Dreyer. "The capillary flow experiments aboard the International Space Station: Status". Acta Astro-nautica. 65:861-869, 2009
Development of techniques for processing metal-metal oxide systems
NASA Technical Reports Server (NTRS)
Johnson, P. C.
1976-01-01
Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.
2010-10-26
ISS025-E-009308 (26 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Kelly set up an experiment run on the Fluids & Combustion Facility (FCF) with a new fuel reservoir, ground-assisted by Payload Operations Integration Center/Huntsville (POIC).
"The Best Education for the Best is the Best Education for All"
ERIC Educational Resources Information Center
Arambula-Greenfield, Teresa; Gohn, A. Janelle
2004-01-01
Webster Middle School, situated in a large Midwestern city, serves primarily an African-American, lower-to middle-class population. As with many other schools in similar geographic and demographic situations, the academic performance of its students was very poor, the physical facilities were in decay, and enrollments were dropping, with only 250…
Jacobi, Christina; Kruse, Friedrich E; Cursiefen, Claus
2012-12-01
The aim of this prospective, randomized, clinical, single-center study was to compare the safety and efficacy of 2 ocular surface lubricant eye drops: preservative-free hydroxypropyl (HP)-Guar (SYSTANE UD(®)) eye drops versus preservative-free Tamarindus indica seed polysaccharide (TSP) 1% (VISINE INTENSIV 1% EDO(®)) eye drops. Fifty-six eyes of 28 patients with moderate keratoconjunctivitis sicca (DEWS severity level 2) were enrolled in the trial. Patients were randomized for 2 treatment groups (SYSTANE UD eye drops vs. VISINE INTENSIV 1% EDO eye drops). The eye drops in both groups were applied 5 times per day for 3 months. Statistical analyses were performed using Statistica™ software (Mann-Whitney U-test and Wilcoxon test). P-Values<0.05 were considered significant. After 3 months of treatment the patients of both groups had subjective benefit in the relief of symptoms of dry eye disease evaluated by the Ocular Surface Disease Index (OSDI) questionnaire score. Patients treated with HP-Guar and TSP showed improvements in tear film stability measured by tear break-up time (TBUT), which are statistically significant in the HP-Guar group (P=0.02). The results of this clinical trial show improvements of symptoms and signs in patients with moderate dry eye after the consistent use of preservative-free HP-Guar and TSP lubricant eye drops. Both artificial tear formulations produce amelioration in tear film stability improving eye conditions and patient quality of life. HP-Guar seems to be slightly more effective in improving ocular surface protection by decreasing tear film evaporation.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2004-01-01
The focus of this paper is to describe a crash simulation of a 30-ft/s vertical drop test of a Boeing 737 (B737) fuselage section. The drop test of the 10-ft. long fuselage section of a B737 aircraft was conducted in November of 2000 at the FAA Technical Center in Atlantic City, NJ. The fuselage section was outfitted with two different commercial overhead stowage bins. In addition, 3,229-lbs. of luggage were packed in the cargo hold to represent a maximum take-off weight condition. The main objective of the test was to evaluate the response and failure modes of the overhead stowage bins in a narrow-body transport fuselage section when subjected to a severe, but survivable, impact. A secondary objective of the test was to generate experimental data for correlation with the crash simulation. A full-scale 3-dimensional finite element model of the fuselage section was developed and a crash simulation was conducted using the explicit, nonlinear transient dynamic code, MSC.Dytran. Pre-test predictions of the fuselage and overhead bin responses were generated for correlation with the drop test data. A description of the finite element model and an assessment of the analytical/experimental correlation are presented. In addition, suggestions for modifications to the model to improve correlation are proposed.
Code of Federal Regulations, 2012 CFR
2012-10-01
... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Vertical Drop Testing and Analysis of the Wasp Helicopter Skid Gear
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fuchs, Yvonne T.
2007-01-01
This report describes an experimental program to assess the impact performance of a skid gear for use on the Wasp kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. In total, five vertical drop tests were performed. The test article consisted of a skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The test article also included ballast weights to ensure the correct position of the Center-of-Gravity (CG). Twenty-six channels of acceleration data were collected per test at 50,000 samples per second. The five drop tests were conducted on two different gear configurations. The details of these test programs are presented, as well as an occupant injury assessment. Finally, a finite element model of the skid gear test article was developed for execution in LS-DYNA, an explicit nonlinear transient dynamic code, for predicting the skid gear and occupant dynamic responses due to impact.
Results from a scaled reactor cavity cooling system with water at steady state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.
We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representingmore » a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)« less
The Tower and Glass Marbles Problem
ERIC Educational Resources Information Center
Denman, Richard T.; Hailey, David; Rothenberg, Michael
2010-01-01
The Catseye Marble company tests the strength of its marbles by dropping them from various levels of their office tower, to find the highest floor from which a marble will not break. We find the smallest number of drops required and from which floor each drop should be made. We also find out how these answers change if a restriction is placed on…
ERIC Educational Resources Information Center
Bryk, Anthony S.; Thum, Yeow Meng
Examined in this paper are the effects of school characteristics on both the probability of dropping out and absenteeism as the strongest predictor of dropping out. The project employed a subsample from the High School and Beyond database that contains results from questionnaires and achievement tests given in 1980 to approximately 30,000…
Development of a Smart Release Algorithm for Mid-Air Separation of Parachute Test Articles
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is currently developing an autonomous method to separate a capsule-shaped parachute test vehicle from an air-drop platform for use in the test program to develop and validate the parachute system for the Orion spacecraft. The CPAS project seeks to perform air-drop tests of an Orion-like boilerplate capsule. Delivery of the boilerplate capsule to the test condition has proven to be a critical and complicated task. In the current concept, the boilerplate vehicle is extracted from an aircraft on top of a Type V pallet and then separated from the pallet in mid-air. The attitude of the vehicles at separation is critical to avoiding re-contact and successfully deploying the boilerplate into a heatshield-down orientation. Neither the pallet nor the boilerplate has an active control system. However, the attitude of the mated vehicle as a function of time is somewhat predictable. CPAS engineers have designed an avionics system to monitor the attitude of the mated vehicle as it is extracted from the aircraft and command a release when the desired conditions are met. The algorithm includes contingency capabilities designed to release the test vehicle before undesirable orientations occur. The algorithm was verified with simulation and ground testing. The pre-flight development and testing is discussed and limitations of ground testing are noted. The CPAS project performed a series of three drop tests as a proof-of-concept of the release technique. These tests helped to refine the attitude instrumentation and software algorithm to be used on future tests. The drop tests are described in detail and the evolution of the release system with each test is described.
Hackney, James M; Clay, Rachel L; James, Meredith
2016-10-01
We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. Copyright © 2016 Elsevier B.V. All rights reserved.
2016-08-21
less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17
Experimental investigation of ice slurry flow pressure drop in horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per
2009-01-15
Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less
RP-2 Thermal Stability and Heat Transfer Investigation for Hydrocarbon Boost Engines
NASA Technical Reports Server (NTRS)
VanNoord, J. L.; Stiegemeier, B. R.
2010-01-01
A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines. The effect that test duration, operating condition and test piece material have on the overall thermal stability and materials compatibility characteristics of RP-2 were evaluated using copper and 304 stainless steel test sections. The copper tests were run at 1000 psia, heat flux up to 6.0 Btu/in.2-sec, and wall temperatures up to 1180 F. Preliminary results, using measured wall temperature as an indirect indicator of the carbon deposition process, show that in copper test pieces above approximately 850 F, RP-2 begins to undergo thermal decomposition resulting in local carbon deposits. Wall temperature traces show significant local temperature increases followed by near instantaneous drops which have been attributed to the carbon deposition/shedding process in previous investigations. Data reduction is currently underway for the stainless steel test sections and carbon deposition measurements will be performed in the future for all test sections used in this investigation. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-2.
The impact performance of headguards for combat sports.
McIntosh, Andrew S; Patton, Declan A
2015-09-01
To assess the impact energy attenuation performance of a range of headguards for combat sports. Seven headguards worn during combat sport training or competition, including two Association Internationale de Boxe Amateur (AIBA)-approved boxing models, were tested using drop tests. An International Organization for Standardization (ISO) rigid headform was used with a 5.6 kg drop assembly mass. Tests were conducted against a flat rigid anvil both with and without a boxing glove section. The centre forehead and lateral headguard areas were tested. Peak headform acceleration was measured. Tests from a selection of drop heights and repeated tests on the same headguard were conducted. Headguard performance varied by test condition. For the 0.4 m rigid anvil tests, the best model headguard was the thickest producing an average peak headform acceleration over 5 tests of 48 g compared with 456 g for the worst model. The mean peak acceleration for the 0.4, 0.5 and 0.6 frontal and lateral rigid anvil impact tests was between 32% and 40% lower for the Top Ten boxing model compared with the Adidas boxing model. The headguard performance deterioration observed with repeat impact against the flat anvil was reduced for impacts against the glove section. The overall reduction in acceleration for the combination of glove and headguard in comparison to the headguard condition was in the range of 72-93% for 0.6 and 0.8 m drop tests. The impact tests show the benefits of performance testing in identifying differences between headguard models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A drop in performance on a fluid intelligence test due to instructed-rule mindset.
ErEl, Hadas; Meiran, Nachshon
2017-09-01
A 'mindset' is a configuration of processing resources that are made available for the task at hand as well as their suitable tuning for carrying it out. Of special interest, remote-relation abstract mindsets are introduced by activities sharing only general control processes with the task. To test the effect of a remote-relation mindset on performance on a Fluid Intelligence test (Raven's Advanced Progressive Matrices, RAPM), we induced a mindset associated with little usage of executive processing by requiring participants to execute a well-defined classification rule 12 times, a manipulation known from previous work to drastically impair rule-generation performance and associated cognitive processes. In Experiment 1, this manipulation led to a drop in RAPM performance equivalent to 10.1 IQ points. No drop was observed in a General Knowledge task. In Experiment 2, a similar drop in RAPM performance was observed (equivalent to 7.9 and 9.2 IQ points) regardless if participants were pre-informed about the upcoming RAPM test. These results indicate strong (most likely, transient) adverse effects of a remote-relation mindset on test performance. They imply that although the trait of Fluid Intelligence has probably not changed, mindsets can severely distort estimates of this trait.
A comparison of cognitive skills between completes and dropouts in a college physics course
NASA Astrophysics Data System (ADS)
Hudson, H. T.
Separate tests of mathematics skills, proportions and translations between words, and mathematical expression given the first week of class were correlated with performance for students who completed a college physics course (completes) and students who dropped the course (drops). None of the measures used discriminated between completes and drops as groups. However, the correlations between score on the test of math skills and on both of the measures involving mathematical reasoning (proportions, and translations) were dramatically different for the two groups. For the completes, these correlations were slightly negative, but not significant. For the drops, the correlation was positive and signficant at the p < 0.01 level. This suggests the possibility that the students who complete the course tend to have independent cognitive skills for the mechanical mathematical operations and for questions requiring some degree of reasoning, while, in contrast, the same skills for students at high risk for dropping overlap significantly. The study also found that when students are given the results of mathematics skills tests in a diagnostic mode, with feedback on specific areas of weakness and time to remediate with self study, the correlation between mathematics and physics is lower than previously reported values.Received: 2 April 1985
Vertical drop test of a transport fuselage section located forward of the wing
NASA Technical Reports Server (NTRS)
Williams, M. S.; Hayduk, R. J.
1983-01-01
A Boeing 707 fuselage section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crack loads. Post-test inspection showed that the section bottom collapsed inward approximately 2 ft. Preliminary data traces indicated maximum normal accelerations of 20 g on the fuselage bottom, 10 to 12 g on the cabin floor, and 6.5 to 8 g in the pelvises of the anthropomorphic dummies.
NASA Technical Reports Server (NTRS)
Potvin, Jean; Ray, Eric
2017-01-01
We describe a new calculation of the opening shock factor C (sub k) characterizing the inflation performance of NASA's Orion spacecraft main and drogue parachutes opening under a reefing constraint (1st stage reefing), as currently tested in the Capsule Parachute Assembly System (CPAS) program. This calculation is based on an application of the Momentum-Impulse Theorem at low mass ratio (R (sub m) is less than 10 (sup -1)) and on an earlier analysis of the opening performance of drogues decelerating point masses and inflating along horizontal trajectories. Herein we extend the reach of the Theorem to include the effects of payload drag and gravitational impulse during near-vertical motion - both important pre-requisites for CPAS parachute analysis. The result is a family of C (sub k) versus R (sub m) curves which can be used for extrapolating beyond the drop-tested envelope. The paper proves this claim in the case of the CPAS Mains and Drogues opening while trailing either a Parachute Compartment Drop Test Vehicle or a Parachute Test Vehicle (an Orion capsule boiler plate). It is seen that in all cases the values of the opening shock factor can be extrapolated over a range in mass ratio that is at least twice that of the test drop data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepper, W.B.; Lucero, H.; Klimas, P.C.
1984-01-01
An existing parachute system has been adapted for delivery of a resupply container at high altitudes from aircraft. The parachute system consists of a 15-ft diameter ribbon parachute reefed for 10 seconds and a 73-ft diameter cross parachute reefed for 10 seconds. A solid state recorder in the 2341 1b drop test vehicle was used to obtain deceleration history with time. Two drop tests using the Navy A7 aircraft were conducted at Stallion Site, White Sands Missile Range, New Mexico. Drop release conditions were 250 KCAS at 20,000 ft above sea level from the first test and 230 KCAS atmore » 22,000 ft msl for the second. A new load transfer bridle was designed and tested to release the first stage parachute and replace a costly mechanical load plate.« less
ERIC Educational Resources Information Center
Barbot, Baptiste; Haeffel, Gerald J.; Macomber, Donna; Hart, Lesley; Chapman, John; Grigorenko, Elena L.
2012-01-01
The "Delinquency Reduction Outcome Profile" ("DROP") is a novel situational-judgment test (SJT) designed to measure social decision making in delinquent youth. The DROP includes both a typical SJT scoring method, which captures the deviation of an individual response from an "ideal" expert-based response pattern, as well as a novel…
Coefficient of restitution of sports balls: A normal drop test
NASA Astrophysics Data System (ADS)
Haron, Adli; Ismail, K. A.
2012-09-01
Dynamic behaviour of bodies during impact is investigated through impact experiment, the simplest being a normal drop test. Normally, a drop test impact experiment involves measurement of kinematic data; this includes measurement of incident and rebound velocity in order to calculate a coefficient of restitution (COR). A high speed video camera is employed for measuring the kinematic data where speed is calculated from displacement of the bodies. Alternatively, sensors can be employed to measure speeds, especially for a normal impact where there is no spin of the bodies. This paper compares experimental coefficients of restitution (COR) for various sports balls, namely golf, table tennis, hockey and cricket. The energy loss in term of measured COR and effects of target plate are discussed in relation to the material and construction of these sports balls.
A study of pressure losses in residential air distribution systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abushakra, Bass; Walker, Iain S.; Sherman, Max H.
2002-07-01
An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effectsmore » on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.« less
NASA Microgravity Science Competition for High-school-aged Student Teams
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric
2002-01-01
NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.
Woldesenbet, Selamawit; Jackson, Debra; Lombard, Carl; Dinh, Thu-Ha; Puren, Adrian; Sherman, Gayle; Ramokolo, Vundli; Doherty, Tanya; Mogashoa, Mary; Bhardwaj, Sanjana; Chopra, Mickey; Shaffer, Nathan; Pillay, Yogan; Goga, Ameena
2015-01-01
Objectives We examined uptake of prevention of mother-to-child HIV transmission (PMTCT) services, predictors of missed opportunities, and infant HIV transmission attributable to missed opportunities along the PMTCT cascade across South Africa. Methods A cross-sectional survey was conducted among 4–8 week old infants receiving first immunisations in 580 nationally representative public health facilities in 2010. This included maternal interviews and testing infants’ dried blood spots for HIV. A weighted analysis was performed to assess uptake of antenatal and perinatal PMTCT services along the PMTCT cascade (namely: maternal HIV testing, CD4 count test/result, and receiving maternal and infant antiretroviral treatment) and predictors of dropout. The population attributable fraction associated with dropouts at each service point are estimated. Results Of 9,803 mothers included, 31.7% were HIV-positive as identified by reactive infant antibody tests. Of these 80.4% received some form of maternal and infant antiretroviral treatment. More than a third (34.9%) of mothers dropped out from one or more steps in the PMTCT service cascade. In a multivariable analysis, the following characteristics were associated with increased dropout from the PMTCT cascade: adolescent (<20 years) mothers, low socioeconomic score, low education level, primiparous mothers, delayed first antenatal visit, homebirth, and non-disclosure of HIV status. Adolescent mothers were twice (adjusted odds ratio: 2.2, 95% confidence interval: 1.5–3.3) as likely to be unaware of their HIV-positive status and had a significantly higher rate (85.2%) of unplanned pregnancies compared to adults aged ≥20 years (55.5%, p = 0.0001). A third (33.8%) of infant HIV infections were attributable to dropout in one or more steps in the cascade. Conclusion A third of transmissions attributable to missed opportunities of PMTCT services can be prevented by optimizing the uptake of PMTCT services. Identified risk factors for low PMTCT service uptake should be addressed through health facility and community-level interventions, including raising awareness, promoting women education, adolescent focused interventions, and strengthening linkages/referral-system between communities and health facilities. PMID:26147598
Myer, Gregory D; Bates, Nathaniel A; DiCesare, Christopher A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie L; Noehren, Brian W; McNally, Michael; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E
2015-05-01
Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable. To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities. Multicenter reliability study. 3 laboratories. 25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period. Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories. Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing. Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94). CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.
NASA Technical Reports Server (NTRS)
Lubey, Daniel P.; Thiele, Sara R.; Gruseck, Madelyn L.; Evans, Carol T.
2010-01-01
Though getting astronauts safely into orbit and beyond has long been one of NASA?s chief goals, their safe return has always been equally as important. The Crew Exploration Vehicle?s (CEV) Parachute Assembly System (CPAS) is designed to safely return astronauts to Earth on the next-generation manned spacecraft Orion. As one means for validating this system?s requirements and testing its functionality, a test article known as the Parachute Compartment Drop Test Vehicle (PC-DTV) will carry a fully-loaded yet truncated CPAS Parachute Compartment (PC) in a series of drop tests. Two aerodynamic profiles for the PC-DTV currently exist, though both share the same interior structure, and both have an Orion-representative weight of 20,800 lbf. Two extraction methods have been developed as well. The first (Cradle Monorail System 2 - CMS2) uses a sliding rail technique to release the PC-DTV midair, and the second (Modified DTV Sled; MDS) features a much less constrained separation method though slightly more complex. The decision as to which aerodynamic profile and extraction method to use is still not finalized. Additional CFD and stress analysis must be undertaken in order to determine the more desirable options, though at present the "boat tail" profile and the CMS2 extraction method seem to be the favored options in their respective categories. Fabrication of the PC-DTV and the selected extraction sled is set to begin in early October 2010 with an anticipated first drop test in mid-March 2011.
Affordable Acoustic Disdrometer: Design, Calibration, Tests
NASA Astrophysics Data System (ADS)
van de Giesen, N.; Degen, C.; Hut, R.
2009-12-01
It would be a hydrological understatement to say that measuring rainfall correctly is important. Recent years have seen important lowering of the costs of raingauges capable of measuring rainfall intensities. Such raingauges are typically tipping bucket raingauges, connected to an event logger. Costs for such a raingauge are about 100. Accuracy is not always very high, especially during high intensity storms. The moving parts make them vulnerable to slight disruptions such as insects. We set out to design a raingauge without moving parts and at a better price/quality ratio than existing raingauges. After testing several potential candidates, we settled on a very simple piezo ceramic element, which measures the impact of single drops. Such an element costs around 1. The impact of each drop causes an acoustic signal that is transformed into a voltage. A typical impact gives an upswing of up to 1 V and the ringing lasts about 50 ms. With a surface area of about 20 cm2, there is almost never overlap between the signals of different drops. The basic assumption is that each drop will have reached terminal velocity and that the total energy of the impact can, thereby, be related to drop size. We calibrated this acoustic disdrometer by letting drops of different size fall on the disdrometer. A very encouraging calibration curve was obtained in this way. Further testing consisted of comparisons during rainstorms between the acoustic disdrometer and standard tipping bucket raingauges. During intensive storms, the acoustic disdrometer gave results that were very close to those of a nearby totaling raingauge. The signal of the tipping bucket raingauges was clearly saturated as these were not capable of keeping up with the rain. During low intensity events, tipping bucket raingauges performed better as drops too small to detect by the acoustic disdrometer became a significant part of the total rainfall. In first instance, a simple MP3 player with recording functionality ($50) was used as datalogger and processing was performed with a Matlab script. Presently, processing is done on-board of a simple custom built logger that logs the time and total energy of each drop. Post-processing converts the total energy to drop size and corrects for missing small drops by fitting the pdf’s to known raindrop distributions.
NASA Technical Reports Server (NTRS)
Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.
1993-01-01
The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.
Evaluation of wheelchair seating system crashworthiness: "drop hook"-type seat attachment hardware.
Bertocci, G; Ha, D; Deemer, E; Karg, P
2001-04-01
To evaluate the crashworthiness of commercially available hardware that attaches seat surfaces to the wheelchair frame. A low cost static crashworthiness test procedure that simulates a frontal impact motor vehicle crash. Safety testing laboratory. Eleven unique sets of drop-hook hardware made of carbon steel (4), stainless steel (4), and aluminum (3). Replicated seat-loading conditions associated with a 20g/48 kph frontal impact. Test criterion for seat loading was 16,680 N (3750 lb). Failure load and deflection of seat surface. None of the hardware sets tested met the crashworthiness test criterion. All failed at less than 50% of the load that seating hardware could be exposed to in a 20g/48 kph frontal impact. The primary failure mode was excessive deformation, leading to an unstable seat support surface. Results suggest that commercially available seating drop hooks may be unable to withstand loading associated with a frontal crash and may not be the best option for use with transport wheelchairs.
Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong
2004-01-01
A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.
NASA Astrophysics Data System (ADS)
Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif
2017-01-01
The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.
Sandia Research and Development Board: Minutes of the 33rd Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, M.
1950-02-08
Notes about the barometric fuzing system testing, drops of stockpile weapons requested by the Strategic Air Command, simultaneous drops and the interaction of the baro systems, changes of desired military characteristics of atomic weapons.
NASA Technical Reports Server (NTRS)
1989-01-01
One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.
Viscosity Measurement via Drop Coalescence: A Space Station Experiment
NASA Technical Reports Server (NTRS)
Antar, Basil; Ethridge, Edwin C.
2010-01-01
The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.
Exciting New Take on a Classic: Crash Testing Activity Puts the Egg in the Driver's Seat
ERIC Educational Resources Information Center
Board, Keith
2011-01-01
An excellent common activity in technology and engineering classes involves dropping an egg from a significant height in a protective device designed and built by students. This article describes how the author uses the classic "egg drop" as an inspiration to have students modify a small crash test vehicle that speeds down a track and crashes into…
Exciting New Take on a Classic: Crash Test Activity Puts the Egg in the Driver's Seat
ERIC Educational Resources Information Center
Board, Keith
2011-01-01
An excellent common activity in technology and engineering classes involves dropping an egg from a significant height in a protective device designed and built by students. This article describes how the author uses the classic "egg drop" as an inspiration to have students modify a small crash test vehicle that speeds down a track and crashes into…
NASA Technical Reports Server (NTRS)
Kranz, M
1954-01-01
Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.
Raj, G Dhinakar; Ratnapraba, S; Matheswaran, K; Nachimuthu, K
2004-01-01
A single-serum dilution ELISA for egg drop syndrome (EDS) virus-specific antibodies was developed. In testing 425 chicken sera it was found to have a 93.6% sensitivity and 98.7% specificity relative to a hemagglutination inhibition (HI) test. The correlation coefficient for ELISA and HI titers was 0.793. The ELISA was efficacious in quantification of both vaccinal and infection antibodies and could routinely be used for screening large numbers of field sera.
2016-07-01
711 HPW/RHCPT) and their in-house technical support contractor , Infoscitex, conducted a series of tests to identify the performance capabilities of...Cell Seat Configuration Drop Ht . (in) Mean Peak Acceleration (G) Mean Velocity Change (ft/s) SH1 WS1 20 80.08 ± 3.71 13.54 ± 0.49 SH2...6. Test Matrix for VID Response with WS2 Test Cell Seat (Felt) Configuration Drop Ht . (in) Mean Peak Acceleration (G
Effect of soil moisture content on the splash phenomenon reproducibility.
Ryżak, Magdalena; Bieganowski, Andrzej; Polakowski, Cezary
2015-01-01
One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was.
Effect of Soil Moisture Content on the Splash Phenomenon Reproducibility
Ryżak, Magdalena; Bieganowski, Andrzej; Polakowski, Cezary
2015-01-01
One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was. PMID:25785859
Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali
2013-09-01
Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.
High-Performance, Low Environmental Impact Refrigerants
NASA Technical Reports Server (NTRS)
McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.
2001-01-01
Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.
Rapid Quench in an Electrostatic Levitator
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.
2016-01-01
The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.
Rapid Quench in an Electrostatic Levitator
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.
2016-01-01
The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)
2000-01-01
Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.
Belz, G G; Butzer, R; Gaus, W; Loew, D
2002-10-01
In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.
A modified detector concept for SuperCDMS: The HiZIP and its charge performance
NASA Astrophysics Data System (ADS)
Page, Kedar Mohan
SuperCDMS is a leading direct dark matter search experiment which uses solid state detectors (Ge crystals) at milliKelvin temperatures to look for nuclear recoils caused by dark matter interactions in the detector. 'Weakly Interacting Massive Particles' (WIMPs) are the most favoured dark matter candidate particles. SuperCDMS, like many other direct dark matter search experiments, primarily looks for WIMPs. The measurement of both the ionization and the lattice vibration (phonon) signals from an interaction in the detector allow it to discriminate against electron recoils which are the main source of background for WIMP detection. SuperCDMS currently operates about 9 kgs worth of germanium detectors at the Soudan underground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB, it plans to use 100-200 kg of target mass (Ge) which would allow it to probe more of the interesting and unexplored parameter space for WIMPs predicted by theoretical models. The SuperCDMS Queen's Test Facility is a detector testing facility which is intended to serve detector testing and detector research and development purposes for the SuperCDMS experiment. A modified detector called the 'HiZIP' (Half-iZIP), which is reduced in complexity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector design also serves to discriminate against background from multiple scatter events occurring close to the surfaces in a single detector. Studies carried out to compare the surface event leakage in the HiZIP detector using limited information from iZIP data taken at SuperCDMS test facility at UC Berkley produce a highly conservative upper limit of 5 out of 10,000 events at 90% confidence level. This upper limit is the best among many different HiZIP configurations that were investigated and is comparable to the upper limit calculated for an iZIP detector in the same way using the same data. A real HiZIP device operated at Queen's Test Facility produced an exposure limited 90% upper limit of about 1 in 100 events for surface event leakage. The data used in these studies contain true nuclear recoil events from cosmogenic and ambient neutrons. This background was not subtracted in the calculation of the upper limits stated above and hence they are highly conservative. A surface event source was produced by depositing lead-210 from radon exposure onto a copper plate. This source was then used to take data for a surface event discrimination study of the HiZIP detector operated at Queen's Test Facility. A study of the contribution of the noise from capacitive crosstalk between charge sensors in a HiZIP detector configuration was investigated, confirming the expectation that no significant drop in performance is to be expected due to this effect.
A study of two-phase flow in a reduced gravity environment
NASA Technical Reports Server (NTRS)
Hill, D.; Downing, Robert S.
1987-01-01
A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
NASA Technical Reports Server (NTRS)
Bledsoe, Kristin
2013-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is the parachute system for NASA s Orion spacecraft. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted or released from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish an aircraft release point that will ensure that the article and all items released from it will land in safe locations. A new footprint predictor tool, called Sasquatch, was created in MATLAB. This tool takes in a simulated trajectory for the test article, information about all released objects, and atmospheric wind data (simulated or actual) to calculate the trajectories of the released objects. Dispersions are applied to the landing locations of those objects, taking into account the variability of winds, aircraft release point, and object descent rate. Sasquatch establishes a payload release point (e.g., where the payload will be extracted from the carrier aircraft) that will ensure that the payload and all objects released from it will land in a specified cleared area. The landing locations (the final points in the trajectories) are plotted on a map of the test range. Sasquatch was originally designed for CPAS drop tests and includes extensive information about both the CPAS hardware and the primary test range used for CPAS testing. However, it can easily be adapted for more complex CPAS drop tests, other NASA projects, and commercial partners. CPAS has developed the Sasquatch footprint tool to ensure range safety during parachute drop tests. Sasquatch is well correlated to test data and continues to ensure the safety of test personnel as well as the safe recovery of all equipment. The tool will continue to be modified based on new test data, improving predictions and providing added capability to meet the requirements of more complex testing.
1967-01-01
This is a view of the Saturn V S-IVB (third) stage for the AS-209 (Apollo-Soyuz test project backup vehicle) on a transporter in the right foreground, and the S-IVB stage for AS-504 (Apollo 9 mission) being installed in the Beta Test Stand 1 at the SACTO facility in California. After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity and inject it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.
1958-08-05
Photographed on: 08 05 1958. -- Impact test conducted by Langley's Hydrodynamics Division. The Division conducted a series of impact studies with full scale and model capsules of the original capsule shape A. Joseph Shortal wrote (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.
1958-09-07
Photographed on: 08 05 1958. -- Impact test conducted by Langley's Hydrodynamics Division. The Division conducted a series of impact studies with full scale and model capsules of the original capsule shape A. Joseph Shortal wrote (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.
Effects of buoyancy on gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Edelman, Raymond B.
1993-01-01
The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.
A steady state pressure drop model for screen channel liquid acquisition devices
NASA Astrophysics Data System (ADS)
Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.
2014-11-01
This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.
N'guessan, Hartmann E; Leh, Aisha; Cox, Paris; Bahadur, Prashant; Tadmor, Rafael; Patra, Prabir; Vajtai, Robert; Ajayan, Pulickel M; Wasnik, Priyanka
2012-01-01
Classical experiments show that the force required to slide liquid drops on surfaces increases with the resting time of the drop, t(rest), and reaches a plateau typically after several minutes. Here we use the centrifugal adhesion balance to show that the lateral force required to slide a water drop on a graphene surface is practically invariant with t(rest). In addition, the drop's three-phase contact line adopts a peculiar micrometric serrated form. These observations agree well with current theories that relate the time effect to deformation and molecular re-orientation of the substrate surface. Such molecular re-orientation is non-existent on graphene, which is chemically homogenous. Hence, graphene appears to provide a unique tribological surface test bed for a variety of liquid drop-surface interactions.
Imparting Barely Visible Impact Damage to a Stitched Composite Large-Scale Pressure Box
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Przekop, Adam
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration, which has been a focus of the NASA Environmentally Responsible Aviation Project. The NASA-Boeing structural development for the HWB aircraft culminated in testing of the multi-bay box, which is an 80%-scale representation of the pressurized center-body section. This structure was tested in the NASA Langley Research Center Combined Loads Test System facility. As part of this testing, barely visible impact damage was imparted to the interior and exterior of the test article to demonstrate compliance with a condition representative of the requirements for Category 1 damaged composite structure as defined by the Federal Aviation Regulations. Interior impacts were imparted using an existing spring-loaded impactor, while the exterior impacts were imparted using a newly designed, gravity-driven impactor. This paper describes the impacts to the test article, and the design of the gravitydriven guided-weight impactor. The guided-weight impactor proved to be a very reliable method to impart barely visible impact damage in locations which are not easily accessible for a traditional drop-weight impactor, while at the same time having the capability to be highly configurable for use on other aircraft structures.
NASA Technical Reports Server (NTRS)
Cuthbert, Peter
2010-01-01
DTV-SIM is a computer program that implements a mathematical model of the flight dynamics of a missile-shaped drop test vehicle (DTV) equipped with a multistage parachute system that includes two simultaneously deployed drogue parachutes and three main parachutes deployed subsequently and simultaneously by use of pilot parachutes. DTV-SIM was written to support air-drop tests of the DTV/parachute system, which serves a simplified prototype of a proposed crew capsule/parachute landing system.
Low Velocity Airdrop Tests of an X-38 Backup Parachute Design
NASA Technical Reports Server (NTRS)
Stein, Jenny M.; Machin, Ricardo A.; Wolf, Dean F.; Hillebrandt, F. David
2007-01-01
The NASA Johnson Space Center's X-38 program designed a new backup parachute system to recover the 25,000 lb X-38 prototype for the Crew Return Vehicle spacecraft. Due to weight and cost constraints, the main backup parachute design incorporated rapid and low cost fabrication techniques using off-the-shelf materials. Near the vent, the canopy was constructed of continuous ribbons, to provide more damage tolerance. The remainder of the canopy was a constructed with a continuous ringslot design. After cancellation of the X-38 program, the parachute design was resized, built, and drop tested for Natick Soldiers Center's Low Velocity Air Drop (LVAD) program to deliver cargo loads up to 22,000 lbs from altitudes as low as 500 feet above the ground. Drop tests results showed that the 500-foot LVAD parachute deployment conditions cause severe skirt inversion and inflation problems for large parachutes. The bag strip occurred at a high angle of attack, causing skirt inversion before the parachute could inflate. The addition of a short reefing line prevented the skirt inversion. Using a lower porosity in the vent area, than is normally used in large parachutes, improved inflation. The drop testing demonstrated that the parachute design could be refined to meet the requirements for the 500-foot LVAD mission.
Friability Testing as a New Stress-Stability Assay for Biopharmaceuticals.
Torisu, Tetsuo; Maruno, Takahiro; Yoneda, Saki; Hamaji, Yoshinori; Honda, Shinya; Ohkubo, Tadayasu; Uchiyama, Susumu
2017-10-01
A cycle of dropping and shaking a vial containing antibody solution was reported to induce aggregation. In this study, antibody solutions in glass prefillable syringes with or without silicone oil lubrication were subjected to the combined stresses of dropping and shaking, using a friability testing apparatus. Larger numbers of subvisible particles were generated, regardless of silicone oil lubrication, upon combination stress exposure than that with shaking stress alone. Nucleation of antibody molecules upon perturbation by an impact of dropping and adsorption of antibody molecules to the syringe surface followed by film formation and antibody film desorption were considered key steps in the particle formation promoted by combination stress. A larger number of silicone oil droplets was released when silicone oil-lubricated glass syringes containing phosphate buffer saline were exposed to combination stress than that observed with shaking stress alone. Polysorbate 20, a non-ionic surfactant, effectively reduced the number of protein particles, but failed to prevent silicone oil release upon combination stress exposure. This study indicates that stress-stability assays using the friability testing apparatus are effective for assessing the stability of biopharmaceuticals under the combined stresses of dropping and shaking, which have not been tested in conventional stress-stability assays. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Free Radical Scavenging Activity of Drops and Spray Containing Propolis-An EPR Examination.
Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Ramos, Pawel; Mencner, Lukasz; Olczyk, Krystyna; Pilawa, Barbara
2017-01-13
The influence of heating at a temperature of 50 °C and UV-irradiation of propolis drops and spray on their free radical scavenging activity was determined. The kinetics of interactions of the propolis samples with DPPH free radicals was analyzed. Interactions of propolis drops and propolis spray with free radicals were examined by electron paramagnetic resonance spectroscopy. A spectrometer generating microwaves of 9.3 GHz frequency was used. The EPR spectra of the model DPPH free radicals were compared with the EPR spectra of DPPH in contact with the tested propolis samples. The antioxidative activity of propolis drops and propolis spray decreased after heating at the temperature of 50 °C. A UV-irradiated sample of propolis drops more weakly scavenged free radicals than an untreated sample. The antioxidative activity of propolis spray increased after UV-irradiation. The sample of propolis drops heated at the temperature of 50 °C quenched free radicals faster than the unheated sample. UV-irradiation weakly changed the kinetics of propolis drops or spray interactions with free radicals. EPR analysis indicated that propolis drops and spray should not be stored at a temperature of 50 °C. Propolis drops should not be exposed to UV-irradiation.
Control of molten salt corrosion of fusion structural materials by metallic beryllium
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.
2009-04-01
A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.
Control of molten salt corrosion of fusion structural materials by metallic beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Calderoni; P. Sharpe; H. Nishimura
2009-04-01
A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less
NASA Technical Reports Server (NTRS)
Olsen, W.; Vanfossen, J.; Nussle, R.
1987-01-01
Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.
Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi
The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.
9. BUILDING NO. 620B, FRICTION PENDULUM BUILDING. 29FOOT DROP TOWER ...
9. BUILDING NO. 620-B, FRICTION PENDULUM BUILDING. 29-FOOT DROP TOWER SITS BEHIND BLAST SHIELD IN FRONT OF BUILDING. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
49 CFR 173.184 - Highway or rail fusee.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) boxes, wooden (4C1, 4C2), plywood (4D) or reconstituted wood (4F) boxes or in fiberboard boxes (4G... drop test requirements (§ 178.603 of this subchapter), including at least one drop with spike in a...
49 CFR 173.184 - Highway or rail fusee.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) boxes, wooden (4C1, 4C2), plywood (4D) or reconstituted wood (4F) boxes or in fiberboard boxes (4G... drop test requirements (§ 178.603 of this subchapter), including at least one drop with spike in a...
Dispersion in Spherical Water Drops.
ERIC Educational Resources Information Center
Eliason, John C., Jr.
1989-01-01
Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)
Microgravity experiment study on the vane type surface tension tank
NASA Astrophysics Data System (ADS)
Kang, Qi; Duan, Li; Rui, Wei
Having advantages of low cost, convenience and high level of microgravity, the drop tower has become a significant microgravity experiment facility. National Microgravity Laboratory/CAS(NMLC) drop tower has 3.5s effective microgravity time, meanwhile the level of microgravity can reach 10 (-5) g. And the impact acceleration is less than 15g in the recovery period. The microgravity experiments have been conducted on the scaling model of vane type surface tension tank in NMLC’s drop tower. The efficiency of Propellant Management Devices (PMDs) was studied, which focus on the effects of Propellant Management Devices (PMDs), numbers of PMDs, contact angle, and liquid viscosity on the flow rate. The experimental results shown that the numbers of PMDs have little or no effect on the flow rate while the liquid is sufficient. The experiments about the influence of different charging ratio have been carried out while tank is placed positively and reversely, and we find the charging ratio has less effect on the capillary flow rate when the charging ratio is greater than 2%.
Study on processing immiscible materials in zero gravity
NASA Technical Reports Server (NTRS)
Reger, J. L.; Mendelson, R. A.
1975-01-01
An experimental investigation was conducted to evaluate mixing immiscible metal combinations under several process conditions. Under one-gravity, these included thermal processing, thermal plus electromagnetic mixing, and thermal plus acoustic mixing. The same process methods were applied during free fall on the MSFC drop tower facility. The design is included of drop tower apparatus to provide the electromagnetic and acoustic mixing equipment, and a thermal model was prepared to design the specimen and cooling procedure. Materials systems studied were Ca-La, Cd-Ga and Al-Bi; evaluation of the processed samples included the morphology and electronic property measurements. The morphology was developed using optical and scanning electron microscopy and microprobe analyses. Electronic property characterization of the superconducting transition temperatures were made using an impedance change-tuned coil method.
Electrochemical measurements on a droplet using gold microelectrodes
NASA Astrophysics Data System (ADS)
Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali
2016-03-01
Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations.
Comments on settling chamber design for quiet, blowdown wind tunnels
NASA Technical Reports Server (NTRS)
Beckwith, I. E.
1981-01-01
Transfer of an existing continous circuit supersonic wind tunnel to Langley and its operation there as a blowdown tunnel is planned. Flow disturbance requirements in the supply section and methods for reducing the high level broad band acoustic disturbances present in typical blowdown tunnels are reviewed. Based on recent data and the analysis of two blowdown facilities at Langley, methods for reducing the total turbulence levels in the settling chamber, including both acoustic and vorticity modes, to less than one percent are recommended. The pertinent design details of the damping screens and honeycomb and the recommended minimum pressure drop across the porous components providing the required two orders of magnitude attenuation of acoustic noise levels are given. A suggestion for the support structure of these high pressure drop porous components is offered.
ERIC Educational Resources Information Center
North Carolina Univ., Chapel Hill. Commission on Higher Education Facilities.
This publication presents the results of the twenty-sixth annual inventory and utilization study of the status of space in North Carolina institutions of higher education at the end of the drop-add period of the 1992 fall term. The study provides data for 113 institutions, including the public institutions which comprise the University of North…
Facilities Inventory and Utilization Study, Fall of 1987. Twenty-First Edition.
ERIC Educational Resources Information Center
North Carolina Commission on Higher Education Facilities, Chapel Hill.
The status of space in North Carolina institutions of higher education at the end of the drop-add period of the 1987 fall term at each college is presented. Indications of the uses being made of the space are given, and norms and historical information are presented for the past 5 years to enable institutions to make their own assessments of their…
Bellandi, D
1999-01-11
1998 wasn't quite as busy a year for hospital dealmakers as 1997, but those who went shopping bought in volume. Although the number of deals decreased by almost 9%, 687 hospitals changed hands last year, according to our fifth annual tally of merger and acquisition activity.
STS-46 Payload Specialist Malerba in JSC's WETF pool during egress training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing launch and entry suit (LES) and clamshell helmet, laughes as he floats in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Malerba's flotation vest (life jacket) and two SCUBA-equipped divers keep him afloat after he was dropped into the pool during a launch emergency egress simulation.
NASA Astrophysics Data System (ADS)
Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.
2014-05-01
One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate that the freezing times are shorter the lower the temperatures are. For evaluation and comparisons of the data, two models of heterogeneous freezing are applied, the stochastic and the time-independent singular description. The nucleation rate coefficients J(T) as well as the surface densities of active sites ns(T) or the numbers of active sites nm(T) are determined from the experimental data. It is shown that both models are suited to describe the present heterogeneous freezing results for the range of investigated particle masses or surface areas per drop. The comparison of the results from the two experimental techniques evaluated with the time-independent singular model indicates an excellent agreement within the measurement errors.
Flow tests of a single fuel element coolant channel for a compact fast reactor for space power
NASA Technical Reports Server (NTRS)
Springborn, R. H.
1971-01-01
Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.
Galileo Parachute System modification program
NASA Technical Reports Server (NTRS)
Mcmenamin, H. J.; Pochettino, L. R.
1984-01-01
This paper discusses the development program conducted on the Galileo Parachute System following the slow opening performance of the main parachute during the first system drop test. The parachute system is part of the Galileo entry probe that will descend through the Jupiter atmosphere. The uncontrolled parachute opening experienced in this test was not acceptable for the probe system. Therefore, the main parachute design was modified and the system sequence was changed to prevent a recurrence. These alterations and their system effects were evaluated analytically, and in a ground test program. At the conclusion of this phase, the system drop test was successfully repeated.
NACA/NASA test pilot Stanley P. Butchart
NASA Technical Reports Server (NTRS)
1954-01-01
Stanley P. Butchart joined the National Advisory Committee for Aeronautics' High-Speed Flight Research Station on May 10, 1951. Stan was the fourth research pilot hired at the Station affording him the opportunity to fly the early research aircraft. Stan began a flying career while attending Junior College. He received primary and secondary civilian pilot training, enlisting in the U.S. Navy in July 1942. Stan took his Navy air training at Corpus Christi, Texas. Upon completion of training he was assigned to a torpedo-bomber Air Group, VT-51, flying Grumman-General Motors TBM Avenger, a torpedo-bomber, from the carrier San Jacinto in the South Pacific. When World War II ended, Stan was released from active duty as a Navy Lieutenant, with a Distinguished Flying Cross and a Presidential Unit Citation among his service medals. Butchart elected to stay in the Naval Reserve group and flew for an additional 5 years while he attended the University of Washington. By 1950, Stan had earned bachelor degrees in aeronautical engineering and mechanical engineering. After graduation he went to work for Boeing Aircraft as a junior design engineer and was assigned to the B-47 body group. In May 1951, he arrived at the NACA facility to start a career as a research pilot. Stan flew the Douglas D-558-I #3 (12 flights, first on October 19, 1951), the Douglas D-558-II #3 (2 pilot check-out flights, first on June 26, 1953), Northrop X-4 (4 flights, first on May 27, 1952), Bell X-5 (13 flights, first in early December 1952). Other aircraft flown on research projects were the Boeing KC-135 Stratotanker, Convair CV-990, Boeing B-52-003, Boeing B-747, North American F-100A, Convair F-102, Piper PA-30 Twin Comanche, General Dynamics F-111, Boeing B-720, Convair CV-880, and the Boeing B-47 Stratojet, his favorite. he also flew many other aircraft. Stan did nearly all of the big airplane work at the Center. The biggest work load was flying the Boeing B-29 Stratofortress (Navy designation: P2B). At this time the pilot of the aircraft was the one in charge. It was the pilot who called for the chase planes before drop time, then for the fire trucks to be in position, and he counted down for the launch of the experimental aircraft after making sure everything and everyone was `ready.' The P2B was used in the launching of the D-558s while the B-29 carried the X-1s to altitude for drops. Stan was pilot of the P2B for 1 drop of the D-558-II #1 (1951 - 1954), 63 drops of the D-558-II #2 (1951 - 1956), and 38 drops of the D-558-II #3 (1951 - 1956). As pilot of the B-29 Stan flew for 1 drop of the Bell X-1A (1955), 13 drops of the Bell X-1B (1956-1958) and 22 drops of the X-1E (1955 - 1958). During the lifting body tow tests Stan was pilot of the R4D that towed the M2-F1 to altitude for release. He made 14 tows in 1966. On June 13, 1966, Stanley P. Butchart became the Chief Pilot at the National Aeronautics and Space Administrations' Flight Research Center and a few weeks later was named Acting Director of Flight Operations. There were 6 pilots assigned to the flight office at this time. On December 10, 1966, Stan became Chief of Flight Operations a position he held until his retirement on February 27, 1976. Stan authored several reports and presented research papers. He is a charter member of the Society of Experimental Test Pilots that had a membership of 65 in 1955, when chartered. Stan was elected to be a Fellow and had the honor of being the President in 1980. Butchart was presented the NACA Exceptional Service Medal for his decisions and actions in the X-1A explosion while attached to the B-29 aircraft on August 8, 1955.