Science.gov

Sample records for drosophila assay system

  1. Methods to assay Drosophila behavior.

    PubMed

    Nichols, Charles D; Becnel, Jaime; Pandey, Udai B

    2012-01-01

    Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases(1). We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials(2-4). The rapid iterative negative geotaxis (RING) assay(5) has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously

  2. The Drosophila visual system

    PubMed Central

    Zhu, Yan

    2013-01-01

    A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain.   A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3

  3. Taste Preference Assay for Adult Drosophila.

    PubMed

    Bantel, Andrew P; Tessier, Charles R

    2016-01-01

    Olfactory and gustatory perception of the environment is vital for animal survival. The most obvious application of these chemosenses is to be able to distinguish good food sources from potentially dangerous food sources. Gustation requires physical contact with a chemical compound which is able to signal through taste receptors that are expressed on the surface of neurons. In insects, these gustatory neurons can be located across the animal's body allowing taste to play an important role in many different behaviors. Insects typically prefer compounds containing sugars, while compounds that are considered bitter tasting are avoided. Given the basic biological importance of taste, there is intense interest in understanding the molecular mechanisms underlying this sensory modality. We describe an adult Drosophila taste assay which reflects the preference of the animals for a given tastant compound. This assay may be applied to animals of any genetic background to examine the taste preference for a desired soluble compound. PMID:27684591

  4. Drosophila tools and assays for the study of human diseases

    PubMed Central

    Ugur, Berrak; Chen, Kuchuan; Bellen, Hugo J.

    2016-01-01

    ABSTRACT Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes. PMID:26935102

  5. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  6. Induction of mutations by tritiated water and 3H-thymidine in Drosophila melanogaster assayed by the somatic zeste-white eye mutation system.

    PubMed

    Rasmuson, A; Xamena, N; Creus, A; Marcos, R

    1988-01-01

    In order to study the mutagenic effect of exposure to tritium, Drosophila melanogaster larvae were treated with tritiated water (3H2O) or tritiated thymidine (3H-TdR) during development. Dose rates ranged from 0.0058 to 0.058 rad/h per nucleus for 3H-TdR and from 0.049 to 0.122 rad/h for 3H2O. Induction of mutations was measured by the appearance of somatic mutations in the eyes of an unstable strain of Drosophila melanogaster. Both substances caused a significant increase in mutation frequency. With the assumption that each mutation observed in this assay is caused by one DNA break, the effectiveness of tritium to create DNA breaks is estimated to be 0.20 breaks per decay for 3H-TdR and 0.27 breaks per decay for 3H2O. PMID:3128734

  7. Statistical Analysis of Nondisjunction Assays in Drosophila

    PubMed Central

    Zeng, Yong; Li, Hua; Schweppe, Nicole M.; Hawley, R. Scott; Gilliland, William D.

    2010-01-01

    Many advances in the understanding of meiosis have been made by measuring how often errors in chromosome segregation occur. This process of nondisjunction can be studied by counting experimental progeny, but direct measurement of nondisjunction rates is complicated by not all classes of nondisjunctional progeny being viable. For X chromosome nondisjunction in Drosophila female meiosis, all of the normal progeny survive, while nondisjunctional eggs produce viable progeny only if fertilized by sperm that carry the appropriate sex chromosome. The rate of nondisjunction has traditionally been estimated by assuming a binomial process and doubling the number of observed nondisjunctional progeny, to account for the inviable classes. However, the correct way to derive statistics (such as confidence intervals or hypothesis testing) by this approach is far from clear. Instead, we use the multinomial-Poisson hierarchy model and demonstrate that the old estimator is in fact the maximum-likelihood estimator (MLE). Under more general assumptions, we derive asymptotic normality of this estimator and construct confidence interval and hypothesis testing formulae. Confidence intervals under this framework are always larger than under the binomial framework, and application to published data shows that use of the multinomial approach can avoid an apparent type 1 error made by use of the binomial assumption. The current study provides guidance for researchers designing genetic experiments on nondisjunction and improves several methods for the analysis of genetic data. PMID:20660647

  8. Olfactory Behaviors Assayed by Computer Tracking Of Drosophila in a Four-quadrant Olfactometer.

    PubMed

    Lin, Chun-Chieh; Riabinina, Olena; Potter, Christopher J

    2016-08-20

    A key challenge in neurobiology is to understand how neural circuits function to guide appropriate animal behaviors. Drosophila melanogaster is an excellent model system for such investigations due to its complex behaviors, powerful genetic techniques, and compact nervous system. Laboratory behavioral assays have long been used with Drosophila to simulate properties of the natural environment and study the neural mechanisms underlying the corresponding behaviors (e.g. phototaxis, chemotaxis, sensory learning and memory)(1-3). With the recent availability of large collections of transgenic Drosophila lines that label specific neural subsets, behavioral assays have taken on a prominent role to link neurons with behaviors(4-11). Versatile and reproducible paradigms, together with the underlying computational routines for data analysis, are indispensable for rapid tests of candidate fly lines with various genotypes. Particularly useful are setups that are flexible in the number of animals tested, duration of experiments and nature of presented stimuli. The assay of choice should also generate reproducible data that is easy to acquire and analyze. Here, we present a detailed description of a system and protocol for assaying behavioral responses of Drosophila flies in a large four-field arena. The setup is used here to assay responses of flies to a single olfactory stimulus; however, the same setup may be modified to test multiple olfactory, visual or optogenetic stimuli, or a combination of these. The olfactometer setup records the activity of fly populations responding to odors, and computational analytical methods are applied to quantify fly behaviors. The collected data are analyzed to get a quick read-out of an experimental run, which is essential for efficient data collection and the optimization of experimental conditions.

  9. Olfactory Behaviors Assayed by Computer Tracking Of Drosophila in a Four-quadrant Olfactometer.

    PubMed

    Lin, Chun-Chieh; Riabinina, Olena; Potter, Christopher J

    2016-01-01

    A key challenge in neurobiology is to understand how neural circuits function to guide appropriate animal behaviors. Drosophila melanogaster is an excellent model system for such investigations due to its complex behaviors, powerful genetic techniques, and compact nervous system. Laboratory behavioral assays have long been used with Drosophila to simulate properties of the natural environment and study the neural mechanisms underlying the corresponding behaviors (e.g. phototaxis, chemotaxis, sensory learning and memory)(1-3). With the recent availability of large collections of transgenic Drosophila lines that label specific neural subsets, behavioral assays have taken on a prominent role to link neurons with behaviors(4-11). Versatile and reproducible paradigms, together with the underlying computational routines for data analysis, are indispensable for rapid tests of candidate fly lines with various genotypes. Particularly useful are setups that are flexible in the number of animals tested, duration of experiments and nature of presented stimuli. The assay of choice should also generate reproducible data that is easy to acquire and analyze. Here, we present a detailed description of a system and protocol for assaying behavioral responses of Drosophila flies in a large four-field arena. The setup is used here to assay responses of flies to a single olfactory stimulus; however, the same setup may be modified to test multiple olfactory, visual or optogenetic stimuli, or a combination of these. The olfactometer setup records the activity of fly populations responding to odors, and computational analytical methods are applied to quantify fly behaviors. The collected data are analyzed to get a quick read-out of an experimental run, which is essential for efficient data collection and the optimization of experimental conditions. PMID:27585032

  10. Dicer assay in Drosophila S2 cell extract.

    PubMed

    Yang, Baojun; Li, Hongwei

    2011-01-01

    Double-stranded RNA (dsRNA) is the trigger of RNA interference (RNAi)-mediated gene regulation. Dicer processes dsRNAs into short interfering RNAs (siRNAs), which are incorporated into the effector RNA-induced silencing complex (RISC) and direct degradation of homologous target mRNAs. In plants and invertebrates, the RNAi machinery also acts as an antiviral mechanism through production of viral siRNAs by Dicer and silencing of replicating viruses. Viral suppressors of RNAi (VSRs) are encoded by some viruses and serve as a strategy to counteract the RNAi-based antiviral immunity. In this chapter, we describe a Dicer activity assay in extracts prepared from Drosophila melanogaster S2 cells. We also introduce a simple procedure to study VSR activity in the in vitro Dicer assay. PMID:21431688

  11. Chromatin assembly using Drosophila systems.

    PubMed

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  12. A novel assay reveals hygrotactic behavior in Drosophila.

    PubMed

    Ji, Feiteng; Zhu, Yan

    2015-01-01

    Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body α/β surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.

  13. Assaying Blood Cell Populations of the Drosophila melanogaster Larva

    PubMed Central

    Petraki, Sophia; Alexander, Brandy; Brückner, Katja

    2015-01-01

    In vertebrates, hematopoiesis is regulated by inductive microenvironments (niches). Likewise, in the invertebrate model organism Drosophila melanogaster, inductive microenvironments known as larval Hematopoietic Pockets (HPs) have been identified as anatomical sites for the development and regulation of blood cells (hemocytes), in particular of the self-renewing macrophage lineage. HPs are segmentally repeated pockets between the epidermis and muscle layers of the larva, which also comprise sensory neurons of the peripheral nervous system. In the larva, resident (sessile) hemocytes are exposed to anti-apoptotic, adhesive and proliferative cues from these sensory neurons and potentially other components of the HPs, such as the lining muscle and epithelial layers. During normal development, gradual release of resident hemocytes from the HPs fuels the population of circulating hemocytes, which culminates in the release of most of the resident hemocytes at the beginning of metamorphosis. Immune assaults, physical injury or mechanical disturbance trigger the premature release of resident hemocytes into circulation. The switch of larval hemocytes between resident locations and circulation raises the need for a common standard/procedure to selectively isolate and quantify these two populations of blood cells from single Drosophila larvae. Accordingly, this protocol describes an automated method to release and quantify the resident and circulating hemocytes from single larvae. The method facilitates ex vivo approaches, and may be adapted to serve a variety of developmental stages of Drosophila and other invertebrate organisms. PMID:26650404

  14. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration.

    PubMed

    Ali, Yousuf O; Escala, Wilfredo; Ruan, Kai; Zhai, R Grace

    2011-03-11

    Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination. Here we use behavioral assays, including the negative geotaxis assay and the aversive phototaxic suppression assay (APS assay), to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.

  15. Rover waste assay system

    SciTech Connect

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  16. An assay for visual learning in individual Drosophila larvae.

    PubMed

    van Swinderen, Bruno

    2011-10-01

    Vision is a major sensory modality in Drosophila behavior, with more than one-half of the Drosophila brain devoted to visual processing. The mechanisms of vision in Drosophila can now be studied in individuals and in populations of flies by using various paradigms. Simple strategies for conducting visual perception and learning studies consist of individual studies performed on single flies on solid supports (larvae on agar or adults in a T-maze) using a light/dark association paradigm. These approaches are quite easy to implement but are fairly limited in their ability to address questions of visual perception. Nevertheless, the simpler approaches treating vision in one dimension (light, dark) do provide effective paradigms for genetic analysis. This article describes a protocol for larval visual learning. Larvae are transferred back and forth between well-lit or dark agarose plates that either do or do not contain fructose (which is appetitive) as the unconditioned stimulus (US). Such appetitive larval visual memory is tested by tallying the time spent in light or dark quadrants of a plate (without a US).

  17. An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in Drosophila.

    PubMed

    Sandhu, Simran; Kollah, Arnavaz P; Lewellyn, Lara; Chan, Robin F; Grotewiel, Mike

    2015-01-01

    Alcohol use disorder (AUD) is a serious health challenge. Despite a large hereditary component to AUD, few genes have been unambiguously implicated in their etiology. The fruit fly, Drosophila melanogaster, is a powerful model for exploring molecular-genetic mechanisms underlying alcohol-related behaviors and therefore holds great promise for identifying and understanding the function of genes that influence AUD. The use of the Drosophila model for these types of studies depends on the availability of assays that reliably measure behavioral responses to ethanol. This report describes an assay suitable for assessing ethanol sensitivity and rapid tolerance in flies. Ethanol sensitivity measured in this assay is influenced by the volume and concentration of ethanol used, a variety of previously reported genetic manipulations, and also the length of time the flies are housed without food immediately prior to testing. In contrast, ethanol sensitivity measured in this assay is not affected by the vigor of fly handling, sex of the flies, and supplementation of growth medium with antibiotics or live yeast. Three different methods for quantitating ethanol sensitivity are described, all leading to essentially indistinguishable ethanol sensitivity results. The scalable nature of this assay, combined with its overall simplicity to set-up and relatively low expense, make it suitable for small and large scale genetic analysis of ethanol sensitivity and rapid tolerance in Drosophila. PMID:25939022

  18. An Inexpensive, Scalable Behavioral Assay for Measuring Ethanol Sedation Sensitivity and Rapid Tolerance in Drosophila

    PubMed Central

    Sandhu, Simran; Kollah, Arnavaz; Chan, Robin; Lewellyn, Lara; Grotewiel, Mike

    2015-01-01

    Alcohol use disorder (AUD) is a serious health challenge. Despite a large hereditary component to AUDs, few genes have been unambiguously implicated in their etiology. The fruit fly, Drosophila melanogaster, is a powerful model for exploring molecular-genetic mechanisms underlying alcohol-related behaviors and therefore holds great promise for identifying and understanding the function of genes that influence AUD. The use of the Drosophila model for these types of studies depends on the availability of assays that reliably measure behavioral responses to ethanol. This report describes an assay suitable for assessing ethanol sensitivity and rapid tolerance in flies. Ethanol sensitivity measured in this assay is influenced by the volume and concentration of ethanol used, a variety of previously reported genetic manipulations, and also the length of time the flies are housed without food immediately prior to testing. In contrast, ethanol sensitivity measured in this assay is not affected by the vigor of fly handling, sex of the flies, and supplementation of growth medium with antibiotics or live yeast. Three different methods for quantitating ethanol sensitivity are described, all leading to essentially indistinguishable ethanol sensitivity results. The scalable nature of this assay, combined with its overall simplicity to set-up and relatively low expense, make it suitable for small and large scale genetic analysis of ethanol sensitivity and rapid tolerance in Drosophila. PMID:25939022

  19. Luciferase reporter assay in Drosophila and mammalian tissue culture cells

    PubMed Central

    Yun, Chi

    2014-01-01

    Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA /dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions. PMID:24652620

  20. A Model System in S2 Cells to Test the Functional Activities of Drosophila Insulators.

    PubMed

    Tikhonov, M; Gasanov, N B; Georgiev, P; Maksimenko, O

    2015-01-01

    Insulators are a special class of regulatory elements that can regulate interactions between enhancers and promoters in the genome of high eukaryotes. To date, the mechanisms of insulator action remain unknown, which is primarily related to the lack of convenient model systems. We suggested studying a model system which is based on transient expression of a plasmid with an enhancer of the copia transposable element, in Drosophila embryonic cell lines. We demonstrated that during transient transfection of circle plasmids with a well-known Drosophila insulator from the gypsy retrotransposon, the insulator exhibits in an enhancer-blocking assay the same properties as in Drosophila stable transgenic lines. Therefore, the Drosophila cell line is suitable for studying the main activities of insulators, which provides additional opportunities for investigating the functional role of certain insulator proteins.

  1. Drosophila blood as a model system for stress sensing mechanisms.

    PubMed

    Shim, Jiwon

    2015-04-01

    The Drosophila lymph gland is the hematopoietic organ in which stem-like progenitors proliferate and give rise to myeloid-type blood cells. Mechanisms involved in Drosophila hematopoiesis are well established and known to be conserved in the vertebrate system. Recent studies in Drosophila lymph gland have provided novel insights into how external and internal stresses integrate into blood progenitor maintenance mechanisms and the control of blood cell fate decision. In this review, I will introduce a developmental overview of the Drosophila hematopoietic system, and recent understandings of how the system uses developmental signals not only for hematopoiesis but also as sensors for stress and environmental changes to elicit necessary blood responses.

  2. A HRM Real-Time PCR Assay for Rapid and Specific Identification of the Emerging Pest Spotted-Wing Drosophila (Drosophila suzukii)

    PubMed Central

    Dhami, Manpreet K.; Kumarasinghe, Lalith

    2014-01-01

    Spotted wing drosophila (Drosophila suzukii) is an emerging pest that began spreading in 2008 and its distribution now includes 13 countries across two continents. Countries where it is established have reported significant economic losses of fresh produce, such as cherries due to this species of fly. At larval stages, it is impossible to identify due to its striking similarities with other cosmopolitan and harmless drosophilids. Molecular methods allow identification but the current technique of DNA barcoding is time consuming. We developed and validated a rapid, highly sensitive and specific assay based on real-time PCR and high resolution melt (HRM) analysis using EvaGreen DNA intercalating dye chemistry. Performance characteristics of this qualitative assay, validation and applicability in a New Zealand quarantine framework are discussed. Application of this robust and independently validated assay across the spectrum of key food production and border protection industries will allow us to reduce the further spread of this damaging species worldwide. PMID:24927410

  3. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-01

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery. PMID:21085119

  4. Methodological aspects of the white-ivory assay of Drosophila melanogaster.

    PubMed

    Ferreiro, J A; Sierra, L M; Comendador, M A

    1995-10-01

    The white-ivory somatic assay of Drosophila melanogaster was developed to detect genotoxic agents which induce loss of a tandem duplication. Although the mechanism of this loss is not known, some suggestions point to intrachromosomal recombination as the main reversion mechanism. Since the few papers published to date on this assay present controversial methodologies, prior to a larger study of chemicals with different mechanisms of action, we have carried out an analysis to optimize some conditions of this assay. For this purpose, we have used three different strains and four well characterized mutagenic chemicals: N-ethyl-N-nitrosourea (ENU), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and hexamethyl phosphoramide (HMPA). The results obtained allow us to conclude that: (i) the best strain for this assay is C(1)DX,y,f/Dp(1:1:1:1)wi,y2, although the use of strain FM6,l(1)66a/Dp(1:1:1:1)wi,y2;st/st could be considered for some mechanistical studies; (ii) developmental reasons make it necessary to use as estimate of reversion frequency the proportion of eyes showing at least one spot; (iii) reversion frequency cannot be used as estimate of mutation efficiency, neither can spot size evaluate time of spot induction; (iv) the four chemicals clearly induce loss of the wi duplication; according to their activities they rank ENU > HMPA > MMS approximately EMS. PMID:7477046

  5. A Follicle Rupture Assay Reveals an Essential Role for Follicular Adrenergic Signaling in Drosophila Ovulation.

    PubMed

    Deady, Lylah D; Sun, Jianjun

    2015-10-01

    Ovulation is essential for the propagation of the species and involves a proteolytic degradation of the follicle wall for the release of the fertilizable oocyte. However, the precise mechanisms for regulating these proteolytic events are largely unknown. Work from our lab and others have shown that there are several parallels between Drosophila and mammalian ovulation at both the cellular and molecular levels. During ovulation in Drosophila, posterior follicle cells surrounding a mature oocyte are selectively degraded and the residual follicle cells remain in the ovary to form a corpus luteum after follicle rupture. Like in mammals, this rupturing process also depends on matrix metalloproteinase 2 (Mmp2) activity localized at the posterior end of mature follicles, where oocytes exit. In the present study, we show that Mmp2 activity is regulated by the octopaminergic signaling in mature follicle cells. Exogenous octopamine (OA; equivalent to norepinephrine, NE) is sufficient to induce follicle rupture when isolated mature follicles are cultured ex vivo, in the absence of the oviduct or ovarian muscle sheath. Knocking down the alpha-like adrenergic receptor Oamb (Octoampine receptor in mushroom bodies) in mature follicle cells prevents OA-induced follicle rupture ex vivo and ovulation in vivo. We also show that follicular OA-Oamb signaling induces Mmp2 enzymatic activation but not Mmp2 protein expression, likely via intracellular Ca2+ as the second messenger. Our work develops a novel ex vivo follicle rupture assay and demonstrates the role for follicular adrenergic signaling in Mmp2 activation and ovulation in Drosophila, which is likely conserved in other species.

  6. Characterization of a method for quantitating food consumption for mutation assays in Drosophila

    SciTech Connect

    Thompson, E.D.; Reeder, B.A.; Bruce, R.D. )

    1991-01-01

    Quantitation of food consumption is necessary when determining mutation responses to multiple chemical exposures in the sex-linked recessive lethal assay in Drosophila. One method proposed for quantitating food consumption by Drosophila is to measure the incorporation of 14C-leucine into the flies during the feeding period. Three sources of variation in the technique of Thompson and Reeder have been identified and characterized. First, the amount of food consumed by individual flies differed by almost 30% in a 24 hr feeding period. Second, the variability from vial to vial (each containing multiple flies) was around 15%. Finally, the amount of food consumed in identical feeding experiments performed over the course of 1 year varied nearly 2-fold. The use of chemical consumption values in place of exposure levels provided a better means of expressing the combined mutagenic response. In addition, the kinetics of food consumption over a 3 day feeding period for exposures to cyclophosphamide which produce lethality were compared to non-lethal exposures. Extensive characterization of lethality induced by exposures to cyclophosphamide demonstrate that the lethality is most likely due to starvation, not chemical toxicity.

  7. Context-specific comparison of sleep acquisition systems in Drosophila

    PubMed Central

    Garbe, David S.; Bollinger, Wesley L.; Vigderman, Abigail; Masek, Pavel; Gertowski, Jill; Sehgal, Amita; Keene, Alex C.

    2015-01-01

    ABSTRACT Sleep is conserved across phyla and can be measured through electrophysiological or behavioral characteristics. The fruit fly, Drosophila melanogaster, provides an excellent model for investigating the genetic and neural mechanisms that regulate sleep. Multiple systems exist for measuring fly activity, including video analysis and single-beam (SB) or multi-beam (MB) infrared (IR)-based monitoring. In this study, we compare multiple sleep parameters of individual flies using a custom-built video-based acquisition system, and commercially available SB- or MB-IR acquisition systems. We report that all three monitoring systems appear sufficiently sensitive to detect changes in sleep duration associated with diet, age, and mating status. Our data also demonstrate that MB-IR detection appeared more sensitive than the SB-IR for detecting baseline nuances in sleep architecture, while architectural changes associated with varying life-history and environment were generally detected across all acquisition types. Finally, video recording of flies in an arena allowed us to measure the effect of ambient environment on sleep. These experiments demonstrate a robust effect of arena shape and size as well as light levels on sleep duration and architecture, and highlighting the versatility of tracking-based sleep acquisition. These findings provide insight into the context-specific basis for choosing between Drosophila sleep acquisition systems, describe a novel cost-effective system for video tracking, and characterize sleep analysis using the MB-IR sleep analysis. Further, we describe a modified dark-place preference sleep assay using video tracking, confirming that flies prefer to sleep in dark locations. PMID:26519516

  8. End-point dilution and plaque assay methods for titration of cricket paralysis virus in cultured Drosophila cells.

    PubMed

    Scotti, P D

    1977-05-01

    Cricket paralysis virus, an insect picorna-like virus, caused a distinct c.p.e. in cultured Drosophila melanogaster cells, allowing the development of titration methods based on end-point dilution or plaque assay methods. The end-point dilution (TCD50) method is more sensitive and economical than plaque assays and is easily scored. The data indicate a minimum infectivity/particle ratio of about 1/2000.

  9. Microfluidic Devices for Automation of Assays on Drosophila Melanogaster for Applications in Drug Discovery and Biological Studies.

    PubMed

    Ghaemi, Reza; Selvaganapathy, Ponnambalam R

    2016-01-01

    Drug discovery is a long and expensive process, which usually takes 12-15 years and could cost up to ~$1 billion. Conventional drug discovery process starts with high throughput screening and selection of drug candidates that bind to specific target associated with a disease condition. However, this process does not consider whether the chosen candidate is optimal not only for binding but also for ease of administration, distribution in the body, effect of metabolism and associated toxicity if any. A holistic approach, using model organisms early in the drug discovery process to select drug candidates that are optimal not only in binding but also suitable for administration, distribution and are not toxic is now considered as a viable way for lowering the cost and time associated with the drug discovery process. However, the conventional drug discovery assays using Drosophila are manual and required skill operator, which makes them expensive and not suitable for high-throughput screening. Recently, microfluidics has been used to automate many of the operations (e.g. sorting, positioning, drug delivery) associated with the Drosophila drug discovery assays and thereby increase their throughput. This review highlights recent microfluidic devices that have been developed for Drosophila assays with primary application towards drug discovery for human diseases. The microfluidic devices that have been reviewed in this paper are categorized based on the stage of the Drosophila that have been used. In each category, the microfluidic technologies behind each device are described and their potential biological applications are discussed.

  10. Differential effects of arsenite and arsenate to Drosophila melanogaster in a combined adult/developmental toxicity assay

    SciTech Connect

    Goldstein, S.H.; Babich, H.

    1989-02-01

    Current concern of the environmental consequences of chemical wastes in soils has led to the development of microbial, plant, and, to a lesser extent, animal bioassays for terrestrial ecosystems. This paper evaluated a Drosophila assay that yields data both on acute toxicity to adults and on developmental toxicity to offspring and which is applicable for screening extracts from soils contaminated with chemical wastes. Acute toxicity assays with Drosophila have been used to evaluate the relative potencies of chemicals. The acute toxicity to adults and the developmental exposure bioassays were designed to be performed as separate tests. This paper combined these two tests into a single bioassay, using arsenic compounds as the test agents. Arsenite and arsenate were selected to evaluate the sensitivity of this combined assay in distinguishing between the toxicities of closely related chemicals.

  11. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.

    PubMed

    Carmona, Erico R; Escobar, Bibi; Vales, Gerard; Marcos, Ricard

    2015-01-15

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for preparations of sunscreens, cosmetics, food and personal care products. However, the possible genotoxic risk associated with this nano-scale material exposure is not clear, especially in whole organisms. In the present study, we explored the in vivo genotoxic activity of TiO2 NPs as well as their TiO2 bulk form using two well-established genotoxic assays, the wing spot test and the comet assay in Drosophila melanogaster. To determine the extent of tissue damage induced by TiO2 NPs in Drosophila larvae, the trypan blue dye exclusion test was also applied. Both compounds were supplied to third instar larvae by ingestion at concentration ranging from 0.08 to 1.60 mg/mL. The results obtained in the present study indicate that TiO2 NPs can reach and induce cytotoxic effects on midgut and imaginal disc tissues of larvae, but they do not promote genotoxicity in the wing-spot test of Drosophila. However, when both nano- and large-size forms of TiO2 were evaluated with the comet assay in Drosophila hemocytes, a significant increase in DNA damage, with a direct dose-response pattern, was observed for TiO2 NPs. The results obtained with the comet assay suggest that the primary DNA damage associated with TiO2 NPs exposure in Drosophila could be associated with specific physico-chemical properties of nano-TiO2, since no effects were observed with the bulk form. This study remarks the usefulness of using more than one genetic end-point in the evaluation of the genotoxic potential of nanomaterials. PMID:25726144

  12. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.

    PubMed

    Carmona, Erico R; Escobar, Bibi; Vales, Gerard; Marcos, Ricard

    2015-01-15

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for preparations of sunscreens, cosmetics, food and personal care products. However, the possible genotoxic risk associated with this nano-scale material exposure is not clear, especially in whole organisms. In the present study, we explored the in vivo genotoxic activity of TiO2 NPs as well as their TiO2 bulk form using two well-established genotoxic assays, the wing spot test and the comet assay in Drosophila melanogaster. To determine the extent of tissue damage induced by TiO2 NPs in Drosophila larvae, the trypan blue dye exclusion test was also applied. Both compounds were supplied to third instar larvae by ingestion at concentration ranging from 0.08 to 1.60 mg/mL. The results obtained in the present study indicate that TiO2 NPs can reach and induce cytotoxic effects on midgut and imaginal disc tissues of larvae, but they do not promote genotoxicity in the wing-spot test of Drosophila. However, when both nano- and large-size forms of TiO2 were evaluated with the comet assay in Drosophila hemocytes, a significant increase in DNA damage, with a direct dose-response pattern, was observed for TiO2 NPs. The results obtained with the comet assay suggest that the primary DNA damage associated with TiO2 NPs exposure in Drosophila could be associated with specific physico-chemical properties of nano-TiO2, since no effects were observed with the bulk form. This study remarks the usefulness of using more than one genetic end-point in the evaluation of the genotoxic potential of nanomaterials.

  13. Aging Studies in Drosophila melanogaster

    PubMed Central

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2015-01-01

    Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099

  14. Aversive phototaxic suppression: evaluation of a short-term memory assay in Drosophila melanogaster

    PubMed Central

    Seugnet, L.; Suzuki, Y.; Stidd, R.; Shaw, P. J.

    2014-01-01

    Drosophila melanogaster is increasingly being used to model human conditions that are associated with cognitive deficits including fragile-X syndrome, Alzheimer’s disease, Parkinson’s disease, sleep loss, etc. With few exceptions, cognitive abilities that are known to be modified in these conditions in humans have not been evaluated in fly models. One reason is the absence of a simple, inexpensive and reliable behavioral assay that can be used by laboratories that are not expert in learning and memory. Aversive phototaxic suppression (APS) is a simple assay in which flies learn to avoid light that is pairedwith an aversive stimulus (quinine/humidity). However, questions remain about whether the change in the fly’s behavior reflects learning an association between light and quinine/humidity or whether the change in behavior is because of nonassociative effects of habituation and/or sensitization. We evaluated potential effects of sensitization and habituation on behavior in the T-maze and conducted a series of yoked control experiments to further exclude nonassociative effects and determine whether this task evaluates operant learning. Together these experiments indicate that a fly must associate the light with quinine/humidity to successfully complete the task. Next, we show that five classic memory mutants are deficient in this assay. Finally, we evaluate performance in a fly model of neurodegenerative disorders associated with the accumulation of Tau. These data indicate that APS is a simple and effective assay that can be used to evaluate fly models of human conditions associated with cognitive deficits. PMID:19220479

  15. Method for selecting exposure levels for the Drosophila sex-linked recessive lethal assay

    SciTech Connect

    Thompson, E.D.; Reeder, B.A.

    1987-01-01

    The use of the Drosophila sex-linked recessive lethal assay for detecting mutagenicity of chemicals is well established. When compounds are tested by feeding adult flies, the National Toxicology Program protocol specifies a 3-day feeding regimen at an exposure level that produces about 30% mortality. Uptake of the test compound is monitored by feeding behavior, amount of excretion, or abdomen size. An alternate method for determining uptake is to add radiolabeled sucrose to the feeding solution and then to determine the amount of radioactivity in the flies. We have found that the addition of radiolabeled sucrose underestimates consumption for feeding exposures longer than 24 hr because sucrose is metabolized and as much as 30% of the label is excreted, presumably as /sup 14/CO/sub 2/ or /sup 3/H/sub 2/O. Here we describe a method for determining uptake of chemicals by adding /sup 14/C-leucine to the feeding solution. The incorporation of /sup 14/c-leucine is essentially linear over the 3-day feeding period, which permits accurate estimates of food consumption. Use of this method demonstrates that lower exposure levels of a chemical that do not produce mortality actually results in higher consumption by the flies. The method is proposed as a prescreen to select the appropriate exposure level for the sex-linked recessive lethal assay.

  16. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila.

    PubMed

    Pircs, Karolina; Nagy, Peter; Varga, Agnes; Venkei, Zsolt; Erdi, Balazs; Hegedus, Krisztina; Juhasz, Gabor

    2012-01-01

    Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K. Importantly, genes whose mutation or silencing results in early stage lethality can only be analyzed by microscopy using clonal analysis. The loss of numerous general housekeeping genes show a phenotype in large-scale screens including autophagy, and the p62 assay was potentially suitable for distinguishing bona fide autophagy regulators from silencing of a DNA polymerase subunit or a ribosomal gene that likely has a non-specific effect on autophagy. p62 accumulation upon RNAi silencing of known autophagy regulators was dependent on the duration of the knockdown effect, unlike in the case of starvation-induced autophagy. The endogenous p62 assay was more sensitive than a constitutively overexpressed p62-GFP reporter, which showed self-aggregation and large-scale accumulation even in control cells. We recommend western blots for following the conversion of overexpressed p62-GFP reporters to estimate autophagic activity if sample collection from mutant larvae or adults is possible. In addition, we also showed that overexpressed p62 or Atg8 reporters can strongly influence the phenotypes of each other, potentially giving rise to false or contradicting results. Overexpressed p62 aggregates also incorporated Atg8 reporter molecules that might lead to a wrong conclusion of strongly enhanced autophagy, whereas expression of an Atg8 reporter transgene rescued the inhibitory effect of a dominant-negative Atg4 mutant on basal and starvation-induced autophagy. PMID:22952930

  17. System identification of Drosophila olfactory sensory neurons.

    PubMed

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2011-02-01

    The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be

  18. Dynamic evolution of the innate immune system in Drosophila.

    PubMed

    Sackton, Timothy B; Lazzaro, Brian P; Schlenke, Todd A; Evans, Jay D; Hultmark, Dan; Clark, Andrew G

    2007-12-01

    The availability of complete genome sequence from 12 Drosophila species presents the opportunity to examine how natural selection has affected patterns of gene family evolution and sequence divergence among different components of the innate immune system. We have identified orthologs and paralogs of 245 Drosophila melanogaster immune-related genes in these recently sequenced genomes. Genes encoding effector proteins, and to a lesser extent genes encoding recognition proteins, are much more likely to vary in copy number across species than genes encoding signaling proteins. Furthermore, we can trace the apparent recent origination of several evolutionarily novel immune-related genes and gene families. Using codon-based likelihood methods, we show that immune-system genes, and especially those encoding recognition proteins, evolve under positive darwinian selection. Positively selected sites within recognition proteins cluster in domains involved in recognition of microorganisms, suggesting that molecular interactions between hosts and pathogens may drive adaptive evolution in the Drosophila immune system.

  19. Drosophila GRAIL: An intelligent system for gene recognition in Drosophila DNA sequences

    SciTech Connect

    Xu, Ying; Einstein, J.R.; Uberbacher, E.C.; Helt, G.; Rubin, G.

    1995-06-01

    An AI-based system for gene recognition in Drosophila DNA sequences was designed and implemented. The system consists of two main modules, one for coding exon recognition and one for single gene model construction. The exon recognition module finds a coding exon by recognition of its splice junctions (or translation start) and coding potential. The core of this module is a set of neural networks which evaluate an exon candidate for the possibility of being a true coding exon using the ``recognized`` splice junction (or translation start) and coding signals. The recognition process consists of four steps: generation of an exon candidate pool, elimination of improbable candidates using heuristic rules, candidate evaluation by trained neural networks, and candidate cluster resolution and final exon prediction. The gene model construction module takes as input the clustered exon candidates and builds a ``best`` possible single gene model using an efficient dynamic programming algorithm. 129 Drosophila sequences consisting of 441 coding exons including 216358 coding bases were extructed from GenBank and used to build statistical matrices and to train the neural networks. On this training set the system recognized 97% of the coding messages and predicted only 5% false messages. Among the ``correctly`` predicted exons, 68% match the actual exon exactly and 96% have at least one edge predicted correctly. On an independent test set consisting of 30 Drosophila sequences, the system recognized 96% of the coding messages and predicted 7% false messages.

  20. The Dopaminergic System in the Aging Brain of Drosophila

    PubMed Central

    White, Katherine E.; Humphrey, Dickon M.; Hirth, Frank

    2010-01-01

    Drosophila models of Parkinson's disease are characterized by two principal phenotypes: the specific loss of dopaminergic (DA) neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analyzed the DA system and motor behavior in aging Drosophila. DA neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH > mCD8::GFP and cell type-specific MARCM clones revealed that DA neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, DA neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity, and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH > Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct DA behaviors in Drosophila. Moreover, DA neurons were maintained between early- and late life, as quantified by TH > mCD8::GFP and anti-TH labeling, indicating that adult onset, age-related degeneration of DA neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson's disease as well as other disorders affecting DA neurons and movement control. PMID:21165178

  1. Whole-central nervous system functional imaging in larval Drosophila.

    PubMed

    Lemon, William C; Pulver, Stefan R; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J

    2015-08-11

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

  2. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  3. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  4. Expert system for transuranic waste assay

    SciTech Connect

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  5. An infrared system for monitoring Drosophila motility during microgravity

    NASA Technical Reports Server (NTRS)

    Miller, Mark S.; Fortney, Michael D.; Keller, Tony S.

    2002-01-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.

  6. An infrared system for monitoring Drosophila motility during microgravity.

    PubMed

    Miller, Mark S; Fortney, Michael D; Keller, Tony S

    2002-12-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket. PMID:14638462

  7. An infrared system for monitoring Drosophila motility during microgravity.

    PubMed

    Miller, Mark S; Fortney, Michael D; Keller, Tony S

    2002-12-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.

  8. The iFly Tracking System for an Automated Locomotor and Behavioural Analysis of Drosophila melanogaster

    PubMed Central

    Kohlhoff, Kai J.; Jahn, Thomas R.; Lomas, David A.; Dobson, Christopher M.; Crowther, Damian C.; Vendruscolo, Michele

    2016-01-01

    The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster – the common fruit fly – is one of the most established model organisms, as its study can be performed more readily and with far less expense than for other model animal systems, such as mice, fish, or indeed primates. In the case of fruit flies, standard assays are based on the analysis of longevity and basic locomotor functions. Here we present the iFly tracking system, which enables to increase the amount of quantitative information that can be extracted from these studies, and to reduce significantly the duration and costs associated with them. The iFly system uses a single camera to simultaneously track the trajectories of up to 20 individual flies with about 100μm spatial and 33ms temporal resolution. The statistical analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and fully automated quantitative analysis of locomotor changes in response to a range of different stimuli. We anticipate that the iFly method will reduce very considerably the costs and the duration of the testing of genetic and pharmacological interventions in Drosophila models, including an earlier detection of behavioural changes and a large increase in throughput compared to current longevity and locomotor assays. PMID:21698336

  9. Tissue communication in a systemic immune response of Drosophila

    PubMed Central

    Yang, Hairu; Hultmark, Dan

    2016-01-01

    ABSTRACT Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism. PMID:27116253

  10. Tissue communication in a systemic immune response of Drosophila.

    PubMed

    Yang, Hairu; Hultmark, Dan

    2016-07-01

    Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism. PMID:27116253

  11. Generating neuronal diversity in the Drosophila central nervous system.

    PubMed

    Lin, Suewei; Lee, Tzumin

    2012-01-01

    Generating diverse neurons in the central nervous system involves three major steps. First, heterogeneous neural progenitors are specified by positional cues at early embryonic stages. Second, neural progenitors sequentially produce neurons or intermediate precursors that acquire different temporal identities based on their birth-order. Third, sister neurons produced during asymmetrical terminal mitoses are given distinct fates. Determining the molecular mechanisms underlying each of these three steps of cellular diversification will unravel brain development and evolution. Drosophila has a relatively simple and tractable CNS, and previous studies on Drosophila CNS development have greatly advanced our understanding of neuron fate specification. Here we review those studies and discuss how the lessons we have learned from fly teach us the process of neuronal diversification in general.

  12. Automated amperometric plutonium assay system

    SciTech Connect

    Burt, M.C.

    1985-01-01

    The amperometric titration for plutonium assay has been used in the nuclear industry for over twenty years and has been in routine use at the Hanford Engineering Development Laboratory since 1976 for the analysis of plutonium oxide and mixed oxide fuel material for the Fast Flux Test Facility. It has proven itself to be an accurate and reliable method. The method may be used as a direct end point titration or an excess of titrant may be added and a back titration performed to aid in determination of the end point. Due to the slowness of the PuVI-FeII reaction it is difficult to recognize when the end point is being approached and is very time consuming if the current is allowed to decay to the residual value after each titrant addition. For this reason the back titration in which the rapid FeII-CrVI reaction occurs is used by most laboratories. The back titration is performed by the addition of excess ferrous solution followed by two measured aliquots of standard dichromate with measurement of cell current after each addition.

  13. Drosophila C Virus Systemic Infection Leads to Intestinal Obstruction

    PubMed Central

    Chtarbanova, Stanislava; Lamiable, Olivier; Lee, Kwang-Zin; Galiana, Delphine; Troxler, Laurent; Meignin, Carine; Hetru, Charles; Hoffmann, Jules A.; Daeffler, Laurent

    2014-01-01

    ABSTRACT Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the

  14. Automated optical sensing system for biochemical assays

    NASA Astrophysics Data System (ADS)

    Oroszlan, Peter; Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1994-03-01

    In this paper, we present a new system called FOBIA that was developed and optimized with respect to automated operation of repetitive assay cycles with regenerable bioaffinity sensors. The reliability and precision of the new system is demonstrated by an application in a competitive assay for the detection of the triazine herbicide Atrazine. Using one sensor in more than 300 repetitive cycles, a signal precision better than 5% was achieved.

  15. Enhancing Undergraduate Teaching and Research with a "Drosophila" Virginizing System

    ERIC Educational Resources Information Center

    Venema, Dennis R.

    2006-01-01

    Laboratory exercises using "Drosophila" crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using "Drosophila." A significant barrier to using "Drosophila" for undergraduate teaching or research is the time and skill…

  16. Natural selection on the Drosophila antimicrobial immune system.

    PubMed

    Lazzaro, Brian P

    2008-06-01

    The evolutionary dynamics of immune defenses have long attracted interest because of the special role the immune system plays in mediating the antagonistic interaction between hosts and pathogens. The antimicrobial immune system of the fruit fly Drosophila melanogaster is genetically well characterized and serves as a valuable model for studying insect and human innate immune defenses. I review here evolutionary and comparative genomic analyses of insect antimicrobial immune genes, with an emphasis on Drosophila. Core signal transduction pathways in the immune system are orthologously conserved across long evolutionary distances, but genes in these pathways evolve rapidly and adaptively at the amino acid sequence level. By contrast, families of genes encoding antimicrobial peptides are remarkably dynamic in genomic duplication and deletion, yet individual genes show little indication of adaptive sequence evolution. Pattern recognition receptors that trigger humoral immunity are evolutionarily rather static, but receptors required for phagocytosis show considerable genomic rearrangement and adaptive sequence divergence. The distinct evolutionary patterns exhibited by these various classes of immune system genes can be logically connected to the functions of the proteins they encode.

  17. Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos

    PubMed Central

    Gisselbrecht, Stephen S.; Barrera, Luis A.; Porsch, Martin; Aboukhalil, Anton; Estep, Preston W.; Vedenko, Anastasia; Palagi, Alexandre; Kim, Yongsok; Zhu, Xianmin; Busser, Brian W.; Gamble, Caitlin E.; Iagovitina, Antonina; Singhania, Aditi; Michelson, Alan M.; Bulyk, Martha L.

    2013-01-01

    Transcriptional enhancers are a primary mechanism by which tissue-specific gene expression is achieved. Despite the importance of these regulatory elements in development, responses to environmental stresses, and disease, testing enhancer activity in animals remains tedious, with a minority of enhancers having been characterized. Here, we have developed ‘enhancer-FACS-Seq’ (eFS) technology for highly parallel identification of active, tissue-specific enhancers in Drosophila embryos. Analysis of enhancers identified by eFS to be active in mesodermal tissues revealed enriched DNA binding site motifs of known and putative, novel mesodermal transcription factors (TFs). Naïve Bayes classifiers using TF binding site motifs accurately predicted mesodermal enhancer activity. Application of eFS to other cell types and organisms should accelerate the cataloging of enhancers and understanding how transcriptional regulation is encoded within them. PMID:23852450

  18. A Miniaturized Video System for Monitoring Drosophila Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Inan, Omer; Kovacs, Gregory; Etemadi, Mozziyar; Sanchez, Max; Marcu, Oana

    2011-01-01

    Long-term spaceflight may induce a variety of harmful effects in astronauts, resulting in altered motor and cognitive behavior. The stresses experienced by humans in space - most significantly weightlessness (microgravity) and cosmic radiation - are difficult to accurately simulate on Earth. In fact, prolonged and concomitant exposure to microgravity and cosmic radiation can only be studied in space. Behavioral studies in space have focused on model organisms, including Drosophila melanogaster. Drosophila is often used due to its short life span and generational cycle, small size, and ease of maintenance. Additionally, the well-characterized genetics of Drosophila behavior on Earth can be applied to the analysis of results from spaceflights, provided that the behavior in space is accurately recorded. In 2001, the BioExplorer project introduced a low-cost option for researchers: the small satellite. While this approach enabled multiple inexpensive launches of biological experiments, it also imposed stringent restrictions on the monitoring systems in terms of size, mass, data bandwidth, and power consumption. Suggested parameters for size are on the order of 100 mm3 and 1 kg mass for the entire payload. For Drosophila behavioral studies, these engineering requirements are not met by commercially available systems. One system that does meet many requirements for behavioral studies in space is the actimeter. Actimeters use infrared light gates to track the number of times a fly crosses a boundary within a small container (3x3x40 mm). Unfortunately, the apparatus needed to monitor several flies at once would be larger than the capacity of the small satellite. A system is presented, which expands on the actimeter approach to achieve a highly compact, low-power, ultra-low bandwidth solution for simultaneous monitoring of the behavior of multiple flies in space. This also provides a simple, inexpensive alternative to the current systems for monitoring Drosophila

  19. Expert system technology for nondestructive waste assay

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1998-07-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications.

  20. Phylogeography, Interaction Patterns and the Evolution of Host Choice in Drosophila-Parasitoid Systems in Ryukyu Archipelago and Taiwan.

    PubMed

    Novković, Biljana; Kimura, Masahito T

    2015-01-01

    Island biotas provide a great opportunity to study not only the phylogeographic patterns of a group of species, but also to explore the differentiation in their coevolutionary interactions. Drosophila and their parasitoids are exemplary systems for studying complex interaction patterns. However, there is a lack of studies combining interaction-based and molecular marker-based methods. We applied an integrated approach combining phylogeography, interaction, and host-choice behavior studies, with the aim to understand how coevolutionary interactions evolve in Drosophila-parasitoid island populations. The study focused on the three most abundant Drosophila species in Ryukyu archipelago and Taiwan: D. albomicans, D. bipectinata, and D. takahashii, and the Drosophila-parasitoid Leptopilina ryukyuensis. We determined mitochondrial COI haplotypes for samples representing five island populations of Drosophila and four island populations of L. ryukyuensis. We additionally sequenced parts of the autosomal Gpdh for Drosophila samples, and the ITS2 for parasitoid samples. Phylogenetic and coalescent analyses were used to test for demographic events and to place them in a temporal framework. Geographical differences in Drosophila-parasitoid interactions were studied in host-acceptance, host-suitability, and host-choice experiments. All four species showed species-specific phylogeographic patterns. A general trend of the haplotype diversity increasing towards the south was observed. D. albomicans showed very high COI haplotype diversity, and had the most phylogeographically structured populations, with differentiation into the northern and the southern population-group, divided by the Kerama gap. Differentiation in host suitability was observed only between highly structured populations of D. albomicans, possibly facilitated by restricted gene flow. Differentiation in host-acceptance in D. takahashii, and host-acceptance and host-choice in L. ryukyuensis was found, despite there

  1. Phylogeography, Interaction Patterns and the Evolution of Host Choice in Drosophila-Parasitoid Systems in Ryukyu Archipelago and Taiwan.

    PubMed

    Novković, Biljana; Kimura, Masahito T

    2015-01-01

    Island biotas provide a great opportunity to study not only the phylogeographic patterns of a group of species, but also to explore the differentiation in their coevolutionary interactions. Drosophila and their parasitoids are exemplary systems for studying complex interaction patterns. However, there is a lack of studies combining interaction-based and molecular marker-based methods. We applied an integrated approach combining phylogeography, interaction, and host-choice behavior studies, with the aim to understand how coevolutionary interactions evolve in Drosophila-parasitoid island populations. The study focused on the three most abundant Drosophila species in Ryukyu archipelago and Taiwan: D. albomicans, D. bipectinata, and D. takahashii, and the Drosophila-parasitoid Leptopilina ryukyuensis. We determined mitochondrial COI haplotypes for samples representing five island populations of Drosophila and four island populations of L. ryukyuensis. We additionally sequenced parts of the autosomal Gpdh for Drosophila samples, and the ITS2 for parasitoid samples. Phylogenetic and coalescent analyses were used to test for demographic events and to place them in a temporal framework. Geographical differences in Drosophila-parasitoid interactions were studied in host-acceptance, host-suitability, and host-choice experiments. All four species showed species-specific phylogeographic patterns. A general trend of the haplotype diversity increasing towards the south was observed. D. albomicans showed very high COI haplotype diversity, and had the most phylogeographically structured populations, with differentiation into the northern and the southern population-group, divided by the Kerama gap. Differentiation in host suitability was observed only between highly structured populations of D. albomicans, possibly facilitated by restricted gene flow. Differentiation in host-acceptance in D. takahashii, and host-acceptance and host-choice in L. ryukyuensis was found, despite there

  2. Ontogeny of Drosophila melanogaster in a system of dysgenic crosses

    SciTech Connect

    Grishaeva, T.M.; Ivashchenko, N.I.

    1995-09-01

    Three families of mobile elements that induce P-M, H-E, and I-R hybrid dysgenesis in Drosophila melanogaster were activated by crossing flies of different cytotypes. Manifestation of gonadal sterility in F{sub 1} hybrid progeny was dependent on the temperature of development. The systems differed significantly in lethality of F{sub 2} hybrids at various stages of ontogeny (embyros, larvae, pupae, and adult flies). The highest embryo lethality was found in the P-M system at the cleavage stage. In the I-R and H-E systems, the peak of embryonic death corresponded to the stages of blastoderm and organogenesis, respectively. Experimental results are discussed in view of molecular and cytological characteristics of interacting strains and existing hypotheses for regulation of transposition of P, hobo, and I mobile elements. 44 refs., 4 figs., 4 tabs.

  3. Systems neuroscience in Drosophila: Conceptual and technical advantages.

    PubMed

    Kazama, H

    2015-06-18

    The fruit fly Drosophila melanogaster is ideally suited for investigating the neural circuit basis of behavior. Due to the simplicity and genetic tractability of the fly brain, neurons and circuits are identifiable across animals. Additionally, a large set of transgenic lines has been developed with the aim of specifically labeling small subsets of neurons and manipulating them in sophisticated ways. Electrophysiology and imaging can be applied in behaving individuals to examine the computations performed by each neuron, and even the entire population of relevant neurons in a particular region, because of the small size of the brain. Moreover, a rich repertoire of behaviors that can be studied is expanding to include those requiring cognitive abilities. Thus, the fly brain is an attractive system in which to explore both computations and mechanisms underlying behavior at levels spanning from genes through neurons to circuits. This review summarizes the advantages Drosophila offers in achieving this objective. A recent neurophysiology study on olfactory behavior is also introduced to demonstrate the effectiveness of these advantages.

  4. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C; Bourne, Mark M; Crooks, William J; Evans, Louise; Mayo, Douglas R; Miko, David K; Salazar, William R; Stange, Sy; Valdez, Jose I; Vigil, Georgiana M

    2012-07-13

    Waste will be removed from confinement vessels remaining from 1970s-era experiments. Los Alamos has 9+ spherical confinement vessels remaining from experiments. Each vessel contains {approx} 500 lbs of radioactive debris such as actinide metals and oxides, metals, powdered silica, graphite, and wires and hardware. In order to dispose of the vessels, debris and contamination must be removed. Neutron assay system was designed to assay vessels before and after cleanout. System requirements are: (1) Modular and moveable; (2) Capable of detecting {approx}100g {sup 239}Pu equivalent in a 2-inch thick steel sphere with 6 foot diameter; and (3) Capable of safeguards-quality assays. Initial design parameters arethe use of 4-atm {sup 3}He tubes with length of 6 feet, and {sup 3}He tubes embedded in polyethelene for moderation. This paper describes the calibration of the Confinement Vessel Assay System (CVAS) and quantification of its uncertainties. Assay uncertainty depends on five factors: (1) Statistical uncertainty in the assay measurement; (2) Statistical uncertainty in the background measurement; (3) Statistical uncertainty in the isotopics determination - This should be much smaller than the other uncertainties; (4) Systematic uncertainty due to position bias; and (5) Systematic uncertainty due to fluctuations in cosmic ray spallation. This one can be virtually eliminated by performing the background measurement with an empty vessel - but that may not be possible. We used modeling and experiments to quantify the systematic uncertainties. The calibration assumes a uniform distribution of material, but reality will be different. MCNPX modeling was used to quantify the positional bias. The model was benchmarked to build confidence in its results. Material at top of vessel is 44% greater than amount assayed, according to singles. Material near 19-tube detector is 38% less than amount assayed, according to singles. Cosmic ray spallation contributes significantly to the

  5. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  6. Test procedure for boxed waste assay system

    SciTech Connect

    Wachter, J.

    1994-12-07

    This document, prepared by Los Alamos National Laboratory`s NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system`s embedded operating and data reduction software.

  7. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    SciTech Connect

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed.

  8. Nondestructive boxed transuranic (TRU) waste assay systems

    NASA Astrophysics Data System (ADS)

    Caldwell, John T.; Jones, Stephanie A.; Lucero, Randy F.

    1999-01-01

    A brief history of boxed waste assay systems (primarily those developed at Los Alamos National Laboratory) is presented. The characteristics and design process involved with current generation systems--as practiced by BII--are also discussed in some detail. Finally, a specific boxed waste assay system and acceptance test results are presented. This system was developed by BII and installed at the Waste Receiving and Packaging (WRAP) facility in Hanford, Washington in early 1997. The WRAP system combines imaging passive/active neutron (IPAN) techniques with gamma- ray energy analysis (GEA) to assay crates up to 2.5 m X 2.5 m X 6.5 m in size. (Systems that incorporate both these methodologies are usually denoted IPAN/GEA types.) Two separate gamma-ray measurements are accomplished utilizing 16 arrayed NaI detectors and a moveable HPGe detector, while 3He detectors acquire both active and passive neutron data. These neutron measurements use BII's proprietary imaging methodology. Acceptance testing of the system was conducted at Hanford in January 1998. The system's operating performance was evaluated based on accuracy and sensitivity requirements for three different matrix types. Test results indicate an average 13% active mode accuracy for 10 nCi/g loadings of Pu waste and 5% passive mode accuracy for 10 g loadings of Pu waste. Sensitivity testing demonstrated an active mode lower limit of detection of less than 5 nCi/g of 239Pu for the medium matrix and less than 20 pCi/g of fission and activation products at 3(sigma) above background.

  9. Matrix effects of TRU (transuranic) assays using the SWEPP PAN assay system

    SciTech Connect

    Smith, J.R.

    1990-08-01

    The Drum Assay System (DAS) at the Stored Waste Experimental Pilot Plant (SWEPP) is a second-generation active-passive neutron assay system. It has been used to assay over 5000 208-liter drums of transuranic waste from the Rocky Flats Plant (RFP). Data from these assays have been examined and compared with the assays performed at Rocky Flats, mainly utilize counting of {sup 239}Pu gamma rays. For the most part the passive assays are in very good agreement with the Rocky Flats assays. The active assays are strongly correlated with the results of the other two methods, but require matrix-dependent correction factors beyond those provided by the system itself. A set of matrix-dependent correction factors has been developed from the study of the assay results. 3 refs., 4 figs., 3 tabs.

  10. System and method for assaying a radionuclide

    SciTech Connect

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  11. System and method for assaying radiation

    SciTech Connect

    DiPrete, David P; Whiteside, Tad; Pak, Donald J; DiPrete, Cecilia C

    2013-11-12

    A system for assaying radiation includes a sample holder configured to hold a liquid scintillation solution. A photomultiplier receives light from the liquid scintillation solution and generates a signal reflective of the light. A control circuit biases the photomultiplier and receives the signal from the photomultiplier reflective of the light. A light impermeable casing surrounds the sample holder, photomultiplier, and control circuit. A method for assaying radiation includes placing a sample in a liquid scintillation solution, placing the liquid scintillation solution in a sample holder, and placing the sample holder inside a light impermeable casing. The method further includes positioning a photomultiplier inside the light impermeable casing and supplying power to a control circuit inside the light impermeable casing.

  12. Glial cell development and function in the Drosophila visual system

    PubMed Central

    CHOTARD, CAROLE; SALECKER, IRIS

    2008-01-01

    In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron–neuron and neuron–glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function. PMID:18333286

  13. System-like consolidation of olfactory memories in Drosophila.

    PubMed

    Cervantes-Sandoval, Isaac; Martin-Peña, Alfonso; Berry, Jacob A; Davis, Ronald L

    2013-06-01

    System consolidation, as opposed to cellular consolidation, is defined as the relatively slow process of reorganizing the brain circuits that maintain long-term memory. This concept is founded in part on observations made in mammals that recently formed memories become progressively independent of brain regions initially involved in their acquisition and retrieval and dependent on other brain regions for their long-term storage. Here we present evidence that olfactory appetitive and aversive memories in Drosophila evolve using a system-like consolidation process. We show that all three classes of mushroom body neurons (MBNs) are involved in the retrieval of short- and intermediate-term memory. With the passage of time, memory retrieval becomes independent of α'/β' and γ MBNs, and long-term memory becomes completely dependent on α/β MBNs. This shift in neuronal dependency for behavioral performance is paralleled by shifts in the activity of the relevant neurons during the retrieval of short-term versus long-term memories. Moreover, transient neuron inactivation experiments using flies trained to have both early and remote memories showed that the α'/β' MBNs have a time-limited role in memory processing. These results argue that system consolidation is not a unique feature of the mammalian brain and memory systems, but rather a general and conserved feature of how different temporal memories are encoded from relatively simple to complex brains.

  14. Characterization of dendritic spines in the Drosophila central nervous system.

    PubMed

    Leiss, Florian; Koper, Ewa; Hein, Irina; Fouquet, Wernher; Lindner, Jana; Sigrist, Stephan; Tavosanis, Gaia

    2009-03-01

    Dendritic spines are a characteristic feature of a number of neurons in the vertebrate nervous system and have been implicated in processes that include learning and memory. In spite of this, there has been no comprehensive analysis of the presence of spines in a classical genetic system, such as Drosophila, so far. Here, we demonstrate that a subset of processes along the dendrites of visual system interneurons in the adult fly central nervous system, called LPTCs, closely resemble vertebrate spines, based on a number of criteria. First, the morphology, size, and density of these processes are very similar to those of vertebrate spines. Second, they are enriched in actin and devoid of tubulin. Third, they are sites of synaptic connections based on confocal and electron microscopy. Importantly, they represent a preferential site of localization of an acetylcholine receptor subunit, suggesting that they are sites of excitatory synaptic input. Finally, their number is modulated by the level of the small GTPase dRac1. Our results provide a basis to dissect the genetics of dendritic spine formation and maintenance and the functional role of spines.

  15. Performance of the Cas9 nickase system in Drosophila melanogaster.

    PubMed

    Ren, Xingjie; Yang, Zhihao; Mao, Decai; Chang, Zai; Qiao, Huan-Huan; Wang, Xia; Sun, Jin; Hu, Qun; Cui, Yan; Liu, Lu-Ping; Ji, Jun-Yuan; Xu, Jiang; Ni, Jian-Quan

    2014-10-01

    Recent studies of the Cas9/sgRNA system in Drosophila melanogaster genome editing have opened new opportunities to generate site-specific mutant collections in a high-throughput manner. However, off-target effects of the system are still a major concern when analyzing mutant phenotypes. Mutations converting Cas9 to a DNA nickase have great potential for reducing off-target effects in vitro. Here, we demonstrated that injection of two plasmids encoding neighboring offset sgRNAs into transgenic Cas9(D10A) nickase flies efficiently produces heritable indel mutants. We then determined the effective distance between the two sgRNA targets and their orientations that affected the ability of the sgRNA pairs to generate mutations when expressed in the transgenic nickase flies. Interestingly, Cas9 nickase greatly reduces the ability to generate mutants with one sgRNA, suggesting that the application of Cas9 nickase and sgRNA pairs can almost avoid off-target effects when generating indel mutants. Finally, a defined piwi mutant allele is generated with this system through homology-directed repair. However, Cas9(D10A) is not as effective as Cas9 in replacing the entire coding sequence of piwi with two sgRNAs. PMID:25128437

  16. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems

    PubMed Central

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    SUMMARY The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence tomography. The heart has vigorous pulsatile contractions that drive intracardiac, aortic and extracellular-extravascular hemolymph flow. Several physiological measures, including weight-adjusted cardiac output, body-length-adjusted aortic velocities and intracardiac shear forces, are similar to those in the closed vertebrate cardiovascular systems, including that of humans. Extracellular-extravascular flow in the pre-pupal D. melanogaster circulation drives convection-limited fluid transport. To demonstrate homology in heart dysfunction, we showed that, at the pre-pupal stage, a troponin I mutant, held-up2 (hdp2), has impaired systolic and diastolic heart wall velocities. Impaired heart wall velocities occur in the context of a non-dilated phenotype with a mildly depressed fractional shortening. We additionally derive receiver operating characteristic curves showing that heart wall velocity is a potentially powerful discriminator of systolic heart dysfunction. Our results demonstrate physiological homology and support the use of D. melanogaster as an animal model of complex cardiovascular disease. PMID:21183476

  17. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters

    PubMed Central

    Martin, Ciara A.; Krantz, David E.

    2014-01-01

    The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use. PMID:24704795

  18. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters.

    PubMed

    Martin, Ciara A; Krantz, David E

    2014-07-01

    The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.

  19. Molecular population genetics of Drosophila immune system genes.

    PubMed

    Clark, A G; Wang, L

    1997-10-01

    A striking aspect of many vertebrate immune system is the exceptionally high level of polymorphism they harbor. A convincing case can be made that this polymorphism is driven by the diversity of pathogens that face selective pressures to evade attack by the host immune system. Different organisms accomplish a defense against diverse pathogens through mechanisms that differ widely in their requirements for specific recognition. It has recently been shown that innate defense mechanisms, which use proteins with broad-spectrum bactericidal properties, are common to both primitive and advanced organisms. In this study we characterize DNA sequence variation in six pathogen defense genes of Drosophila melanogaster and D. mauritiana, including Andropin; cecropin genes CecA1, CecA2, CecB, and CecC; and Diptericin. The necessity for protection against diverse pathogens, which themselves may evolve resistance to insect defenses, motivates a population-level analysis. Estimates of variation levels show that the genes are not exceptionally polymorphic, but Andropin and Diptericin have patterns of variation that differ significantly from neutrality. Patterns of interpopulation and interspecific differentiation also reveal differences among the genes in evolutionary forces.

  20. Molecular Population Genetics of Drosophila Immune System Genes

    PubMed Central

    Clark, A. G.; Wang, L.

    1997-01-01

    A striking aspect of many vertebrate immune system genes is the exceptionally high level of polymorphism they harbor. A convincing case can be made that this polymorphism is driven by the diversity of pathogens that face selective pressures to evade attack by the host immune system. Different organisms accomplish a defense against diverse pathogens through mechanisms that differ widely in their requirements for specific recognition. It has recently been shown that innate defense mechanisms, which use proteins with broad-spectrum bactericidal properties, are common to both primitive and advanced organisms. In this study we characterize DNA sequence variation in six pathogen defense genes of Drosophila melanogaster and D. mauritiana, including Andropin; cecropin genes CecA1, CecA2, CecB, and CecC; and Diptericin. The necessity for protection against diverse pathogens, which themselves may evolve resistance to insect defenses, motivates a population-level analysis. Estimates of variation levels show that the genes are not exceptionally polymorphic, but Andropin and Diptericin have patterns of variation that differ significantly from neutrality. Patterns of interpopulation and interspecific differentiation also reveal differences among the genes in evolutionary forces. PMID:9335607

  1. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test.

    PubMed

    Reis, Érica de Melo; Rezende, Alexandre Azenha Alves de; Oliveira, Pollyanna Francielli de; Nicolella, Heloiza Diniz; Tavares, Denise Crispim; Silva, Anielle Christine Almeida; Dantas, Noelio Oliveira; Spanó, Mário Antônio

    2016-10-01

    Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.2 nm anatase TiO2 NCs and 78.0 nm predominantly rutile TiO2 NCs through an in vitro micronucleus (MN) assay using V79 cells and an in vivo somatic mutation and recombination test in Drosophila wings. The MN assay was performed with nontoxic concentrations of TiO2 NCs. Only anatase (3.4 nm) at the highest concentration (120 μM) induced genotoxicity in V79 cells. In the in vivo test, Drosophila melanogaster larvae obtained from standard (ST) or high bioactivation (HB) crosses were treated with TiO2 NCs. In the ST cross, no mutagenic effects were observed. However, in the HB cross, TiO2 NCs (3.4 nm) were mutagenic at 1.5625 and 3.125 mM, while 78.0 nm NCs increased mutant spots at all concentrations tested except 3.125 mM. Only the smallest anatase TiO2 NCs induced mutagenic effects in vitro and in vivo. For rutile TiO2 NCs, no clastogenic/aneugenic effects were observed in the MN assay. However, they were mutagenic in Drosophila. Therefore, both anatase and rutile TiO2 NCs induced mutagenicity. Further research is necessary to clarify the TiO2 NCs genotoxic/mutagenic action mechanisms.

  2. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test.

    PubMed

    Reis, Érica de Melo; Rezende, Alexandre Azenha Alves de; Oliveira, Pollyanna Francielli de; Nicolella, Heloiza Diniz; Tavares, Denise Crispim; Silva, Anielle Christine Almeida; Dantas, Noelio Oliveira; Spanó, Mário Antônio

    2016-10-01

    Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.2 nm anatase TiO2 NCs and 78.0 nm predominantly rutile TiO2 NCs through an in vitro micronucleus (MN) assay using V79 cells and an in vivo somatic mutation and recombination test in Drosophila wings. The MN assay was performed with nontoxic concentrations of TiO2 NCs. Only anatase (3.4 nm) at the highest concentration (120 μM) induced genotoxicity in V79 cells. In the in vivo test, Drosophila melanogaster larvae obtained from standard (ST) or high bioactivation (HB) crosses were treated with TiO2 NCs. In the ST cross, no mutagenic effects were observed. However, in the HB cross, TiO2 NCs (3.4 nm) were mutagenic at 1.5625 and 3.125 mM, while 78.0 nm NCs increased mutant spots at all concentrations tested except 3.125 mM. Only the smallest anatase TiO2 NCs induced mutagenic effects in vitro and in vivo. For rutile TiO2 NCs, no clastogenic/aneugenic effects were observed in the MN assay. However, they were mutagenic in Drosophila. Therefore, both anatase and rutile TiO2 NCs induced mutagenicity. Further research is necessary to clarify the TiO2 NCs genotoxic/mutagenic action mechanisms. PMID:27562929

  3. Missense variants in the middle domain of DNM1L in cases of infantile encephalopathy alter peroxisomes and mitochondria when assayed in Drosophila.

    PubMed

    Chao, Yu-Hsin; Robak, Laurie A; Xia, Fan; Koenig, Mary K; Adesina, Adekunle; Bacino, Carlos A; Scaglia, Fernando; Bellen, Hugo J; Wangler, Michael F

    2016-05-01

    Defects in organelle dynamics underlie a number of human degenerative disorders, and whole exome sequencing (WES) is a powerful tool for studying genetic changes that affect the cellular machinery. WES may uncover variants of unknown significance (VUS) that require functional validation. Previously, a pathogenic de novo variant in the middle domain of DNM1L (p.A395D) was identified in a single patient with a lethal defect of mitochondrial and peroxisomal fission. We identified two additional patients with infantile encephalopathy and partially overlapping clinical features, each with a novel VUS in the middle domain of DNM1L (p.G350R and p.E379K). To evaluate pathogenicity, we generated transgenic Drosophila expressing wild-type or variant DNM1L. We find that human wild-type DNM1L rescues the lethality as well as specific phenotypes associated with the loss of Drp1 in Drosophila. Neither the p.A395D variant nor the novel variant p.G350R rescue lethality or other phenotypes. Moreover, overexpression of p.A395D and p.G350R in Drosophila neurons, salivary gland and muscle strikingly altered peroxisomal and mitochondrial morphology. In contrast, the other novel variant (p.E379K) rescued lethality and did not affect organelle morphology, although it was associated with a subtle mitochondrial trafficking defect in an in vivo assay. Interestingly, the patient with the p.E379K variant also has a de novo VUS in pyruvate dehydrogenase 1 (PDHA1) affecting the same amino acid (G150) as another case of PDHA1 deficiency suggesting the PDHA1 variant may be pathogenic. In summary, detailed clinical evaluation and WES with functional studies in Drosophila can distinguish different functional consequences of newly-described DNM1L alleles.

  4. 233U Assay A Neutron NDA System

    SciTech Connect

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-11-17

    The assay of highly enriched {sup 233}U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched {sup 235}U do not convert easily over to the assay of {sup 233}U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with {gamma} ray isotopics information should give a good overall determination of {sup 233}U material now stored in bldg. 3019 at the Oak Ridge National Laboratory.

  5. Enhancing undergraduate teaching and research with a Drosophila virginizing system.

    PubMed

    Venema, Dennis R

    2006-01-01

    Laboratory exercises using Drosophila crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using Drosophila. A significant barrier to using Drosophila for undergraduate teaching or research is the time and skill required to accurately collect virgins for use in controlled crosses. Erroneously collecting males or nonvirgin females contaminates crosses with unintended genotypes and confounds the results. Collecting adequate numbers of virgins requires large amounts of time, even for those skilled in virgin collection. I have adapted an effective method for virgin collection that eliminates these concerns and is straightforward to use in undergraduate settings. Using a heat-shock-induced, conditional lethal transgene specifically in males, male larvae can be eliminated from a culture before adults eclose. Females thus eclose in the absence of males and remain virgin, eliminating the need to laboriously score and segregate freshly eclosed females. This method is reliable, easily adaptable to any desired phenotypic marker, and readily scaleable to provide sufficient virgins for large laboratory classes or undergraduate research projects. In addition, it allows instructors lacking Drosophila expertise to use this organism as a pedagogical tool. PMID:17146043

  6. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity.

    PubMed

    Marco, R; Laván, D A; van Loon, J J W A; Leandro, L J; Larkin, O J; Dijkstra, C; Anthony, P; Villa, A; Davey, M R; Lowe, K C; Power, J B; Medina, F J

    2007-07-01

    A key requirement to enhance our understanding of the response of biological organisms to different levels of gravity is the availability of experimental systems that can simulate microgravity and hypergravity in ground-based laboratories. This paper compares the results obtained from analysing gene expression profiles of Drosophila in space versus those obtained in a random position machine (RPM) and by centrifugation. The correlation found validates the use of the RPM simulation technique to establish the effects of real microgravity on biological systems. This work is being extended to investigate Drosophila development in another gravity modifying instrument, the levitation magnet. PMID:18372731

  7. Systems, devices, and methods for agglutination assays using sedimentation

    DOEpatents

    Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.

    2016-01-26

    Embodiments of the present invention include methods for conducting agglutination assays using sedimentation. Aggregates may be exposed to sedimentation forces and travel through a density medium to a detection area. Microfluidic devices, such as microfluidic disks, are described for conducting the agglutination assays, as are systems for conducting the assays.

  8. Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases.

    PubMed

    Charng, Wu-Lin; Yamamoto, Shinya; Bellen, Hugo J

    2014-08-01

    Signaling pathways and cellular processes that regulate neural development are used post-developmentally for proper function and maintenance of the nervous system. Genes that have been studied in the context of the development of Drosophila peripheral nervous system (PNS) and neuromuscular junction (NMJ) have been identified as players in the pathogenesis of human neurodegenerative diseases, including spinocerebellar ataxia, amyotrophic lateral sclerosis, and spinal muscular atrophy. Hence, by unraveling the molecular mechanisms that underlie proneural induction, cell fate determination, axonal targeting, dendritic branching, and synapse formation in Drosophila, novel features related to these disorders have been revealed. In this review, we summarize and discuss how studies of Drosophila PNS and NMJ development have provided guidance in experimental approaches for these diseases.

  9. Purification of recombinant human and Drosophila septin hexamers for TIRF assays of actin-septin filament assembly.

    PubMed

    Mavrakis, M; Tsai, F-C; Koenderink, G H

    2016-01-01

    Septins are guanine nucleotide-binding proteins that are conserved from fungi to humans. Septins assemble into heterooligomeric complexes and higher-order structures with key roles in various cellular functions including cell migration and division. The mechanisms by which septins assemble and interact with other cytoskeletal elements like actin remain elusive. A powerful approach to address this question is by cell-free reconstitution of purified cytoskeletal proteins combined with fluorescence microscopy. Here, we describe procedures for the purification of recombinant Drosophila and human septin hexamers from Escherichia coli and reconstitution of actin-septin coassembly. These procedures can be used to compare assembly of Drosophila and human septins and their coassembly with the actin cytoskeleton by total internal reflection fluorescence microscopy. PMID:27473911

  10. Purification of recombinant human and Drosophila septin hexamers for TIRF assays of actin-septin filament assembly.

    PubMed

    Mavrakis, M; Tsai, F-C; Koenderink, G H

    2016-01-01

    Septins are guanine nucleotide-binding proteins that are conserved from fungi to humans. Septins assemble into heterooligomeric complexes and higher-order structures with key roles in various cellular functions including cell migration and division. The mechanisms by which septins assemble and interact with other cytoskeletal elements like actin remain elusive. A powerful approach to address this question is by cell-free reconstitution of purified cytoskeletal proteins combined with fluorescence microscopy. Here, we describe procedures for the purification of recombinant Drosophila and human septin hexamers from Escherichia coli and reconstitution of actin-septin coassembly. These procedures can be used to compare assembly of Drosophila and human septins and their coassembly with the actin cytoskeleton by total internal reflection fluorescence microscopy.

  11. Automated rapid iterative negative geotaxis assay and its use in a genetic screen for modifiers of Aβ(42)-induced locomotor decline in Drosophila.

    PubMed

    Liu, Haiyan; Han, Meng; Li, Qingyi; Zhang, Xiao; Wang, Wen-An; Huang, Fu-De

    2015-10-01

    The negative-geotaxis climbing assay is used to efficiently study aging and neurodegeneration in Drosophila. To make it suitable for large-scale study, a method called the rapid iterative negative geotaxis (RING) assay has been established by simultaneously photographing the climbing of multiple groups of flies when they are manually tapped down in test tubes. Here, we automated the assay by using a well-controlled electric motor to drive the tapping, and a homemade program to analyze the climbing height of flies. Using the automated RING (aRING) assay, we found that the climbing ability of a strain of wild-type flies, males in particular, declined rapidly before day 21 after eclosion, but slowly from day 21 to 35. We also found that the expression of arctic mutant Aβ42 accelerated the age-dependent decline in the climbing ability of flies. Moreover, using aRING, we examined the effect of third chromosome deficiencies on the accelerated locomotor decline in Aβ42-expressing flies, and isolated 7 suppressors and 15 enhancers. PMID:26077703

  12. Drosophila as a model for the two myeloid blood cell systems in vertebrates

    PubMed Central

    Gold, Katrina S.; Brückner, Katja

    2016-01-01

    Fish, mice and men rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, as well as a ‘definitive’ lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to achieve optimal fitness of the animal. PMID:24946019

  13. Characterization of two novel lipocalins expressed in the Drosophila embryonic nervous system.

    PubMed

    Sánchez, D; Ganfornina, M D; Torres-Schumann, S; Speese, S D; Lora, J M; Bastiani, M J

    2000-06-01

    We have found two novel lipocalins in the fruit fly Drosophila melanogaster that are homologous to the grasshopper Lazarillo, a singular lipocalin within this protein family which functions in axon guidance during nervous system development. Sequence analysis suggests that the two Drosophila proteins are secreted and possess peptide regions unique in the lipocalin family. The mRNAs of DNLaz (for Drosophila neural Lazarillo) and DGLaz (for Drosophila glial Lazarillo) are expressed with different temporal patterns during embryogenesis. They show low levels of larval expression and are highly expressed in pupa and adult flies. DNLaz mRNA is transcribed in a subset of neurons and neuronal precursors in the embryonic CNS. DGLaz mRNA is found in a subset of glial cells of the CNS: the longitudinal glia and the medial cell body glia. Both lipocalins are also expressed outside the nervous system in the developing gut, fat body and amnioserosa. The DNLaz protein is detected in a subset of axons in the developing CNS. Treatment with a secretion blocker enhances the antibody labeling, indicating the DNLaz secreted nature. These findings make the embryonic nervous system expression of lipocalins a feature more widespread than previously thought. We propose that DNLaz and DGLaz may have a role in axonal outgrowth and pathfinding, although other putative functions are also discussed.

  14. Assay of nitrogenase activity in intact plant systems.

    PubMed

    Jain, M K; Vlassak, K

    1975-01-01

    Nitrogenase activity was assayed in intact system of Cichorium intybus, a non-leguminous commercially cultivated crop, Dahlia pinnata and Helianthus annus, and Taraxacum officinale, a common weed plant. The assay was made in fabricated cylinders which could accomodate pot with plants. In such kind of assay along with rhizosphere microflora, the nitrogen fixed by phyllosphere nitrogen fixing microflora could also be accounted, which otherwise was difficult to be accounted for. PMID:1211718

  15. Mapping chromatic pathways in the Drosophila visual system.

    PubMed

    Lin, Tzu-Yang; Luo, Jiangnan; Shinomiya, Kazunori; Ting, Chun-Yuan; Lu, Zhiyuan; Meinertzhagen, Ian A; Lee, Chi-Hon

    2016-02-01

    In Drosophila, color vision and wavelength-selective behaviors are mediated by the compound eye's narrow-spectrum photoreceptors R7 and R8 and their downstream medulla projection (Tm) neurons Tm5a, Tm5b, Tm5c, and Tm20 in the second optic neuropil or medulla. These chromatic Tm neurons project axons to a deeper optic neuropil, the lobula, which in insects has been implicated in processing and relaying color information to the central brain. The synaptic targets of the chromatic Tm neurons in the lobula are not known, however. Using a modified GFP reconstitution across synaptic partners (GRASP) method to probe connections between the chromatic Tm neurons and 28 known and novel types of lobula neurons, we identify anatomically the visual projection neurons LT11 and LC14 and the lobula intrinsic neurons Li3 and Li4 as synaptic targets of the chromatic Tm neurons. Single-cell GRASP analyses reveal that Li4 receives synaptic contacts from over 90% of all four types of chromatic Tm neurons, whereas LT11 is postsynaptic to the chromatic Tm neurons, with only modest selectivity and at a lower frequency and density. To visualize synaptic contacts at the ultrastructural level, we develop and apply a "two-tag" double-labeling method to label LT11's dendrites and the mitochondria in Tm5c's presynaptic terminals. Serial electron microscopic reconstruction confirms that LT11 receives direct contacts from Tm5c. This method would be generally applicable to map the connections of large complex neurons in Drosophila and other animals. PMID:26179639

  16. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila.

    PubMed

    McGuire, Sean E; Mao, Zhengmei; Davis, Ronald L

    2004-02-17

    Targeted gene expression has become a standard technique for the study of biological questions in Drosophila. Until recently, transgene expression could be targeted in the dimension of either time or space, but not both. Several new systems have recently been developed to direct transgene expression simultaneously in both time and space. We describe here two such systems that we developed in our laboratory. The first system provides a general method for temporal and regional gene expression targeting (TARGET) with the conventional GAL4-upstream activator sequence (UAS) system and a temperature-sensitive GAL80 molecule, which represses GAL4 transcriptional activity at permissive temperatures. The second system, termed Gene-Switch, is based on a GAL4-progesterone receptor chimera that is hormone-inducible. We have used both systems for simultaneous spatial and temporal rescue of memory dysfunction in the rutabaga (rut) memory mutant of Drosophila. In this protocol, we provide guidelines for the use of these two novel systems, which should have general utility in studying Drosophila biology and in using the fly as a model for human disease. PMID:14970377

  17. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.

    PubMed

    Xu, Jiang; Ren, Xingjie; Sun, Jin; Wang, Xia; Qiao, Huan-Huan; Xu, Bo-Wen; Liu, Lu-Ping; Ni, Jian-Quan

    2015-04-20

    The last couple of years have witnessed an explosion in development of CRISPR-based genome editing technologies in cell lines as well as in model organisms. In this review, we focus on the applications of this popular system in Drosophila. We discuss the effectiveness of the CRISPR/Cas9 systems in terms of delivery, mutagenesis detection, parameters affecting efficiency, and off-target issues, with an emphasis on how to apply this powerful tool to characterize gene functions. PMID:25953352

  18. The role of Drosophila cytidine monophosphate-sialic acid synthetase in the nervous system.

    PubMed

    Islam, Rafique; Nakamura, Michiko; Scott, Hilary; Repnikova, Elena; Carnahan, Mindy; Pandey, Dheeraj; Caster, Courtney; Khan, Saba; Zimmermann, Tina; Zoran, Mark J; Panin, Vladislav M

    2013-07-24

    While sialylation plays important functions in the nervous system, the complexity of glycosylation pathways and limitations of genetic approaches preclude the efficient analysis of these functions in mammalian organisms. Drosophila has recently emerged as a promising model for studying neural sialylation. Drosophila sialyltransferase, DSiaT, was shown to be involved in the regulation of neural transmission. However, the sialylation pathway was not investigated in Drosophila beyond the DSiaT-mediated step. Here we focused on the function of Drosophila cytidine monophosphate-sialic acid synthetase (CSAS), the enzyme providing a sugar donor for DSiaT. Our results revealed that the expression of CSAS is tightly regulated and restricted to the CNS throughout development and in adult flies. We generated CSAS mutants and analyzed their phenotypes using behavioral and physiological approaches. Our experiments demonstrated that mutant phenotypes of CSAS are similar to those of DSiaT, including decreased longevity, temperature-induced paralysis, locomotor abnormalities, and defects of neural transmission at neuromuscular junctions. Genetic interactions between CSAS, DSiaT, and voltage-gated channel genes paralytic and seizure were consistent with the hypothesis that CSAS and DSiaT function within the same pathway regulating neural excitability. Intriguingly, these interactions also suggested that CSAS and DSiaT have some additional, independent functions. Moreover, unlike its mammalian counterparts that work in the nucleus, Drosophila CSAS was found to be a glycoprotein-bearing N-glycans and predominantly localized in vivo to the Golgi compartment. Our work provides the first systematic analysis of in vivo functions of a eukaryotic CSAS gene and sheds light on evolutionary relationships among metazoan CSAS proteins.

  19. Tip cell-derived RTK signaling initiates cell movements in the Drosophila stomatogastric nervous system anlage.

    PubMed

    González-Gaitán, M; Jäckle, H

    2000-10-01

    The stomatogastric nervous system (SNS) of Drosophila is a simply organized neural circuitry that innervates the anterior enteric system. Unlike the central and the peripheral nervous systems, the SNS derives from a compact epithelial anlage in which three invagination centers, each giving rise to an invagination fold headed by a tip cell, are generated. Tip cell selection involves lateral inhibition, a process in which Wingless (Wg) activity adjusts the range of Notch signaling. Here we show that RTK signaling mediated by the Drosophila homolog of the epidermal growth factor receptor, DER, plays a key role in two consecutive steps during early SNS development. Like Wg, DER signaling participates in adjusting the range of Notch-dependent lateral inhibition during tip cell selection. Subsequently, tip cells secrete the DER ligand Spitz and trigger local RTK signaling, which initiates morphogenetic movements resulting in the tip cell-directed invaginations within the SNS anlage.

  20. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    PubMed

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  1. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    PubMed

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography. PMID:26091779

  2. Development of the embryonic and larval peripheral nervous system of Drosophila

    PubMed Central

    Singhania, Aditi; Grueber, Wesley B.

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. The many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development. PMID:24896657

  3. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates

    PubMed Central

    Kaneko, Takuya; Ye, Bing

    2015-01-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and post-synaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography. PMID:26091779

  4. Drosophila melanogaster as a model system for assessing development under conditions of microgravity

    NASA Technical Reports Server (NTRS)

    Abbott, M. K.; Hilgenfeld, R. B.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    More is known about the regulation of early developmental events in Drosophila than any other animal. In addition, its size and short life cycle make it a facile experimental system. Since developmental perturbations have been demonstrated when both oogenesis and embryogenesis occur in the space environment, there is a strong rationale for using this organism for the elucidation of specific gravity-sensitive developmental events.

  5. WASTE CRATE ASSAY SYSTEM (WCAS) : ASSAY SOLUTIONS FOR VERY LARGE REMOTE HANDLED CRATES

    SciTech Connect

    Menlove, Howard O.; Rinard, Phillip M.; Li, T. K.; Romero, M.; Hiruta, K.; Nasuno, S.

    2001-01-01

    An advanced passive neutron counter has been designed and fabricated to measure the plutonium content in large remote handled (RH) waste crates. The waste crate assay system (WCAS) was developed under an agreement between Los Alamos National Laboratory, Japan Nuclear Fuel Limited (JNFL), and BNFL Instruments Inc. (BII) to measure the plutonium content in the waste generated in the Rokkasho reprocessing facility. The primary goal of the design was to produce an assay system for large waste containers. The system also includes 200-L drum pallet assay capability. The measurements are based on neutron-time correlation counting of the passive neutron emissions from the 240Pu, and the plutonium isotopic ratios are used to calculate the total plutonium. The system is designed for both RH waste and low-activity plutonium waste. The system permits the measurement of the singles, doubles, and triples rates and the multiplicity mode analysis is used together with the 'add-a-source' method to correct for the matrix materials in the crates. In the multiplicity analysis, the efficiency for counting the neutrons emitted from the crate is directly calculated from the three measured rates. For improved detectability limits, advanced methods have been incorporated in the WCAS-A to reduce the cosmic-ray neutron backgrounds. These methods include statistical filters and truncation of high-multiplicity events. The paper describes the WCAS-A design, performance, and calibration.

  6. Drosophila melanogaster as a model system to study long-chain fatty acid amide metabolism

    PubMed Central

    Jeffries, Kristen A.; Dempsey, Daniel R.; Behari, Anita L.; Anderson, Ryan L.; Merkler, David J.

    2014-01-01

    Long-chain fatty acid amides are cell-signaling lipids identified in mammals and, recently, in invertebrates, as well. Many details regarding fatty acid amide metabolism remain unclear. Herein, we demonstrate that Drosophila melanogaster is an excellent model system for the study long-chain fatty acid amide metabolism as we have quantified the endogenous levels of N-acylglycines, N-acyldopamines, N-acylethanolamines, and primary fatty acid amides by LC/QTOF-MS. Growth of Drosophila melanogaster on media supplemented with [1-13C]-palmitate lead to a family of 13C-palmitate-labeled fatty acid amides in the fly heads. The [1-13C]-palmitate feeding studies provide insight into the biosynthesis of the fatty acid amides. PMID:24650760

  7. Microarray assays for solar system exploration

    NASA Astrophysics Data System (ADS)

    Steele, Andrew; Toporski, Jan; McKay, David S.; Schweitzer, Mary; Pincus, Seth; Pérez-Mercader, Juan; Parro García, Victor

    2001-08-01

    The detection of evidence of extinct and extant life is a key issue in astrobiological research, particularly with respect to future exploration of the solar system. Simple life forms may have evolved and developed on planetary bodies such as Mars or Europa. At this point in time, tests whether life once was or still is present can only be carried out by means of in situ experiments. Here, we discuss the potential and advantages of immunological concepts for life detection and the development of a miniaturized automated immunoassay flight device.

  8. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms.

    PubMed

    Rodal, Avital A; Del Signore, Steven J; Martin, Adam C

    2015-05-01

    For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.

  9. Pi overlapping ring systems contained in a homogeneous assay: a novel homogeneous assay for antigens

    NASA Astrophysics Data System (ADS)

    Kidwell, David A.

    1993-05-01

    A novel immunoassay, Pi overlapping ring systems contained in a homogeneous assay (PORSCHA), is described. This assay relies upon the change in fluorescent spectral properties that pyrene and its derivatives show with varying concentration. Because antibodies and other biomolecules can bind two molecules simultaneously, they can change the local concentration of the molecules that they bind. This concentration change may be detected spectrally as a change in the fluorescence emission wavelength of an appropriately labeled biomolecule. Several tests of PORSCHA have been performed which demonstrate this principle. For example: with streptavidin as the binding biomolecule and a biotin labeled pyrene derivative, the production of the excimer emitting at 470 nm is observed. Without the streptavidin present, only the monomer emitting at 378 and 390 nm is observed. The ratio of monomer to excimer provides the concentration of unlabeled biotin in the sample. Approximately 1 ng/mL of biotin may be detected with this system using a 50 (mu) l sample (2 X 10-16 moles biotin). The principles behind PORSCHA, the results with the streptavidin/biotin system are discussed and extensions of the PORSCHA concept to antibodies as the binding partner and DNA in homogeneous assays are suggested.

  10. Assaying benzene, a parquet varnish, and a synthetic thinner with respect to induction of in vivo chromosome loss in wing primordial cells of Drosophila.

    PubMed

    Soós, István; Szabad, János

    2014-03-15

    An assay detecting the in vivo loss of mwh(+)Y, a genetically engineered Y chromosome, in cells of the Drosophila wing primordia was published recently. Loss of the mwh(+)Y chromosome in any of the wing-disk cells - in a multiple wing hairs homozygous background - leads to the formation of an mwh mosaic spot (clone) in the emerging wing. The frequency and the size of the mwh clones allow detection and quantitative evaluation of environmental and/or genetic agents inducing chromosome loss. Using this novel technique, we analyzed the potential of vapors of benzene, a parquet varnish, and a synthetic thinner to induce chromosome loss. Exposure to 0.047μg/ml benzene vapor for one day or to 0.175μg/ml for four hours resulted in a significantly elevated mwh clone-frequency confirming the ability of benzene to induce chromosome loss. A one-day exposure to vapors of a parquet varnish or a 6-h exposure to vapors of a synthetic thinner slightly, yet significantly elevated the frequency of chromosome loss. Results of the present paper show the potential of vapors of the analyzed parquet varnish and synthetic thinner to induce chromosome loss, and illustrate the usefulness of the new technique. PMID:24530351

  11. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  12. An Injury Paradigm to Investigate Central Nervous System Repair in Drosophila

    PubMed Central

    Kato, Kentaro; Hidalgo, Alicia

    2013-01-01

    An experimental method has been developed to investigate the cellular responses to central nervous system (CNS) injury using the fruit-fly Drosophila. Understanding repair and regeneration in animals is a key question in biology. The damaged human CNS does not regenerate, and understanding how to promote the regeneration is one of main goals of medical neuroscience. The powerful genetic toolkit of Drosophila can be used to tackle the problem of CNS regeneration. A lesion to the CNS ventral nerve cord (VNC, equivalent to the vertebrate spinal cord) is applied manually with a tungsten needle. The VNC can subsequently be filmed in time-lapse using laser scanning confocal microscopy for up to 24 hr to follow the development of the lesion over time. Alternatively, it can be cultured, then fixed and stained using immunofluorescence to visualize neuron and glial cells with confocal microscopy. Using appropriate markers, changes in cell morphology and cell state as a result of injury can be visualized. With ImageJ and purposely developed plug-ins, quantitative and statistical analyses can be carried out to measure changes in wound size over time and the effects of injury in cell proliferation and cell death. These methods allow the analysis of large sample sizes. They can be combined with the powerful genetics of Drosophila to investigate the molecular mechanisms underlying CNS regeneration and repair. PMID:23567253

  13. Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster

    SciTech Connect

    Rodriguez, A.; Zhou, Zhijian; Tang, My Lien

    1996-06-01

    We are using Drosophila as a model system for analysis of immunity and tumor formation and have conducted two types of screens using enhancer detector strains to find genes related to these processes: genes expressed in the immune system (type A; hemocytes, lymph glands and fat body) and genes increased in expression by bacterial infection (type B). For type A, tissue-specific reporter gene activity was determined. For type B, a variation of enhancer detection was devised in which {beta}-galactosidase is assayed spectrophotometrically with and without bacterial infection. Because of immune system involvement in melanotic tumor formation, a third type was hypothesized to be found among types A and B: genes that, when mutated, have a melanotic tumor phenotype. Enhancer detector strains (2800) were screened for type A, 900 for B, and 11 retained for further analysis. Complementation tests, cytological mapping, P-element mobilization, and determination of lethal phase and mutant phenotype have identified six novel genes, Dorothy, wizard, toto, viking, Thor and dappled, and one previously identified gene, Collagen IV. All are associated with reporter gene expression in at least one immune system tissue. Thor has increased expression upon infection. Mutations of wizard and dappled have a melanotic tumor phenotype. 72 refs., 6 figs., 3 tabs.

  14. Multiple spectral inputs improve motion discrimination in the Drosophila visual system.

    PubMed

    Wardill, Trevor J; List, Olivier; Li, Xiaofeng; Dongre, Sidhartha; McCulloch, Marie; Ting, Chun-Yuan; O'Kane, Cahir J; Tang, Shiming; Lee, Chi-Hon; Hardie, Roger C; Juusola, Mikko

    2012-05-18

    Color and motion information are thought to be channeled through separate neural pathways, but it remains unclear whether and how these pathways interact to improve motion perception. In insects, such as Drosophila, it has long been believed that motion information is fed exclusively by one spectral class of photoreceptor, so-called R1 to R6 cells; whereas R7 and R8 photoreceptors, which exist in multiple spectral classes, subserve color vision. Here, we report that R7 and R8 also contribute to the motion pathway. By using electrophysiological, optical, and behavioral assays, we found that R7/R8 information converge with and shape the motion pathway output, explaining flies' broadly tuned optomotor behavior by its composite responses. Our results demonstrate that inputs from photoreceptors of different spectral sensitivities improve motion discrimination, increasing robustness of perception. PMID:22605779

  15. Functional Analysis of Actin-Binding Proteins in the Central Nervous System of Drosophila.

    PubMed

    He, Qi; Roblodowski, Christopher

    2016-01-01

    Using Drosophila actin-binding protein Dunc-115 as model system, this chapter describes a MARCM (mosaic analysis with a repressible cell marker)-based method for analyzing cytoskeletal components for their functions in the nervous system. Following a concise description about the principle, a step-by-step protocol is provided for generating the needed stocks and for histological analysis. Additional details and explanations have been given in the accompanying notes. Together, this should form a practical and sufficient recipe for performing at the single-cell-level loss-of-function and gain-of-function analyses of proteins associated with the cytoskeleton.

  16. Evaluation of Ligand-Inducible Expression Systems for Conditional Neuronal Manipulations of Sleep in Drosophila

    PubMed Central

    Li, Qiuling; Stavropoulos, Nicholas

    2016-01-01

    Drosophila melanogaster is a powerful model organism for dissecting the molecular mechanisms that regulate sleep, and numerous studies in the fly have identified genes that impact sleep–wake cycles. Conditional genetic analysis is essential to distinguish the mechanisms by which these genes impact sleep: some genes might exert their effects developmentally, for instance by directing the assembly of neuronal circuits that regulate sleep; other genes may regulate sleep in adulthood; and yet other genes might influence sleep by both developmental and adult mechanisms. Here we have assessed two ligand-inducible expression systems, Geneswitch and the Q-system, for conditional and neuronally restricted manipulations of sleep in Drosophila. While adult-specific induction of a neuronally expressed Geneswitch transgene (elav-GS) is compatible with studies of sleep as shown previously, developmental induction of elav-GS strongly and nonspecifically perturbs sleep in adults. The alterations of sleep in elav-GS animals occur at low doses of Geneswitch agonist and in the presence of transgenes unrelated to sleep, such as UAS-CD8-GFP. Furthermore, developmental elav-GS induction is toxic and reduces brood size, indicating multiple adverse effects of neuronal Geneswitch activation. In contrast, the transgenes and ligand of the Q-system do not significantly impact sleep–wake cycles when used for constitutive, developmental, or adult-specific neuronal induction. The nonspecific effects of developmental elav-GS activation on sleep indicate that such manipulations require cautious interpretation, and suggest that the Q-system or other strategies may be more suitable for conditional genetic analysis of sleep and other behaviors in Drosophila. PMID:27558667

  17. Results of field tests of a transportable calorimeter assay system

    SciTech Connect

    Rakel, D.A.; Lemming, J.F.; Rodenburg, W.W.; Duff, M.F.; Jarvis, J.Y.

    1981-01-01

    A transportable calorimetric assay system, developed for use by US Department of Energy inspectors, is described. The results of field tests at three DOE sites are presented. The samples measured in these tests represent a variety of forms (ash, oxide, metal buttons), isotopic composition, and total plutonium content.

  18. Analysis of cell identity, morphology, apoptosis and mitotic activity in a primary neural cell culture system in Drosophila

    PubMed Central

    2012-01-01

    In Drosophila, most neurogenetic research is carried out in vivo. Mammalian research demonstrates that primary cell culture techniques provide a powerful model to address cell autonomous and non-autonomous processes outside their endogenous environment. We developed a cell culture system in Drosophila using wildtype and genetically manipulated primary neural tissue for long-term observations. We assessed the molecular identity of distinct neural cell types by immunolabeling and genetically expressed fluorescent cell markers. We monitored mitotic activity of cell cultures derived from wildtype and tumorous larval brains. Our system provides a powerful approach to unveil developmental processes in the nervous system and to complement studies in vivo. PMID:22554060

  19. Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System.

    PubMed

    Ziegler, Anna B; Ménagé, Cindy; Grégoire, Stéphane; Garcia, Thibault; Ferveur, Jean-François; Bretillon, Lionel; Grosjean, Yael

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.

  20. Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System

    PubMed Central

    Ziegler, Anna B.; Ménagé, Cindy; Grégoire, Stéphane; Garcia, Thibault; Ferveur, Jean-François; Bretillon, Lionel; Grosjean, Yael

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly’s visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly’s visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly’s diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels. PMID:26308084

  1. Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System.

    PubMed

    Ziegler, Anna B; Ménagé, Cindy; Grégoire, Stéphane; Garcia, Thibault; Ferveur, Jean-François; Bretillon, Lionel; Grosjean, Yael

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels. PMID:26308084

  2. Heterogeneity of the Peripheral Circadian Systems in Drosophila melanogaster: A Review.

    PubMed

    Ito, Chihiro; Tomioka, Kenji

    2016-01-01

    Circadian rhythms in organisms are involved in many aspects of metabolism, physiology, and behavior. In many animals, these rhythms are produced by the circadian system consisting of a central clock located in the brain and peripheral clocks in various peripheral tissues. The oscillatory machinery and entrainment mechanism of peripheral clocks vary between different tissues and organs. The relationship between the central and peripheral clocks is also tissue-dependent. Here we review the heterogeneous nature of peripheral circadian clocks in the fruit fly Drosophila melanogaster and their dependence on the central clock, and discuss their significance in the temporal organization of physiology in peripheral tissues/organs. PMID:26858652

  3. Drosophila as a model system to unravel the layers of innate immunity to infection

    PubMed Central

    Kounatidis, Ilias; Ligoxygakis, Petros

    2012-01-01

    Summary Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions. PMID:22724070

  4. Heterogeneity of the Peripheral Circadian Systems in Drosophila melanogaster: A Review

    PubMed Central

    Ito, Chihiro; Tomioka, Kenji

    2016-01-01

    Circadian rhythms in organisms are involved in many aspects of metabolism, physiology, and behavior. In many animals, these rhythms are produced by the circadian system consisting of a central clock located in the brain and peripheral clocks in various peripheral tissues. The oscillatory machinery and entrainment mechanism of peripheral clocks vary between different tissues and organs. The relationship between the central and peripheral clocks is also tissue-dependent. Here we review the heterogeneous nature of peripheral circadian clocks in the fruit fly Drosophila melanogaster and their dependence on the central clock, and discuss their significance in the temporal organization of physiology in peripheral tissues/organs. PMID:26858652

  5. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  6. Regulation of Sleep by Neuropeptide Y-Like System in Drosophila melanogaster

    PubMed Central

    He, Chunxia; Yang, Yunyan; Zhang, Mingming; Price, Jeffrey L.; Zhao, Zhangwu

    2013-01-01

    Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY), a homolog of Drosophila neuropeptide F (NPF), is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1) on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sleep during the nighttime. Further analysis demonstrated that sleep episode duration during nighttime was greatly increased and sleep latency was significantly reduced, indicating that NPF and NPFR1 promote sleep quality, and their action on sleep is not because of an impact of the NPF signal system on development. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by altered NPF signaling, since sleep deprivation decreased transcription of NPF in control flies, and there were less sleep loss during sleep deprivation and less sleep gain after sleep deprivation in flies overexpressing NPF and NPFR1 than in control flies, suggesting that NPF system auto-regulation plays an important role in sleep homeostasis. However, these effects did not occur in females, suggesting a sex-dependent regulatory function in sleep for NPF and NPFR1. NPF in D1 brain neurons showed male-specific expression, providing the cellular locus for male-specific regulation of sleep by NPF and NPFR1. This study brings a new understanding into sleep studies of a sexually dimorphic regulatory mode in female and male flies. PMID:24040211

  7. Multiple Meiotic Drive Systems in the DROSOPHILA MELANOGASTER Male

    PubMed Central

    Miklos, George L. Gabor; Yanders, Armon F.; Peacock, W. J.

    1972-01-01

    The behaviour of two "meiotic drive" systems, Segregation-Distorter (SD) and the sex chromosome sc4sc8 has been examined in the same meiocyte. It has been found that the two systems interact in a specific way. When the distorting effects of SD and sc4sc8 are against each other, there is no detectable interaction. Each system is apparently oblivious to the presence of the other, gametes being produced according to independence expectations. However when the affected chromosomes are at the same meiotic pole an interaction occurs; the survival probability of the gamete containing both distorted chromosomal products is increased, rather than being decreased by the combined action of two systems. PMID:4627460

  8. A new assay system for guinea pig interferon biological activity.

    PubMed

    Yamamoto, Toshiko; Jeevan, Amminikutty; Ohishi, Kazue; Nojima, Yasuhiro; Umemori, Kiyoko; Yamamoto, Saburo; McMurray, David N

    2002-07-01

    We have developed an assay system for guinea pig interferon (IFN) based on reduction of viral cytopathic effect (CPE) in various cell lines. CPE inhibition was detected optimally in the guinea pig fibroblast cell line 104C1 infected with encephalomyocarditis virus (EMCV). The amount of biologically active guinea pig IFN was quantified by estimating viable cell numbers colorimetrically by means of a tetrazolium compound, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) and 1-methoxy-5-methylphenazinium methylsulfate (PMS). WST-1 color developed until stopped by the addition of sulfuric acid. This had no effect on the colorimetric assay, and the color was stable for at least 24 h. The acid also inactivated the EMCV and, thus, eliminated the viral hazard. Inhibition of CPE activity was highly correlated with the concentration of culture supernatants from BCG-vaccinated guinea pig splenocytes stimulated in vitro with tuberculin or an immunostimulatory oligoDNA. This assay detected guinea pig IFN and human IFN-alpha, but not IFN-gamma from human, mouse, rat, pig, or dog. This assay system has proved useful for the titration of guinea pig IFN, being easy to perform, free from viral hazard, relatively species specific, highly reproducible, and inexpensive.

  9. A Study of Epstein-Barr Virus BRLF1 Activity in a Drosophila Model System

    PubMed Central

    Adamson, Amy; LaJeunesse, Dennis

    2012-01-01

    Epstein-Barr virus, a member of the herpesvirus family, infects a large majority of the human population and is associated with several diseases, including cancer. We have created Drosophila model systems to study the interactions between host cellular proteins and the Epstein-Barr virus (EBV) immediate-early genes BRLF1 and BZLF1. BRLF1 and BZLF1 function as transcription factors for viral transcription and are also potent modifiers of host cell activity. Here we have used our model systems to identify host cell genes whose proteins modulate BRLF1 and BZLF1 functions. Via our GMR-R model system, we have found that BRLF1 expression results in overproliferation of fly tissue, unlike BZLF1, and does so through the interaction with known tumor suppressor genes. Through an additional genetic screen, we have identified several Drosophila genes, with human homologs, that may offer further insights into the pathways that BRLF1 interacts with in order to promote EBV replication. PMID:22629134

  10. Probing the Fractal Pattern of Heartbeats in Drosophila Pupae by Visible Optical Recording System.

    PubMed

    Lin, Chen; Chang, Yi-Chung; Cheng, Ya-Chen; Lai, Po-Jung; Yeh, Chien-Hung; Hsieh, Wan-Hsin; Hu, Kun; Wu, June-Tai; Lee, Hsiu-Hsiang; Lo, Men-Tzung; Ho, Yi-Lwun

    2016-01-01

    Judiciously tuning heart rates is critical for regular cardiovascular function. The fractal pattern of heartbeats - a multiscale regulation in instantaneous fluctuations - is well known for vertebrates. The most primitive heart system of the Drosophila provides a useful model to understand the evolutional origin of such a fractal pattern as well as the alterations of fractal pattern during diseased statuses. We developed a non-invasive visible optical heart rate recording system especially suitable for long-term recording by using principal component analysis (PCA) instead of fluorescence recording system to avoid the confounding effect from intense light irradiation. To deplete intracellular Ca(2+) levels, the expression of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) was tissue-specifically knocked down. The SERCA group shows longer heart beat intervals (Mean ± SD: 1009.7 ± 151.6 ms) as compared to the control group (545.5 ± 45.4 ms, p < 0.001). The multiscale correlation of SERCA group (scaling exponent: 0.77 ± 0.07), on the other hand, is weaker than that of the control Drosophila (scaling exponent: 0.85 ± 0.03) (p = 0.016). PMID:27535299

  11. Probing the Fractal Pattern of Heartbeats in Drosophila Pupae by Visible Optical Recording System

    PubMed Central

    Lin, Chen; Chang, Yi-Chung; Cheng, Ya-Chen; Lai, Po-Jung; Yeh, Chien-Hung; Hsieh, Wan-Hsin; Hu, Kun; Wu, June-Tai; Lee, Hsiu-Hsiang; Lo, Men-Tzung; Ho, Yi-Lwun

    2016-01-01

    Judiciously tuning heart rates is critical for regular cardiovascular function. The fractal pattern of heartbeats — a multiscale regulation in instantaneous fluctuations — is well known for vertebrates. The most primitive heart system of the Drosophila provides a useful model to understand the evolutional origin of such a fractal pattern as well as the alterations of fractal pattern during diseased statuses. We developed a non-invasive visible optical heart rate recording system especially suitable for long-term recording by using principal component analysis (PCA) instead of fluorescence recording system to avoid the confounding effect from intense light irradiation. To deplete intracellular Ca2+ levels, the expression of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) was tissue-specifically knocked down. The SERCA group shows longer heart beat intervals (Mean ± SD: 1009.7 ± 151.6 ms) as compared to the control group (545.5 ± 45.4 ms, p < 0.001). The multiscale correlation of SERCA group (scaling exponent: 0.77 ± 0.07), on the other hand, is weaker than that of the control Drosophila (scaling exponent: 0.85 ± 0.03) (p = 0.016). PMID:27535299

  12. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  13. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    PubMed

    Huser, Annina; Rohwedder, Astrid; Apostolopoulou, Anthi A; Widmann, Annekathrin; Pfitzenmaier, Johanna E; Maiolo, Elena M; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F; Thum, Andreas S

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  14. Drosophila myogenesis.

    PubMed

    Bothe, Ingo; Baylies, Mary K

    2016-09-12

    The skeletal muscle system is the largest organ in motile animals, constituting between 35 and 55% of the human body mass, and up to 75% of the body mass in flying organisms like Drosophila. The flight muscles alone in flying insects comprise up to 65% of total body mass. Not only is the musculature the largest organ system, it is also exquisitely complex, with single muscles existing in different shapes and sizes. These different morphologies allow for such different functions as the high-frequency beating of a wing in a hummingbird, the dilation of the pupil in a human eye, or the maintenance of posture in a giraffe's neck. PMID:27623256

  15. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system

    PubMed Central

    Wang, Yiwen; Cruz, Tina; Irion, Uwe; Moussian, Bernard

    2015-01-01

    ABSTRACT At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. PMID:26621831

  16. In Vivo Imaging Reveals Composite Coding for Diagonal Motion in the Drosophila Visual System

    PubMed Central

    Zhou, Wei; Chang, Jin

    2016-01-01

    Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern. By using in vivo two-photon calcium imaging, we found that the axon terminals of T4 and T5 cells in the lobula plate were activated during diagonal motion. Further experiments showed that the response to diagonal motion is distributed over the following two regions compared to the cardinal directions of motion—a diagonal motion selective response region and a non-selective response region—which overlap with the response regions of the two vector-correlated cardinal directions of motion. Interestingly, the sizes of the non-selective response regions are linearly correlated with the angle of the diagonal motion. These results revealed that the Drosophila visual system employs a composite coding for diagonal motion that includes both independent coding and vector decomposition coding. PMID:27695103

  17. Regulated protein depletion by the auxin-inducible degradation system in Drosophila melanogaster.

    PubMed

    Trost, Martina; Blattner, Ariane C; Lehner, Christian F

    2016-01-01

    The analysis of consequences resulting after experimental elimination of gene function has been and will continue to be an extremely successful strategy in biological research. Mutational elimination of gene function has been widely used in the fly Drosophila melanogaster. RNA interference is used extensively as well. In the fly, exceptionally precise temporal and spatial control over elimination of gene function can be achieved in combination with sophisticated transgenic approaches and clonal analyses. However, the methods that act at the gene and transcript level cannot eliminate protein products which are already present at the time when mutant cells are generated or RNA interference is started. Targeted inducible protein degradation is therefore of considerable interest for controlled rapid elimination of gene function. To this end, a degradation system was developed in yeast exploiting TIR1, a plant F box protein, which can recruit proteins with an auxin-inducible degron to an E3 ubiquitin ligase complex, but only in the presence of the phytohormone auxin. Here we demonstrate that the auxin-inducible degradation system functions efficiently also in Drosophila melanogaster. Neither auxin nor TIR1 expression have obvious toxic effects in this organism, and in combination they result in rapid degradation of a target protein fused to the auxin-inducible degron. PMID:27010248

  18. Field Deployable Tritium Assay System Host Graphical User Interface Software

    1998-05-12

    The FDTASHOST software is a Graphical User Interface for the Field Deployable Tritium Assay System (FDTAS - Invention Disclosure SRS-96-09-091 has been submitted). The program runs on the Host computer which is located in the Laboratory and connected to the FDTAS remote field system via a modem over a phone line. The operator receives status information and messages from the Remote system. The operator can enter in commands to be executed by the remote systemmore » using the mouse and a pull down menu.« less

  19. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering.

    PubMed

    Sebo, Zachary L; Lee, Han B; Peng, Ying; Guo, Yi

    2014-01-01

    The type II CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated) has recently emerged as an efficient and simple tool for site-specific engineering of eukaryotic genomes. To improve its applications in Drosophila genome engineering, we simplified the standard two-component CRISPR/Cas9 system by generating a stable transgenic fly line expressing the Cas9 endonuclease in the germline (Vasa-Cas9 line). By injecting vectors expressing engineered target-specific guide RNAs into Vasa-Cas9 fly embryos, mutations were generated from site-specific DNA cleavages and efficiently transmitted into progenies. Because Cas9 endonuclease is the universal component of the type II CRISPR/Cas9 system, site-specific genomic engineering based on this improved platform can be achieved with lower complexity and toxicity, greater consistency, and excellent versatility.

  20. Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system.

    PubMed

    Caldwell, James T; Melkani, Girish C; Huxford, Tom; Bernstein, Sanford I

    2012-01-01

    Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization.

  1. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

    PubMed Central

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-01-01

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.13715.001 PMID:26987017

  2. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  3. Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion.

    PubMed

    Arguello, J Roman; Cardoso-Moreira, Margarida; Grenier, Jennifer K; Gottipati, Srikanth; Clark, Andrew G; Benton, Richard

    2016-01-01

    How organisms adapt to new environments is of fundamental biological interest, but poorly understood at the genetic level. Chemosensory systems provide attractive models to address this problem, because they lie between external environmental signals and internal physiological responses. To investigate how selection has shaped the well-characterized chemosensory system of Drosophila melanogaster, we have analysed genome-wide data from five diverse populations. By couching population genomic analyses of chemosensory protein families within parallel analyses of other large families, we demonstrate that chemosensory proteins are not outliers for adaptive divergence between species. However, chemosensory families often display the strongest genome-wide signals of recent selection within D. melanogaster. We show that recent adaptation has operated almost exclusively on standing variation, and that patterns of adaptive mutations predict diverse effects on protein function. Finally, we provide evidence that chemosensory proteins have experienced relaxed constraint, and argue that this has been important for their rapid adaptation over short timescales. PMID:27292132

  4. Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion

    PubMed Central

    Arguello, J. Roman; Cardoso-Moreira, Margarida; Grenier, Jennifer K.; Gottipati, Srikanth; Clark, Andrew G.; Benton, Richard

    2016-01-01

    How organisms adapt to new environments is of fundamental biological interest, but poorly understood at the genetic level. Chemosensory systems provide attractive models to address this problem, because they lie between external environmental signals and internal physiological responses. To investigate how selection has shaped the well-characterized chemosensory system of Drosophila melanogaster, we have analysed genome-wide data from five diverse populations. By couching population genomic analyses of chemosensory protein families within parallel analyses of other large families, we demonstrate that chemosensory proteins are not outliers for adaptive divergence between species. However, chemosensory families often display the strongest genome-wide signals of recent selection within D. melanogaster. We show that recent adaptation has operated almost exclusively on standing variation, and that patterns of adaptive mutations predict diverse effects on protein function. Finally, we provide evidence that chemosensory proteins have experienced relaxed constraint, and argue that this has been important for their rapid adaptation over short timescales. PMID:27292132

  5. Pu-238 assay performance with the Canberra IQ3 system

    SciTech Connect

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  6. Devices, systems, and methods for conducting sandwich assays using sedimentation

    DOEpatents

    Schaff, Ulrich Y; Sommer, Gregory J; Singh, Anup K; Hatch, Anson V

    2015-02-03

    Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  7. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems

    PubMed Central

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I.; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R2 = 98.78%). PMID:27367694

  8. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%). PMID:27367694

  9. Examination of a Mutable System Affecting the Components of the Segregation Distorter Meiotic Drive System of Drosophila Melanogaster

    PubMed Central

    Golic, K. G.

    1990-01-01

    Segregation distortion in Drosophila melanogaster is the result of an interaction between the genetic elements Sd, a Rsp sensitive to Sd, and an array of modifiers, that results in the death of sperm carrying Rsp. A stock (designated M-5; cn bw) has been constructed which has the property of inducing the partial loss of sensitivity from previously sensitive cn bw chromosomes, the partial loss of distorting ability from SD chromosomes, and a concomitant acquisition of modifiers on the X chromosome and possibly also on the autosomes. By several criteria the changes exhibited under the influence of M-5; cn bw are characteristic of the transposable-element systems which produce hybrid dysgenesis. In the first place, the magnitude of these effects depends on the nature of the crosses performed. The analogy is further strengthened by the observation that the changes induced by M-5; cn bw share other stigmata of Drosophila transposable-element systems, including high sterility among the progeny of outcrosses, and the production of chromosomal rearrangements. The possible relationship of this system to the P, I and hobo transposable element systems is discussed, as well as its bearing on aspects of the Segregation Distorter phenomenon which have yet to be explained. PMID:2160403

  10. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions?

    PubMed

    Avanesian, Agnesa; Semnani, Sahar; Jafari, Mahtab

    2009-08-01

    Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model. PMID:19482095

  11. Effect of chromosome arrangements on mate recognition system leading to behavioral isolation in Drosophila ananassae.

    PubMed

    Nanda, Punita; Singh, Bashisth N

    2011-02-01

    The mechanisms of speciation that appear in the early stages of reproductive isolation has been of recent interest to evolutionary biologists. Experiments were conducted to study behavioral isolation between karyotypically different homozygous strains derived from natural populations of Drosophila ananassae. Three mass cultures stocks established from flies collected from natural populations were employed and homozygous stocks (ST/ST and AL/AL) were made through selection for homozygosity. By employing male-choice technique, mating success was scored by direct observation in the Elens-Wattiaux mating chamber. There is preference for homogamic matings in all the three populations and the differences between homogamic and heterogamic matings are statistically significant in two populations (Lucknow and Varanasi). These findings provide evidence that there is incipient sexual isolation between karyotypically different strains of D. ananassae derived from natural populations which shows that chromosome arrangements may affect the mate recognition system in D. ananassae.

  12. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system

    PubMed Central

    Atilano, Magda Luciana; Pereira, Pedro Matos; Vaz, Filipa; Catalão, Maria João; Reed, Patricia; Grilo, Inês Ramos; Sobral, Rita Gonçalves; Ligoxygakis, Petros; Pinho, Mariana Gomes; Filipe, Sérgio Raposo

    2014-01-01

    Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001 PMID:24692449

  13. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling

    PubMed Central

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-01-01

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content. DOI: http://dx.doi.org/10.7554/eLife.02862.001 PMID:25275323

  14. Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis.

    PubMed

    Feala, Jacob D; Coquin, Laurence; McCulloch, Andrew D; Paternostro, Giovanni

    2007-01-01

    The fruitfly Drosophila melanogaster offers promise as a genetically tractable model for studying adaptation to hypoxia at the cellular level, but the metabolic basis for extreme hypoxia tolerance in flies is not well known. Using (1)H NMR spectroscopy, metabolomic profiles were collected under hypoxia. Accumulation of lactate, alanine, and acetate suggested that these are the major end products of anaerobic metabolism in the fly. A constraint-based model of ATP-producing pathways was built using the annotated genome, existing models, and the literature. Multiple redundant pathways for producing acetate and alanine were added and simulations were run in order to find a single optimal strategy for producing each end product. System-wide adaptation to hypoxia was then investigated in silico using the refined model. Simulations supported the hypothesis that the ability to flexibly convert pyruvate to these three by-products might convey hypoxia tolerance by improving the ATP/H(+) ratio and efficiency of glucose utilization.

  15. Field Deployable Tritium Assay System Remote Control Software

    1998-05-12

    The FDTASREM software is a command control based application for the Field Deployable Tritium Assay System (FDTAS-Invention Disclosure SRS-96-091 has been submitted). The program runs on the Remote computer which is located at the field site with the FDTAS sampling and analysis components. The application executes commands received over the connected phone line from the operator via the FDTAS Host GUI running in the laboratory some distance away. The FDTASREM controls interface with the FDTASmore » auto sampler and the analysis systems. It tells the sampler to take a sample from a specified location and send it to the analyzer. Once the sample is sent to the analyzer, FDTASREM sequences the internal valves and pumps to deliver the sample and cocktail to the counting chamber. Once the analysis is complete, the program can execute the clean command and prepare the system for the next sample.« less

  16. Effects of two plant growth regulators, indole-3-acetic acid and β-naphthoxyacetic acid, on genotoxicity in Drosophila SMART assay and on proliferation and viability of HEK293 cells from the perspective of carcinogenesis.

    PubMed

    Karadeniz, Asuman; Kaya, Bülent; Savaş, Burhan; Topcuoğlu, Ş Fatih

    2011-10-01

    In this study, the mutagenic and recombinogenic effects of indole-3-acetic acid (IAA), a plant growth regulator naturally synthesized in plants but produced synthetically, and β-naphthoxyacetic acid (BNOA), a synthetic plant growth regulator widely used in agricultural regions, were investigated using the somatic mutation and recombination test (SMART) in Drosophila wings. The effect of the same plant growth regulators against the proliferation and viability of a human immortalized embryonic kidney HEK293 cells which is at the early stage of carcinogenesis were also examined with MTT and trypan-blue exclusion assays. For the SMART assay, two different crosses were used: a standard and a high-bioactivation (HB) cross, involving the flare-3 and the multiple wing hairs markers. The HB cross involved flies characterized by an increased cytochrome P-450-dependent bioactivation capacity, which permits the more efficient biotransformation of promutagens and procarcinogens. In both crosses, the wings of the two types of progeny, inversion-free marker heterozygotes and balancer heterozygotes, were analyzed. The results show that IAA and BNOA are not mutagenic or recombinogenic in the wing cells of Drosophila. Furthermore, neither plant growth regulator affected the proliferation rate of HEK293 cells; however, both of them induced cell death at high concentrations.

  17. Robo-3–mediated repulsive interactions guide R8 axons during Drosophila visual system development

    PubMed Central

    Pappu, Kartik S.; Morey, Marta; Nern, Aljoscha; Spitzweck, Bettina; Dickson, Barry J.; Zipursky, S. L.

    2011-01-01

    The formation of neuronal connections requires the precise guidance of developing axons toward their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R cells each. R cells fall into three classes: R1 to R6, R7, and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known. Here, we used a microarray-based approach to identify genes expressed in R8 neurons as they extend into the brain. We found that Roundabout-3 (Robo3), an axon-guidance receptor, is expressed specifically and transiently in R8 growth cones. In wild-type animals, posterior-most R8 axons extend along a border of glial cells demarcated by the expression of Slit, the secreted ligand of Robo3. In contrast, robo3 mutant R8 axons extend across this border and fasciculate inappropriately with other axon tracts. We demonstrate that either Robo1 or Robo2 rescues the robo3 mutant phenotype when each is knocked into the endogenous robo3 locus separately, indicating that R8 does not require a function unique to the Robo3 paralog. However, persistent expression of Robo3 in R8 disrupts the layer-specific targeting of R8 growth cones. Thus, the transient cell-specific expression of Robo3 plays a crucial role in establishing neural circuits in the Drosophila visual system by selectively regulating pathway choice for posterior-most R8 growth cones. PMID:21490297

  18. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues.

    PubMed

    Richards, Christopher D; Burke, Richard

    2015-12-01

    While the effects of systemic zinc ion deficiency and toxicity on animal health are well documented, the impacts of localized, tissue-specific disturbances in zinc homeostasis are less well understood. Previously we have identified zinc dyshomeostasis scenarios caused by the targeted manipulation of zinc transport genes in the Drosophila eye. Over expression of the uptake transporter dZIP42C.1 (dZIP1) combined with knockdown of the efflux transporter dZNT63C (dZNT1) causes a zinc toxicity phenotype, as does over expression of dZIP71B or dZNT86D. However, all three genotypes result in different morphologies, responses to dietary zinc, and genetic interactions with the remaining zinc transport genes, indicating that each causes a different redistribution of zinc within affected cells. dZNT86D (eGFP) over expression generates a completely different phenotype, interpreted as a Golgi zinc deficiency. Here we assess the effect of each of these transgenes when targeted to a range of Drosophila tissues. We find that dZIP71B is a particularly potent zinc uptake gene, causing early developmental lethality when targeted to multiple different tissue types. dZNT86D over expression (Golgi-only zinc toxicity) is less deleterious, but causes highly penetrant adult cuticle, sensory bristle and wing expansion defects. The dZIP42C.1 over expression, dZNT63C knockdown combination causes only moderate adult cuticle defects and sensitivity to dietary zinc when expressed in the midgut. The Golgi-only zinc deficiency caused by dZNT86D (eGFP) expression results in mild cuticle defects, highly penetrant wing expansion defects and developmental lethality when targeted to the central nervous system and, uniquely, the fat bodies.

  19. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues.

    PubMed

    Richards, Christopher D; Burke, Richard

    2015-12-01

    While the effects of systemic zinc ion deficiency and toxicity on animal health are well documented, the impacts of localized, tissue-specific disturbances in zinc homeostasis are less well understood. Previously we have identified zinc dyshomeostasis scenarios caused by the targeted manipulation of zinc transport genes in the Drosophila eye. Over expression of the uptake transporter dZIP42C.1 (dZIP1) combined with knockdown of the efflux transporter dZNT63C (dZNT1) causes a zinc toxicity phenotype, as does over expression of dZIP71B or dZNT86D. However, all three genotypes result in different morphologies, responses to dietary zinc, and genetic interactions with the remaining zinc transport genes, indicating that each causes a different redistribution of zinc within affected cells. dZNT86D (eGFP) over expression generates a completely different phenotype, interpreted as a Golgi zinc deficiency. Here we assess the effect of each of these transgenes when targeted to a range of Drosophila tissues. We find that dZIP71B is a particularly potent zinc uptake gene, causing early developmental lethality when targeted to multiple different tissue types. dZNT86D over expression (Golgi-only zinc toxicity) is less deleterious, but causes highly penetrant adult cuticle, sensory bristle and wing expansion defects. The dZIP42C.1 over expression, dZNT63C knockdown combination causes only moderate adult cuticle defects and sensitivity to dietary zinc when expressed in the midgut. The Golgi-only zinc deficiency caused by dZNT86D (eGFP) expression results in mild cuticle defects, highly penetrant wing expansion defects and developmental lethality when targeted to the central nervous system and, uniquely, the fat bodies. PMID:26411574

  20. A Systems-Level Interrogation Identifies Regulators of Drosophila Blood Cell Number and Survival

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Perrimon, Norbert; Brückner, Katja

    2015-01-01

    In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems. PMID:25749252

  1. Generation of a sensitive TNFR2-specific murine assays system.

    PubMed

    Ando, D; Kamada, H; Inoue, M; Taki, S; Furuya, T; Abe, Y; Nagano, K; Tsutsumi, Y; Tsunoda, S

    2016-05-01

    Tumor necrosis factor (TNF)/TNF receptors (TNFR1/TNFR2) are considered to be potential drug targets to treat refractory diseases, including autoimmune diseases and malignant tumors. However, their specific functions, especially in the case of TNFR2, are poorly understood. In this study, we constructed a mouse TNFR2 (mTNFR2)-mediated biological assay system that shows no effects of mouse TNFR1 (mTNFR1) in order to screen mTNFR2-selective stimulating agents. Mouse TNFR1(-/-)R2(-/-) preadipocytes were transfected with the gene encoding the mTNFR2/mouse Fas (mFas) chimeric receptor in which the extracellular and transmembrane domains of mTNFR2 were fused to the intracellular domain of mFas. Our results demonstrated that this cell line exhibits highly sensitive mTNFR2-mediated cytotoxic effects. We propose that this mTNFR2-mediated biological assay system would be a useful tool to screen for mTNFR2-selective stimulating agents. PMID:27348964

  2. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    PubMed Central

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  3. Navigation-specific neural coding in the visual system of Drosophila.

    PubMed

    Dewar, Alex D M; Wystrach, Antoine; Graham, Paul; Philippides, Andrew

    2015-10-01

    Drosophila melanogaster are a good system in which to understand the minimal requirements for widespread visually guided behaviours such as navigation, due to their small brains (adults possess only 100,000 neurons) and the availability of neurogenetic techniques which allow the identification of task-specific cell types. Recently published data describe the receptive fields for two classes of visually responsive neurons (R2 and R3/R4d ring neurons in the central complex) that are essential for visual tasks such as orientation memory for salient objects and simple pattern discriminations. What is interesting is that these cells have very large receptive fields and are very small in number, suggesting that each sub-population of cells might be a bottleneck in the processing of visual information for a specific behaviour, as each subset of cells effectively condenses information from approximately 3000 visual receptors in the eye, to fewer than 50 neurons in total. It has recently been shown how R1 ring neurons, which receive input from the same areas as the R2 and R3/R4d cells, are necessary for place learning in Drosophila. However, how R1 neurons enable place learning is unknown. By examining the information provided by different populations of hypothetical visual neurons in simulations of experimental arenas, we show that neurons with ring neuron-like receptive fields are sufficient for defining a location visually. In this way we provide a link between the type of information conveyed by ring neurons and the behaviour they support. PMID:26310914

  4. SWEPP Assay System Version 2.0 software design description

    SciTech Connect

    East, L.V.; Marwil, E.S.

    1996-08-01

    The Idaho National Engineering Laboratory (INEL) Stored Waste Examination Pilot Plant (SWEPP) operations staff use nondestructive analysis methods to characterize the radiological contents of contact-handled radioactive waste containers. Containers of waste from Rocky Flats Environmental Technology Site and other Department of Energy (DOE) sites are currently stored at SWEPP. Before these containers can be shipped to the Waste Isolation Pilot Plant (WIPP), SWEPP must verify compliance with storage, shipping, and disposal requirements. This program has been in operation since 1985 at the INEL Radioactive Waste Management Complex (RWMC). One part of the SWEPP program measures neutron emissions from the containers and estimates the mass of plutonium and other transuranic (TRU) isotopes present. A Passive/Active Neutron (PAN) assay system developed at the Los Alamos National Laboratory is used to perform these measurements. A computer program named NEUT2 was originally used to perform the data acquisition and reduction functions for the neutron measurements. This program was originally developed at Los Alamos and extensively modified by a commercial vendor of PAN systems and by personnel at the INEL. NEUT2 uses the analysis methodology outlined, but no formal documentation exists on the program itself. The SWEPP Assay System (SAS) computer program replaced the NEUT2 program in early 1994. The SAS software was developed using an `object model` approach and is documented in accordance with American National Standards Institute (ANSI) and Institute of Electrical and Electronic Engineers (IEEE) standards. The new program incorporates the basic analysis algorithms found in NEUT2. Additional functionality and improvements include a graphical user interface, the ability to change analysis parameters without program code modification, an `object model` design approach and other features for improved flexibility and maintainability.

  5. Confinement Vessel Assay System: Design and Implementation Report

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Gomez, Cipriano D.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-18

    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  6. Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila

    PubMed Central

    2003-01-01

    The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units. PMID:14624243

  7. SWEPP assay system version 2.0 software requirements specification

    SciTech Connect

    Matthews, S.D.; East, L.V.; Marwil, E.S.; Ferguson, J.J.

    1996-06-01

    The INEL Stored Waste Examination Pilot Plant (SWEPP) operations staff use nondestructive analysis methods to characterize the radiological contents of contact-handled radioactive waste containers. Containers of waste from Rocky Flats Environmental Technology Site and other DOE sites are currently stored at SWEPP. Before these containers can be shipped to WIPP, SWEPP must verify compliance with storage, shipping, and disposal requirements. One part of the SWEPP program measures neutron emissions from the containers and estimates the mass of Pu and other transuranic isotopes present. The code NEUT2 was originally used to perform data acquisition and reduction; the SWEPP Assay System (SAS) code replaced NEUT2 in early 1994. This document specifies the requirements for the SAS software as installed at INEL and was written to comply with RWMC (INEL Radioactive Waste Management Complex) quality requirements.

  8. Homeobox gene distal-less is required for neuronal differentiation and neurite outgrowth in the Drosophila olfactory system

    PubMed Central

    Plavicki, Jessica; Mader, Sara; Pueschel, Eric; Peebles, Patrick; Boekhoff-Falk, Grace

    2012-01-01

    Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis. PMID:22307614

  9. A Glial Variant of the Vesicular Monoamine Transporter Is Required To Store Histamine in the Drosophila Visual System

    PubMed Central

    Simon, Anne F.; Grygoruk, Anna; Yee, Susan K.; Shyer, Amy; Ackerson, Larry C.; Maidment, Nigel T.; Meinertzhagen, Ian A.; Hovemann, Bernhard T.; Krantz, David E.

    2008-01-01

    Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems. PMID:18989452

  10. Schistosoma mansoni miracidial behavior: an assay system for chemostimulation.

    PubMed

    Sponholtz, G M; Short, R B

    1975-04-01

    A new system for evaluating the responses of miracidia to chemostimulants is described. The apparatus consists of a translucent plastic block with a center well and a hole in the edge leading to the well. One end of a glass tube, covered with a dialysis membrane, was inserted into the hole. Experimental solutions to be tested were put into the tube and Schistosoma mansoni miracidial behavior was observed in the well on the other side of the permeable membrane. Miracidia were released near the membrane; those which contacted the membrane were scored as to whether they returned (contact with return) or did not return (contact without return) before leaving the field of view. Materials eliciting significantly more contact with return responses than did controls were considered to be stimulatory. In this assay system, snail (Biomphalaria glabrata) conditioned water elicited 75% contact with return as compared to 8% for well water control (P less than 0.05). Tracings from motion pictures showed swimming behavior of miracidia toward snail-conditioned water to be different from behavior toward well water controls. This system permits generation of dilution response curves for chemicals and provides generally quantitative results.

  11. Behavioural system identification of visual flight speed control in Drosophila melanogaster.

    PubMed

    Rohrseitz, Nicola; Fry, Steven N

    2011-02-01

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.

  12. Behavioural system identification of visual flight speed control in Drosophila melanogaster

    PubMed Central

    Rohrseitz, Nicola; Fry, Steven N.

    2011-01-01

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744

  13. Comet assay as an indirect measure of systemic oxidative stress.

    PubMed

    Fang, Lei; Neutzner, Albert; Turtschi, Stephanie; Flammer, Josef; Mozaffarieh, Maneli

    2015-05-22

    Higher eukaryotic organisms cannot live without oxygen; yet, paradoxically, oxygen can be harmful to them. The oxygen molecule is chemically relatively inert because it has two unpaired electrons located in different pi * anti-bonding orbitals. These two electrons have parallel spins, meaning they rotate in the same direction about their own axes. This is why the oxygen molecule is not very reactive. Activation of oxygen may occur by two different mechanisms; either through reduction via one electron at a time (monovalent reduction), or through the absorption of sufficient energy to reverse the spin of one of the unpaired electrons. This results in the production of reactive oxidative species (ROS). There are a number of ways in which the human body eliminates ROS in its physiological state. If ROS production exceeds the repair capacity, oxidative stress results and damages different molecules. There are many different methods by which oxidative stress can be measured. This manuscript focuses on one of the methods named cell gel electrophoresis, also known as "comet assay" which allows measurement of DNA breaks. If all factors known to cause DNA damage, other than oxidative stress are kept constant, the amount of DNA damage measured by comet assay is a good parameter of oxidative stress. The principle is simple and relies upon the fact that DNA molecules are negatively charged. An intact DNA molecule has such a large size that it does not migrate during electrophoresis. DNA breaks, however, if present result in smaller fragments which move in the electrical field towards the anode. Smaller fragments migrate faster. As the fragments have different sizes the final result of the electrophoresis is not a distinct line but rather a continuum with the shape of a comet. The system allows a quantification of the resulting "comet" and thus of the DNA breaks in the cell.

  14. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system.

    PubMed

    Kim, H J; Ahn, H J; Lee, S; Kim, J H; Park, J; Jeon, S-H; Kim, S H

    2015-10-29

    Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system.

  15. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system.

    PubMed

    Kim, H J; Ahn, H J; Lee, S; Kim, J H; Park, J; Jeon, S-H; Kim, S H

    2015-10-29

    Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system. PMID:26318336

  16. Mating system variation drives rapid evolution of the female transcriptome in Drosophila pseudoobscura

    PubMed Central

    Immonen, Elina; Snook, Rhonda R; Ritchie, Michael G

    2014-01-01

    Interactions between the sexes are believed to be a potent source of selection on sex-specific evolution. The way in which sexual interactions influence male investment is much studied, but effects on females are more poorly understood. To address this deficiency, we examined gene expression in virgin female Drosophila pseudoobscura following 100 generations of mating system manipulations in which we either elevated polyandry or enforced monandry. Gene expression evolution following mating system manipulation resulted in 14% of the transcriptome of virgin females being altered. Polyandrous females elevated expression of a greater number of genes normally enriched in ovaries and associated with mitosis and meiosis, which might reflect female investment into reproductive functions. Monandrous females showed a greater number of genes normally enriched for expression in somatic tissues, including the head and gut and associated with visual perception and metabolism, respectively. By comparing our data with a previous study of sex differences in gene expression in this species, we found that the majority of the genes that are differentially expressed between females of the selection treatments show female-biased expression in the wild-type population. A striking exception is genes associated with male-specific reproductive tissues (in D. melanogaster), which are upregulated in polyandrous females. Our results provide experimental evidence for a role of sex-specific selection arising from differing sexual interactions with males in promoting rapid evolution of the female transcriptome. PMID:25360260

  17. P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster

    SciTech Connect

    Kania, A.; Salzberg, A.; Bhat, M.

    1995-04-01

    The Drosophila embryonic peripheral nervous system (PNS) is an excellent model system to study the molecular mechanisms governing neural development. To identify genes controlling PNS development, we screened 2000 lethal P-element insertion strains. The PNS of mutant embryos was examined using the neural specific marker MAb 22C10, and 92 mutant strains were retained for further analysis. Genetic and cytological analysis of these strains shows that 42 mutations affect previously isolated genes that are known to be required for PNS development: longitudinals lacking (19), mastermind (15), numb (4), big brain (2), and spitz (2). The remaining 50 mutations were classified into 29 complementation groups and the P-element insertions were cytologically mapped. The mutants were classified in five major classes on the basis of their phenotype: gain of neurons, loss of neurons, organizational defects, pathfinding defects and morphological defects. Herein we report the preliminary phenotypic characterization of each of these complementation groups as well as the embryonic lacZ expression pattern of each P-element strain. Our analysis indicates that in most of the P-element insertion strains, the lacZ reporter gene is not expressed in the developing PNS. 52 refs., 5 figs., 5 tabs.

  18. Drosophila Dyrk2 plays a role in the development of the visual system.

    PubMed

    Luebbering, Nathan; Charlton-Perkins, Mark; Kumar, Justin P; Lochead, Pamela A; Rollmann, Stephanie M; Cook, Tiffany; Cleghon, Vaughn

    2013-01-01

    The DYRKs (dual-specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that are associated with a number of neurological disorders, but whose biological targets are poorly understood. Drosophila encodes three Dyrks: minibrain/Dyrk1A, DmDyrk2, and DmDyrk3. Here we describe the creation and characterization of a DmDyrk2 null allele, DmDyrk2(1w17) . We provide evidence that the smell impaired allele smi35A(1) , is likely to encode DmDyrk2. We also demonstrate that DmDyrk2 is expressed late in the developing third antennal segment, an anatomical structure associated with smell. In addition, we find that DmDyrk2 is expressed in the morphogenetic furrow of the developing eye, that loss of DmDyrk2 in the eye produced a subtle but measurable defect, and that ectopic DmDyrk2 expression in the eye produced a strong rough eye phenotype characterized by increased secondary, tertiary and bristle interommatidial cells. This phenotype was dependent on DmDyrk2 kinase activity and was only manifest when expressed in post-mitotic non-neuronal progenitors. Together, these data indicate that DmDyrk2 is expressed in developing sensory systems, that it is required for the development of the visual system, and that the eye is a good model to identify DmDyrk2 targets. PMID:24146926

  19. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system

    PubMed Central

    Lacin, Haluk; Truman, James W

    2016-01-01

    Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI: http://dx.doi.org/10.7554/eLife.13399.001 PMID:26975248

  20. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

    PubMed Central

    Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge

    2011-01-01

    The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381

  1. Slit/Robo-mediated axon guidance in Tribolium and Drosophila: divergent genetic programs build insect nervous systems.

    PubMed

    Evans, Timothy A; Bashaw, Greg J

    2012-03-01

    As the complexity of animal nervous systems has increased during evolution, developmental control of neuronal connectivity has become increasingly refined. How has functional diversification within related axon guidance molecules contributed to the evolution of nervous systems? To address this question, we explore the evolution of functional diversity within the Roundabout (Robo) family of axon guidance receptors. In Drosophila, Robo and Robo2 promote midline repulsion, while Robo2 and Robo3 specify the position of longitudinal axon pathways. The Robo family has expanded by gene duplication in insects; robo2 and robo3 exist as distinct genes only within dipterans, while other insects, like the flour beetle Tribolium castaneum, retain an ancestral robo2/3 gene. Both Robos from Tribolium can mediate midline repulsion in Drosophila, but unlike the fly Robos cannot be down-regulated by Commissureless. The overall architecture and arrangement of longitudinal pathways are remarkably conserved in Tribolium, despite it having only two Robos. Loss of TcSlit causes midline collapse of axons in the beetle, a phenotype recapitulated by simultaneous knockdown of both Robos. Single gene knockdowns reveal that beetle Robos have specialized axon guidance functions: TcRobo is dedicated to midline repulsion, while TcRobo2/3 also regulates longitudinal pathway formation. TcRobo2/3 knockdown reproduces aspects of both Drosophila robo2 and robo3 mutants, suggesting that TcRobo2/3 has two functions that in Drosophila are divided between Robo2 and Robo3. The ability of Tribolium to organize longitudinal axons into three discrete medial-lateral zones with only two Robo receptors demonstrates that beetle and fly achieve equivalent developmental outcomes using divergent genetic programs.

  2. Mental Retardation Genes in Drosophila: New Approaches to Understanding and Treating Developmental Brain Disorders

    ERIC Educational Resources Information Center

    Restifo, Linda L.

    2005-01-01

    "Drosophila melanogaster" is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron…

  3. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  4. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  5. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila.

    PubMed

    Ameku, Tomotsune; Niwa, Ryusuke

    2016-06-01

    Mating and gametogenesis are two essential components of animal reproduction. Gametogenesis must be modulated by the need for gametes, yet little is known of how mating, a process that utilizes gametes, may modulate the process of gametogenesis. Here, we report that mating stimulates female germline stem cell (GSC) proliferation in Drosophila melanogaster. Mating-induced increase in GSC number is not simply owing to the indirect effect of emission of stored eggs, but rather is stimulated by a male-derived Sex Peptide (SP) and its receptor SPR, the components of a canonical neuronal pathway that induces a post-mating behavioral switch in females. We show that ecdysteroid, the major insect steroid hormone, regulates mating-induced GSC proliferation independently of insulin signaling. Ovarian ecdysteroid level increases after mating and transmits its signal directly through the ecdysone receptor expressed in the ovarian niche to increase the number of GSCs. Impairment of ovarian ecdysteroid biosynthesis disrupts mating-induced increase in GSCs as well as egg production. Importantly, feeding of ecdysteroid rescues the decrease in GSC number caused by impairment of neuronal SP signaling. Our study illustrates how female GSC activity is coordinately regulated by the neuroendocrine system to sustain reproductive success in response to mating. PMID:27310920

  6. Heritability of resistance against ectoparasitism in the Drosophila-Macrocheles system.

    PubMed

    Polak, M

    2003-01-01

    Ectoparasites are abundant in natural communities, can have pronounced deleterious fitness consequences to their host and are important vectors of transmissible parasitic disease. Yet very few studies have estimated the magnitude of heritable genetic variation underlying resistance against ectoparasitism, which significantly limits our ability to predict the evolution of this ecologically important character. The present paper reports results of artificial selection for increased resistance in Drosophila nigrospiracula against ectoparasitic, haematophagous mites, Macrocheles subbadius. In this system, which occurs naturally in the Sonoran Desert of North America, ectoparasitism significantly damages the expression of host fitness traits, including longevity, fecundity and male mating success. In the present study, resistance, which was modelled as a threshold trait, responded significantly to selection applied on either sex. Realized heritability, calculated as a mean across four replicates, was estimated to be 0.152 +/- 0.014 (SE). The heritability estimate from selection on males did not differ from that on females, but both estimates differed significantly from zero. This documented presence of additive genetic variation for resistance, coupled with knowledge of the fitness consequences of ectoparasitism, indicates that the host population possesses significant evolutionary potential. Selection was applied on the pre-attachment phase, thereby targeting behavioural forms of defence. This study therefore establishes parallels between insects and other animals in their ability to protect themselves and evolve behavioural defences against ectoparasites.

  7. Systems genomics of metabolic phenotypes in wild-type Drosophila melanogaster.

    PubMed

    Reed, Laura K; Lee, Kevin; Zhang, Zhi; Rashid, Lubna; Poe, Amy; Hsieh, Benjamin; Deighton, Nigel; Glassbrook, Norm; Bodmer, Rolf; Gibson, Greg

    2014-06-01

    Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic, physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while there were no main effects of diet (<1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like phenotypes such as pupal weight, larval sugar content and triglyceride content, development time, and cardiac arrhythmia in adults. The second principal component of the metabolomic profile is especially informative across these traits with glycine identified as a key loading variable. To further relate this physiological variability to genotypic polymorphism, we performed evolve-and-resequence experiments, finding rapid and replicated changes in gene frequency across hundreds of loci that are specific to each diet. Adaptation to diet is thus highly polygenic. However, loci differentially transcribed across diet or previously identified by RNAi knockdown or expression QTL analysis were not the loci responding to dietary selection. Therefore, loci that respond to the selective pressures of diet cannot be readily predicted a priori from functional analyses.

  8. Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development.

    PubMed

    Geyer, Aenne; Koltsaki, Ioanna; Hessinger, Christian; Renner, Simone; Rogulja-Ortmann, Ana

    2015-11-01

    Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.

  9. Genetic Tools for the Analysis of Drosophila Stomatogastric Nervous System Development.

    PubMed

    Hernández, Karla; Myers, Logan G; Bowser, Micah; Kidd, Thomas

    2015-01-01

    The Drosophila stomatogastric nervous system (SNS) is a compact collection of neurons that arises from the migration of neural precursors. Here we describe genetic tools allowing functional analysis of the SNS during the migratory phase of development. We constructed GAL4 lines driven by fragments of the Ret promoter, which yielded expression in a subset of migrating neural SNS precursors and also included a distinct set of midgut associated cells. Screening of additional GAL4 lines driven by fragments of the Gfrl/Munin, forkhead, twist and goosecoid (Gsc) promoters identified a Gsc fragment with expression from initial selection of SNS precursors until the end of embryogenesis. Inhibition of EGFR signaling using three identified lines disrupted the correct patterning of the frontal and recurrent nerves. To manipulate the environment traveled by SNS precursors, a FasII-GAL4 line with strong expression throughout the entire intestinal tract was identified. The transgenic lines described offer the ability to specifically manipulate the migration of SNS precursors and will allow the modeling and in-depth analysis of neuronal migration in ENS disorders such as Hirschsprung's disease. PMID:26053861

  10. Molecular Mechanism of Rectification at Identified Electrical Synapses in the Drosophila Giant Fiber System

    PubMed Central

    Phelan, Pauline; Goulding, L. Ann; Tam, Jennifer L.Y.; Allen, Marcus J.; Dawber, Rebecca J.; Davies, Jane A.; Bacon, Jonathan P.

    2008-01-01

    Summary Electrical synapses are neuronal gap junctions that mediate fast transmission in many neural circuits [1–5]. The structural proteins of gap junctions are the products of two multigene families. Connexins are unique to chordates [3–5]; innexins/pannexins encode gap-junction proteins in prechordates and chordates [6–10]. A concentric array of six protein subunits constitutes a hemichannel; electrical synapses result from the docking of hemichannels in pre- and postsynaptic neurons. Some electrical synapses are bidirectional; others are rectifying junctions that preferentially transmit depolarizing current anterogradely [11, 12]. The phenomenon of rectification was first described five decades ago [1], but the molecular mechanism has not been elucidated. Here, we demonstrate that putative rectifying electrical synapses in the Drosophila Giant Fiber System [13] are assembled from two products of the innexin gene shaking-B. Shaking-B(Neural+16) [14] is required presynaptically in the Giant Fiber to couple this cell to its postsynaptic targets that express Shaking-B(Lethal) [15]. When expressed in vitro in neighboring cells, Shaking-B(Neural+16) and Shaking-B(Lethal) form heterotypic channels that are asymmetrically gated by voltage and exhibit classical rectification. These data provide the most definitive evidence to date that rectification is achieved by differential regulation of the pre- and postsynaptic elements of structurally asymmetric junctions. PMID:19084406

  11. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster

    PubMed Central

    Funikov, S. Yu; Kanapin, A. A.; Logacheva, M. D.; Penin, A. A.; Snezhkina, A. V.; Shilova, V. Yu.; Garbuz, D. G.; Zatsepina, O. G.

    2016-01-01

    The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster. We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR. PMID:27805906

  12. Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster.

    PubMed

    Majeed, Zana R; Abdeljaber, Esraa; Soveland, Robin; Cornwell, Kristin; Bankemper, Aubrey; Koch, Felicitas; Cooper, Robin L

    2016-01-01

    Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.

  13. Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons.

    PubMed

    Shinomiya, Kazunori; Matsuda, Keiji; Oishi, Takao; Otsuna, Hideo; Ito, Kei

    2011-04-01

    The long history of neuroscience has accumulated information about numerous types of neurons in the brain of various organisms. Because such neurons have been reported in diverse publications without controlled format, it is not easy to keep track of all the known neurons in a particular nervous system. To address this issue we constructed an online database called Flybrain Neuron Database (Flybrain NDB), which serves as a platform to collect and provide information about all the types of neurons published so far in the brain of Drosophila melanogaster. Projection patterns of the identified neurons in diverse areas of the brain were recorded in a unified format, with text-based descriptions as well as images and movies wherever possible. In some cases projection sites and the distribution of the post- and presynaptic sites were determined with greater detail than described in the original publication. Information about the labeling patterns of various antibodies and expression driver strains to visualize identified neurons are provided as a separate sub-database. We also implemented a novel visualization tool with which users can interactively examine three-dimensional reconstruction of the confocal serial section images with desired viewing angles and cross sections. Comprehensive collection and versatile search function of the anatomical information reported in diverse publications make it possible to analyze possible connectivity between different brain regions. We analyzed the preferential connectivity among optic lobe layers and the plausible olfactory sensory map in the lateral horn to show the usefulness of such a database.

  14. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila

    PubMed Central

    Ameku, Tomotsune

    2016-01-01

    Mating and gametogenesis are two essential components of animal reproduction. Gametogenesis must be modulated by the need for gametes, yet little is known of how mating, a process that utilizes gametes, may modulate the process of gametogenesis. Here, we report that mating stimulates female germline stem cell (GSC) proliferation in Drosophila melanogaster. Mating-induced increase in GSC number is not simply owing to the indirect effect of emission of stored eggs, but rather is stimulated by a male-derived Sex Peptide (SP) and its receptor SPR, the components of a canonical neuronal pathway that induces a post-mating behavioral switch in females. We show that ecdysteroid, the major insect steroid hormone, regulates mating-induced GSC proliferation independently of insulin signaling. Ovarian ecdysteroid level increases after mating and transmits its signal directly through the ecdysone receptor expressed in the ovarian niche to increase the number of GSCs. Impairment of ovarian ecdysteroid biosynthesis disrupts mating-induced increase in GSCs as well as egg production. Importantly, feeding of ecdysteroid rescues the decrease in GSC number caused by impairment of neuronal SP signaling. Our study illustrates how female GSC activity is coordinately regulated by the neuroendocrine system to sustain reproductive success in response to mating. PMID:27310920

  15. Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems.

    PubMed

    Wu, Qi; Zhao, Zhangwu; Shen, Ping

    2005-10-01

    Omnivores, including humans, have an inborn tendency to avoid noxious or unfamiliar foods. Such defensive foraging behaviors are modifiable, however, in response to physiological needs. Here we describe a method for assessing risk-sensitive food acquisition in Drosophila melanogaster. Food-deprived fly larvae become more likely to feed on noxious foods (adulterated with quinine) as the duration of deprivation increases. The neuropeptide F receptor NPFR1, a mammalian neuropeptide Y (NPY) receptor homolog, centrally regulates the response to noxious food in D. melanogaster. Overexpression of NPFR1 was sufficient to cause nondeprived larvae to more readily take in noxious food, whereas loss of NPFR1 signaling led to the opposite phenotype. Moreover, NPFR1 neuronal activity may be directly regulated by the insulin-like signaling pathway. Upregulation of insulin-like receptor signaling in NPFR1 cells suppressed the feeding response to noxious food. Our results suggest that the coordinated activities of the conserved NPY- and insulin-like receptor signaling systems are essential for the dynamic regulation of noxious food intake according to the animal's energy state.

  16. Drosophila calmodulin mutants with specific defects in the musculature or in the nervous system.

    PubMed Central

    Wang, Bo; Sullivan, Kathleen M C; Beckingham, Kathy

    2003-01-01

    We have studied lethal mutations in the single calmodulin gene (Cam) of Drosophila to gain insight into the in vivo functions of this important calcium sensor. As a result of maternal calmodulin (CaM) in the mature egg, lethality is delayed until the postembryonic stages. Prior to death in the first larval instar, Cam nulls show a striking behavioral abnormality (spontaneous backward movement) whereas a mutation, Cam7, that results in a single amino acid change (V91G) produces a very different phenotype: short indented pupal cases and pupal death with head eversion defects. We show here that the null behavioral phenotype originates in the nervous system and involves a CaM function that requires calcium binding to all four sites of the protein. Further, backward movement can be induced in hypomorphic mutants by exposure to high light levels. In contrast, the V91G mutation specifically affects the musculature and causes abnormal calcium release in response to depolarization of the muscles. Genetic interaction studies suggest that failed regulation of the muscle calcium release channel, the ryanodine receptor, is the major defect underlying the Cam7 phenotype. PMID:14668380

  17. Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster

    PubMed Central

    Majeed, Zana R.; Abdeljaber, Esraa; Soveland, Robin; Cornwell, Kristin; Bankemper, Aubrey; Koch, Felicitas; Cooper, Robin L.

    2016-01-01

    Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity. PMID:26989517

  18. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system.

    PubMed

    Parvy, Jean-Philippe; Napal, Laura; Rubin, Thomas; Poidevin, Mickael; Perrin, Laurent; Wicker-Thomas, Claude; Montagne, Jacques

    2012-01-01

    Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA-interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA-interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles-the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes. PMID:22956916

  19. Studying aging in Drosophila.

    PubMed

    He, Ying; Jasper, Heinrich

    2014-06-15

    Drosophila melanogaster represents one of the most important genetically accessible model organisms for aging research. Studies in flies have identified single gene mutations that influence lifespan and have characterized endocrine signaling interactions that control homeostasis systemically. Recent studies have focused on the effects of aging on specific tissues and physiological processes, providing a comprehensive picture of age-related tissue dysfunction and the loss of systemic homeostasis. Here we review methodological aspects of this work and highlight technical considerations when using Drosophila to study aging and age-related diseases.

  20. Genetics on the Fly: A Primer on the Drosophila Model System.

    PubMed

    Hales, Karen G; Korey, Christopher A; Larracuente, Amanda M; Roberts, David M

    2015-11-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.

  1. Genetics on the Fly: A Primer on the Drosophila Model System

    PubMed Central

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  2. The Drosophila melanogaster host model

    PubMed Central

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  3. Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance.

    PubMed

    Liu, Lei; Johnson, Wayne A; Welsh, Michael J

    2003-02-18

    The Drosophila tracheal system and mammalian airways are branching networks of tubular epithelia that deliver oxygen to the organism. In mammals, the epithelial Na(+) channel (ENaC) helps clear liquid from airways at the time of birth and removes liquid from the airspaces in adults. We tested the hypothesis that related Drosophila degenerin (DEG)/ENaC family members might play a similar role in the fly. Among 16 Drosophila DEG/ENaC genes, called pickpocket (PPK) genes, we found 9 expressed in the tracheal system. By in situ hybridization, expression appeared in late-stage embryos after tracheal tube formation, with individual PPK genes showing distinct temporal and spatial expression patterns as development progressed. Promoters for several PPK genes drove reporter gene expression in the larval and adult tracheal systems. Adding the DEG/ENaC channel blocker amiloride to the medium inhibited liquid clearance from the trachea of first instar larvae. Moreover, when RNA interference was used to silence PPK4 and PPK11, larvae failed to clear tracheal liquid. These data suggest substantial molecular diversity of DEG/ENaC channel expression in the Drosophila tracheal system where the PPK proteins likely play a role in Na(+) absorption. Extensive similarities between Drosophila and mammalian airways offer opportunities for genetic studies that may decipher further the structure and function of DEG/ENaC proteins and development of the airways. PMID:12571352

  4. Validation of the Salmonella (SV50)/arabinose-resistant forward mutation assay system with 26 compounds.

    PubMed

    Xu, J; Whong, W Z; Ong, T

    1984-04-01

    Mutagenic sensitivity of the Salmonella/arabinose-resistant (Arar) assay system using the tester strain SV50 was evaluated with 26 compounds both by the preincubation and the standard plate incorporation tests. The mutagenic activity of all 26 compounds was also tested with TA98 and/or TA100 of the Ames Salmonella/microsome assay system. The results indicate that 13 and 10 of 26 compounds were mutagenic and nonmutagenic, respectively, in both assay systems. PR toxin and hydrogen peroxide were mutagenic only in the Arar assay, while 2-nitrofluorene was mutagenic only in the Ames assay. The results also show that the mutagenic response of SV50 to 13 of 15 mutagenic compounds was much higher (2.1-154-fold) if the compounds were tested with the preincubation rather than the plate incorporation test. The mutagenic activity of 4 compounds (diethyl sulfate, niridazole, PR toxin and hydrogen peroxide) in the Arar assay was detected only with the preincubation test. Since the Arar assay using tester strain SV50 has similar mutagenic sensitivity as the Ames assay to chemicals with different modes of action and since it requires only one tester strain, we find this assay system to be useful for screening environmental mutagens. Based on the effectiveness of the preincubation test in this study, it is recommended that the preincubation test instead of the plate incorporation test be used for the Arar assay system with tester strain SV50. PMID:6371504

  5. Sexy sons from re-mating do not recoup the direct costs of harmful male interactions in the Drosophila melanogaster laboratory model system.

    PubMed

    Orteiza, N; Linder, J E; Rice, W R

    2005-09-01

    The empirical foundation for sexual conflict theory is the data from many different taxa demonstrating that females are harmed while interacting with males. However, the interpretation of this keystone evidence has been challenged because females may more than counterbalance the direct costs of interacting with males by the indirect benefits of obtaining higher quality genes for their offspring. A quantification of this trade-off is critical to resolve the controversy and is presented here. A multi-generation fitness assay in the Drosophila melanogaster laboratory model system was used to quantify both the direct costs to females due to interactions with males and indirect benefits via sexy sons. We specifically focus on the interactions that occur between males and nonvirgin females. In the laboratory environment of our base population, females mate soon after eclosion and store sufficient sperm for their entire lifetime, yet males persistently court these nonvirgin females and frequently succeed in re-mating them. Females may benefit from these interactions despite direct costs to their lifetime fecundity if re-mating allows them to trade-up to mates of higher genetic quality and thereby secure indirect benefits for their offspring. We found that direct costs of interactions between males and nonvirgin females substantially exceeded indirect benefits through sexy sons. These data, in combination with past studies of the good genes route of indirect benefits, demonstrate that inter-sexual interactions drive sexually antagonistic co-evolution in this model system.

  6. Tetrahydropterin as a possible natural cofactor in the drosophila phenylalanine hydroxylation system

    SciTech Connect

    Bel, Y.; Jacobson, K.B.; Ferre, J. . Dept. of Genetics; Oak Ridge National Lab., TN; Valencia Univ. . Dept. of Genetics)

    1989-01-01

    The aim of the present work is the study of phenylalanine hydroxylase (PH) activity of Drosophila melanogaster wild type with different cofactors: the two natural occurring tetrahydropteridines (BH{sub 4} and PH{sub 4}) and the synthetic 6,7-dimethyltetrahydropterin (DMPH{sub 4}), as well as the determination of this activity at different developmental stages. 7 refs., 2 figs.

  7. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.

    PubMed

    Schachtner, Logan T; Sola, Ismail E; Forand, Daniel; Antonacci, Simona; Postovit, Adam J; Mortimer, Nathan T; Killian, Darrell J; Olesnicky, Eugenia C

    2015-11-01

    The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system.

  8. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.

    PubMed

    Schachtner, Logan T; Sola, Ismail E; Forand, Daniel; Antonacci, Simona; Postovit, Adam J; Mortimer, Nathan T; Killian, Darrell J; Olesnicky, Eugenia C

    2015-11-01

    The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system. PMID:26271810

  9. Automated Triplex (HBV, HCV and HIV) NAT Assay Systems for Blood Screening in India.

    PubMed

    Rajput, Manoj Kumar

    2016-02-01

    This review is confined to triplex nucleic acid testing (NAT) assays to be used on fully automated platform. Around the world, these assays are being used at various transfusion medicine centres or blood banks to screen blood units for HBV, HCV and HIV. These assay systems can screen up to 1000 blood units for HBV, HCV and HIV simultaneously in a day. This area has been dominated by mainly two manufacturers: M/s Gen-Probe-Novartis and M/s Roche Molecular Systems. The triplex NAT assay systems of both manufacturers are licensed by United States Food and Drug Administration. There is not much awareness about the technology and procedures used in these assays. The main objective of this review is to create awareness about the technology and procedure of these assays. PMID:27042485

  10. An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency.

    PubMed

    Faghihi, Faramarz; Kolodziejski, Christoph; Fiala, André; Wörgötter, Florentin; Tetzlaff, Christian

    2013-12-20

    Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.

  11. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  12. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    SciTech Connect

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-11-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system`s performance for specific waste types, the standardized systems` performance be evaluated. 7 figs., 11 tabs.

  13. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.

  14. Appetitive associative olfactory learning in Drosophila larvae.

    PubMed

    Apostolopoulou, Anthi A; Widmann, Annekathrin; Rohwedder, Astrid; Pfitzenmaier, Johanna E; Thum, Andreas S

    2013-02-18

    In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain. Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable). Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning--presented as a performance index (PI). The conclusion regarding the associative

  15. The Physcomitrella patens System for Transient Gene Expression Assays.

    PubMed

    Thévenin, Johanne; Xu, Wenjia; Vaisman, Louise; Lepiniec, Loïc; Dubreucq, Bertrand; Dubos, Christian

    2016-01-01

    Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells. PMID:27557766

  16. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila.

    PubMed

    Ren, Xingjie; Yang, Zhihao; Xu, Jiang; Sun, Jin; Mao, Decai; Hu, Yanhui; Yang, Su-Juan; Qiao, Huan-Huan; Wang, Xia; Hu, Qun; Deng, Patricia; Liu, Lu-Ping; Ji, Jun-Yuan; Li, Jin Billy; Ni, Jian-Quan

    2014-11-01

    The CRISPR/Cas9 system has recently emerged as a powerful tool for functional genomic studies in Drosophila melanogaster. However, single-guide RNA (sgRNA) parameters affecting the specificity and efficiency of the system in flies are still not clear. Here, we found that off-target effects did not occur in regions of genomic DNA with three or more nucleotide mismatches to sgRNAs. Importantly, we document for a strong positive correlation between mutagenesis efficiency and sgRNA GC content of the six protospacer-adjacent motif-proximal nucleotides (PAMPNs). Furthermore, by injecting well-designed sgRNA plasmids at the optimal concentration we determined, we could efficiently generate mutations in four genes in one step. Finally, we generated null alleles of HP1a using optimized parameters through homology-directed repair and achieved an overall mutagenesis rate significantly higher than previously reported. Our work demonstrates a comprehensive optimization of sgRNA and promises to vastly simplify CRISPR/Cas9 experiments in Drosophila. PMID:25437567

  17. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster.

    PubMed

    Spokony, Rebecca F; Restifo, Linda L

    2009-11-01

    Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.

  18. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila.

    PubMed

    Kuo, Shu-Yun; Tu, Chiao-Hui; Hsu, Ya-Ting; Wang, Horng-Dar; Wen, Rong-Kun; Lin, Chen-Ta; Wu, Chia-Lin; Huang, Yu-Ting; Huang, Guan-Shieng; Lan, Tsuo-Hung; Fu, Tsai-Feng

    2012-01-01

    The GAL4/UAS gene expression system is a precise means of targeted gene expression employed to study biological phenomena in Drosophila. A modified GAL4/UAS system can be conditionally regulated using a temporal and regional gene expression targeting (TARGET) system that responds to heat shock induction. However heat shock-related temperature shifts sometimes cause unexpected physiological responses that confound behavioral analyses. We describe here the construction of a drug-inducible version of this system that takes advantage of tissue-specific GAL4 driver lines to yield either RU486-activated LexA-progesterone receptor chimeras (LexPR) or β-estradiol-activated LexA-estrogen receptor chimeras (XVE). Upon induction, these chimeras bind to a LexA operator (LexAop) and activate transgene expression. Using GFP expression as a marker for induction in fly brain cells, both approaches are capable of tightly and precisely modulating transgene expression in a temporal and dosage-dependent manner. Additionally, tissue-specific GAL4 drivers resulted in target gene expression that was restricted to those specific tissues. Constitutive expression of the active PKA catalytic subunit using these systems altered the sleep pattern of flies, demonstrating that both systems can regulate transgene expression that precisely mimics regulation that was previously engineered using the GeneSwitch/UAS system. Unlike the limited number of GeneSwitch drivers, this approach allows for the usage of the multitudinous, tissue-specific GAL4 lines for studying temporal gene regulation and tissue-specific gene expression. Together, these new inducible systems provide additional, highly valuable tools available to study gene function in Drosophila. PMID:23239992

  19. Why Drosophila to Study Phototransduction?

    PubMed Central

    Pak, William L.

    2010-01-01

    This review recounts the early history of Drosophila phototransduction genetics, covering the period between approximately 1966 to 1979. Early in this period, the author felt that there was an urgent need for a new approach in phototransduction research. Through inputs from a number of colleagues, he was led to consider isolating Drosophila mutants that are defective in the electroretinogram. Thanks to the efforts of dedicated associates and technical staff, by the end of this period, he was able to accumulate a large number of such mutants. Particularly important in this effort was the use of the mutant assay protocol based on the “prolonged depolarizing afterpotential.” This collection of mutants formed the basis of the subsequent intensive investigations of the Drosophila phototransduction cascade by many investigators. PMID:20536286

  20. An Entry/Gateway® cloning system for general expression of genes with molecular tags in Drosophila melanogaster

    PubMed Central

    Akbari, Omar S; Oliver, Daniel; Eyer, Katie; Pai, Chi-Yun

    2009-01-01

    Background Tagged fusion proteins are priceless tools for monitoring the activities of biomolecules in living cells. However, over-expression of fusion proteins sometimes leads to the unwanted lethality or developmental defects. Therefore, vectors that can express tagged proteins at physiological levels are desirable tools for studying dosage-sensitive proteins. We developed a set of Entry/Gateway® vectors for expressing fluorescent fusion proteins in Drosophila melanogaster. The vectors were used to generate fluorescent CP190 which is a component of the gypsy chromatin insulator. We used the fluorescent CP190 to study the dynamic movement of related chromatin insulators in living cells. Results The Entry/Gateway® system is a timesaving technique for quickly generating expression constructs of tagged fusion proteins. We described in this study an Entry/Gateway® based system, which includes six P-element destination vectors (P-DEST) for expressing tagged proteins (eGFP, mRFP, or myc) in Drosophila melanogaster and a TA-based cloning vector for generating entry clones from unstable DNA sequences. We used the P-DEST vectors to express fluorecent CP190 at tolerable levels. Expression of CP190 using the UAS/Gal4 system, instead, led to either lethality or underdeveloped tissues. The expressed eGFP- or mRFP-tagged CP190 proteins are fully functional and rescued the lethality of the homozygous CP190 mutation. We visualized a wide range of CP190 distribution patterns in living cell nuclei, from thousands of tiny particles to less than ten giant ones, which likely reflects diverse organization of higher-order chromatin structures. We also visualized the fusion of multiple smaller insulator bodies into larger aggregates in living cells, which is likely reflective of the dynamic activities of reorganization of chromatin in living nuclei. Conclusion We have developed an efficient cloning system for expressing dosage-sensitive proteins in Drosophila melanogaster. This system

  1. Gustatory processing and taste memory in Drosophila.

    PubMed

    Masek, Pavel; Keene, Alex C

    2016-06-01

    Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit. PMID:27328844

  2. Microfluidic System for Automated Cell-based Assays.

    PubMed

    Lee, Philip J; Ghorashian, Navid; Gaige, Terry A; Hung, Paul J

    2007-12-01

    Microfluidic cell culture is a promising technology for applications in the drug screening industry. Key benefits include improved biological function, higher quality cell-based data, reduced reagent consumption, and lower cost. In this work, we demonstrate how a microfluidic cell culture design was adapted to be compatible with the standard 96-well plate format. Key design features include the elimination of tubing and connectors, the ability to maintain long term continuous perfusion cell culture using a passive gravity driven pump, and direct analysis on the outlet wells of the microfluidic plate. A single microfluidic culture plate contained 8 independent flow units, each with 10(4) cells at a flow rate of 50 μl/day (6 minute residence time). The cytotoxicity of the anti-cancer drug etoposide was measured on HeLa cells cultured in this format, using a commercial lactate dehydrogenase (LDH) plate reader assay. The integration of microfluidic cell culture methods with commercial automation capabilities offers an exciting opportunity for improved cell-based screening.

  3. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    PubMed

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  4. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system.

    PubMed

    Brooks, Elizabeth S; Greer, Christina L; Romero-Calderón, Rafael; Serway, Christine N; Grygoruk, Anna; Haimovitz, Jasmine M; Nguyen, Bac T; Najibi, Rod; Tabone, Christopher J; de Belle, J Steven; Krantz, David E

    2011-10-20

    Vesicular transporters are required for the storage of all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.

  5. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a novel neurotransmitter system

    PubMed Central

    Brooks, Elizabeth S.; Greer, Christina L.; Romero-Calderón, Rafael; Serway, Christine N.; Grygoruk, Anna; Haimovitz, Jasmine M.; Nguyen, Bac T.; Najibi, Rod; Tabone, Christopher J.; de Belle, J. Steven; Krantz, David E.

    2011-01-01

    Summary Storage and release of classical and amino acid neurotransmitters requires vesicular transporters. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male’s position during copulation that is rescued by expression in KCs. Since prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning. PMID:22017990

  6. Advanced Assay Systems for Radionuclide Contamination in Soils

    SciTech Connect

    J. R. Giles; L. G. Roybal; M. V. Carpenter; C. P. Oertel; J. A. Roach

    2008-02-01

    Through the support of the Department of Energy (DOE) Office of Environmental Management (EM) Technical Assistance Program, the Idaho National Laboratory (INL) has developed and deployed a suite of systems that rapidly scan, characterize, and analyze surface soil contamination. The INL systems integrate detector systems with data acquisition and synthesis software and with global positioning technology to provide a real-time, user-friendly field deployable turn-key system. INL real-time systems are designed to characterize surface soil contamination using methodologies set forth in the Multi-Agency Radiation Surveys and Site Investigation Manual (MARSSIM). MARSSIM provides guidance for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose or risk-based regulation and provides real-time information that is immediately available to field technicians and project management personnel. This paper discusses the history of the development of these systems and describes some of the more recent examples and their applications.

  7. Mental retardation genes in drosophila: New approaches to understanding and treating developmental brain disorders.

    PubMed

    Restifo, Linda L

    2005-01-01

    Drosophila melanogaster is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron resolution, are helping to reveal the cellular bases of faulty brain development caused by MR gene mutations. Drosophila fragile X mental retardation 1 (dfmr1) is the fly counterpart of the human gene whose malfunction causes fragile X syndrome. Research on the fly gene is leading the field in molecular mechanisms of the gene product's biological function and in pharmacological rescue of brain and behavioral phenotypes. Future work holds the promise of using genetic pathway analysis and primary neuronal culture methods in Drosophila as tools for drug discovery for a wide range of MR and related disorders. PMID:16240406

  8. Calibration and characterization of a low level waste assay system

    SciTech Connect

    Giesler, G.C.; Henry, S.A.; Johnson, S.L.; Vehar, D.W.

    1993-12-31

    In today`s rapidly changing regulatory environment, increasingly detailed information is required about the composition of items intended for disposal. We have examined a system that can be used to measure the radioactivity in a container of waste destined for disposal. In order to better understand the capabilities and limitations of the system, we performed a number of measurements to calibrate and characterize this system. The results of this characterization including detectability limits for {sup 235}U and {sub 239}Pu are presented.

  9. Drosophila spermiogenesis

    PubMed Central

    Fabian, Lacramioara; Brill, Julie A.

    2012-01-01

    Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm. PMID:23087837

  10. An expert system framework for nondestructive waste assay

    SciTech Connect

    Becker, G.K.

    1996-10-01

    Management and disposition of transuranic (RU) waste forms necessitates determining entrained RU and associated radioactive material quantities as per National RU Waste Characterization Program requirements. Technical justification and demonstration of a given NDA method used to determine RU mass and uncertainty in accordance with program quality assurance is difficult for many waste forms. Difficulties are typically founded in waste NDA methods that employ standards compensation and/or employment of simplifying assumptions on waste form configurations. Capability to determine and justify RU mass and mass uncertainty can be enhanced through integration of waste container data/information using expert system and empirical data-driven techniques with conventional data acquisition and analysis. Presented is a preliminary expert system framework that integrates the waste form data base, alogrithmic techniques, statistical analyses, expert domain knowledge bases, and empirical artificial intelligence modules into a cohesive system. The framework design and bases in addition to module development activities are discussed.

  11. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    PubMed Central

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G.; Goldys, Ewa M.

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  12. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system.

    PubMed

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G; Goldys, Ewa M

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  13. Mutagenic effects of some water-soluble metal compounds in a somatic eye-color test system in Drosophila melanogaster.

    PubMed

    Rasmuson, A

    1985-01-01

    Nickel, cadmium, lead, arsenic, manganese and chromium salts as well as MeHgOH were screened for mutagenicity, using a sensitive somatic eye-color test system in Drosophila melanogaster. The test is based on the insertion of a mobile element which causes instability in the white locus that is somatically enhanced by mutagens. This white locus expression is combined with a mutation, zeste, in another gene, to produce a light yellow eye color. Larval feeding with mutagens causes somatic mutations in the eye imaginal disc cells that develop into easily detectable red spots in the yellow eyes of adult males. Survival tests showed large differences in the toxicity of different metals, but only hexavalent chromium increased the frequency of somatic mutations above the control level. When combined treatments were carried out with MMS and various metals, sodium arsenite caused a reduction of the MMS-induced mutation frequency while methylmercury increased the frequency of somatic spots.

  14. INEL test plan for evaluating waste assay systems

    SciTech Connect

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  15. A baculoviral display system to assay viral entry.

    PubMed

    Iida, Manami; Yoshida, Takeshi; Watari, Akihiro; Yagi, Kiyohito; Hamakubo, Takao; Kondoh, Masuo

    2013-01-01

    In this study, we evaluated a baculoviral display system for analysis of viral entry by using a recombinant adenovirus (Ad) carrying a luciferase gene and budded baculovirus (BV) that displays the adenoviral receptor, coxsackievirus and adenovirus receptor (CAR). CAR-expressing B16 cells (B16-CAR cells) were infected with luciferase-expressing Ad vector in the presence of BV that expressed or lacked CAR (CAR-BV and mock-BV, respectively). Treatment with mock-BV even at doses as high as 5 µg/mL failed to attenuate the luciferase activity of B16-CAR cells. In contrast, treatment with CAR-BV with doses as low as 0.5 µg/mL significantly decreased the luciferase activity of infected cells, which reached 65% reduction at 5 µg/mL. These findings suggest that a receptor-displaying BV system could be used to evaluate viral infection. PMID:24189431

  16. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    SciTech Connect

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  17. Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system

    PubMed Central

    Zwart, Maarten F.; Randlett, Owen; Evers, Jan Felix; Landgraf, Matthias

    2013-01-01

    As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows. PMID:24043825

  18. Labeling of Single Cells in the Central Nervous System of Drosophila melanogaster

    PubMed Central

    Rickert, Christof; Kunz, Thomas; Harris, Kerri-Lee; Whitington, Paul; Technau, Gerhard

    2013-01-01

    In this article we describe how to individually label neurons in the embryonic CNS of Drosophila melanogaster by juxtacellular injection of the lipophilic fluorescent membrane marker DiI. This method allows the visualization of neuronal cell morphology in great detail. It is possible to label any cell in the CNS: cell bodies of target neurons are visualized under DIC optics or by expression of a fluorescent genetic marker such as GFP. After labeling, the DiI can be transformed into a permanent brown stain by photoconversion to allow visualization of cell morphology with transmitted light and DIC optics. Alternatively, the DiI-labeled cells can be observed directly with confocal microscopy, enabling genetically introduced fluorescent reporter proteins to be colocalised. The technique can be used in any animal, irrespective of genotype, making it possible to analyze mutant phenotypes at single cell resolution. PMID:23486245

  19. Genetic-molecular basis for a simple Drosophila melanogaster somatic system that detects environmental mutagens

    SciTech Connect

    Green, M.M.; Todo, T.; Ryo, H.; Fujikawa, K.

    1986-09-01

    We have developed a simple, objectively scorable test for the mutagenicity of chemical compounds which can be fed Drosophila melanogaster. The test depends upon the somatic reversion of the X chromosome, recessive eye color mutation, white-ivory (wi) to wild type (w+). Reversions are scored as clones of w+ facets in the wi eyes of eclosing adults. To increase the sensitivity, a tandem quadruplication containing four wi mutations was synthesized. Thus, in homozygous females eight wi mutations are potentially revertible. Six mutagenic compounds, all alkylating agents, all gave positive results at several concentrations tested. Molecular analysis demonstrates that the induced reversions, germinal and somatic, are associated with the loss of 2.9-kilobase DNA duplicated in the wi mutation.

  20. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy.

    PubMed

    Ren, Yingxue; Vera, Daniel L; Hughes, Kimberly A; Dennis, Jonathan H

    2015-03-01

    In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE64507.

  1. Sexual conflict is not counterbalanced by good genes in the laboratory Drosophila melanogaster model system.

    PubMed

    Stewart, A D; Hannes, A M; Mirzatuny, A; Rice, W R

    2008-11-01

    Sexual conflict theory is based on the observation that females of many species are harmed through their interactions with males. Direct harm to females, however, can potentially be counterbalanced by indirect genetic benefits, where females make up for a reduction in offspring quantity by an increase in offspring quality through a generic increase in offspring fitness (good genes) and/or one restricted to the context of sexual selection (sexy sons). Here, we quantify the magnitude of the good genes mechanism of indirect benefits in a laboratory-adapted population of Drosophila melanogaster. We find that despite high-standing genetic variance for fitness, females gain at most only a modest benefit through the good genes form of indirect benefits--far too little to counterbalance the direct cost of male-induced harm. PMID:18681915

  2. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy.

    PubMed

    Ren, Yingxue; Vera, Daniel L; Hughes, Kimberly A; Dennis, Jonathan H

    2015-03-01

    In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE64507. PMID:26484165

  3. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster

    SciTech Connect

    Garcia, J.V.; Fenton, B.W.; Rosner, M.R.

    1988-06-14

    An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent K/sub m/ for porcine insulin of 3 ..mu..M, and a specific activity of 3.3 nmol of porcine insulin degraded/(min x mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with (/sup 125/I)insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37/sup 0/C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of (/sup 125/I)insulin at comparable concentrations (approximately 10/sup -6/ M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggest an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila.

  4. Temperature sensation in Drosophila.

    PubMed

    Barbagallo, Belinda; Garrity, Paul A

    2015-10-01

    Animals use thermosensory systems to achieve optimal temperatures for growth and reproduction and to avoid damaging extremes. Thermoregulation is particularly challenging for small animals like the fruit fly Drosophila melanogaster, whose body temperature rapidly changes in response to environmental temperature fluctuation. Recent work has uncovered some of the key molecules mediating fly thermosensation, including the Transient Receptor Potential (TRP) channels TRPA1 and Painless, and the Gustatory Receptor Gr28b, an unanticipated thermosensory regulator normally associated with a different sensory modality. There is also evidence the Drosophila phototransduction cascade may have some role in thermosensory responses. Together, the fly's diverse thermosensory molecules act in an array of functionally distinct thermosensory neurons to drive a suite of complex, and often exceptionally thermosensitive, behaviors.

  5. Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster.

    PubMed

    Mehdi, Syed Hassan; Qamar, Ayesha

    2013-08-01

    Paraquat (PQ), a quaternary nitrogen herbicide, is commonly used as a pesticide despite of its high toxicity. Our study evaluated the effect of subchronic PQ exposure on the neuropathology, genotoxicity, and antioxidant activity on the nervous tissue of Drosophila melanogaster. We also explored the behavioral effect of PQ on D. melanogaster. Furthermore, we attempted to validate the mechanism by evaluating PQ-induced cytotoxicity on the D-Mel2 cell lines. The fruit fly D. melanogaster serves as a feasible model to understand the mechanism of neurodegenerative diseases. Our study shows a dose-dependent PQ-induced neuropathology in the brain tissue of D. melanogaster as evidenced by hematoxylin and eosin staining, silver nitrate staining, and transmission electron microscopy. Electron microscopic study of D. melanogaster brain tissue exhibited vacuolar degeneration and significant neuronal damage across the nervous tissue structure in comparison with control. Our findings also indicate a dose-dependent locomotor impairment and decreased superoxide dismutase (SOD) specific activity in PQ-treated D. melanogaster. These PQ-induced neuroanatomical changes and decreased SOD specific activity showed a significant association with oxidative DNA damage as observed by alkaline comet assay. Additionally, we show, for the first time, a dose-dependent PQ-induced cytotoxicity in the D-Mel2 cells suggesting loss of neuronal cell viability via cytotoxic damage. Our data suggest that PQ exposure results in neurodegeneration in D. melanogaster and that fruit fly is a suitable in vivo model for correlating the neuroanatomical changes with neurotoxic damages to nervous system.

  6. Cytotoxicity of eight cigarette smoke condensates in three test systems: comparisons between assays and condensates.

    PubMed

    Richter, Patricia A; Li, Albert P; Polzin, Gregory; Roy, Shambhu K

    2010-12-01

    Cytotoxic properties of tobacco smoke are associated with chronic tobacco-related diseases. The cytotoxicity of tobacco smoke can be tested with short-term predictive assays. In this study, we compare eight mainstream cigarette smoke condensates (CSCs) from commercial and experimental cigarettes in three different cytotoxicity assays with unique and overlapping endpoints. The CSCs demonstrated cytotoxicity in all assays. In the multiple cytotoxicity endpoint (MCE) assay with TK-6 cells, the cigarette varieties that had the highest EC50s for reduced cell growth also showed a positive dose-response relationship for necrotic cells. In the IdMOC multiple cell-type co-culture (MCTCC) system, all CSCs reduced the viability of the cells. Low concentrations of some CSCs had a stimulatory effect in lung microvascular endothelial cells and small airway epithelial cells. In the neutral dye assay (NDA), except for a 100% flue-cured tobacco CSC, there was little consistency between CSCs producing morphological evidence of moderate or greater toxicity and the CSCs with the lowest EC50s in the MCE or MCTCC assays. Overall, cigarettes made with flue-cured tobacco were the most cytotoxic across the assays. When results were expressed on a per-mg of nicotine basis, lower tar cigarettes were the most cytotoxic in primary human respiratory cells. PMID:20719243

  7. The expression of CG9940 affects the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila.

    PubMed

    Wen, Deng-Tai; Zheng, Lan; Ni, Liu; Wang, Hui; Feng, Yue; Zhang, Min

    2016-10-01

    The CG9940 gene, which encodes the NAD(+) synthase protein in Drosophila, is conserved in human, zebra fish, and mosquito. NAD(+) synthase is a homodimer, which catalyzes the final step in de novo nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, an amide transfer from either ammonia or glutamine to nicotinic acid adenine dinucleotide (NaAD). Both the CG9940 and exercise are closely relative to NAD(+) level, and NAD(+) plays important roles not only in energy metabolism and mitochondrial functions but also in aging. In our study, the expression of CG9940 was changed by UAS/GAL4 system in Drosophila. Flies were trained by a training device. Cardiac function was analyzed by M-mode traces, climbing index was measured through negative geotaxis assay, and lifespan was measured via lifespan assays. The important new findings from our present study included the following: (1) the expression of the CG9940 could affect cardiac function, mobility, and lifespan in Drosophila. Over-expression of the CG9940 gene had positive effects on Drosophila, such as enhanced aging cardiac output, reduced heart failure, delayed age-related mobility decline, and prolonged lifespan, but lower-expression of the CG9940 had negative effects on them. (2) Different expressions of the CG9940 resulted in different influences on the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila. Both normal-expression and over-expression of the CG9940 resulted in positive influences on the adaptation of cardiac functions, mobility, and lifespan to exercise in aging Drosophila such as exercise slowed age-related decline of cardiac function, mobility and extent of lifespan in these flies, while lower-expression of the CG9940 led to negative impacts on the adaptation of mobility and lifespan to exercise in Drosophila. PMID:27448710

  8. The expression of CG9940 affects the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila.

    PubMed

    Wen, Deng-Tai; Zheng, Lan; Ni, Liu; Wang, Hui; Feng, Yue; Zhang, Min

    2016-10-01

    The CG9940 gene, which encodes the NAD(+) synthase protein in Drosophila, is conserved in human, zebra fish, and mosquito. NAD(+) synthase is a homodimer, which catalyzes the final step in de novo nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, an amide transfer from either ammonia or glutamine to nicotinic acid adenine dinucleotide (NaAD). Both the CG9940 and exercise are closely relative to NAD(+) level, and NAD(+) plays important roles not only in energy metabolism and mitochondrial functions but also in aging. In our study, the expression of CG9940 was changed by UAS/GAL4 system in Drosophila. Flies were trained by a training device. Cardiac function was analyzed by M-mode traces, climbing index was measured through negative geotaxis assay, and lifespan was measured via lifespan assays. The important new findings from our present study included the following: (1) the expression of the CG9940 could affect cardiac function, mobility, and lifespan in Drosophila. Over-expression of the CG9940 gene had positive effects on Drosophila, such as enhanced aging cardiac output, reduced heart failure, delayed age-related mobility decline, and prolonged lifespan, but lower-expression of the CG9940 had negative effects on them. (2) Different expressions of the CG9940 resulted in different influences on the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila. Both normal-expression and over-expression of the CG9940 resulted in positive influences on the adaptation of cardiac functions, mobility, and lifespan to exercise in aging Drosophila such as exercise slowed age-related decline of cardiac function, mobility and extent of lifespan in these flies, while lower-expression of the CG9940 led to negative impacts on the adaptation of mobility and lifespan to exercise in Drosophila.

  9. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  10. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus

    PubMed Central

    2014-01-01

    Background Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. Results In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. Conclusions This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies. PMID:24548533

  11. A sex-ratio meiotic drive system in Drosophila simulans. I: an autosomal suppressor.

    PubMed

    Tao, Yun; Masly, John P; Araripe, Luciana; Ke, Yeyan; Hartl, Daniel L

    2007-11-01

    Sex ratio distortion (sex-ratio for short) has been reported in numerous species such as Drosophila, where distortion can readily be detected in experimental crosses, but the molecular mechanisms remain elusive. Here we characterize an autosomal sex-ratio suppressor from D. simulans that we designate as not much yang (nmy, polytene chromosome position 87F3). Nmy suppresses an X-linked sex-ratio distorter, contains a pair of near-perfect inverted repeats of 345 bp, and evidently originated through retrotransposition from the distorter itself. The suppression is likely mediated by sequence homology between the suppressor and distorter. The strength of sex-ratio is greatly enhanced by lower temperature. This temperature sensitivity was used to assign the sex-ratio etiology to the maturation process of the Y-bearing sperm, a hypothesis corroborated by both light microscope observations and ultrastructural studies. It has long been suggested that an X-linked sex-ratio distorter can evolve by exploiting loopholes in the meiotic machinery for its own transmission advantage, which may be offset by other changes in the genome that control the selfish distorter. Data obtained in this study help to understand this evolutionary mechanism in molecular detail and provide insight regarding its evolutionary impact on genomic architecture and speciation.

  12. Genotoxicity testing with the somatic white-ivory system in the eye of Drosophila melanogaster.

    PubMed

    Würgler, F E; Kägi, A

    1991-05-01

    The white-ivory test in Drosophila melanogaster is designed to detect chemically induced reversions of the sex-linked, recessive unstable eye-color mutation white-ivory to the wild-type form. After exposure of larvae reversions are detectable as clones of red facets in the eye of newly enclosed adult flies. Tester strains containing a quadruplication of the white-ivory gene on the X-chromosome(s) were used. In a strain with males carrying 4 copies of the gene and females carrying 8 copies of the gene, spontaneous reversions occurred proportional to the gene copy number. In contrast to this, chemically induced reversions occurred only 1.36 times more frequently in females (carrying 8 copies of the gene) than in males (carrying 4 copies). Since chemicals inducing different lesions in DNA (bleomycin, cyclophosphamide, daunomycin, diethyl sulfate and 7,12-dimethylbenz[a]anthracene) did induce statistically significant frequencies of reversions the test appears to be capable of detecting a wide variety of genotoxic chemicals with different modes of action. The recombinogen strychnine did not induce reversions. PMID:1903508

  13. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system

    PubMed Central

    Gontang, Allison C.; Hwa, Jennifer J.; Mast, Joshua D.; Schwabe, Tina; Clandinin, Thomas R.

    2011-01-01

    A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity. PMID:22007130

  14. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system.

    PubMed

    Gontang, Allison C; Hwa, Jennifer J; Mast, Joshua D; Schwabe, Tina; Clandinin, Thomas R

    2011-11-01

    A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity.

  15. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    PubMed

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA. PMID:25144371

  16. A sex-ratio Meiotic Drive System in Drosophila simulans. II: An X-linked Distorter

    PubMed Central

    Tao, Yun; Araripe, Luciana; Kingan, Sarah B; Ke, Yeyan; Xiao, Hailian; Hartl, Daniel L

    2007-01-01

    The evolution of heteromorphic sex chromosomes creates a genetic condition favoring the invasion of sex-ratio meiotic drive elements, resulting in the biased transmission of one sex chromosome over the other, in violation of Mendel's first law. The molecular mechanisms of sex-ratio meiotic drive may therefore help us to understand the evolutionary forces shaping the meiotic behavior of the sex chromosomes. Here we characterize a sex-ratio distorter on the X chromosome (Dox) in Drosophila simulans by genetic and molecular means. Intriguingly, Dox has very limited coding capacity. It evolved from another X-linked gene, which also evolved de nova. Through retrotransposition, Dox also gave rise to an autosomal suppressor, not much yang (Nmy). An RNA interference mechanism seems to be involved in the suppression of the Dox distorter by the Nmy suppressor. Double mutant males of the genotype dox; nmy are normal for both sex-ratio and spermatogenesis. We postulate that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy. PMID:17988173

  17. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila.

    PubMed

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina L

    2010-05-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type.

  18. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    PubMed

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  19. Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Drosophila Hematopoietic System

    PubMed Central

    Zhang, Chen U.; Blauwkamp, Timothy A.; Burby, Peter E.; Cadigan, Ken M.

    2014-01-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA. PMID:25144371

  20. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster.

    PubMed

    Rister, Jens; Pauls, Dennis; Schnell, Bettina; Ting, Chun-Yuan; Lee, Chi-Hon; Sinakevitch, Irina; Morante, Javier; Strausfeld, Nicholas J; Ito, Kei; Heisenberg, Martin

    2007-10-01

    In the eye, visual information is segregated into modalities such as color and motion, these being transferred to the central brain through separate channels. Here, we genetically dissect the achromatic motion channel in the fly Drosophila melanogaster at the level of the first relay station in the brain, the lamina, where it is split into four parallel pathways (L1-L3, amc/T1). The functional relevance of this divergence is little understood. We now show that the two most prominent pathways, L1 and L2, together are necessary and largely sufficient for motion-dependent behavior. At high pattern contrast, the two pathways are redundant. At intermediate contrast, they mediate motion stimuli of opposite polarity, L2 front-to-back, L1 back-to-front motion. At low contrast, L1 and L2 depend upon each other for motion processing. Of the two minor pathways, amc/T1 specifically enhances the L1 pathway at intermediate contrast. L3 appears not to contribute to motion but to orientation behavior. PMID:17920022

  1. Inter-laboratory comparison of the in vivo comet assay including three image analysis systems.

    PubMed

    Plappert-Helbig, Ulla; Guérard, Melanie

    2015-12-01

    To compare the extent of potential inter-laboratory variability and the influence of different comet image analysis systems, in vivo comet experiments were conducted using the genotoxicants ethyl methanesulfonate and methyl methanesulfonate. Tissue samples from the same animals were processed and analyzed-including independent slide evaluation by image analysis-in two laboratories with extensive experience in performing the comet assay. The analysis revealed low inter-laboratory experimental variability. Neither the use of different image analysis systems, nor the staining procedure of DNA (propidium iodide vs. SYBR® Gold), considerably impacted the results or sensitivity of the assay. In addition, relatively high stability of the staining intensity of propidium iodide-stained slides was found in slides that were refrigerated for over 3 months. In conclusion, following a thoroughly defined protocol and standardized routine procedures ensures that the comet assay is robust and generates comparable results between different laboratories.

  2. The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei

    PubMed Central

    Frescas, David; Mavrakis, Manos; Lorenz, Holger; DeLotto, Robert; Lippincott-Schwartz, Jennifer

    2006-01-01

    Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces >6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo. PMID:16636144

  3. The FlyCatwalk: A High-Throughput Feature-Based Sorting System for Artificial Selection in Drosophila

    PubMed Central

    Medici, Vasco; Vonesch, Sibylle Chantal; Fry, Steven N.; Hafen, Ernst

    2015-01-01

    Experimental evolution is a powerful tool for investigating complex traits. Artificial selection can be applied for a specific trait and the resulting phenotypically divergent populations pool-sequenced to identify alleles that occur at substantially different frequencies in the extreme populations. To maximize the proportion of loci that are causal to the phenotype among all enriched loci, population size and number of replicates need to be high. These requirements have, in fact, limited evolution studies in higher organisms, where the time investment required for phenotyping is often prohibitive for large-scale studies. Animal size is a highly multigenic trait that remains poorly understood, and an experimental evolution approach may thus aid in gaining new insights into the genetic basis of this trait. To this end, we developed the FlyCatwalk, a fully automated, high-throughput system to sort live fruit flies (Drosophila melanogaster) based on morphometric traits. With the FlyCatwalk, we can detect gender and quantify body and wing morphology parameters at a four-old higher throughput compared with manual processing. The phenotyping results acquired using the FlyCatwalk correlate well with those obtained using the standard manual procedure. We demonstrate that an automated, high-throughput, feature-based sorting system is able to avoid previous limitations in population size and replicate numbers. Our approach can likewise be applied for a variety of traits and experimental settings that require high-throughput phenotyping. PMID:25556112

  4. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system.

    PubMed

    Brooks, Elizabeth S; Greer, Christina L; Romero-Calderón, Rafael; Serway, Christine N; Grygoruk, Anna; Haimovitz, Jasmine M; Nguyen, Bac T; Najibi, Rod; Tabone, Christopher J; de Belle, J Steven; Krantz, David E

    2011-10-20

    Vesicular transporters are required for the storage of all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning. PMID:22017990

  5. TRU Waste Assay Methodology with the Combined Thermal Epithermal Neutron (CTEN) System

    SciTech Connect

    Veilleux, J. M.; Enter, J. A.

    2003-02-27

    The CTEN assay system is designed to measure plutonium bearing 208-L waste drums and make the transuranic versus low-level waste determination. The system was certified for Waste Isolation Pilot Plant operations and the Environmental Protection Agency approved the CTEN in 2002. It is the only system capable of making the transuranic/low-level waste (TRU/LLW) determination since it can routinely assay below 100 nCi/g. The system conducts a measurement by using either (or both) an active 14 MeV neutron pulse to induce fission in 239Pu and 241Pu or measures the spontaneous fission properties of 238Pu, 240Pu and 242Pu. When the coincidence neutron signal is combined with mass fraction data from a gamma system, the result is the total plutonium mass. The system's lower limit of detection is as low as 2 mg of weapons grade plutonium, making it an ideal platform to make the TRU/LLW determination. Analysis of an assay is made with visual basic application driven subroutines and Micros oft Excel spreadsheets. Input values and calculations include: the raw neutron scaler and coincidence counts; mass fraction information; plutonium mass; alpha, total and TRU activity; thermal power, 239Pu Equivalent Curies; fissile gram equivalent mass; decay heat; and uncertainties associated with each parameter. A general diagnostic analysis is performed for each assay to facilitate a technical review of the results. The results of analysis from 372 waste drums are summarized. The results indicate that modifying current operating procedures involving the use of acceptable knowledge isotope data and use of the lower detection limit could increase the number of certifiable assays from 38% to 66%.

  6. Clinical evaluation of a type III secretion system real-time PCR assay for diagnosing melioidosis.

    PubMed

    Meumann, Ella M; Novak, Ryan T; Gal, Daniel; Kaestli, Mirjam E; Mayo, Mark; Hanson, Joshua P; Spencer, Emma; Glass, Mindy B; Gee, Jay E; Wilkins, Patricia P; Currie, Bart J

    2006-08-01

    A Burkholderia pseudomallei type III secretion system real-time PCR assay was evaluated on clinical specimens in a region where melioidosis is endemic. The PCR was positive in 30/33 (91%) patients with culture-confirmed melioidosis. All six patients with melioidosis septic shock were blood PCR positive, suggesting potential for rapid diagnosis and commencement of appropriate therapy.

  7. 21 CFR 862.3645 - Neuroleptic drugs radioreceptor assay test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neuroleptic drugs radioreceptor assay test system. 862.3645 Section 862.3645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.3645 - Neuroleptic drugs radioreceptor assay test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neuroleptic drugs radioreceptor assay test system. 862.3645 Section 862.3645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. Modeling Dilated Cardiomyopathies in Drosophila

    PubMed Central

    Wolf, Matthew J.

    2013-01-01

    Over the past hundred years, the fruit fly, Drosophila melanogaster, has provided tremendous insights into genetics and human biology. Drosophila-based research utilizes powerful, genetically-tractable approaches to identify new genes and pathways that potentially contribute to human diseases. New resources available in the fly research community have advanced the ability to examine genome-wide effects on cardiac function and facilitate the identification of structural, contractile, and signaling molecules that contribute to cardiomyopathies. This powerful model system continues to provide discoveries of novel genes and signaling pathways that are conserved among species and translatable to human pathophysiology. PMID:22863366

  10. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system

    PubMed Central

    Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.

    2015-01-01

    Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193

  11. Evaluation of Traditional Medicines for Neurodegenerative Diseases Using Drosophila Models

    PubMed Central

    Lee, Soojin; Bang, Se Min; Lee, Joon Woo; Cho, Kyoung Sang

    2014-01-01

    Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines. PMID:24790636

  12. Functional analysis and tissue-specific expression of Drosophila Na+,K+-ATPase subunits.

    PubMed

    Sun, B; Wang, W; Salvaterra, P M

    1998-07-01

    We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the beta subunits of Na+,K+-ATPase from various other species. In this study we have isolated a new Drosophila Na+,K+-ATPase alpha subunit cDNA clone (PSalpha; GenBank accession no. AF044974) and demonstrate expression of functional Na+,K+-ATPase activity when PSalpha mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+,K+-ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+,K+-ATPase expression in various cell and tissue types. PMID:9648860

  13. Amplification refractory mutation system PCR assays for the detection of variola and Orthopoxvirus.

    PubMed

    Pulford, David; Meyer, Hermann; Brightwell, Gale; Damon, Inger; Kline, Richard; Ulaeto, David

    2004-04-01

    PCR assays that can identify the presence of variola virus (VARV) sequences in an unknown DNA sample were developed using principles established for the amplification refractory mutation system (ARMS). The assay's specificity utilised unique single nucleotide polymorphisms (SNP) identified among Orthopoxvirus (OPV) orthologs of the vaccinia virus Copenhagen strain A13L and A36R genes. When a variola virus specific primer was used with a consensus primer in an ARMS assay with different Orthopoxvirus genomes, a PCR product was only amplified from variola virus DNA. Incorporating a second consensus primer into the assay produced a multiplex PCR that provided Orthopoxvirus generic and variola-specific products with variola virus DNA. We tested two single nucleotide polymorphisms with a panel of 43 variola virus strains, collected over 40 years from countries across the world, and have shown that they provide reliable markers for variola virus identification. The variola virus specific primers did not produce amplicons with either assay format when tested with 50 other Orthopoxvirus DNA samples. Our analysis shows that these two polymorphisms were conserved in variola virus genomes and provide a reliable signature of Orthopoxvirus species identification.

  14. Application of expert system technology to nondestructive waste assay - initial prototype model

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  15. Evaluation of Hologic Aptima HIV-1 Quant Dx Assay on the Panther System on HIV Subtypes.

    PubMed

    Manak, Mark M; Hack, Holly R; Nair, Sangeetha V; Worlock, Andrew; Malia, Jennifer A; Peel, Sheila A; Jagodzinski, Linda L

    2016-10-01

    Quantitation of the HIV-1 viral load in plasma is the current standard of care for clinical monitoring of HIV-infected individuals undergoing antiretroviral therapy. This study evaluated the analytical and clinical performances of the Aptima HIV-1 Quant Dx assay (Hologic, San Diego, CA) for monitoring viral load by using 277 well-characterized subtype samples, including 171 cultured virus isolates and 106 plasma samples from 35 countries, representing all major HIV subtypes, recombinants, and circulating recombinant forms (CRFs) currently in circulation worldwide. Linearity of the Aptima assay was tested on each of 6 major HIV-1 subtypes (A, B, C, D, CRF01_AE, and CRF02_AG) and demonstrated an R(2) value of ≥0.996. The performance of the Aptima assay was also compared to those of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 v.2 (CAP/CTM) and Abbott m2000 RealTime HIV-1 (RealTime) assays on all subtype samples. The Aptima assay values averaged 0.21 log higher than the CAP/CTM values and 0.30 log higher than the RealTime values, and the values were >0.4 log higher than CAP/CTM values for subtypes F and G and than RealTime values for subtypes C, F, and G and CRF02_AG. Two samples demonstrated results with >1-log differences from RealTime results. When the data were adjusted by the average difference, 94.9% and 87.0% of Aptima results fell within 0.5 log of the CAP/CTM and RealTime results, respectively. The linearity and accuracy of the Aptima assay in correctly quantitating all major HIV-1 subtypes, coupled with the completely automated format and high throughput of the Panther system, make this system well suited for reliable measurement of viral load in the clinical laboratory. PMID:27510829

  16. Evaluation of Hologic Aptima HIV-1 Quant Dx Assay on the Panther System on HIV Subtypes.

    PubMed

    Manak, Mark M; Hack, Holly R; Nair, Sangeetha V; Worlock, Andrew; Malia, Jennifer A; Peel, Sheila A; Jagodzinski, Linda L

    2016-10-01

    Quantitation of the HIV-1 viral load in plasma is the current standard of care for clinical monitoring of HIV-infected individuals undergoing antiretroviral therapy. This study evaluated the analytical and clinical performances of the Aptima HIV-1 Quant Dx assay (Hologic, San Diego, CA) for monitoring viral load by using 277 well-characterized subtype samples, including 171 cultured virus isolates and 106 plasma samples from 35 countries, representing all major HIV subtypes, recombinants, and circulating recombinant forms (CRFs) currently in circulation worldwide. Linearity of the Aptima assay was tested on each of 6 major HIV-1 subtypes (A, B, C, D, CRF01_AE, and CRF02_AG) and demonstrated an R(2) value of ≥0.996. The performance of the Aptima assay was also compared to those of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 v.2 (CAP/CTM) and Abbott m2000 RealTime HIV-1 (RealTime) assays on all subtype samples. The Aptima assay values averaged 0.21 log higher than the CAP/CTM values and 0.30 log higher than the RealTime values, and the values were >0.4 log higher than CAP/CTM values for subtypes F and G and than RealTime values for subtypes C, F, and G and CRF02_AG. Two samples demonstrated results with >1-log differences from RealTime results. When the data were adjusted by the average difference, 94.9% and 87.0% of Aptima results fell within 0.5 log of the CAP/CTM and RealTime results, respectively. The linearity and accuracy of the Aptima assay in correctly quantitating all major HIV-1 subtypes, coupled with the completely automated format and high throughput of the Panther system, make this system well suited for reliable measurement of viral load in the clinical laboratory.

  17. Examination of Endogenous Rotund Expression and Function in Developing Drosophila Olfactory System Using CRISPR-Cas9-Mediated Protein Tagging.

    PubMed

    Li, Qingyun; Barish, Scott; Okuwa, Sumie; Volkan, Pelin C

    2015-12-01

    The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc. PMID:26497147

  18. Examination of Endogenous Rotund Expression and Function in Developing Drosophila Olfactory System Using CRISPR-Cas9-Mediated Protein Tagging.

    PubMed

    Li, Qingyun; Barish, Scott; Okuwa, Sumie; Volkan, Pelin C

    2015-12-01

    The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.

  19. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila

    PubMed Central

    Saavedra, Pedro; Brittle, Amy; Palacios, Isabel M.; Strutt, David; Casal, José; Lawrence, Peter A.

    2016-01-01

    ABSTRACT The epidermal patterns of all three larval instars (L1–L3) of Drosophila are made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults. PMID:26935392

  20. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system.

    PubMed

    Beaven, Robin; Dzhindzhev, Nikola S; Qu, Yue; Hahn, Ines; Dajas-Bailador, Federico; Ohkura, Hiroyuki; Prokop, Andreas

    2015-04-15

    Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain-containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin-dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.

  1. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system

    PubMed Central

    Beaven, Robin; Dzhindzhev, Nikola S.; Qu, Yue; Hahn, Ines; Dajas-Bailador, Federico; Ohkura, Hiroyuki; Prokop, Andreas

    2015-01-01

    Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons. PMID:25694447

  2. Remote-controlled NDA (nondestructive assay) systems for process areas in a MOX (mixed oxide) facility

    SciTech Connect

    Miller, M.C.; Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.

    1989-01-01

    Nondestructive assay (NDA) systems have been designed and installed in the process area of an automated mixed-oxide (MOX) fuel fabrication facility. These instruments employ neutron coincidence counting methods to measure the spontaneous-fission rate of plutonium in the powders, pellets, and fuel pins in the process area. The spontaneous fission rate and the plutonium isotopic ratios determine the mass of plutonium in the sample. Measurements can be either attended or unattended. The fuel-pin assay system (FPAS) resides above the robotic conveyor system and measures the plutonium content in fuel-pin trays containing up to 24 pins (/approximately/1 kg of plutonium). The material accountancy glove-box (MAGB) counters consist of two slab detectors mounted on the sides of the glove box to measure samples of powder or pellets as they are brought to the load cell. Samples measured by the MAGB counters may contain up to 18 kg of MOX. This paper describes the design and performance of four systems: the fuel-pin assay system and three separate MAGB systems. The paper also discusses the role of Monte Carlo transport techniques in the detector design and subsequent instrument calibration. 5 refs., 11 figs., 6 tabs.

  3. A new in vitro hemagglutinin inhibitor screening system based on a single-vesicle fusion assay

    PubMed Central

    Lee, Hanki; Jin, Wook; Jeong, Byeong-Chul; Suh, Joo-Won

    2016-01-01

    Hemagglutinin (HA) from the influenza virus plays a pivotal role in the infection of host mammalian cells and is, therefore, a druggable target, similar to neuraminidase. However, research involving the influenza virus must be conducted in facilities certified at or above Biosafety Level 2 because of the potential threat of the contagiousness of this virus. To develop a new HA inhibitor screening system without intact influenza virus, we conceived a single-vesicle fusion assay using full-length recombinant HA. In this study, we first showed that full-length recombinant HA can mediate membrane fusion in ensemble and single-vesicle fusion assays. The fluorescence resonance energy transfer (FRET) frequency pattern of single-vesicle complexes completely differed when the inhibitors targeted the HA1 or HA2 domain of HA. This result indicates that analysing the FRET patterns in this assay can provide information regarding the domains of HA inhibited by compounds and compounds’ inhibitory activities. Therefore, our results suggest that the assay developed here is a promising tool for the discovery of anti-influenza virus drug candidates as a new in vitro inhibitor screening system against HA from the influenza virus. PMID:27469068

  4. Macrophages and cellular immunity in Drosophila melanogaster.

    PubMed

    Gold, Katrina S; Brückner, Katja

    2015-12-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  5. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and

  6. Drosophila neural stem cells in brain development and tumor formation.

    PubMed

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  7. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system

    PubMed Central

    Rogulja-Ortmann, Ana; Picao-Osorio, Joao; Villava, Casandra; Patraquim, Pedro; Lafuente, Elvira; Aspden, Julie; Thomsen, Stefan; Technau, Gerhard M.; Alonso, Claudio R.

    2014-01-01

    The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation. PMID:24803653

  8. Evaluation of a rat tracheal epithelial cell culture assay system to identify respiratory carcinogens

    SciTech Connect

    Steele, V.E.; Arnold, J.T.; Arnold, J.V.; Mass, M.J. )

    1989-01-01

    To evaluate a short-term epithelial cell assay system to detect respiratory carcinogens, primary cultures of rat tracheal epithelial cells were exposed to a series of 17 compounds and scored for morphologically transformed cell colonies 28 days later. The test compounds included known carcinogens and noncarcinogens in volatile or liquid form. Tracheal epithelial cells were isolate from F344 rats, plated onto collagen-coated dishes, and exposed to the test compounds on day 1 for 24 hours. At day 30 the cultures were fixed, stained, and scored for colonies having a density greater than 1,300 cells/mm{sup 2}. With standardized protocols, such colonies are very infrequent in media and solvent control cultures. Concentration levels for each chemical were chosen over a range from nontoxic to toxic levels. Highly positive compounds in this assay included benzo(a)pyrene, benzo(l)aceanthrylene, 3-methylcholanthrene, and formaldehyde. Compounds which were negative in this assay included pyrene, benzo(e)pyrene, and 4-nitroquinoline-N-oxide. Examining the concordance of in vitro results with whole animal carcinogenesis studies revealed an accuracy of 88% with one false-positive and one false-negative compound. The results of these studies indicate that the rat tracheal epithelial cell assay may be useful in identifying potential respiratory carcinogens in our environment.

  9. Methods for quantifying simple gravity sensing in Drosophila melanogaster.

    PubMed

    Inagaki, Hidehiko K; Kamikouchi, Azusa; Ito, Kei

    2010-01-01

    Perception of gravity is essential for animals: most animals possess specific sense organs to detect the direction of the gravitational force. Little is known, however, about the molecular and neural mechanisms underlying their behavioral responses to gravity. Drosophila melanogaster, having a rather simple nervous system and a large variety of molecular genetic tools available, serves as an ideal model for analyzing the mechanisms underlying gravity sensing. Here we describe an assay to measure simple gravity responses of flies behaviorally. This method can be applied for screening genetic mutants of gravity perception. Furthermore, in combination with recent genetic techniques to silence or activate selective sets of neurons, it serves as a powerful tool to systematically identify neural substrates required for the proper behavioral responses to gravity. The assay requires 10 min to perform, and two experiments can be performed simultaneously, enabling 12 experiments per hour.

  10. A state-of-the-art passive gamma-ray assay system

    SciTech Connect

    Sampson, T.E.; Parker, J.L.; Cowder, L.R.; Kern, E.A.; Garcia, D.L.; Ensslin, N.

    1987-01-01

    We report details of the development of a high-accuracy, high-precision system for the non-destructive assay of /sup 235/U in solution. The system can measure samples with concentrations ranging from 0.0001 to 500 g /sup 235/U/l using 200-ml samples at low concentrations, 30-ml samples at high concentrations, and 1000-s measurement times. The accuracy and precision goals of 0.1% were essentially attained for concentrations above 100 g/l. This at-line system, designed for a production plant environment, represents a significant improvement in the state of the art.

  11. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays.

    PubMed

    Barrientos, Antoni; Fontanesi, Flavia; Díaz, Francisca

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. For this reason, several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, the assays describe methods that form a biochemical characterization of the OXPHOS system in cells and mitochondria isolated from cultured cells or tissues.

  12. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    SciTech Connect

    WESTSIK, G.A.

    2001-06-06

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a container, particularly for low to medium density (0-2.5 g/cc) container matrices. The SGSAS system provides a full gamma characterization of the container content. This document is an edited version of the Rocky Flats TMU Report for the Can Scan Segment Gamma Scanners, which are in use for the plutonium residues projects at the Rocky Flats plant. The can scan segmented gamma scanners at Rocky Flats are the same design as the PFP SGSAS system and use the same software (with the exception of the plutonium isotopics software). Therefore, all performance characteristics are expected to be similar. Modifications in this document reflect minor differences in the system configuration, container packaging, calibration technique, etc. These results are supported by the Quality Assurance Objective (QAO) counts, safeguards test data, calibration data, etc. for the PFP SGSAS system. Other parts of the TMU analysis utilize various modeling techniques such as Monte Carlo N

  13. Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays

    SciTech Connect

    Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.

    1994-08-01

    Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gamma spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.

  14. The use of a mutationally unstable X-chromosome in Drosophila melanogaster for mutagenicity testing.

    PubMed

    Rasmuson, B; Svahlin, H; Rasmuson, A; Montell, I; Olofsson, H

    1978-08-01

    Somatic eye-colour mutations in an unstable genetic system, caused by a transposable element in the white locus of the X-chromosome in Drosophila melanogaster, is suggested as an assay system for mutagenicity testing. The system is evaluated by comparison with a corresponding system in a stable X-chromosome. Its sensitivity is confirmed with X-ray and EMS treatment, and it is found to be confined to the specific segment of the X-chromosome where the transposable element is localized. PMID:97525

  15. Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System

    PubMed Central

    Bahrampour, Shahrzad; Thor, Stefan

    2016-01-01

    The Paf1 protein complex (Paf1C) is increasingly recognized as a highly conserved and broadly utilized regulator of a variety of transcriptional processes. These include the promotion of H3K4 and H3K36 trimethylation, H2BK123 ubiquitination, RNA Pol II transcriptional termination, and also RNA-mediated gene silencing. Paf1C contains five canonical protein components, including Paf1 and Ctr9, which are critical for overall complex integrity, as well as Rtf1, Leo1, and Cdc73/Parafibromin(Hrpt2)/Hyrax. In spite of a growing appreciation for the importance of Paf1C from yeast and mammalian studies, there has only been limited work in Drosophila. Here, we provide the first detailed phenotypic study of Ctr9 function in Drosophila. We found that Ctr9 mutants die at late embryogenesis or early larval life, but can be partly rescued by nervous system reexpression of Ctr9. We observed a number of phenotypes in Ctr9 mutants, including increased neuroblast numbers, increased nervous system proliferation, as well as downregulation of many neuropeptide genes. Analysis of cell cycle and regulatory gene expression revealed upregulation of the E2f1 cell cycle factor, as well as changes in Antennapedia and Grainy head expression. We also found reduction of H3K4me3 modification in the embryonic nervous system. Genome-wide transcriptome analysis points to additional downstream genes that may underlie these Ctr9 phenotypes, revealing gene expression changes in Notch pathway target genes, cell cycle genes, and neuropeptide genes. In addition, we find significant effects on the gene expression of metabolic genes. These findings reveal that Ctr9 is an essential gene that is necessary at multiple stages of nervous system development, and provides a starting point for future studies of the Paf1C in Drosophila. PMID:27520958

  16. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays.

    PubMed

    Lin, Yi-wen; Li, Dan; Gu, April Z; Zeng, Si-yu; He, Miao

    2016-02-01

    Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages.

  17. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  18. LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator

    PubMed Central

    Szüts, David; Bienz, Mariann

    2000-01-01

    The transcriptional activation potential of proteins can be assayed in chimeras containing a heterologous DNA-binding domain that mediates their recruitment to reporter genes. This approach has been widely used in yeast and in transient mammalian cell assays. Here, we applied it to assay the transactivation potential of proteins in transgenic Drosophila embryos. We found that a chimera between the DNA-binding bacterial LexA protein and the transactivation domain from yeast GAL4 behaved as a potent synthetic activator in all embryonic tissues. In contrast, a LexA chimera containing Drosophila Fos (Dfos) required an unexpected degree of context to function as a transcriptional activator. We provide evidence to suggest that this context is provided by Djun and Mad (a Drosophila Smad), and that these partner factors need to be activated by signaling from Jun N-terminal kinase and decapentaplegic, respectively. Because Dfos behaves as an autonomous transcriptional activator in more artificial assays systems, our data suggest that context-dependence of transcription factors may be more prevalent than previously thought. PMID:10805795

  19. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    SciTech Connect

    Taxvig, Camilla Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.

  20. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    PubMed Central

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  1. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells

    PubMed Central

    Ramirez, Juanma; Martinez, Aitor; Lectez, Benoit; Lee, So Young; Franco, Maribel; Barrio, Rosa; Dittmar, Gunnar; Mayor, Ugo

    2015-01-01

    Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system. PMID:26460970

  2. Microtubule-dependent apical restriction of recycling endosomes sustains adherens junctions during morphogenesis of the Drosophila tracheal system.

    PubMed

    Le Droguen, Pierre-Marie; Claret, Sandra; Guichet, Antoine; Brodu, Véronique

    2015-01-15

    Epithelial remodelling is an essential mechanism for organogenesis, during which cells change shape and position while maintaining contact with each other. Adherens junctions (AJs) mediate stable intercellular cohesion but must be actively reorganised to allow morphogenesis. Vesicle trafficking and the microtubule (MT) cytoskeleton contribute to regulating AJs but their interrelationship remains elusive. We carried out a detailed analysis of the role of MTs in cell remodelling during formation of the tracheal system in the Drosophila embryo. Induction of MT depolymerisation specifically in tracheal cells shows that MTs are essential during a specific time frame of tracheal cell elongation while the branch extends. In the absence of MTs, one tracheal cell per branch overelongates, ultimately leading to branch break. Three-dimensional quantifications revealed that MTs are crucial to sustain E-Cadherin (Shotgun) and Par-3 (Bazooka) levels at AJs. Maintaining E-Cadherin/Par-3 levels at the apical domain requires de novo synthesis rather than internalisation and recycling from and to the apical plasma membrane. However, apical targeting of E-Cadherin and Par-3 requires functional recycling endosomes, suggesting an intermediate role for this compartment in targeting de novo synthesized E-Cadherin to the plasma membrane. We demonstrate that apical enrichment of recycling endosomes is dependent on the MT motor Dynein and essential for the function of this vesicular compartment. In addition, we establish that E-Cadherin dynamics and MT requirement differ in remodelling tracheal cells versus planar epithelial cells. Altogether, our results uncover an MT-Dynein-dependent apical restriction of recycling endosomes that controls adhesion by sustaining Par-3 and E-Cadherin levels at AJs during morphogenesis.

  3. Quantifying Drosophila food intake: comparative analysis of current methodology

    PubMed Central

    Deshpande, Sonali A.; Carvalho, Gil B.; Amador, Ariadna; Phillips, Angela M.; Hoxha, Sany; Lizotte, Keith J.; Ja, William W.

    2014-01-01

    Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the Capillary Feeder (CAFE), food-labeling with a radioactive tracer or a colorimetric dye, and observations of proboscis extension (PE). We show that the CAFE and radioisotope-labeling provide the most consistent results, have the highest sensitivity, and can resolve differences in feeding that dye-labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of food intake methodology will greatly advance Drosophila studies of nutrition, behavior, and disease. PMID:24681694

  4. Assaying Proteasomal Degradation in a Cell-free System in Plants

    PubMed Central

    García-Cano, Elena; Zaltsman, Adi; Citovsky, Vitaly

    2014-01-01

    The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions. The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions. PMID:24747194

  5. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    PubMed

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. PMID:24001430

  6. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    PubMed

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo.

  7. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  8. Diagnosis of intestinal acariasis with avidin-biotin system enzyme-linked immunosorbent assay

    PubMed Central

    Zhang, Rong-Bo; Huang, Yong; Li, Chao-Pin; Cui, Yu-Bao

    2004-01-01

    AIM: To explore the value of avidin-biotin system enzyme-linked immunosorbent assay (ABC-ELISA) in diagnosis of intestinal acariasis. METHODS: Mite-specific IgG levels in serum of 48 patients with intestinal acariasis were measured with ABC-ELISA. The sensitivity of this method was compared with that of staphylococcal protein A enzyme-linked immunosorbent assay (SPA-ELISA). RESULTS: The positive rate of mite-specific IgG detected with ABC-ELISA and SPA-ELISA was 89.58% (43/48) and 56.25% (27/48), respectively. The positive rate with ABC-ELISA was statistically higher than that with SPA-ELISA (χ2 = 13.50, P < 0.01). CONCLUSION: ABC-ELISA is an effective method for the diagnosis of intestinal acariasis. PMID:15112362

  9. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    SciTech Connect

    Schaff, Ulrich Y; Koh, Chung-Yan; Sommer, Gregory J

    2015-02-24

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  10. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y.; Koh, Chung-Yan; Sommer, Gregory J.

    2016-04-05

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  11. Influence of hydrodynamic conditions on quantitative cellular assays in microfluidic systems.

    PubMed

    Yin, Huabing; Zhang, Xunli; Pattrick, Nicola; Klauke, Norbert; Cordingley, Hayley C; Haswell, Stephen J; Cooper, Jonathan M

    2007-09-15

    This study demonstrates the importance of the hydrodynamic environment in microfluidic systems in quantitative cellular assays using live cells. Commonly applied flow conditions used in microfluidics were evaluated using the quantitative intracellular Ca2+ analysis of Chinese hamster ovary (CHO) cells as a model system. Above certain thresholds of shear stress, hydrodynamically induced intracellular Ca2+ fluxes were observed which mimic the responses induced by chemical stimuli, such as the agonist uridine 5'-triphosphate tris salt (UTP). This effect is of significance given the increasing application of microfluidic devices in high-throughput cellular analysis for biophysical applications and pharmacological screening.

  12. Proficiency test for non-destructive assay of 220 liter radioactive waste drums by gamma assay systems

    SciTech Connect

    Van Velzen, L.P.M.; Bruggeman, M.; Botte, J.

    2007-07-01

    The European Network of Testing Facilities for the Quality Checking of Radioactive Waste Packages (ENTRAP) initiated a feasibility study on how to organize in the most cost effective way an international proficiency tests for non-destructive, gamma-ray based, assay of 220 liter radioactive waste drums in the European Union at a regular time interval of 2 or 3 years. This feasibility study addresses all aspects of proficiency testing on radioactive waste packages including the design of a commonly accepted reference 220 liter drum. This design, based on the international response on a send out questionnaire, includes matrixes, radioactive sources; a solution to overcome the tedious and expensive international transport costs of real or even simulated waste packages, general cost estimation for the organization of, and the participation in the proficiency test. The proposed concept for the proficiency testing and the estimated costs are presented. The participation costs of the first proficiency test are mainly determined by the manufacturing of the non-radioactive 220 liter drum ({+-} 55%). Applied reference sources, transport of the drum and reference sources and participation costs in the proficiency test contribute each about {+-} 15%. (authors)

  13. An Investigation of the Components of SEGREGATION-DISTORTER Systems in DROSOPHILA MELANOGASTER

    PubMed Central

    Miklos, George L. Gabor

    1972-01-01

    The problems of the Segregation-Distorter system are approached and unified in terms of an orthodox quantitative genetic system. It is shown that the SD system involves positive and negative modifier genes of varying strengths, that there is no major Stabiliser gene, and that the Activator gene is not unique. It is further argued that the SD phenomenon is mainly male limited, with "female effects" being of small magnitude. PMID:4623518

  14. Bulk-assay calorimeter: Part 1. System design and operation. Part 2. Calibration and testing

    SciTech Connect

    Perry, R.B.; Roche, C.T.; Harkness, A.L.; Winslow, G.H.; Youngdahl, G.A.; Lewis, R.N.; Jung, E.A.

    1982-01-01

    The Bulk-Assay Calorimeter is designed to measure the thermal power emitted by plutonium-containing samples. The sample power range of the instrument is 1.4 to 22.4 W. The instrument package consists of the calorimeter measurement chamber, the control circuit power bin, and the data acquisition system. Two sample preheating chambers and five calorimeter canisters for containing the samples are included. A set of 32 test points which monitor voltages at points within the calorimeter and its control circuitry are accessed by the data acquisition system. The use of the test points is described. System start-up and checkout are described. Sample assay and preheater operation procedures are given. The data acquisition system and data analysis software are described. The calorimeter was calibrated at 23 points with heat sources from 1.4 to 22.4 watts. The combined measurement error varied with sample power from 1.4% to 0.1% over the range of calibration measurements. Circuit diagrams for the calorimeter and schematics for the data acquisition system are included. (LEW)

  15. Effects of Spaceflight on Drosophila Neural Development

    NASA Technical Reports Server (NTRS)

    Keshishian, Haig S.

    1997-01-01

    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  16. A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults.

    PubMed

    Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H

    2015-08-01

    The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.

  17. Invagination centers within the Drosophila stomatogastric nervous system anlage are positioned by Notch-mediated signaling which is spatially controlled through wingless.

    PubMed

    González-Gaitán, M; Jäckle, H

    1995-08-01

    The gut-innervating stomatogastric nervous system of Drosophila, unlike the central and the peripheral nervous system, derives from a compact, single layered epithelial anlage. Here we report how this anlage is initially defined during embryogenesis by the expression of proneural genes of the achaete-scute complex in response to the maternal terminal pattern forming system. Within the stomatogastric nervous system anlage, the wingless-dependent intercellular communication system adjusts the cellular range of Notch-dependent lateral inhibition to single-out three achaete-expressing cells. Those cells define distinct invagination centers which orchestrate the behavior of neighboring cells to form epithelial infoldings, each headed by an achaete-expressing tip cell. Our results suggest that the wingless pathway acts not as an instructive signal, but as a permissive factor which coordinates the spatial activity of morphoregulatory signals within the stomatogastric nervous system anlage.

  18. Drosophila RNAi screening in a postgenomic world

    PubMed Central

    2011-01-01

    Drosophila melanogaster has a long history as a model organism with several unique features that make it an ideal research tool for the study of the relationship between genotype and phenotype. Importantly fundamental genetic principles as well as key human disease genes have been uncovered through the use of Drosophila. The contribution of the fruit fly to science and medicine continues in the postgenomic era as cell-based Drosophila RNAi screens are a cost-effective and scalable enabling technology that can be used to quantify the contribution of different genes to diverse cellular processes. Drosophila high-throughput screens can also be used as integral part of systems-level approaches to describe the architecture and dynamics of cellular networks. PMID:21752787

  19. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals.

  20. β-D-Glucan Assay in Diagnosis and Monitoring the Systemic Candidiasis in a Rat Model

    PubMed Central

    Khodadadi, Hossein; Mirhendi, Hossein; Makimura, Koichi; Satoh, Kazuo; Karimi, Ladan; Izadi, Shahrokh

    2014-01-01

    Background: Determination of β-D-Glucan (BDG) in the serum aids to diagnose the invasive fungal infections. The current study evaluated the diagnostic potential value of BDG assay in monitoring the disease in experimental systemic candidiasis in a rat model. The results can provide a useful preliminary data to improve this approach in developing countries. Objectives: The present study aimed to evaluate β-D-Glucan assay in diagnosis and monitoring the systemic candidiasis in a rat model. Materials and Methods: Twenty one rats were infected with 106 Candida albicans blastospore per rat. Twelve rats were considered as the negative controls (six immunocompromised rats without infection and six intact rats). During a week, every 24 hours the BDG sera level was determined by both Fungitell and Wako kits. To confirm the systemic infection in each rat, the suspensions of their internal organs were cultivated on agar plates and the number of colony forming units (CFU) of C. albicans was counted. Results: All the infected rats were positive with BDG tests. An increasing level of BDG was observed during early days after injection. The cutoff value for discrimination of BDG positive sera was obtained from the negative sera by the Fungitell kit. The sensitivity, specificity, positive and negative predictive values assessed for the Fungitell kit were 95%, 66.6%, 90.47% and 80%, respectively. These criteria for those of Wako were 90%, 83.3%, 94.7% and 71.4%, respectively. Conclusions: While BDG assay seems to be a sensitive and specific adjunctive tool to diagnose and monitor the experimental systemic candidiasis, it seems that measuring the positive cutoff value in different laboratory conditions is necessary for favorable establishment of these tests. PMID:25371794

  1. Somatic-cell mutation induced by short exposures to cigarette smoke in urate-null, oxidative stress-sensitive Drosophila.

    PubMed

    Uchiyama, Tomoyo; Koike, Ryota; Yuma, Yoko; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Suzuki, Toshinori; Negishi, Tomoe

    2016-01-01

    We previously reported that a urate-null strain of Drosophila is hypersensitive to cigarette smoke (CS), and we suggested that CS induces oxidative stress in Drosophila because uric acid is a potent antioxidant. Although the carcinogenic risk of CS exposure is widely recognized; documentation of in vivo genotoxic activity of environmental CS, especially gaseous-phase CS, remains inconclusive. To date, somatic-cell mutations in Drosophila resulting from exposure to CS have not been detected via the somatic mutation and recombination test (wing spot test) with wild-type flies, a widely used Drosophila assay for the detection of somatic-cell mutation; moreover, genotoxicity has not been documented via a DNA repair test that involves DNA repair-deficient Drosophila. In this study, we used a new Drosophila strain (y v ma-l; mwh) to examine the mutagenicity induced by gaseous-phase CS; these flies are urate-null due to a mutation in ma-l, and they are heterozygous for multiple wing hair (mwh), a mutation that functions as a marker for somatic-cell mutation. In an assay with this newly developed strain, a superoxide anion-producing weed-killer, paraquat, exhibited significant mutagenicity; in contrast, paraquat was hardly mutagenic with a wild-type strain. Drosophila larvae were exposed to CS for 2, 4 or 6h, and then kept at 25°C on instant medium until adulthood. After eclosion, mutant spots, which consisted of mutant hairs on wings, were scored. The number of mutant spots increased significantly in an exposure time-dependent manner in the urate-null females (ma-l (-/-)), but not in the urate-positive females (ma-l (+/-)). In this study, we showed that short-term exposure to CS was mutagenic in this in vivo system. In addition, we obtained suggestive data regarding reactive oxygen species production in larva after CS exposure using the fluorescence probe H2DCFDA. These results suggest that oxidative damage, which might be countered by uric acid, was partly responsible

  2. The skeletomuscular system of the larva of Drosophila melanogaster (Drosophilidae, Diptera): a contribution to the morphology of a model organism.

    PubMed

    Wipfler, Benjamin; Schneeberg, Katharina; Löffler, Andreas; Hünefeld, Frank; Meier, Rudolf; Beutel, Rolf G

    2013-01-01

    The morphological features of the third instar larva of the most important insect model, Drosophila melanogaster, are documented for the first time using a broad spectrum of modern morphological techniques. External structures of the body wall, the cephaloskeleton, and the musculature are described and illustrated. Additional information about other internal organs is provided. The systematic implications of the findings are discussed briefly. Internal apomorphic features of Brachycera and Cyclorrhapha are confirmed for Drosophila. Despite the intensive investigations of the phylogeny of the megadiverse Diptera, evolutionary reconstructions are still impeded by the scarcity of anatomical data for brachyceran larvae. The available morphological information for the life stages of three insect model organisms -D. melanogaster (Diptera, Drosophilidae), Manduca sexta (Lepidoptera, Sphingidae) and Tribolium castaneum (Coleoptera, Tenebrionidae) - is addressed briefly. The usefulness of a combination of traditional and innovative techniques for an optimized acquisition of anatomical data for different life stages is highlighted. PMID:23010508

  3. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3

    PubMed Central

    Kim, Jung; Neufeld, Thomas P.

    2015-01-01

    Secreted ligands of the insulin family promote cell growth and maintain sugar homeostasis. Insulin release is tightly regulated in response to dietary conditions, but how insulin producing cells (IPCs) coordinate their responses to distinct nutrient signals is unclear. Here, we show that regulation of insulin secretion in Drosophila larvae has been segregated into distinct branches: whereas amino acids promote secretion of Drosophila insulin-like peptide 2 (Dilp2), circulating sugars promote selective release of Dilp3. Dilp3 is uniquely required for sugar-mediated activation of TOR signaling and suppression of autophagy in the larval fat body. Sugar levels are not sensed directly by the IPCs, but rather by the adipokinetic hormone (AKH)-producing cells of the corpora cardiaca, and we demonstrate that AKH signaling is required in the IPCs for sugar-dependent Dilp3 release. Thus, IPCs integrate multiple cues to regulate secretion of distinct insulin subtypes under varying nutrient conditions. PMID:25882208

  4. The development of an expert system for the characterization of waste assay data

    SciTech Connect

    Bridges, S.; Hodges, J.; Sparrow, C.

    1997-11-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs.

  5. The Drosophila CPEB Protein Orb2 Has a Novel Expression Pattern and Is Important for Asymmetric Cell Division and Nervous System Function

    PubMed Central

    Hafer, Nathaniel; Xu, Shuwa; Bhat, Krishna Moorthi; Schedl, Paul

    2011-01-01

    Cytoplasmic polyadenylation element binding (CPEB) proteins bind mRNAs to regulate their localization and translation. While the first CPEBs discovered were germline specific, subsequent studies indicate that CPEBs also function in many somatic tissues including the nervous system. Drosophila has two CPEB family members. One of these, orb, plays a key role in the establishment of polarity axes in the developing egg and early embryo, but has no known somatic functions or expression outside of the germline. Here we characterize the other Drosophila CPEB, orb2. Unlike orb, orb2 mRNA and protein are found throughout development in many different somatic tissues. While orb2 mRNA and protein of maternal origin are distributed uniformly in early embryos, this pattern changes as development proceeds and by midembryogenesis the highest levels are found in the CNS and PNS. In the embryonic CNS, Orb2 appears to be concentrated in cell bodies and mostly absent from the longitudinal and commissural axon tracts. In contrast, in the adult brain, the protein is seen in axonal and dendritic terminals. Lethal effects are observed for both RNAi knockdowns and orb2 mutant alleles while surviving adults display locomotion and behavioral defects. We also show that orb2 funtions in asymmetric division of stem cells and precursor cells during the development of the embryonic nervous system and mesoderm. PMID:21900268

  6. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems

    PubMed Central

    Totsuka, Yukari; Higuchi, Takashi; Imai, Toshio; Nishikawa, Akiyoshi; Nohmi, Takehiko; Kato, Tatsuya; Masuda, Shuich; Kinae, Naohide; Hiyoshi, Kyoko; Ogo, Sayaka; Kawanishi, Masanobu; Yagi, Takashi; Ichinose, Takamichi; Fukumori, Nobutaka; Watanabe, Masatoshi; Sugimura, Takashi; Wakabayashi, Keiji

    2009-01-01

    Background Recently, manufactured nano/microparticles such as fullerenes (C60), carbon black (CB) and ceramic fiber are being widely used because of their desirable properties in industrial, medical and cosmetic fields. However, there are few data on these particles in mammalian mutagenesis and carcinogenesis. To examine genotoxic effects by C60, CB and kaolin, an in vitro micronuclei (MN) test was conducted with human lung cancer cell line, A549 cells. In addition, DNA damage and mutations were analyzed by in vivo assay systems using male C57BL/6J or gpt delta transgenic mice which were intratracheally instilled with single or multiple doses of 0.2 mg per animal of particles. Results In in vitro genotoxic analysis, increased MN frequencies were observed in A549 cells treated with C60, CB and kaolin in a dose-dependent manner. These three nano/microparticles also induced DNA damage in the lungs of C57BL/6J mice measured by comet assay. Moreover, single or multiple instillations of C60 and kaolin, increased either or both of gpt and Spi- mutant frequencies in the lungs of gpt delta transgenic mice. Mutation spectra analysis showed transversions were predominant, and more than 60% of the base substitutions occurred at G:C base pairs in the gpt genes. The G:C to C:G transversion was commonly increased by these particle instillations. Conclusion Manufactured nano/microparticles, CB, C60 and kaolin, were shown to be genotoxic in in vitro and in vivo assay systems. PMID:19725983

  7. Yolk proteins in the male reproductive system of the fruit fly Drosophila melanogaster: spatial and temporal patterns of expression.

    PubMed

    Majewska, Magdalena M; Suszczynska, Agnieszka; Kotwica-Rolinska, Joanna; Czerwik, Tomasz; Paterczyk, Bohdan; Polanska, Marta A; Bernatowicz, Piotr; Bebas, Piotr

    2014-04-01

    In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of

  8. Limited taste discrimination in Drosophila.

    PubMed

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  9. Multiple sites of adaptation lead to contrast encoding in the Drosophila olfactory system.

    PubMed

    Cafaro, Jon

    2016-04-01

    Animals often encounter large increases in odor intensity that can persist for many seconds. These increases in the background odor are often accompanied by increases in the variance of the odor stimulus. Previous studies have shown that a persistent odor stimulus (odor background) results in a decrease in the response to brief odor pulses in the olfactory receptor neurons (ORNs). However, the contribution of adapting mechanisms beyond theORNs is not clear. Thus, it is unclear how adaptive mechanisms are distributed within the olfactory circuit and what impact downstream adaptation may have on the encoding of odor stimuli. In this study, adaptation to the same odor stimulus is examined at multiple levels in the well studied and accessibleDrosophilaolfactory system. The responses of theORNs are compared to the responses of the second order, projection neurons (PNs), directly connected to them. Adaptation inPNspike rate was found to be much greater than adaptation in theORNspike rate. This greater adaptation allowsPNs to encode odor contrast (ratio of pulse intensity to background intensity) with little ambiguity. Moreover, distinct neural mechanisms contribute to different aspects of adaptation; adaptation to the background odor is dominated by adaptation in spike generation in bothORNs andPNs, while adaptation to the odor pulse is dominated by changes within olfactory transduction and the glomerulus. These observations suggest that the olfactory system adapts at multiple sites to better match its response gain to stimulus statistics. PMID:27053295

  10. Multiple sites of adaptation lead to contrast encoding in the Drosophila olfactory system.

    PubMed

    Cafaro, Jon

    2016-04-01

    Animals often encounter large increases in odor intensity that can persist for many seconds. These increases in the background odor are often accompanied by increases in the variance of the odor stimulus. Previous studies have shown that a persistent odor stimulus (odor background) results in a decrease in the response to brief odor pulses in the olfactory receptor neurons (ORNs). However, the contribution of adapting mechanisms beyond theORNs is not clear. Thus, it is unclear how adaptive mechanisms are distributed within the olfactory circuit and what impact downstream adaptation may have on the encoding of odor stimuli. In this study, adaptation to the same odor stimulus is examined at multiple levels in the well studied and accessibleDrosophilaolfactory system. The responses of theORNs are compared to the responses of the second order, projection neurons (PNs), directly connected to them. Adaptation inPNspike rate was found to be much greater than adaptation in theORNspike rate. This greater adaptation allowsPNs to encode odor contrast (ratio of pulse intensity to background intensity) with little ambiguity. Moreover, distinct neural mechanisms contribute to different aspects of adaptation; adaptation to the background odor is dominated by adaptation in spike generation in bothORNs andPNs, while adaptation to the odor pulse is dominated by changes within olfactory transduction and the glomerulus. These observations suggest that the olfactory system adapts at multiple sites to better match its response gain to stimulus statistics.

  11. Development of a versatile and stable internal control system for RT-qPCR assays.

    PubMed

    Felder, Eva; Wölfel, Roman

    2014-11-01

    RT-qPCR, an established method for the detection of RNA viruses, requires internal RNA controls for the correct interpretation of PCR results. Robust and versatile RT-PCR controls can be achieved for example by packaging RNA into a virus-derived protein shell. In this study a MS2-based internal control system was developed, that allows stable and universal packing of different RNAs into non-infectious, non-lytic MS2-based viral like particles (VLPs). Two competitive internal controls for a hantavirus assay and a Crimean-Congo Hemorrhagic Fever Virus (CCHFV) assay were cloned for the expression of VLPs. The expression of VLPs containing the RNA of interest could be induced with arabinose in Escherichia coli. The VLPs proved to be temperature resistant and could be frozen and thawed several times without degradation. Distinction of IC RNA from the target RNA was facilitated by a clear shift in the melting temperature or by specific hybridization signals. Furthermore, target and IC PCR amplification could be easily distinguished by their size in gel-electrophoretic analyses. Limits of detection were determined, demonstrating that the application of the IC did not reduce the sensitivity of the target RT-qPCR reactions. The system can be adapted to nearly any required sequence, resulting in a highly flexible method with broad range applications.

  12. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system

    PubMed Central

    Hjerrild, Kathryn A.; Jin, Jing; Wright, Katherine E.; Brown, Rebecca E.; Marshall, Jennifer M.; Labbé, Geneviève M.; Silk, Sarah E.; Cherry, Catherine J.; Clemmensen, Stine B.; Jørgensen, Thomas; Illingworth, Joseph J.; Alanine, Daniel G. W.; Milne, Kathryn H.; Ashfield, Rebecca; de Jongh, Willem A.; Douglas, Alexander D.; Higgins, Matthew K.; Draper, Simon J.

    2016-01-01

    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS2, based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of ‘difficult-to-make’ proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen. PMID:27457156

  13. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms.

    PubMed

    Lang, Minglin; Fan, Qiangwang; Wang, Lei; Zheng, Yajun; Xiao, Guiran; Wang, Xiaoxi; Wang, Wei; Zhong, Yi; Zhou, Bing

    2013-11-01

    Disruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.

  14. Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene.

    PubMed

    Haigh, Sarah E; Salvi, Sheetal S; Sevdali, Maria; Stark, Meg; Goulding, David; Clayton, Jonathan D; Bullard, Belinda; Sparrow, John C; Nongthomba, Upendra

    2010-06-01

    Most human ACTA1 skeletal actin gene mutations cause dominant, congenital myopathies often with severely reduced muscle function and neonatal mortality. High sequence conservation of actin means many mutated ACTA1 residues are identical to those in the DrosophilaAct88F, an indirect flight muscle specific sarcomeric actin. Four known Act88F mutations occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for similar muscle phenotypes. Mutant homozygotes show phenotypes ranging from a lack of myofibrils to almost normal sarcomeres at eclosion. Aberrant Z-disc-like structures and serial Z-disc arrays, 'zebra bodies', are observed in homozygotes and heterozygotes of all four Act88F mutants. These electron-dense structures show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. We conclude that the Drosophila indirect flight muscles provide a good model system for studying ACTA1 mutations. PMID:20452215

  15. Assessing Basal and Acute Autophagic Responses in the Adult Drosophila Nervous System: The Impact of Gender, Genetics and Diet on Endogenous Pathway Profiles

    PubMed Central

    Molina, Brandon; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; El-Mecharrafie, Nadja; Garza, Shannon; Gurney, Michael A.; Achal, Madhulika; Linton, Phyllis-Jean; Harris, Greg L.; Finley, Kim D.

    2016-01-01

    The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system. PMID:27711219

  16. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system.

    PubMed

    Hjerrild, Kathryn A; Jin, Jing; Wright, Katherine E; Brown, Rebecca E; Marshall, Jennifer M; Labbé, Geneviève M; Silk, Sarah E; Cherry, Catherine J; Clemmensen, Stine B; Jørgensen, Thomas; Illingworth, Joseph J; Alanine, Daniel G W; Milne, Kathryn H; Ashfield, Rebecca; de Jongh, Willem A; Douglas, Alexander D; Higgins, Matthew K; Draper, Simon J

    2016-01-01

    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS(2), based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of 'difficult-to-make' proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen. PMID:27457156

  17. Identification and affinity of very high affinity binding sites for the phenylalkylamine series of Ca/sup +/ channel blockers in the Drosophila nervous system

    SciTech Connect

    Pauron, D.; Qar, J.; Barhanin, J.; Fournier, D.; Cuany, A.; Pralavorio, M.; Berge, J.B.; Lazdunski, M.

    1987-10-06

    The interaction of putative Ca/sup 2 +/ channels of Drosophila head membranes with molecules of the phenylalkylamine series was studied from binding experiments using (-)-(/sup 3/H)D888 and (+/-)-(/sup 3/H)verapamil. These ligands recognize a single class of very high affinity binding sites. The most potent molecule in the phenylalkylamine series was (-)-verapamil with a K/sub d/ value as exceptional low as 4.7 pM. Molecules in the benzothiazepine and diphenylbutylpiperidine series of Ca/sup 2 +/ channel blockers as well as bepridil inhibited (-)-(/sup 3/H)D888 binding in a competitive way with K/sub d/ values between 12 and 190 nM, suggesting a close correlation, as in the mammalian system, between these receptor sites and those recognizing phenylalkylamines. A tritiated (arylazido)phenylalkylamine with high affinity for the Drosophila head membranes, phenylalkylamine receptor was used in photoaffinity experiments. A protein of M/sub r/ 135,000 +/- 5000 was specifically labeled after ultraviolet irradiation.

  18. Limitations of the ferrozine method for quantitative assay of mineral systems for ferrous and total iron

    NASA Astrophysics Data System (ADS)

    Anastácio, Alexandre S.; Harris, Brittany; Yoo, Hae-In; Fabris, José Domingos; Stucki, Joseph W.

    2008-10-01

    The quantitative assay of clay minerals, soils, and sediments for Fe(II) and total Fe is fundamental to understanding biogeochemical cycles occurring therein. The commonly used ferrozine method was originally designed to assay extracted forms of Fe(II) from non-silicate aqueous systems. It is becoming, however, increasingly the method of choice to report the total reduced state of Fe in soils and sediments. Because Fe in soils and sediments commonly exists in the structural framework of silicates, extraction by HCl, as used in the ferrozine method, fails to dissolve all of the Fe. The phenanthroline (phen) method, on the other hand, was designed to assay silicate minerals for Fe(II) and total Fe and has been proven to be highly reliable. In the present study potential sources of error in the ferrozine method were evaluated by comparing its results to those obtained by the phen method. Both methods were used to analyze clay mineral and soil samples for Fe(II) and total Fe. Results revealed that the conventional ferrozine method under reports total Fe in samples containing Fe in silicates and gives erratic results for Fe(II). The sources of error in the ferrozine method are: (1) HCl fails to dissolve silicates and (2) if the analyte solution contains Fe 3+, the analysis for Fe 2+ will be photosensitive, and reported Fe(II) values will likely be greater than the actual amount in solution. Another difficulty with the ferrozine method is that it is tedious and much more labor intensive than the phen method. For these reasons, the phen method is preferred and recommended. Its procedure is simpler, takes less time, and avoids the errors found in the ferrozine method.

  19. Antioxidant efficacy of Nasturtium officinale extracts using various in vitro assay systems.

    PubMed

    Bahramikia, Seifollah; Yazdanparast, Razieh

    2010-12-01

    Nasturtium officinale R. Br. (watercress), of the family Brassicaceae, has been long used as a home remedy or a medicinal plant by the people of southeastern Iran. The aim of this study was to investigate the antioxidant activity of N. officinale extract using various in vitro assay systems, including the ferric reducing antioxidant power and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) assays, 1,1-diphenyl-2-picrylhydrazyl, hydrogen peroxide, nitric oxide radical scavenging, and ferrous ion chelating activity, as well as the inhibitory effect on ferrous ion/ascorbate induced lipid peroxidation, in rat liver homogenate. The results revealed that N. officinale extract possesses potent reducing power in a ferric reducing antioxidant power assay, concentration-dependent scavenging ability on 2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonate, 1,1-diphenyl-2-picrylhydrazyl, nitric oxide radicals, and hydrogen peroxide, as well as chelating ability on ferrous ions. Furthermore, N. officinale extract prevented thiobarbituric acid reactive substances formation in ferrous ion/ascorbate induced lipid peroxidation in rat liver homogenate in a dose-dependent manner. In addition, this N. officinale extract had the phenolic and flavonoid contents of 96.2 mg gallic acid equivalents/g dried extract and 63.2 mg catechin equivalents/g dried extract, respectively. The cumulative results clearly indicate that N. officinale extract possesses potent antioxidant properties probably mediated through direct trapping of free radicals, reducing power, and also through metal chelating. Based on its antioxidative potential, N. officinale extract might find applications in the prevention of free radical-related diseases.

  20. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    SciTech Connect

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  1. Development of hepatitis C virus production reporter-assay systems using two different hepatoma cell lines.

    PubMed

    Takeda, Midori; Ikeda, Masanori; Ariumi, Yasuo; Wakita, Takaji; Kato, Nobuyuki

    2012-07-01

    A hepatitis C virus (HCV) infection system was developed previously using the HCV JFH-1 strain (genotype 2a) and HuH-7 cells, and this cell culture is so far the only robust production system for HCV. In patients with chronic hepatitis C, the virological effects of pegylated interferon and ribavirin therapy differ depending on the HCV strain and the genetic background of the host. Recently, we reported the hepatoma-derived Li23 cell line, in which the JFH-1 life cycle is reproduced at a level almost equal to that in HuH-7-derived RSc cells. To monitor the HCV life cycle more easily, we here developed JFH-1 reporter-assay systems using both HuH-7- and Li23-derived cell lines. To identify any genetic mutations by long-term cell culture, HCV RNAs in HuH-7 cells were amplified 130 days after infection and subjected to sequence analysis to find adaptive mutation(s) for robust virus replication. We identified two mutations, H2505Q and V2995L, in the NS5B region. V2995L but not H2505Q enhanced JFH-1 RNA replication. However, we found that H2505Q but not V2995L enhanced HCV RNA replication of strain O (genotype 1b). We also selected highly permissive D7 cells by serial subcloning of Li23 cells. The expression levels of claudin-1 and Niemann-Pick C1-like 1 in D7 cells are higher than those in parental Li23 cells. In this study, we developed HCV JFH-1 reporter-assay systems using two distinct hepatoma cell lines, HuH-7 and Li23. The mutations in NS5B resulted in different effects on strains O and JFH-1 HCV RNA replication. PMID:22456614

  2. NMR-DMF: a modular nuclear magnetic resonance-digital microfluidics system for biological assays.

    PubMed

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2014-12-01

    We present a modular nuclear magnetic resonance-digital microfluidics (NMR-DMF) system as a portable diagnostic platform for miniaturized biological assays. With increasing number of combinations between designed probes and a specific target, NMR has become an accurate and rapid assay tool, which is capable of detecting particular kinds of proteins, DNAs, bacteria and cells with a customized probe quantitatively. Traditional sample operation (e.g., manipulation and mixing) relied heavily on human efforts. We herein propose a modular NMR-DMF system to allow the electronic automation of multi-step reaction-screening protocols. A figure-8 shaped coil is proposed to enlarge the usable inner space of a portable magnet by 4.16 times, generating a radio frequency (RF) excitation field in the planar direction. By electronically managing the electro-wetting-on-dielectric (EWOD) effects over an electrode array, preloaded droplets with the inclusion of biological constituents and targets can be programmed to mix and be guided to the detection site (3.5 × 3.5 mm(2)) for high-sensitivity NMR screening (static B field: 0.46 T, RF field: 1.43 mT per ampere), with the result (voltage signal) displayed in real-time. To show the system's utility, automated real-time identification of 100 pM of avidin in a 14 μL droplet was achieved. The system shows promise as a robust and portable diagnostic device for a wide variety of biological analyses and screening applications. PMID:25315808

  3. NMR-DMF: a modular nuclear magnetic resonance-digital microfluidics system for biological assays.

    PubMed

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2014-12-01

    We present a modular nuclear magnetic resonance-digital microfluidics (NMR-DMF) system as a portable diagnostic platform for miniaturized biological assays. With increasing number of combinations between designed probes and a specific target, NMR has become an accurate and rapid assay tool, which is capable of detecting particular kinds of proteins, DNAs, bacteria and cells with a customized probe quantitatively. Traditional sample operation (e.g., manipulation and mixing) relied heavily on human efforts. We herein propose a modular NMR-DMF system to allow the electronic automation of multi-step reaction-screening protocols. A figure-8 shaped coil is proposed to enlarge the usable inner space of a portable magnet by 4.16 times, generating a radio frequency (RF) excitation field in the planar direction. By electronically managing the electro-wetting-on-dielectric (EWOD) effects over an electrode array, preloaded droplets with the inclusion of biological constituents and targets can be programmed to mix and be guided to the detection site (3.5 × 3.5 mm(2)) for high-sensitivity NMR screening (static B field: 0.46 T, RF field: 1.43 mT per ampere), with the result (voltage signal) displayed in real-time. To show the system's utility, automated real-time identification of 100 pM of avidin in a 14 μL droplet was achieved. The system shows promise as a robust and portable diagnostic device for a wide variety of biological analyses and screening applications.

  4. An update on laboratory productivity with infectious disease assays on the Bayer ADVIA Centaur Immunoassay System.

    PubMed

    Dati, Francesco

    2004-01-01

    New biological materials and advances in robotic and computer technologies have enabled the development of automated systems designed for high-performance infectious disease immunoassays and nucleic acid amplification. The fully automated, random access Bayer ADVIA Centaur immunoassay system, offering testing for fertility, therapeutic drug monitoring, infectious disease, allergy, cardiovascular, anemia, oncology, TDMs and thyroid, has been specifically designed for use in large-volume laboratories. New immunoassay tests have been developed for the ADVIA Centaur for the hepatitis A virus, hepatitis B virus, hepatitis C virus and HIV. These assays have undergone extensive performance evaluation using samples designated in the CTS in support of obtaining the Communautés Européennes (CE) mark for European market distribution. The ADVIA Centaur Immunoassay System represents an optimal platform for infectious disease testing because of its flexibility in allowing many different assay formats and protocols with multiple incubation steps and washes coupled with its combination of magnetic particle separation and chemiluminescent detection. Additional quality features of the system design are the sample integrity verification/check, the use of disposable sample pipette tips, clot detection, the ability for sensing liquid levels, the reagent aspiration verification/check, the automatic cascade reflex testing, repeat testing, and automated reagent inventory. The ADVIA Centaur has a maximum test throughput of 240 tests per hour. Minimal hands-on time is required as a result of the large onboard capacity for reagents and supplies combined with automated maintenance and monitoring features, which streamline operations and result in a walk-away through-put of up to 840 tests.

  5. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    SciTech Connect

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  6. Genotoxic activity in vivo of the naturally occurring glucoside, cycasin, in the Drosophila wing spot test.

    PubMed

    Kawai, K; Furukawa, H; Hirono, I

    1995-03-01

    Cycasin, methylazoxymethanol-beta-glucoside, is a naturally occurring carcinogenic compound. The genotoxicity of cycasin was assayed in the Drosophila wing spot test. Cycasin induced small single and large single spots on feeding at 10 mumol/g medium. The presence of these spots indicates that cycasin is genotoxic in Drosophila melanogaster. Microorganisms which showed beta-glucosidase activity for cleaving cycasin to toxic aglycon were isolated from gut flora of the Drosophila larvae. Consequently, the Drosophila wing spot test would be useful for mutagenicity screening of other naturally occurring glucosides.

  7. An inventory of peroxisomal proteins and pathways in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Verma, Avani; Peng, Chengwei; McNew, James A.

    2012-01-01

    Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). While much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to C. elegans, Drosophila appears to only utilize the peroxisome targeting signal (PTS) type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system. PMID:22758915

  8. Mutagenicity of Tween 80-solvated mild gasification products in the Ames salmonella microsomal assay system

    SciTech Connect

    Not Available

    1992-01-13

    The results of the Tween 80-solvated Ames testing of six mild gasification samples indicate significant mutagenic activity only in the composite materials (MG-119 and MG-120), previously suspected from the DMSO-solvated assays, which had shown some variable but ultimately insignificant mutagenic responses. The activity of these samples from the Tween 80-solvated assays was quite low when compared to either the positive controls or the SRC-II HD coal-liquefaction reference material. The class of mutagenic activity expressed by these samples solvated in Tween 80 was that of an indirect-acting, frameshift mutagen(s) since significant activity was found only on tester strain TA98 in the presence of the metabolic activation fraction (S9). Because DMSO and other solvents have been shown to affect the mutagenic activity of certain pure chemicals, the possibility of solvent/mutagen interactions in complex mixtures such as coal-derived liquids exists. Thus, the testing of the genotoxic activity of undefined, chemically complex compounds may require the use of at least two solvent systems to reduce the possibility of artifactual findings. 10 refs., 4 tabs.

  9. Optogenetics in Drosophila Neuroscience.

    PubMed

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory.

  10. Evaluation of a CLEIA automated assay system for the detection of a panel of tumor markers.

    PubMed

    Falzarano, Renato; Viggiani, Valentina; Michienzi, Simona; Longo, Flavia; Tudini, Silvestra; Frati, Luigi; Anastasi, Emanuela

    2013-10-01

    Tumor markers are commonly used to detect a relapse of disease in oncologic patients during follow-up. It is important to evaluate new assay systems for a better and more precise assessment, as a standardized method is currently lacking. The aim of this study was to assess the concordance between an automated chemiluminescent enzyme immunoassay system (LUMIPULSE® G1200) and our reference methods using seven tumor markers. Serum samples from 787 subjects representing a variety of diagnoses, including oncologic, were analyzed using LUMIPULSE® G1200 and our reference methods. Serum values were measured for the following analytes: prostate-specific antigen (PSA), alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 15-3 (CA15-3), carbohydrate antigen 19-9 (CA19-9), and cytokeratin 19 fragment (CYFRA 21-1). For the determination of CEA, AFP, and PSA, an automatic analyzer based on chemiluminescence was applied as reference method. To assess CYFRA 21-1, CA125, CA19-9, and CA15-3, an immunoradiometric manual system was employed. Method comparison by Passing-Bablok analysis resulted in slopes ranging from 0.9728 to 1.9089 and correlation coefficients from 0.9977 to 0.9335. The precision of each assay was assessed by testing six serum samples. Each sample was analyzed for all tumor biomarkers in duplicate and in three different runs. The coefficients of variation were less than 6.3 and 6.2 % for within-run and between-run variation, respectively. Our data suggest an overall good interassay agreement for all markers. The comparison with our reference methods showed good precision and reliability, highlighting its usefulness in clinical laboratory's routine. PMID:23775009

  11. Evaluation of a CLEIA automated assay system for the detection of a panel of tumor markers.

    PubMed

    Falzarano, Renato; Viggiani, Valentina; Michienzi, Simona; Longo, Flavia; Tudini, Silvestra; Frati, Luigi; Anastasi, Emanuela

    2013-10-01

    Tumor markers are commonly used to detect a relapse of disease in oncologic patients during follow-up. It is important to evaluate new assay systems for a better and more precise assessment, as a standardized method is currently lacking. The aim of this study was to assess the concordance between an automated chemiluminescent enzyme immunoassay system (LUMIPULSE® G1200) and our reference methods using seven tumor markers. Serum samples from 787 subjects representing a variety of diagnoses, including oncologic, were analyzed using LUMIPULSE® G1200 and our reference methods. Serum values were measured for the following analytes: prostate-specific antigen (PSA), alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 15-3 (CA15-3), carbohydrate antigen 19-9 (CA19-9), and cytokeratin 19 fragment (CYFRA 21-1). For the determination of CEA, AFP, and PSA, an automatic analyzer based on chemiluminescence was applied as reference method. To assess CYFRA 21-1, CA125, CA19-9, and CA15-3, an immunoradiometric manual system was employed. Method comparison by Passing-Bablok analysis resulted in slopes ranging from 0.9728 to 1.9089 and correlation coefficients from 0.9977 to 0.9335. The precision of each assay was assessed by testing six serum samples. Each sample was analyzed for all tumor biomarkers in duplicate and in three different runs. The coefficients of variation were less than 6.3 and 6.2 % for within-run and between-run variation, respectively. Our data suggest an overall good interassay agreement for all markers. The comparison with our reference methods showed good precision and reliability, highlighting its usefulness in clinical laboratory's routine.

  12. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  13. Drosophila's view on insect vision.

    PubMed

    Borst, Alexander

    2009-01-13

    Within the last 400 million years, insects have radiated into at least a million species, accounting for more than half of all known living organisms: they are the most successful group in the animal kingdom, found in almost all environments of the planet, ranging in body size from a mere 0.1 mm up to half a meter. Their eyes, together with the respective parts of the nervous system dedicated to the processing of visual information, have long been the subject of intense investigation but, with the exception of some very basic reflexes, it is still not possible to link an insect's visual input to its behavioral output. Fortunately for the field, the fruit fly Drosophila is an insect, too. This genetic workhorse holds great promise for the insect vision field, offering the possibility of recording, suppressing or stimulating any single neuron in its nervous system. Here, I shall give a brief synopsis of what we currently know about insect vision, describe the genetic toolset available in Drosophila and give some recent examples of how the application of these tools have furthered our understanding of color and motion vision in Drosophila.

  14. Chemical models for cytochrome P450 as a biomimetic metabolic activation system in mutation assays.

    PubMed

    Inami, Keiko; Mochizuki, Masataka

    2002-08-26

    DNA damage is a critical factor in carcinogenesis. The Ames assay is a short-term test that screens for DNA-damaging agents. To be detected in the assay, most carcinogens require oxidation by cytochrome P450, a component of the liver homogenate preparation (S9 mix) that is traditionally used to metabolize promutagens to an active form in vitro. A combination of iron(III) porphyrin plus an oxidant activates many promutagens by mimicking cytochrome P450 metabolism. We previously reported that the mutagenicity of the N-nitrosodialkylamines was detected following reaction with tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride (Fe(F(5)P)Cl) plus tert-butyl hydroperoxide (t-BuOOH), which yielded the same alcohols and aldehydes as the enzymatic reaction. In the present study, to extend the scope of biomimetic models, we tested the mutagenicity of other carcinogens exposed to chemical oxidation systems.We investigated the optimal assay conditions for the models in Salmonella typhimurium TA1538, a strain sensitive to frame-shift mutagens. We activated 2-aminofluorene (AF), benzo[a]pyrene (B[a]P), a tryptophane pyrolysate 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), and 2-acetylaminofluorene (AAF) with Fe(F(5)P)Cl plus an oxidant-t-BuOOH, m-chloroperoxybenzoic acid (mCPBA), or magnesium monoperoxyphthalate (MPPT)-and we noted the effect of three solvents-acetonitrile (CH(3)CN),1,4-dioxane, and N,N-dimethylformamide (DMF)-on AF activation. All the promutagens became mutagenic in the presence of Fe(F(5)P)Cl plus an oxidant, with the effectiveness of the oxidant varying with the chemical. Aromatic amines, for example, showed the strongest mutagenicity with t-BuOOH whereas polycyclic hydrocarbons showed the strongest mutagenicity with mCPBA. All the promutagens were mutagenic in the presence of Fe(F(5)P)Cl plus MPPT. For AF activation, the order of effectiveness of the solvents was CH(3)CN>1,4-dioxane>DMF. The results suggested that these systems would serve as

  15. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  16. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. II. Differential Sensitivity to Gamma Rays

    PubMed Central

    Laurencon, A.; Bregliano, J. C.

    1995-01-01

    In a previous paper, we reported that the reactivity level, which regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, is enhanced by the same agents that induce the SOS response in Escherichia coli. In this report, we describe experimental evidence that, for identical genotypes, the reactivity levels correlate with the sensitivity of oogenesis to gamma rays, measured by the number of eggs laid and by frequency of dominant lethals. This strongly supports the hypothesis that the reactivity level is one manifestation of an inducible DNA repair system taking place in the female germ line of Drosophila melanogaster. The implications of this finding for the understanding of the regulation of I factor are discussed and some other possible biological roles of this system are outlined. PMID:8647394

  17. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  18. Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize.

    PubMed

    Kim, Minjae; Seo, Hyesu; Park, Chanwoo; Park, Woong June

    2016-01-15

    Melatonin has been found in a wide range of plant groups. Its physiological roles have been suggested to be diverse in stress protection and plant growth regulation. An attractive hypothesis is that phytomelatonin acts as an auxin to regulate plant development. However, the auxin hypothesis is controversial, since both supporting and contradictory evidence has been reported. We systematically investigated whether melatonin fulfilled the definition for auxin in maize (Zea mays). Melatonin did not affect coleoptile elongation, root growth or ACC synthase gene expression, contrary to 10(-5)M IAA in our assay system. The auxin hypothesis of phytomelatonin action is not supported in maize, because melatonin appeared inactive in all of the auxin activity tests. On the other hand, melatonin was active in the protection of maize growth against salt stress, suggesting its importance in another context. PMID:26681269

  19. Fast Image Analysis for the Micronucleus Assay in a Fully Automated High-Throughput Biodosimetry System

    PubMed Central

    Lyulko, Oleksandra V.; Garty, Guy; Randers-Pehrson, Gerhard; Turner, Helen C.; Szolc, Barbara; Brenner, David J.

    2014-01-01

    The development of, and results from an image analysis system are presented for automated detection and scoring of micronuclei in human peripheral blood lymphocytes. The system is part of the Rapid Automated Biodosimetry Tool, which was developed at the Center for High-Throughput Minimally Invasive Radiation Biodosimetry for rapid radiation dose assessment of many individuals based on single fingerstick samples of blood. Blood lymphocytes were subjected to the cytokinesis-block micronucleus assay and the images of cell cytoplasm and nuclei are analyzed to estimate the frequency of micronuclei in binucleated cells. We describe an algorithm that is based on dual fluorescent labeling of lymphocytes with separate analysis of images of cytoplasm and nuclei. To evaluate the performance of the system, blood samples of seven healthy donors were irradiated in vitro with doses from 0–10 Gy and dose-response curves of micronuclei frequencies were generated. To establish the applicability of the system to the detection of high doses, the ratios of mononucleated cells to binucleated cells were determined for three of the donors. All of the dose-response curves generated automatically showed clear dose dependence and good correlation (R2 from 0.914–0.998) with the results of manual scoring. PMID:24502354

  20. Drosophila Blastorderm Analysis Software

    SciTech Connect

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levels at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64

  1. Drosophila genetics in the classroom.

    PubMed

    Sofer, W; Tompkins, L

    1994-01-01

    Drosophila has long been useful for demonstrating the principles of classical Mendelian genetics in the classroom. In recent years, the organism has also helped students understand biochemical and behavioral genetics. In this connection, this article describes the development of a set of integrated laboratory exercises and descriptive materials--a laboratory module--in biochemical genetics for use by high-school students. The module focuses on the Adh gene and its product, the alcohol dehydrogenase enzyme. Among other activities, students using the module get to measure alcohol tolerance and to assay alcohol dehydrogenase activity in Adh-negative and -positive flies. To effectively present the module in the classroom, teachers attend a month-long Dissemination Institute in the summer. During this period, they learn about other research activities that can be adapted for classroom use. One such activity that has proved popular with teachers and students utilizes Drosophila to introduce some of the concepts of behavioral genetics to the high-school student. By establishing closer interactions between high-school educators and research scientists, the gulf between the two communities can begin to be bridged. It is anticipated that the result of a closer relationship will be that the excitement and creativity of science will be more effectively conveyed to students.

  2. Drosophila Aging 2005/06

    PubMed Central

    Lim, Hui-Ying; Bodmer, Rolf; Perrin, Laurent

    2007-01-01

    Drosophila continues to be a model system of choice to study the genetics of aging. It has a short lifespan and small genome size, but nevertheless contains a complex organ and endocrine system that allows studying the role of conserved signal transduction pathways with sophisticated genetic tools. Oxidative stress and metabolic changes along with intersecting signaling systems Insulin Receptor (InR), Target of Rapamycin (TOR) and Jun N-terminal Kinase (JNK) have emerged as some of the major players in aging. Sleep and organ-specific aging has also been the subject of recent progress in understanding aging. PMID:17126511

  3. In Vivo Immunostaining of Hemocyte Compartments in Drosophila for Live Imaging

    PubMed Central

    Jankovics, Ferenc; Kurucz, Éva; Andó, István

    2014-01-01

    In recent years, Drosophila melanogaster has become an attractive model organism in which to study the structure and development of the cellular immune components. The emergence of immunological markers greatly accelerated the identification of the immune cells (hemocytes), while the creation of genetic reporter constructs allowed unique insight into the structural organization of hematopoietic tissues. However, investigation of the hemocyte compartments by the means of immunological markers requires dissection and fixation, which regularly disrupt the delicate structure and hamper the microanatomical characterization. Moreover, the investigation of transgenic reporters alone can be misleading as their expression often differs from the native expression pattern of their respective genes. We describe here a method that combines the reporter constructs and the immunological tools in live imaging, thereby allowing use of the array of available immunological markers while retaining the structural integrity of the hematopoietic compartments. The procedure allows the reversible immobilization of Drosophila larvae for high-resolution confocal imaging and the time-lapse video analysis of in vivo reporters. When combined with our antibody injection-based in situ immunostaining assay, the resulting double labeling of the hemocyte compartments can provide new information on the microanatomy and functional properties of the hematopoietic tissues in an intact state. Although this method was developed to study the immune system of Drosophila melanogaster, we anticipate that such a combination of genetic and immunological markers could become a versatile technique for in vivo studies in other biological systems too. PMID:24892745

  4. Interallelic Transcriptional Enhancement as an in Vivo Measure of Transvection in Drosophila melanogaster

    PubMed Central

    Noble, Geoffrey P.; Dolph, Patrick J.; Supattapone, Surachai

    2016-01-01

    Transvection—pairing-dependent interallelic regulation resulting from enhancer action in trans—occurs throughout the Drosophila melanogaster genome, likely as a result of the extensive somatic homolog pairing seen in Dipteran species. Recent studies of transvection in Drosophila have demonstrated important qualitative differences between enhancer action in cis vs. in trans, as well as a modest synergistic effect of cis- and trans-acting enhancers on total tissue transcript levels at a given locus. In the present study, we identify a system in which cis- and trans-acting GAL4-UAS enhancer synergism has an unexpectedly large quantitative influence on gene expression, boosting total tissue transcript levels at least fourfold relative to those seen in the absence of transvection. We exploit this strong quantitative effect by using publicly available UAS-shRNA constructs from the TRiP library to assay candidate genes for transvection activity in vivo. The results of the present study, which demonstrate that in trans activation by simple UAS enhancers can have large quantitative effects on gene expression in Drosophila, have important new implications for experimental design utilizing the GAL4-UAS system. PMID:27489208

  5. Genotoxicity studies with the unstable Zeste-White (UZ) system of Drosophila melanogaster: Results with ten carcinogenic compounds

    SciTech Connect

    Batiste-Alentorn, M.; Xamena, N.; Creus, A.; Marcos, R. )

    1991-01-01

    To increase the number of chemicals tested using the Zeste-White (UZ) somatic mutation assay, ten selected carcinogens (acetamide, acrylamide, benzo({alpha})pyrene, cyclophosphamide, diethylstilbestrol, 4-nitroquinoline N-oxide, propyleneimine, safrole, thiourea, and o-toluidine) have been evaluated in this assay. The results show that all the compounds tested produce significant increases in the eye spot frequency at, at least, one of the concentrations assayed, indicating that the Zeste-White assay appears to be highly sensitive to these carcinogenic compounds. That is in agreement with data previously reported by other authors.

  6. In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Tabata, Hidenori; Nakajima, Kazunori

    During the development of the cerebral cortex, the majority of cortical neurons are generated in the ventricular zone (VZ) facing the lateral ventricle and then migrate toward the pial surface to form the highly organized 6-layered cerebral cortex. Detailed profiles of these processes and their molecular mechanisms had been largely unknown because of the absence of an efficient assay system. The in vivo electroporation system was initially devised for use within chick embryos (Funahashi et al., 1999; Itasaki et al., 1999; Momose et al., 1999; Muramatsu et al., 1997), and we and other groups have used that system as a basis for developing an in utero electroporation system, which allows plasmid DNA to be introduced into cortical progenitor cells in developing mouse embryos in the uterus (Fukuchi-Shimogori and Grove, 2001; Saito and Nakatsuji, 2001; Tabata and Nakajima, 2001; Takahashi et al., 2002). In utero electroporation of other sites in the brain, including the hippocampus (Navarro-Quiroga et al., 2007), cerebral basal ganglia (Borrell et al., 2005; Nakahira et al., 2006), cortical hem (Takiguchi-Hayashi et al., 2004), and dorsal thalamus (Bonnin et al., 2007), has recently been reported. Introducing green fluorescent protein (GFP) enables the entire processes of migration and layer formation to be visualized (Ajioka and Nakajima, 2005; Sasaki et al., 2008; Tabata and Nakajima, 2002, 2003), and the role of any gene involved in these processes can be easily assessed by overexpressing the proteins or their mutants (Ohshima et al., 2007), or by knocking down the genes by the RNA interference technique (Bai et al., 2003). Furthermore, the Tet-On/Off system and/or other plasmid- vector-based technologies will expand the potential of the analyses. In this section we review the principles and methods of gene transfer into the cortical wall of mouse embryos by means of the in utero electroporation system.

  7. Adaptation of enzyme-linked immunosorbent assay to the avian system.

    PubMed

    Slaght, S S; Yang, T J; van der Heide, L

    1979-11-01

    A microplate enzyme-linked immunosorbent assay was developed to detect chicken anti-rovirus antibodies. Studies of the parameters which affect the outcome of the assay with avian serum revealed two aspects for a successful assay. First, enzyme-antibody conjugates prepared by the periodate oxidation technique were found to have retained far more immunological activity than conjugates produced by a glutaraldehyde cross-linking. Second, the results indicated an unusually high affinity of chicken immunoglobulin for the microplate plastic which was mostly eliminated by a pretreatment technique with fixed fetal calf serum. The enzyme-linked immunosorbent assay compared favorably with the latex passive agglutination test, yielding a titration endpoint of 1:511,000, or approximately 1,300 times more sensitive than the latex passive agglutination assay. The assay proved not only to be sensitive to less than 1 ng of specific antibody, but also to have low to moderate variance and high reliability.

  8. Development and Implementation of an Assay System for Rapid Screening of Transuranic Waste in Highly Contaminated Environments

    SciTech Connect

    Douglas Akers; Hopi Salomon; Lyle Robal

    2010-08-01

    An overview of the Fissile Material Monitor Waste Screener (FMM-WS) System is presented. This system is a multifunctional radioactive waste assay system suitable for the rapid assay of highly contaminated transuranic wastes immediately after retrieval, prior to packaging. The FMM-WS was developed for use at the Accelerated Cleanup Project (ARP) and began initial testing and operation in April 2008. The FMM-WS is currently in use and is providing needed data on transuranic (TRU) wastes with a range of material types, volumes, and densities from the Accelerated Retrieval Project (ARP).

  9. Cas9-based genome editing in Drosophila.

    PubMed

    Housden, Benjamin E; Lin, Shuailiang; Perrimon, Norbert

    2014-01-01

    Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals. PMID:25398351

  10. Cas9-based genome editing in Drosophila.

    PubMed

    Housden, Benjamin E; Lin, Shuailiang; Perrimon, Norbert

    2014-01-01

    Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals.

  11. A high throughput screening assay system for the identification of small molecule inhibitors of gsp.

    PubMed

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z; Mathews Griner, Lesley A; Zheng, Wei; Inglese, James; Austin, Christopher P; Marugan, Juan J; Southall, Noel; Neumann, Susanne; Northup, John K; Ferrer, Marc; Collins, Michael T

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)-based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.

  12. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  13. Meiosis in male Drosophila

    PubMed Central

    McKee, Bruce D.; Yan, Rihui; Tsai, Jui-He

    2012-01-01

    Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion. PMID:23087836

  14. Three-wavelength light control of freely moving Drosophila Melanogaster for less perturbation and efficient social-behavioral studies

    PubMed Central

    Lin, Yen-Yin; Wu, Ming-Chin; Hsiao, Po-Yen; Chu, Li-An; Yang, Mei-Mei; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    We developed a real-time automated laser-tracking system combined with continuous wave 1064-nm infrared or 473-nm blue lasers to provide punishment for studying memory in Drosophila Melanogaster. Combining optogenetic tools with laser properties, such as 473-nm and 593-nm lasers that activate light sensitive proteins in artificial transgenic flies, we can manipulate the specific neuron of an assigned fly among multiple flies to investigate neuron circuit relationships in social interactions. In restraining condition assay or optogenetic experiments, a ventral irradiated system would be more efficient due to higher ventral cuticle transmissions and neuron ganglia locations. Therefore, ventral irradiated systems cause less perturbation during behavior studies. PMID:25780741

  15. Discovery of Trypanosomatid Parasites in Globally Distributed Drosophila Species

    PubMed Central

    Chandler, James Angus; James, Pamela M.

    2013-01-01

    Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts. PMID:23658617

  16. Droplet-Free Digital Enzyme-Linked Immunosorbent Assay Based on a Tyramide Signal Amplification System.

    PubMed

    Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo

    2016-07-19

    Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers.

  17. Gut-associated microbes of Drosophila melanogaster

    PubMed Central

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  18. The putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis

    PubMed Central

    Luan, Zhuo; Quigley, Caitlin; Li, Hong-Sheng

    2015-01-01

    Most organisms are able to maintain systemic water homeostasis over a wide range of external or dietary osmolarities. The excretory system, composed of the kidneys in mammals and the Malpighian tubules and hindgut in insects, can increase water conservation and absorption to maintain systemic water homeostasis, which enables organisms to tolerate external hypertonicity or desiccation. However, the mechanisms underlying the maintenance of systemic water homeostasis by the excretory system have not been fully characterized. In the present study, we found that the putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated (ine) is expressed in the basolateral membrane of anterior hindgut epithelial cells. This was confirmed by comparison with a known basolateral localized protein, the α subunit of Na+-K+ ATPase (ATPα). Under external hypertonicity, loss of ine in the hindgut epithelium results in severe dehydration without damage to the hindgut epithelial cells, implicating a physiological failure of water conservation/absorption. We also found that hindgut expression of ine is required for water conservation under desiccating conditions. Importantly, specific expression of ine in the hindgut epithelium can completely restore disrupted systemic water homeostasis in ine mutants under both conditions. Therefore, ine in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis. PMID:25613130

  19. Milk progesterone radioimmunoassay using radioiodinated tracers: a rapid and reliable assay system

    SciTech Connect

    Espinosa, J.; Botana, L.M.; Puentes, E.; Regueiro, B.J.

    1984-09-01

    Both the validity and practicability of a direct progesterone radioimmunoassay based on radioiodinated progesterone tracers were studied. The results obtained show the reliability of the assay; when compared with assays based on /sup 3/H-progesterone tracers there are fewer steps for assay execution, saving time and reducing the number of reagents used. Various commercially available /sup 125/I-progesterone tracers were assayed, and only those with an 11 alpha-hemisuccinate bridge were suitably bound by antisera raised against progesterone-bovine serum albumin conjugates having identical bridge structure. The bridge effect caused no observable alteration in validity parameters. Finally, the results support the utility of this assay as a practical method of early diagnosis of pregnancy and as a reliable experimental technique to monitor cow ovarian function.

  20. Induced Fungal Resistance to Insect Grazing: Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila-Aspergillus Model System

    PubMed Central

    Caballero Ortiz, Silvia; Trienens, Monika; Rohlfs, Marko

    2013-01-01

    Background Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi. Methodology/Principal Findings Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding. Conclusions/Significance Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats

  1. Developmental roles of Drosophila tRNA processing endonuclease RNase ZL as revealed with a conditional rescue system

    PubMed Central

    Xie, Xie; Dubrovskaya, Veronica; Yacoub, Nancy; Walska, Joanna; Gleason, Tara; Reid, Katherine; Dubrovsky, Edward B.

    2013-01-01

    Drosophila RNase ZL (dRNaseZ) belongs to a family of endoribonucleases with a major role in tRNA 3′-end processing. The biochemical function of RNase ZL is conserved from yeast to human. Here we present a study of its biological function during Drosophila development. In flies, dRNaseZ provides a non-redundant function, as the RNZED24 knockout (KO) mutation causes early larval lethality. Mosaic and conditional rescue techniques were employed to determine dRNaseZ requirements at later stages. We found that dRNaseZ activity is essential for all phases of fly development that involve cell division, including growth of adult tissue progenitors during larval and metamorphic stages, and gametogenesis in adults. At the cellular level, two major phenotypes were identified – cell growth deficiency in endoreplicating tissues and cell cycle arrest in mitotic tissues. While cell growth and proliferation are both dependant on protein synthesis, the two phenotypes displayed reliance on different dRNaseZ functions. We found that dRNaseZ KO completely blocks tRNA maturation without diminishing the abundance of mature tRNA molecules. Our data indicate that growth arrest of endoreplicating cells is primarily attributed to the relocation of the pool of mature tRNAs into the nuclei causing a decrease in translation efficiency. Mitotically dividing cells appear to be less dependent on translation machinery as they maintain their normal size when deprived of dRNaseZ activity, but rather display a cell cycle arrest at the G2-M transition. PMID:23867108

  2. Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system.

    PubMed

    Wouda, Rene R; Bansraj, Monique R K S; de Jong, Anja W M; Noordermeer, Jasprina N; Fradkin, Lee G

    2008-07-01

    Members of the RYK/Derailed family have recently been shown to regulate axon guidance in both Drosophila and mammals by acting as Wnt receptors. Little is known about how the kinase activity-deficient RYKs transduce Wnt signals. Here, we show that the non-receptor Src family tyrosine kinases, SRC64B and SRC42A, are involved in WNT5-mediated signaling through Derailed in the Drosophila embryonic central nervous system. Analysis of animals lacking SRC64B and SRC42A reveals defects in commissure formation similar to those observed in Wnt5 and derailed mutants. Reductions in SRC64B expression levels suppress a Wnt5/derailed-dependent dominant gain-of-function phenotype, and increased levels of either SRC64B or SRC42A enhance Wnt5/derailed-mediated axon commissure switching. Derailed and SRC64B form a complex, which contains catalytically active SRC64B, the formation or stability of which requires SRC64B kinase activity. Furthermore, Derailed is phosphorylated in a SRC64B-dependent manner and coexpression of Derailed and SRC64B results in the activation of SRC64B. The mammalian orthologs of Derailed and SRC64B also form complexes, suggesting that Src roles in RYK signaling are conserved. Finally, we show that coexpression of WNT5 and Derailed has no apparent effect upon TCF/LEF-dependent transcription, suggesting that the WNT5/Derailed signaling pathway is unlikely to directly regulate canonical Wnt pathway targets. Together, these findings indicate that the Src family kinases play novel roles in WNT5/Derailed-mediated signaling. PMID:18539923

  3. The Drosophila kinesin-I associated protein YETI binds both kinesin subunits.

    PubMed

    Wisniewski, T P; Tanzi, C L; Gindhart, J G

    2003-12-01

    The microtubule-based motor kinesin-I is essential for the intracellular transport of membrane-bound organelles in the Drosophila nervous system and female germ line. A number of studies have demonstrated that kinesin-I binds to its intracellular cargos through protein-protein interactions between the kinesin tail domain and proteins on the cargo surface. To identify proteins that mediate or regulate kinesin-cargo interactions, we have performed yeast two-hybrid screens of a Drosophila embryonic cDNA library, using the tetratricopeptide repeats of the kinesin light chain and amino acids 675-975 of the kinesin heavy chain as baits. One of the proteins we have identified is YETI. Interestingly, YETI has the unique ability to bind specifically to both subunits of the kinesin tail domain. An epitope-tagged YETI fusion protein, when expressed in Drosophila S2 cultured cells, binds to kinesin-I in copurification assays, suggesting that YETI-kinesin-I interactions are context-independent. Immunostaining of cultured cells expressing YETI shows that YETI accumulates in the nucleus and cytosol. YETI is evolutionarily conserved, and its yeast homolog (AOR1) may have a role in regulating cytoskeletal dynamics or intracellular transport. Collectively, these results demonstrate that YETI interacts with both kinesin subunits of the kinesin tail domain, and is potentially involved in kinesin-dependent transport pathways.

  4. Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei.

    PubMed

    Senaratne, T Niroshini; Joyce, Eric F; Nguyen, Son C; Wu, C-Ting

    2016-08-01

    Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other's functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. PMID:27541002

  5. Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei

    PubMed Central

    Senaratne, T. Niroshini; Joyce, Eric F.; Wu, C.-ting

    2016-01-01

    Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. PMID:27541002

  6. Quantifying and predicting Drosophila larvae crawling phenotypes.

    PubMed

    Günther, Maximilian N; Nettesheim, Guilherme; Shubeita, George T

    2016-01-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly's power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer's disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design. PMID:27323901

  7. Quantifying and predicting Drosophila larvae crawling phenotypes

    PubMed Central

    Günther, Maximilian N.; Nettesheim, Guilherme; Shubeita, George T.

    2016-01-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design. PMID:27323901

  8. P element excision in drosophila melanogaster and related drosophilids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  9. 2mit, an Intronic Gene of Drosophila melanogaster timeless2, Is Involved in Behavioral Plasticity

    PubMed Central

    Benna, Clara; Leonardi, Emanuela; Romoli, Ottavia; Cognolato, Moira; Tosatto, Silvio C. E.; Costa, Rodolfo; Sandrelli, Federica

    2013-01-01

    Background Intronic genes represent ~6% of the total gene complement in Drosophila melanogaster and ~85% of them encode for proteins. We recently characterized the D. melanogaster timeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11th tim2 intron in the opposite transcriptional orientation. Methodology/Principal Findings Here we report the molecular and functional characterization of 2mit. The 2mit gene is expressed throughout Drosophila development, localizing mainly in the nervous system during embryogenesis and mostly in the mushroom bodies and ellipsoid body of the central complex in the adult brain. In silico analyses revealed that 2mit encodes a putative leucine-Rich Repeat transmembrane receptor with intrinsically disordered regions, harboring several fully conserved functional interaction motifs in the cytosolic side. Using insertional mutations, tissue-specific over-expression, and down-regulation approaches, it was found that 2mit is implicated in adult short-term memory, assessed by a courtship conditioning assay. In D. melanogaster, tim2 and 2mit do not seem to be functionally related. Bioinformatic analyses identified 2MIT orthologs in 21 Drosophilidae, 4 Lepidoptera and in Apis mellifera. In addition, the tim2-2mit host-nested gene organization was shown to be present in A. mellifera and maintained among Drosophila species. Within the Drosophilidae 2mit-hosting tim2 intron, in silico approaches detected a neuronal specific transcriptional binding site which might have contributed to preserve the specific host-nested gene association across Drosophila species. Conclusions/Significance Taken together, these results indicate that 2mit, a gene mainly expressed in the nervous system, has a role in the behavioral plasticity of the adult Drosophila. The presence of a putative 2mit regulatory enhancer within the 2mit-hosting tim2

  10. Live cell imaging in Drosophila melanogaster.

    PubMed

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila. PMID:20360379

  11. Drosophila Models of Cardiac Disease

    PubMed Central

    Piazza, Nicole; Wessells, R.J.

    2013-01-01

    The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance. PMID:21377627

  12. Cardiac gene regulatory networks in Drosophila

    PubMed Central

    Bryantsev, Anton L.; Cripps, Richard M.

    2009-01-01

    The Drosophila system has proven a powerful tool to help unlock the regulatory processes that occur during specification and differentiation of the embryonic heart. In this review, we focus upon a temporal analysis of the molecular events that result in heart formation in Drosophila, with a particular emphasis upon how genomic and other cuttingedge approaches are being brought to bear upon the subject. We anticipate that systemslevel approaches will contribute greatly to our comprehension of heart development and disease in the animal kingdom. PMID:18849017

  13. Visualizing new dimensions in Drosophila myoblast fusion

    PubMed Central

    Richardson, Brian; Beckett, Karen; Baylies, Mary

    2009-01-01

    Summary Over several years, genetic studies in the model system, Drosophila melanogastor, have uncovered genes that when mutated, lead to a block in myoblast fusion. Analyses of these gene products have suggested that Arp2/3-mediated regulation of the actin cytoskeleton is crucial to myoblast fusion in the fly. Recent advances in imaging in Drosophila embryos, both in fixed and live preparations, have led to a new appreciation of both the three-dimensional organization of the somatic mesoderm and the cell biology underlying myoblast fusion. PMID:18404690

  14. Advanced Non-Destructive Assay Systems and Special Instrumentation Requirements for Spent Nuclear Fuel Recycling Facilities

    SciTech Connect

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    The safe and efficient operation of the next generation of Spent Nuclear Fuel (SNF) recycling / reprocessing facilities is dependent upon the availability of high performance real time Non- Destructive Assay (NDA) systems at key in-line points. A diverse variety of such special instrument systems have been developed and commissioned at reprocessing plants worldwide over the past fifty years.. The measurement purpose, technique and plant performance for selected key systems have been reviewed. Obsolescence issues and areas for development are identified in the context of the measurements needs of future recycling facilities and their associated waste treatment plants. Areas of concern include (i) Materials Accountancy and Safeguards, (ii) Head End process control and feed envelope verification, (iii) Real-time monitoring at the Product Finishing Stages, (iv) Criticality safety and (v) Radioactive waste characterization. Common characteristics of the traditional NDA systems in historical recycling facilities are (i) In-house development of bespoke instruments resulting in equipment that if often unique to a given facility and generally not commercially available, (ii) Use of 'novel' techniques - not widely deployed in other applications, (iii) Design features that are tailored to the specific plant requirements of the facility operator, (iv) Systems and software implementation that was not always carried out to modern industry standards and (v) A tendency to be overly complex - refined by on-plant operational usage and experience. Although these systems were 'validated in use' and are generally fit for purpose, there are a number of potential problems in transferring technology that was developed ten or more years ago to the new build SNF recycling facilities of the future. These issues include (i) Obsolescence of components - particularly with respect to computer hardware and data acquisition electronics, (ii) Availability of Intellectual Property and design

  15. Assay of PCM Crates and Drums using the BIL Solutions Ltd. Imaging DISPIM{sup R} System

    SciTech Connect

    Mulligan, A.; Sharpe, R.J.

    2006-07-01

    BIL Solutions Ltd Decommissioning In-Situ Plutonium Inventory Monitor (DISPIM{sup R}) is a versatile neutron and gamma assay system designed to be deployable in a wide range of decommissioning and waste management situations. The system utilizes Totals and Coincidence neutron counting to determine both total Pu mass values and the 3D Pu mass distribution inside the target object. DISPIM{sup R}'s modular, mobile design allows the system to be used in the assay of a range of objects of varying size and shape in locations where alternative monitoring equipment would not normally be available. The DISPIM{sup R} system has recently been successfully used for the in-situ measurement of crated and drummed Plutonium Contaminated Material (PCM) waste items to provide Pu mass values in preparation for their treatment as part of a decommissioning program. A description of the operation of the DISPIM{sup R} system is given, including calibration of the system prior to the on-site survey, the measurement and quality control methodology employed during assay of waste items and discussion of the data analysis techniques. The results of 'imaging' measurements (i.e. Pu mass distribution results) recorded from the PCM crate measurements are likely to be of particular benefit when planning any future operations on these waste items. The results of this DISPIM{sup R} survey represent a complete solution for the customer with minimal requirement for use of their own resources. Technically substantiated Pu mass assay results have been provided which can now be easily adopted for use in criticality safety cases for the future treatment of these waste items. In summary, the DISPIM{sup R} system has successfully delivered a safe, fast and cost effective measurement solution to this challenging assay task and demonstrated its flexibility as a PCM monitoring system. (authors)

  16. Automated microfluidic assay system for autoantibodies found in autoimmune diseases using a photoimmobilized autoantigen microarray.

    PubMed

    Matsudaira, Takahiro; Tsuzuki, Saki; Wada, Akira; Suwa, Akira; Kohsaka, Hitoshi; Tomida, Maiko; Ito, Yoshihiro

    2008-01-01

    Autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and autoimmune diabetes are characterized by the production of autoantibodies that serve as useful diagnostic markers, surrogate markers, and prognostic factors. We devised an in vitro system to detect these clinically pivotal autoantibodies using a photoimmobilized autoantigen microarray. Photoimmobilization was useful for preparing the autoantigen microarray, where autoantigens are covalently immobilized on a plate, because it does not require specific functional groups of the autoantigens and any organic material can be immobilized by a radical reaction induced by photoirradiation. Here, we prepared the microarray using a very convenient method. Aqueous solutions of each autoantigen were mixed with a polymer of poly(ethylene glycol) methacrylate and a photoreactive crosslinker, and the mixtures were microspotted on a plate and dried in air. Finally, the plate was irradiated with an ultraviolet lamp to obtain immobilization. In the assay, patient serum was added to the microarray plate. Antigen-specific IgG adsorbed on the microspotted autoantigen was detected by peroxidase-conjugated anti-IgG antibody. The chemical luminescence intensities of the substrate decomposed by the peroxidase were detected with a sensitive CCD camera. All autoantigens were immobilized stably by this method and used to screen antigen-specific IgG. In addition, the plate was covered with a polydimethylsiloxane sheet containing microchannels and automated measurement was carried out. PMID:19194953

  17. Clues from wildlife to create an assay for thyroid system disruption.

    PubMed Central

    Colborn, Theo

    2002-01-01

    In 1996 the U.S. Congress charged the U.S. Environmental Protection Agency to develop a screening program to test chemicals for their possible estrogenic and other endocrine effects. Shortly thereafter, the Chemical Guidelines Program of the Organisation for Economic Co-operation and Development's (OECD) Environmental Directorate organized a Task Force on Endocrine Disruption Testing and Assessment to coordinate development of internationally harmonized screening and testing protocols. Most of the research devoted to this effort has focused on detecting impaired estrogenicity, androgenicity, and/or steroidogenesis, with little progress toward developing assays to detect chemicals that might interfere with thyroid function. Despite the fact that wildlife biologists have been reporting abnormal thyroid gland development and unusual thyroid hormone (TH) and retinoid ratios in fish and birds since the early 1960s, few studies have demonstrated an association between an environmental contaminant and a particular health end point other than reduced reproductive success at the population level. This article is a review of the literature that specifically examines THs and their role in normal behavior and development in wildlife. It presents several studies that associated changes in the thyroid gland, TH concentrations, and behavior with contaminant exposure. The goal of this article is to provide fodder for the creation of simple screens to detect possible thyroid system agonists and antagonists. PMID:12060830

  18. Automated microfluidic assay system for autoantibodies found in autoimmune diseases using a photoimmobilized autoantigen microarray.

    PubMed

    Matsudaira, Takahiro; Tsuzuki, Saki; Wada, Akira; Suwa, Akira; Kohsaka, Hitoshi; Tomida, Maiko; Ito, Yoshihiro

    2008-01-01

    Autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and autoimmune diabetes are characterized by the production of autoantibodies that serve as useful diagnostic markers, surrogate markers, and prognostic factors. We devised an in vitro system to detect these clinically pivotal autoantibodies using a photoimmobilized autoantigen microarray. Photoimmobilization was useful for preparing the autoantigen microarray, where autoantigens are covalently immobilized on a plate, because it does not require specific functional groups of the autoantigens and any organic material can be immobilized by a radical reaction induced by photoirradiation. Here, we prepared the microarray using a very convenient method. Aqueous solutions of each autoantigen were mixed with a polymer of poly(ethylene glycol) methacrylate and a photoreactive crosslinker, and the mixtures were microspotted on a plate and dried in air. Finally, the plate was irradiated with an ultraviolet lamp to obtain immobilization. In the assay, patient serum was added to the microarray plate. Antigen-specific IgG adsorbed on the microspotted autoantigen was detected by peroxidase-conjugated anti-IgG antibody. The chemical luminescence intensities of the substrate decomposed by the peroxidase were detected with a sensitive CCD camera. All autoantigens were immobilized stably by this method and used to screen antigen-specific IgG. In addition, the plate was covered with a polydimethylsiloxane sheet containing microchannels and automated measurement was carried out.

  19. A system for assaying homologous recombination at the endogenous human thymidine kinase gene

    SciTech Connect

    Benjamin, M.B.; Little, J.B. ); Potter, H. ); Yandell, D.W. Massachusetts Eye and Ear Infirmary, Boston Harvard Medical School, Boston, MA )

    1991-08-01

    A system for assaying human interchromosomal recombination in vitro was developed, using a cell line containing two different mutant thymidine kinase genes (TK) on chromosomes 17. Heteroalleles were generated in the TK{sup +/+} parent B-lymphoblast cell line WIL-2 by repeated exposure to the alkylating nitrogen mustard ICR-191, which preferentially causes +1 or {minus}1 frameshifts. Resulting TK{sup {minus}/{minus}} mutants were selected in medium containing the toxic thymidine analog trifluorothymidine. In two lines, heterozygous frameshifts were located in exons 4 and 7 of the TK gene separated by {approx}8 kilobases. These lines undergo spontaneous reversion to TK{sup +} at a frequency of < 10{sup {minus}7}, and revertants can be selected in cytidine/hypoxanthine/aminopterin/thymidine medium. The nature and location of these heteroallelic mutations make large deletions, rearrangements, nondisjunction, and reduplication unlikely mechanisms for reversion to TK{sup +}. The mode of reversion to TK{sup +} was specifically assessed by DNA sequencing, use of single-strand conformation polymorphisms, and analysis of various restriction fragment length polymorphisms (RFLPs) linked to the TK gene on chromosome 17. The data suggest that a proportion of revertants has undergone recombination and gene conversion at the TK locus, with concomitant loss of frameshifts and allele loss at linked RFLPs. Models are presented for the origin of two recombinants.

  20. Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association

    PubMed Central

    Votýpka, Jan; Dostálová, Anna; Yurchenko, Vyacheslav; Bird, Nathan H.; Lukeš, Julius; Lemaitre, Bruno

    2015-01-01

    ABSTRACT Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the importance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila—Jaenimonas drosophilae, gen. et sp. nov. As far as we are aware, this is the first Drosophila-parasitic trypanosomatid to be cultured and characterized. Through experimental infections, we find that Drosophila falleni, the natural host, is highly susceptible to infection, leading to a substantial decrease in host fecundity. J. drosophilae has a broad host range, readily infecting a number of Drosophila species, including D. melanogaster, with oral infection of D. melanogaster larvae resulting in the induction of numerous immune genes. When injected into adult hemolymph, J. drosophilae kills D. melanogaster, although interestingly, neither the Imd nor the Toll pathway is induced and Imd mutants do not show increased susceptibility to infection. In contrast, mutants deficient in drosocrystallin, a major component of the peritrophic matrix, are more severely infected during oral infection, suggesting that the peritrophic matrix plays an important role in mediating trypanosomatid infection in Drosophila. This work demonstrates that the J. drosophilae-Drosophila system can be a powerful model to uncover the effects of trypanosomatids in their insect hosts. PMID:26374124

  1. Olfactory Learning in Drosophila

    PubMed Central

    Busto, Germain U.; Cervantes-Sandoval, Isaac; Davis, Ronald L.

    2012-01-01

    Studies of olfactory learning in Drosophila have provided key insights into the brain mechanisms underlying learning and memory. One type of olfactory learning, olfactory classical conditioning, consists of learning the contingency between an odor with an aversive or appetitive stimulus. This conditioning requires the activity of molecules that can integrate the two types of sensory information, the odorant as the conditioned stimulus and the aversive or appetitive stimulus as the unconditioned stimulus, in brain regions where the neural pathways for the two stimuli intersect. Compelling data indicate that a particular form of adenylyl cyclase functions as a molecular integrator of the sensory information in the mushroom body neurons. The neuronal pathway carrying the olfactory information from the antennal lobes to the mushroom body is well described. Accumulating data now show that some dopaminergic neurons provide information about aversive stimuli and octopaminergic neurons about appetitive stimuli to the mushroom body neurons. Inhibitory inputs from the GABAergic system appear to gate olfactory information to the mushroom bodies and thus control the ability to learn about odors. Emerging data obtained by functional imaging procedures indicate that distinct memory traces form in different brain regions and correlate with different phases of memory. The results from these and other experiments also indicate that cross talk between mushroom bodies and several other brain regions is critical for memory formation. PMID:21186278

  2. Aggression in Drosophila.

    PubMed

    Kravitz, Edward A; Fernandez, Maria de la Paz

    2015-10-01

    Aggression is used by essentially all species of animals to gain access to desired resources, including territory, food, and potential mates: Fruit flies are no exception. In Drosophila, both males and females compete in same sex fights for resources, but only males establish hierarchical relationships. Many investigators now study aggression using the fruit fly model, mainly because (a) aggression in fruit flies is a quantifiable well-defined and easily evoked behavior; (b) powerful genetic methods allow investigators to manipulate genes of interest at any place or time during embryonic, larval, pupal or adult life, and while flies are behaving; (c) the growth of the relatively new field of optogenetics makes physiological studies possible at single neuron levels despite the small sizes of neurons and other types of cells in fly brains; and (d) the rearing of fly stocks with their short generation times and limited growth space requirements can easily be performed at relatively low cost in most laboratories. This review begins with an examination of the behavior, both from a historical perspective and then from the birth of the "modern" era of studies of aggression in fruit flies including its quantitative analysis. The review continues with examinations of the roles of genes, neurotransmitters and neurohormones, peptides, nutritional and metabolic status, and surface cuticular hydrocarbons in the initiation and maintenance of aggression. It concludes with suggestions for future studies with this important model system.

  3. Micromechanics of Drosophila Audition

    NASA Astrophysics Data System (ADS)

    Göpfert, M. C.; Robert, D.

    2003-02-01

    An analysis is presented of the auditory micromechanics of the fruit fly Drosophila melanogaster. In this animal, the distal part of the antenna constitutes a resonantly tuned sound receiver, the vibrations of which are transduced by a chordotonal sense organ in the antenna's base. Analyzing the mechanical behavior of the antennal receiver by means of microscanning laser Doppler vibrometry, we show that the auditory system of wild-type flies exhibits a hardening stiffness nonlinearity and spontaneously generates oscillations in the absence of external stimuli. According to the deprivation of these mechanical properties in mechanosensory mutants, the receiver's nonlinearity and oscillation activity are introduced by chordotonal auditory neurons. Requiring the mechanoreceptor-specific extracellular linker protein No-mechanoreceptor-potential-A (NompA), NompC mechanosensory transduction channels, Beethoven (Btv), and Touch-insensitive-larva-B (TilB), nonlinearity and oscillation activity of the fly's antennal receiver depend on prominent components of the auditory transduction machinery and seem to originate from motility of auditory receptor cilia.

  4. Taste processing in Drosophila larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Rist, Anna; Thum, Andreas S.

    2015-01-01

    The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances. PMID:26528147

  5. Chromosome Conformation Capture in Drosophila.

    PubMed

    Li, Hua-Bing

    2016-01-01

    Linear chromatin fiber is packed inside the nuclei as a complex three-dimensional structure, and the organization of the chromatin has important roles in the appropriate spatial and temporal regulation of gene expression. To understand how chromatin organizes inside nuclei, and how regulatory proteins physically interact with genes, chromosome conformation capture (3C) technique provides a powerful and sensitive tool to detect both short- and long-range DNA-DNA interaction. Here I describe the 3C technique to detect the DNA-DNA interactions mediated by insulator proteins that are closely related to PcG in Drosophila, which is also broadly applicable to other systems. PMID:27659987

  6. Drosophila Melanogaster as an Experimental Organism.

    ERIC Educational Resources Information Center

    Rubin, Gerald M.

    1988-01-01

    Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)

  7. Design principles of the sparse coding network and the role of “sister cells” in the olfactory system of Drosophila

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Wu, Si; Rasch, Malte J.

    2013-01-01

    Sensory systems face the challenge to represent sensory inputs in a way to allow easy readout of sensory information by higher brain areas. In the olfactory system of the fly drosopohila melanogaster, projection neurons (PNs) of the antennal lobe (AL) convert a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon cells (KCs) in the mushroom body (MB). Here we investigate the design principles of the olfactory system of drosophila in regard to the capabilities to discriminate odor quality from the MB representation and its robustness to different types of noise. We focus on understanding the role of highly correlated homotypic projection neurons (“sister cells”) found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost identical sensory inputs, but target randomly different KCs in MB. We show that sister cells might play a crucial role in increasing the robustness of the MB odor representation to noise. Computationally, sister cells thus might help the system to improve the generalization capabilities in face of noise without impairing the discriminability of odor quality at the same time. PMID:24167488

  8. Mutations in palmitoyl-protein thioesterase 1 alter exocytosis and endocytosis at synapses in Drosophila larvae

    PubMed Central

    Aby, Elizabeth; Gumps, Katherine; Roth, Amalia; Sigmon, Stacey; Jenkins, Sarah E; Kim, Joyce J; Kramer, Nicholas J; Parfitt, Karen D; Korey, Christopher A

    2013-01-01

    Infantile-onset neuronal ceroid lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate group from its substrate proteins, which may include presynaptic proteins like SNAP-25, cysteine string protein (CSP), dynamin, and synaptotagmin. The fruit fly, Drosophila melanogaster, has been a powerful model system for studying the functions of these proteins and the molecular basis of neurological disorders like the NCLs. Genetic modifier screens and tracer uptake studies in Ppt1 mutant larval garland cells have suggested that Ppt1 plays a role in endocytic trafficking. We have extended this analysis to examine the involvement of Ppt1 in synaptic function at the Drosophila larval neuromuscular junction (NMJ). Mutations in Ppt1 genetically interact with temperature sensitive mutations in the Drosophila dynamin gene shibire, accelerating the paralytic behavior of shibire mutants at 27 °C. Electrophysiological work in NMJs of Ppt1-deficient larvae has revealed an increase in miniature excitatory junctional potentials (EJPs) and a significant depression of evoked EJPs in response to repetitive (10 hz) stimulation. Endocytosis was further examined in Ppt1-mutant larvae using FM1–43 uptake assays, demonstrating a significant decrease in FM1–43 uptake at the mutant NMJs. Finally, Ppt1-deficient and Ppt1 point mutant larvae display defects in locomotion that are consistent with alterations in synaptic function. Taken together, our genetic, cellular, and electrophysiological analyses suggest a direct role for Ppt1 in synaptic vesicle exo- and endocytosis at motor nerve terminals of the Drosophila NMJ. PMID:24091420

  9. Paper-based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection

    PubMed Central

    Apilux, Amara; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Prachayasittikul, Virapong

    2015-01-01

    A dramatic increase in pesticide usage in agriculture highlights the need for on-site monitoring for public health and safety. Here, a paper-based sensor combined with a wet system was developed for the simple and rapid screening of organophosphate (OP) and carbamate (CM) pesticides based on the inhibition of acetylcholinesterase (AChE). The paper-based sensor was designed as a foldable device consisting of a cover and detection sheets pre-prepared with indoxyl acetate and AChE, respectively. The paper-based sensor requires only the incubation of a sample on the test zone for 10 minutes, followed by closing of the foldable sheet to initiate the enzymatic reaction. Importantly, the buffer loading hole was additionally designed on the cover sheet to facilitate the interaction of the coated substrate and the immobilized enzyme. This subsequently facilitates the mixing of indoxyl acetate with AChE, resulting in the improved analytical performance of the sensor. The absence or decrease in blue color produced by the AChE hydrolysis of indoxyl acetate can be observed in the presence of OPs and CMs. Under optimized conditions and using image analysis, the limit of detection (LOD) of carbofuran, dichlorvos, carbaryl, paraoxon, and pirimicarb are 0.003, 0.3, 0.5, 0.6, and 0.6 ppm, respectively. The assay could be applied to determine OP and CM residues in spiked food samples. Visual interpretation of the color signal was clearly observed at the concentration of 5 mg/kg. Furthermore, a self-contained sample pre-concentration approach greatly enhanced the detection sensitivity. The paper-based device developed here is low-cost, requires minimal reagents and is easy to handle. As such, it would be practically useful for pesticide screening by non-professional end-users. PMID:26417364

  10. Paper-based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection.

    PubMed

    Apilux, Amara; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Prachayasittikul, Virapong

    2015-01-01

    A dramatic increase in pesticide usage in agriculture highlights the need for on-site monitoring for public health and safety. Here, a paper-based sensor combined with a wet system was developed for the simple and rapid screening of organophosphate (OP) and carbamate (CM) pesticides based on the inhibition of acetylcholinesterase (AChE). The paper-based sensor was designed as a foldable device consisting of a cover and detection sheets pre-prepared with indoxyl acetate and AChE, respectively. The paper-based sensor requires only the incubation of a sample on the test zone for 10 minutes, followed by closing of the foldable sheet to initiate the enzymatic reaction. Importantly, the buffer loading hole was additionally designed on the cover sheet to facilitate the interaction of the coated substrate and the immobilized enzyme. This subsequently facilitates the mixing of indoxyl acetate with AChE, resulting in the improved analytical performance of the sensor. The absence or decrease in blue color produced by the AChE hydrolysis of indoxyl acetate can be observed in the presence of OPs and CMs. Under optimized conditions and using image analysis, the limit of detection (LOD) of carbofuran, dichlorvos, carbaryl, paraoxon, and pirimicarb are 0.003, 0.3, 0.5, 0.6, and 0.6 ppm, respectively. The assay could be applied to determine OP and CM residues in spiked food samples. Visual interpretation of the color signal was clearly observed at the concentration of 5 mg/kg. Furthermore, a self-contained sample pre-concentration approach greatly enhanced the detection sensitivity. The paper-based device developed here is low-cost, requires minimal reagents and is easy to handle. As such, it would be practically useful for pesticide screening by non-professional end-users. PMID:26417364

  11. Hypomorphic mutations in the larval photokinesis A (lphA) gene have stage-specific effects on visual system function in Drosophila melanogaster

    SciTech Connect

    Gordesky-Gold, B.; Warrick, J.M.; Bixler, A.

    1995-04-01

    Of the many genes that are expressed in the visual system of Drosophila melanogaster adults, some affect larval vision. However, with the exception of one X-linked mutation, no genes that have larval-specific effects on visual system structure or function have previously been reported. We describe the isolation and characterization of two mutant alleles that define the larval photokinesis A (lphA) gene, one allele of which is associated with a P-element insertion at cytogenetic locus 8E1-10. Larvae that express lphA mutations are, like normal animals, negatively photokinetic, but they are less responsive to white light than lphA+ controls. Larvae that are heterozygous in trans for a mutant allele and a deficiency that uncovers the lphA locus are blind, which indicates that the mutant allele is hypomorphic. lphA larvae respond normally to odorants and taste stimuli. Moreover, the lphA mutations do not affect adult flies` fast phototaxis or visually driven aspects of male sexual behavior, and electroretinograms recorded from the compound eyes of lphA/deficiency heterozygotes and lphA{sup 1}/lphA{sup 2} females are normal. These observations suggest that the lphA gene affects a larval-specific aspect of visual system function. 27 refs., 2 figs., 4 tabs.

  12. Drosophila Blastorderm Analysis Software

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levelsmore » at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64« less

  13. Development of a novel cell-based assay system EPISSAY for screening epigenetic drugs and liposome formulated decitabine

    PubMed Central

    2013-01-01

    Background Despite the potential of improving the delivery of epigenetic drugs, the subsequent assessment of changes in their epigenetic activity is largely dependent on the availability of a suitable and rapid screening bioassay. Here, we describe a cell-based assay system for screening gene reactivation. Methods A cell-based assay system (EPISSAY) was designed based on a silenced triple-mutated bacterial nitroreductase TMnfsB fused with Red-Fluorescent Protein (RFP) expressed in the non-malignant human breast cell line MCF10A. EPISSAY was validated using the target gene TXNIP, which has previously been shown to respond to epigenetic drugs. The potency of a epigenetic drug model, decitabine, formulated with PEGylated liposomes was also validated using this assay system. Results Following treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors such as decitabine and vorinostat, increases in RFP expression were observed, indicating expression of RFP-TMnfsB. The EPISSAY system was then used to test the potency of decitabine, before and after PEGylated liposomal encapsulation. We observed a 50% higher potency of decitabine when encapsulated in PEGylated liposomes, which is likely to be due to its protection from rapid degradation. Conclusions The EPISSAY bioassay system provides a novel and rapid system to compare the efficiencies of existing and newly formulated drugs that reactivate gene expression. PMID:23497118

  14. Genotoxicity of 10 cigarette smoke condensates in four test systems: comparisons between assays and condensates.

    PubMed

    DeMarini, David M; Gudi, Ramadevi; Szkudlinska, Anna; Rao, Meena; Recio, Leslie; Kehl, Margaret; Kirby, Paul E; Polzin, Gregory; Richter, Patricia A

    2008-01-31

    The particulate fraction of cigarette smoke, cigarette smoke condensate (CSC), is genotoxic in many short-term in vitro tests and is carcinogenic in rodents. However, no study has evaluated a series of CSCs prepared from a diverse set of cigarettes and produced with different smoking machine regimens in several short-term genotoxicity tests. Here we report on the genotoxicity of 10 CSCs prepared from commercial cigarettes that ranged from ultra-low tar per cigarette (< or =6.5 mg) to full flavor (>14.5 mg) as determined by the Federal Trade Commission (FTC) smoking regimen, a reference cigarette blended to be representative of a U.S. FTC-regimen low-tar cigarette, and experimental cigarettes constructed of single tobacco types. CSCs were tested in the presence of rat liver S9 in the Salmonella plate-incorporation assay using frameshift strains TA98 and YG1041; in micronucleus and comet assays in L5178Y/Tk(+/-) 7.3.2C mouse lymphoma cells, and in CHO-K(1) cells for chromosome aberrations. All 10 CSCs were mutagenic in both strains of Salmonella, and the rank order of their mutagenic potencies was similar. Their mutagenic potencies in Salmonella spanned 7-fold when expressed as rev/mug CSC but 158-fold when expressed as rev/mg nicotine; the range of genotoxic potencies of the CSCs in the other assays was similar regardless of how the data were expressed. All 10 CSCs induced micronuclei with a 3-fold range in their potency. All but one CSC induced DNA damage over a 20-fold range, and all but one CSC induced chromosome aberrations over a 4-fold range. There was no relation among the genotoxic potencies of the CSCs across the assays, and a qualitative advantage of the addition of the other assays to the Salmonella assay was not supported by our findings. Although consideration of nicotine levels may improve the relevance of the quantitative data obtained in the Salmonella and possibly comet assays, compensatory smoking habits and other factors may make the data from the

  15. Inhibition of dras2/rop expression in Xenopus oocytes by Drosophila nuclear extract.

    PubMed

    Duarte, R; Stein, L; Fabian, B; Segev, O

    1995-11-01

    Chloramphenicol acetyl transferase reporter plasmids driven by the Drosophila ras2/rop promoter were injected into Xenopus oocytes to study Dras2 and rop gene regulation by their bidirectional promoter. When injected without Drosophila nuclear extract, both Dras2 and rep were highly expressed. Dras2 and rop-CAT expression was very similar in Drosophila cells and Xenopus oocytes, suggesting the conservation of regulatory factors between the two species. When Drosophila nuclear extract was co-injected with Dras2 and rep promoter-CAT constructs, expression was inhibited. Inhibition decreased with elevation of plasmid concentration and was increased with an increase in nuclear extract concentration. Since specific DNA-protein interactions were diminished by the combination of oocyte and Drosophila nuclear extracts in gel retardation assays, a sequestering-type mechanism of repression has been proposed.

  16. Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster

    PubMed Central

    Scialo, Filippo; Sriram, Ashwin; Stefanatos, Rhoda; Sanz, Alberto

    2016-01-01

    Drosophila melanogaster is a popular research model organism thanks to its’ powerful genetic tools that allow spatial and temporal control of gene expression. The inducible GeneSwitch Gal4 system (GS) system is a modified version of the classic UAS/GAL4 system which allows inducible regulation of gene expression and eliminates background effects. It is widely acknowledged that the GS system is leaky, with low level expression of UAS transgenes in absence of the inducer RU-486 (the progesterone analog that activates the modified GAL4 protein). However, in the course of our experiments, we have observed that the extent of this leak depends on the nature of the transgene being expressed. In the absence of RU-486, when strong drivers are used to express protein coding transgenes, leaky expression is low or negligible, however expression of RNA interference (RNAi) transgenes results in complete depletion of protein levels. The majority of published studies, using the GS system and RNAi transgenes validate knock-down efficiency by comparing target gene mRNA levels between induced and non-induced groups. Here, we demonstrate that this approach is lacking and that both additional control groups and further validation is required at the protein level. Unfortunately, this experimental limitation of the GS system eliminates “the background advantage”, but does offer the possibility of performing more complex experiments (e.g. studying depletion and overexpression of different proteins in the same genetic background). The limitations and new possible applications of the GS system are discussed in detail. PMID:27570965

  17. Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster.

    PubMed

    Scialo, Filippo; Sriram, Ashwin; Stefanatos, Rhoda; Sanz, Alberto

    2016-01-01

    Drosophila melanogaster is a popular research model organism thanks to its' powerful genetic tools that allow spatial and temporal control of gene expression. The inducible GeneSwitch Gal4 system (GS) system is a modified version of the classic UAS/GAL4 system which allows inducible regulation of gene expression and eliminates background effects. It is widely acknowledged that the GS system is leaky, with low level expression of UAS transgenes in absence of the inducer RU-486 (the progesterone analog that activates the modified GAL4 protein). However, in the course of our experiments, we have observed that the extent of this leak depends on the nature of the transgene being expressed. In the absence of RU-486, when strong drivers are used to express protein coding transgenes, leaky expression is low or negligible, however expression of RNA interference (RNAi) transgenes results in complete depletion of protein levels. The majority of published studies, using the GS system and RNAi transgenes validate knock-down efficiency by comparing target gene mRNA levels between induced and non-induced groups. Here, we demonstrate that this approach is lacking and that both additional control groups and further validation is required at the protein level. Unfortunately, this experimental limitation of the GS system eliminates "the background advantage", but does offer the possibility of performing more complex experiments (e.g. studying depletion and overexpression of different proteins in the same genetic background). The limitations and new possible applications of the GS system are discussed in detail.

  18. Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster.

    PubMed

    Scialo, Filippo; Sriram, Ashwin; Stefanatos, Rhoda; Sanz, Alberto

    2016-01-01

    Drosophila melanogaster is a popular research model organism thanks to its' powerful genetic tools that allow spatial and temporal control of gene expression. The inducible GeneSwitch Gal4 system (GS) system is a modified version of the classic UAS/GAL4 system which allows inducible regulation of gene expression and eliminates background effects. It is widely acknowledged that the GS system is leaky, with low level expression of UAS transgenes in absence of the inducer RU-486 (the progesterone analog that activates the modified GAL4 protein). However, in the course of our experiments, we have observed that the extent of this leak depends on the nature of the transgene being expressed. In the absence of RU-486, when strong drivers are used to express protein coding transgenes, leaky expression is low or negligible, however expression of RNA interference (RNAi) transgenes results in complete depletion of protein levels. The majority of published studies, using the GS system and RNAi transgenes validate knock-down efficiency by comparing target gene mRNA levels between induced and non-induced groups. Here, we demonstrate that this approach is lacking and that both additional control groups and further validation is required at the protein level. Unfortunately, this experimental limitation of the GS system eliminates "the background advantage", but does offer the possibility of performing more complex experiments (e.g. studying depletion and overexpression of different proteins in the same genetic background). The limitations and new possible applications of the GS system are discussed in detail. PMID:27570965

  19. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    NASA Astrophysics Data System (ADS)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  20. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    PubMed

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  1. Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight.

    PubMed

    Agrawal, Neha; Venkiteswaran, Gayatri; Sadaf, Sufia; Padmanabhan, Nisha; Banerjee, Santanu; Hasan, Gaiti

    2010-01-27

    Calcium (Ca(2+)) signaling is known to regulate the development, maintenance and modulation of activity in neuronal circuits that underlie organismal behavior. In Drosophila, intracellular Ca(2+) signaling by the inositol 1,4,5-trisphosphate receptor and the store-operated channel (dOrai) regulates the formation and function of neuronal circuits that control flight. Here, we show that restoring InsP(3)R activity in insulin-producing neurons of flightless InsP(3)R mutants (itpr) during pupal development can rescue systemic flight ability. Expression of the store operated Ca(2+) entry (SOCE) regulator dSTIM in insulin-producing neurons also suppresses compromised flight ability of InsP(3)R mutants suggesting that SOCE can compensate for impaired InsP(3)R function. Despite restricted expression of wild-type InsP(3)R and dSTIM in insulin-producing neurons, a global restoration of SOCE and store Ca(2+) is observed in primary neuronal cultures from the itpr mutant. These results suggest that restoring InsP(3)R-mediated Ca(2+) release and SOCE in a limited subset of neuromodulatory cells can influence systemic behaviors such as flight by regulating intracellular Ca(2+) homeostasis in a large population of neurons through a non-cell-autonomous mechanism. PMID:20107057

  2. A Differential Effect of Heavy Water on Temperature-Dependent and Temperature-Compensated Aspects of the Circadian System of Drosophila pseudoobscura

    PubMed Central

    Pittendrigh, Colin S.; Caldarola, Patricia C.; Cosbey, Elizabeth S.

    1973-01-01

    D2O is the only “chemical” agent that consistently affects the frequency of circadian oscillations: its effect is now known to be so widespread and predictable that its action merits closer study as a potential clue to the currently obscure concrete nature of circadian oscillators. The great diversity of D2O effects on biological systems in general is briefly reviewed and the need for rejectable hypotheses concerning the action of D2O on circadian clocks is stressed because current speculation on its action yields “predictions” expected from almost any hypothesis. We consider the hypothesis that it “diminishes the apparent temperature” of the cell and proceed to test this by examining the effect of D2O on temperature-dependent and temperature-compensated aspects of the circadian system in Drosophila. We find these components respond as differentially to D2O as they do to temperature; we conclude, however, with a warning that this result may be equivocal if, as we now suspect, the frequency of circadian oscillations is generally homeostatically conserved—not only in the face of temperature change, but change in any variable to which it is sensitive. More crucial tests of the temperature-equivalence hypothesis for D2O action are defined. PMID:4516204

  3. Identification of a second homolog of N-ethylmaleimide-sensitive fusion protein that is expressed in the nervous system and secretory tissues of Drosophila.

    PubMed Central

    Boulianne, G L; Trimble, W S

    1995-01-01

    N-Ethylmaleimide-sensitive fusion protein (NSF) is an ATPase known to have an essential role in intracellular membrane transport events. Recently, cDNA clones encoding a Drosophila melanogaster homolog of this protein, named dNSF, were characterized and found to be expressed in the nervous system. We now report the identification of a second homolog of NSF, called dNSF-2 within this species and report evidence that this ubiquitous and widely utilized fusion protein belongs to a multigene family. The predicted amino acid sequence of dNSF-2 is 84.5% identical to dNSF (hereafter named dNSF-1), 59% identical to NSF from Chinese hamster, and 38.5% identical to the yeast homolog SEC18. The highest similarity was found in a region of dNSF-2 containing one of two ATP-binding sites; this region is most similar to members of a superfamily of ATPases. dNSF-2 is localized to a region between bands 87F12 and 88A3 on chromosome 3, and in situ hybridization techniques revealed expression in the nervous system during embryogenesis and in several imaginal discs and secretory structures in the larvae. Developmental modulation of dNSF-2 expression suggests that quantitative changes in the secretory apparatus are important in histogenesis. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7624376

  4. Automated Tracking of Drosophila Specimens.

    PubMed

    Chao, Rubén; Macía-Vázquez, Germán; Zalama, Eduardo; Gómez-García-Bermejo, Jaime; Perán, José-Ramón

    2015-01-01

    The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained. PMID:26258779

  5. Automated Tracking of Drosophila Specimens

    PubMed Central

    Chao, Rubén; Macía-Vázquez, Germán; Zalama, Eduardo; Gómez-García-Bermejo, Jaime; Perán, José-Ramón

    2015-01-01

    The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained. PMID:26258779

  6. Development of a Luciferase Immunoprecipitation System Assay To Detect IgG Antibodies against Human Respiratory Syncytial Virus Nucleoprotein

    PubMed Central

    Kumari, Sangeeta; Crim, Roberta Lynne; Kulkarni, Ashwin; Audet, Susette A.; Mdluli, Thembi; Murata, Haruhiko

    2014-01-01

    The nucleoprotein of respiratory syncytial virus (RSV-N) is immunogenic and elicits an IgG response following infection. The RSV-N gene was cloned into a mammalian expression vector, pREN2, and the expressed luciferase-tagged protein (Ruc-N) detected anti-RSV-N-specific IgG antibodies using a high-throughput immunoprecipitation method (the luciferase immunoprecipitation system [LIPS]-NRSV assay). The specificity of the assay was evaluated using monoclonal antibodies (MAbs) and monospecific pre- and postimmunization rabbit antisera. Blood serum samples from chimpanzees and humans with proven/probable RSV infection were also tested. The pre- and postimmunization serum samples from rabbits given human metapneumovirus (HMPV) or measles virus were negative when tested by the LIPS-NRSV assay, while antisera obtained after immunization with either the RSV-A or RSV-B strain gave positive signals in a dose-dependent manner. RSV-N MAb 858-3 gave a positive signal in the LIPS-NRSV assay, while MAbs against other paramyxovirus nucleoproteins or RSV-F or RSV-G did not. Serum samples from chimpanzees simultaneously immunized with vaccinia-RSV-F and vaccinia-RSV-G recombinant viruses were negative in the LIPS-NRSV assay; however, anti-RSV-N IgG responses were detected following subsequent RSV challenge. Seven of the 12 infants who were seronegative at 9 months of age had detectable anti-RSV-N antibodies when they were retested at 15 to 18 months of age. The LIPS-NRSV assay detects specific anti-RSV-N IgG responses that may be used as a biomarker of RSV infection. PMID:24403526

  7. Viral concentration determination through plaque assays: using traditional and novel overlay systems.

    PubMed

    Baer, Alan; Kehn-Hall, Kylene

    2014-01-01

    Plaque assays remain one of the most accurate methods for the direct quantification of infectious virons and antiviral substances through the counting of discrete plaques (infectious units and cellular dead zones) in cell culture. Here we demonstrate how to perform a basic plaque assay, and how differing overlays and techniques can affect plaque formation and production. Typically solid or semisolid overlay substrates, such as agarose or carboxymethyl cellulose, have been used to restrict viral spread, preventing indiscriminate infection through the liquid growth medium. Immobilized overlays restrict cellular infection to the immediately surrounding monolayer, allowing the formation of discrete countable foci and subsequent plaque formation. To overcome the difficulties inherent in using traditional overlays, a novel liquid overlay utilizing microcrystalline cellulose and carboxymethyl cellulose sodium has been increasingly used as a replacement in the standard plaque assay. Liquid overlay plaque assays can be readily performed in either standard 6 or 12 well plate formats as per traditional techniques and require no special equipment. Due to its liquid state and subsequent ease of application and removal, microculture plate formats may alternatively be utilized as a rapid, accurate and high throughput alternative to larger scale viral titrations. Use of a non heated viscous liquid polymer offers the opportunity to streamline work, conserves reagents, incubator space, and increases operational safety when used in traditional or high containment labs as no reagent heating or glassware are required. Liquid overlays may also prove more sensitive than traditional overlays for certain heat labile viruses. PMID:25407402

  8. Viral concentration determination through plaque assays: using traditional and novel overlay systems.

    PubMed

    Baer, Alan; Kehn-Hall, Kylene

    2014-11-04

    Plaque assays remain one of the most accurate methods for the direct quantification of infectious virons and antiviral substances through the counting of discrete plaques (infectious units and cellular dead zones) in cell culture. Here we demonstrate how to perform a basic plaque assay, and how differing overlays and techniques can affect plaque formation and production. Typically solid or semisolid overlay substrates, such as agarose or carboxymethyl cellulose, have been used to restrict viral spread, preventing indiscriminate infection through the liquid growth medium. Immobilized overlays restrict cellular infection to the immediately surrounding monolayer, allowing the formation of discrete countable foci and subsequent plaque formation. To overcome the difficulties inherent in using traditional overlays, a novel liquid overlay utilizing microcrystalline cellulose and carboxymethyl cellulose sodium has been increasingly used as a replacement in the standard plaque assay. Liquid overlay plaque assays can be readily performed in either standard 6 or 12 well plate formats as per traditional techniques and require no special equipment. Due to its liquid state and subsequent ease of application and removal, microculture plate formats may alternatively be utilized as a rapid, accurate and high throughput alternative to larger scale viral titrations. Use of a non heated viscous liquid polymer offers the opportunity to streamline work, conserves reagents, incubator space, and increases operational safety when used in traditional or high containment labs as no reagent heating or glassware are required. Liquid overlays may also prove more sensitive than traditional overlays for certain heat labile viruses.

  9. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    EPA Science Inventory

    What is the study?
    This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays.
    Why was it done?
    No such comparative study of cigarette smoke condensates has been reported. H...

  10. Drosophila Models of Neurodegenerative Diseases

    PubMed Central

    Lu, Bingwei; Vogel, Hannes

    2011-01-01

    Neurodegenerative diseases are progressive disorders of the nervous system that affect specific cellular populations in the central and peripheral nervous systems. Although most cases are sporadic, genes associated with familial cases have been identified, thus enabling the development of animal models. Invertebrates such as Drosophila have recently emerged as model systems for studying mechanisms of neurodegeneration in several major neurodegenerative diseases. These models are also excellent in vivo systems for the testing of therapeutic compounds. Genetic studies using these animal models have provided novel insights into the disease process. We anticipate that further exploration of the animal models will further our understanding of mechanisms of neurodegeneration as well as facilitate the development of rational treatments for debilitating degenerative diseases. PMID:18842101

  11. [THE EFFECT OF DIETARY RESTRICTION DURING DEVELOPMENT OF DROSOPHILA MELANOGASTER ON THE ACTIVITY OF ANTIOXIDANT SYSTEM ENZYMES].

    PubMed

    Zabuga, O G; Koliada, A K; Kukharskyy, V M; Bazhynova, A I; Vaiserman, A M

    2015-01-01

    In the previous study we demonstrated that dietary restriction only at the development stage of Drosophila melanogaster may impact the life span of adult flies. It was important that we didn't use qualitative (restriction of proteins or other macro- or microelements) and not a calorie restriction as well, but quantitative dietary restriction that was the proportional reduction of all food components in the larval medium. In the situations when the larvae were reared in the medium types, that contained protein and carbohydrate components in concentrations of 90-10% of food components compared to the standard one (100%), the males were characterised with the significant increase in the maximum life span. The average life span was also increased, but only in those male individuals that developed in the medium types, that contained 50% and 60% of food components compared to controls. Such an effect we haven't detected in the female flies. To study the biochemical changes associated with the physiological effects we have determined the activity of the antioxidant enzymes--superoxide dismutase (SOD) and catalase. In the male flies the 50% dietary restriction implemented during the development has led to the significant increase in a SOD and catalase activity. Also the flies of both sexes reared in the medium with the 50% of food components have been characterised with the reduction in the accumulation of glycation end products. According to these results, we suggest that the changes in the activity of antioxidant enzymes may play a role in the increase of the flies life span caused by the dietary restriction during the development.

  12. Genotoxicity studies of methyl isocyanate in Salmonella, Drosophila, and cultured Chinese hamster ovary cells

    SciTech Connect

    Mason, J.M.; Zeiger, E.; Haworth, S.; Ivett, J.; Valencia, R.

    1987-01-01

    The genotoxic effects of methyl isocyanate (MIC) were investigated using four short-term tests: the Salmonella reversion assay (Ames test), the Drosophila sex-linked recessive lethal assay, and the sister chromatic exchange (SCE) and chromosomal aberration assays in cultured Chinese hamster ovary (CHO) cells. No evidence was found for the induction of mutations in either Salmonella or Drosophila. MIC did, however, induce SCEs and chromosomal aberrations in CHO cells both in the presence and absence of Aroclor-induced rat liver S-9.

  13. A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster.

    PubMed

    Miller, Danny E; Takeo, Satomi; Nandanan, Kavyasree; Paulson, Ariel; Gogol, Madelaine M; Noll, Aaron C; Perera, Anoja G; Walton, Kendra N; Gilliland, William D; Li, Hua; Staehling, Karen K; Blumenstiel, Justin P; Hawley, R Scott

    2012-02-01

    Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10(-5) per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila. PMID:22384403

  14. A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster

    PubMed Central

    Miller, Danny E.; Takeo, Satomi; Nandanan, Kavyasree; Paulson, Ariel; Gogol, Madelaine M.; Noll, Aaron C.; Perera, Anoja G.; Walton, Kendra N.; Gilliland, William D.; Li, Hua; Staehling, Karen K.; Blumenstiel, Justin P.; Hawley, R. Scott

    2012-01-01

    Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10−5 per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila. PMID:22384403

  15. BMAA neurotoxicity in Drosophila.

    PubMed

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  16. Heritable Endosymbionts of Drosophila

    PubMed Central

    Mateos, Mariana; Castrezana, Sergio J.; Nankivell, Becky J.; Estes, Anne M.; Markow, Therese A.; Moran, Nancy A.

    2006-01-01

    Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed. PMID:16783009

  17. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes

    PubMed Central

    2015-01-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. PMID:25802491

  18. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  19. Chemical mutagenesis testing in Drosophila. VII. Results of 22 coded compounds tested in larval feeding experiments

    SciTech Connect

    Zimmering, S.; Mason, J.M.; Valencia, R. )

    1989-01-01

    Twenty-two chemicals were tested for mutagenicity in the sex-linked recessive lethal (SLRL) mutation assay after being fed to Drosophila melanogaster larvae. One compound, maleic hydrazide, was found to be mutagenic. It was tested for the ability to produce reciprocal translocations (RTs) and was positive in that assay as well.

  20. Multiple redundant medulla projection neurons mediate color vision in Drosophila.

    PubMed

    Melnattur, Krishna V; Pursley, Randall; Lin, Tzu-Yang; Ting, Chun-Yuan; Smith, Paul D; Pohida, Thomas; Lee, Chi-Hon

    2014-01-01

    The receptor mechanism for color vision has been extensively studied. In contrast, the circuit(s) that transform(s) photoreceptor signals into color percepts to guide behavior remain(s) poorly characterized. Using intersectional genetics to inactivate identified subsets of neurons, we have uncovered the first-order interneurons that are functionally required for hue discrimination in Drosophila. We developed a novel aversive operant conditioning assay for intensity-independent color discrimination (true color vision) in Drosophila. Single flying flies are magnetically tethered in an arena surrounded by blue and green LEDs (light-emitting diodes). The flies' optomotor response is used to determine the blue-green isoluminant intensity. Flies are then conditioned to discriminate between equiluminant blue or green stimuli. Wild-type flies are successfully trained in this paradigm when conditioned to avoid either blue or green. Functional color entrainment requires the function of the narrow-spectrum photoreceptors R8 and/or R7, and is within a limited range, intensity independent, suggesting that it is mediated by a color vision system. The medulla projection neurons, Tm5a/b/c and Tm20, receive direct inputs from R7 or R8 photoreceptors and indirect input from the broad-spectrum photoreceptors R1-R6 via the lamina neuron L3. Genetically inactivating these four classes of medulla projection neurons abolished color learning. However, inactivation of subsets of these neurons is insufficient to block color learning, suggesting that true color vision is mediated by multiple redundant pathways. We hypothesize that flies represent color along multiple axes at the first synapse in the fly visual system. The apparent redundancy in learned color discrimination sharply contrasts with innate ultraviolet (UV) spectral preference, which is dominated by a single pathway from the amacrine neuron Dm8 to the Tm5c projection neurons. PMID:24766346

  1. Multiple redundant medulla projection neurons mediate color vision in Drosophila.

    PubMed

    Melnattur, Krishna V; Pursley, Randall; Lin, Tzu-Yang; Ting, Chun-Yuan; Smith, Paul D; Pohida, Thomas; Lee, Chi-Hon

    2014-01-01

    The receptor mechanism for color vision has been extensively studied. In contrast, the circuit(s) that transform(s) photoreceptor signals into color percepts to guide behavior remain(s) poorly characterized. Using intersectional genetics to inactivate identified subsets of neurons, we have uncovered the first-order interneurons that are functionally required for hue discrimination in Drosophila. We developed a novel aversive operant conditioning assay for intensity-independent color discrimination (true color vision) in Drosophila. Single flying flies are magnetically tethered in an arena surrounded by blue and green LEDs (light-emitting diodes). The flies' optomotor response is used to determine the blue-green isoluminant intensity. Flies are then conditioned to discriminate between equiluminant blue or green stimuli. Wild-type flies are successfully trained in this paradigm when conditioned to avoid either blue or green. Functional color entrainment requires the function of the narrow-spectrum photoreceptors R8 and/or R7, and is within a limited range, intensity independent, suggesting that it is mediated by a color vision system. The medulla projection neurons, Tm5a/b/c and Tm20, receive direct inputs from R7 or R8 photoreceptors and indirect input from the broad-spectrum photoreceptors R1-R6 via the lamina neuron L3. Genetically inactivating these four classes of medulla projection neurons abolished color learning. However, inactivation of subsets of these neurons is insufficient to block color learning, suggesting that true color vision is mediated by multiple redundant pathways. We hypothesize that flies represent color along multiple axes at the first synapse in the fly visual system. The apparent redundancy in learned color discrimination sharply contrasts with innate ultraviolet (UV) spectral preference, which is dominated by a single pathway from the amacrine neuron Dm8 to the Tm5c projection neurons.

  2. Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus.

    PubMed

    Arnold, Pieter A; White, Craig R; Johnson, Karyn N

    2015-12-01

    Behavioural fever is a widely conserved response to infection. The host increases body temperature (Tb) by altering their preferred temperature (Tp), generating a fever and delaying or avoiding pathogen-induced mortality. This response is not ubiquitous in insects, however, although few studies have investigated this response to viral infection. Here, we examined the change in Tp of Drosophila in response to virus infection using a thermal gradient. No difference in Tp was observed. We suggest that the lack of behavioural fever could be due to the increased energy cost of maintaining a higher Tb whilst the immune response is active. To the best of our knowledge, this is the first study to assay for changes in Tp of infected Drosophila.

  3. Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae.

    PubMed

    Cirulli, Elizabeth T; Noor, Mohamed A F

    2007-01-01

    Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.

  4. Deletion analysis of a phytochrome-regulated monocot rbcS promoter in a transient assay system.

    PubMed Central

    Rolfe, S A; Tobin, E M

    1991-01-01

    We have developed a transient gene expression assay system in the aquatic monocot Lemna gibba in which DNA was introduced into intact tissue by particle bombardment. Constructs based on the Lemna rbcS gene SSU5B, which is positively regulated by phytochrome in vivo, also showed phytochrome regulation in the transient assay system. Reporter gene expression increased 12-fold over dark levels in response to a single treatment with red light. This increase was not observed if far-red light was immediately followed by the red light. A 5' deletion analysis of the promoter defined a region from position -205 to position -83 relative to the start of transcription as necessary to observe the phytochrome response. This region contains the binding site for the light-induced binding activity (LRF-1) found in Lemna nuclear extracts. Upstream of position -205, we found evidence for the presence of at least two upstream activating sequences and a silencer. Images PMID:2011579

  5. An in vitro assay system as a potential replacement for the histamine sensitisation test for acellular pertussis based combination vaccines.

    PubMed

    Yuen, Chun-Ting; Horiuchi, Yoshinobu; Asokanathan, Catpagavalli; Cook, Sarah; Douglas-Bardsley, Alexandra; Ochiai, Masaki; Corbel, Michael; Xing, Dorothy

    2010-05-01

    The histamine sensitisation test (HIST) for pertussis toxin is currently an official batch release test for acellular pertussis containing combination vaccines in Europe and North America. However, HIST, being a lethal endpoint assay, often leads to repeated tests due to large variations in test performance. Although a more precise HIST test based on measurement of temperature reduction after the histamine challenge is used in Asian countries, this test still uses animals. An in vitro test system based on a combination of enzyme coupled-HPLC and carbohydrate-binding assays with results analysed by a mathematical formula showed a good agreement with the in vivo HIST results based on measurement of temperature reduction after histamine challenge. The new in vitro test system was shown to be a potential alternative to the current in vivo HIST.

  6. Chemiluminescent DNA probes: a comparison of the acridinium ester and dioxetane detection systems and their use in clinical diagnostic assays.

    PubMed

    Nelson, N C; Kacian, D L

    1990-12-17

    Nucleic acid hybridization has the potential to markedly improve the diagnosis of infectious and genetic diseases. Recently, chemiluminescent hybridization assays using acridinium esters and stabilized dioxetanes have been described with sensitivities comparable to those obtained with radioactive labels. Acridinium esters are used as direct labels that are attached to the probe throughout the hybridization reaction. Methods have been developed for labeling DNA probes with acridinium esters at high specific activity and for stabilizing the label under the relatively harsh conditions of hybridization reactions. The label does not affect the kinetics of the hybridization reaction or the stability of the resulting hybrid. The label emits light upon exposure to alkaline peroxide; thus, the assay format can be an extremely simple one. The acridinium ester labels are stable in storage and exhibit extremely rapid light-off kinetics which permit reading large numbers of samples within a brief period as well as limiting the contribution of background signal. A special property of acridinium esters allows chemical destruction of the label when it is present on unhybridized probe, whereas the label is stable to this process when the probe is hybridized. This behavior forms the basis of techniques to minimize assay background signals and allows a homogeneous assay format which does not require physical separation of hybridized and unhybridized probe. The adamantyl-stabilized 1,2-dioxetanes have been used to produce high-sensitivity detection systems for clinical assays. The probe is labeled with enzymes such as alkaline phosphatase or beta-D-galactosidase that hydrolyze the dioxetane derivative to produce a chemiluminescent molecule. As with other enzyme-based labeling systems, the signal increases with time, allowing greater sensitivity to be achieved with longer incubations. The amount of light generated is sufficient to expose sensitive photographic film with extended

  7. Indicator-based and indicator-free magnetic assays connected with disposable electrochemical nucleic acid sensor system.

    PubMed

    Karadeniz, Hakan; Erdem, Arzum; Kuralay, Filiz; Jelen, Frantisek

    2009-04-15

    An indicator-based and indicator-free magnetic assays connected with a disposable pencil graphite electrode (PGE) were successfully developed, and also compared for the electrochemical detection of DNA hybridization. The oxidation signals of echinomycin (ECHI) and electroactive DNA bases, guanine and adenine, respectively were monitored in the presence of DNA hybridization by using differential pulse voltammetry (DPV) technique. The biotinylated probe was immobilized onto the magnetic beads (magnetic particles, microspheres) and hybridization with its complementary target at the surface of particles within the medium was exhibited successfully using electrochemical sensor system. For the selectivity studies, the results represent that both indicator-based and indicator-free magnetic assays provide a better discrimination for DNA hybridization compared to duplex with one-base or more mismatches. The detection limits (S/N=3) of the magnetic assays based on indicator or indicator-free were found in nM concentration level of target using disposable sensor technology with good reproducibility. The characterization and advantages of both proposed magnetic assays connected with a disposable electrochemical sensor are also discussed and compared with those methods previously reported in the literature.

  8. Tiling of R7 Axons in the Drosophila Visual System is Mediated Both by Transduction of an Activin Signal to the Nucleus and by Mutual Repulsion

    PubMed Central

    Ting, Chun-Yuan; Herman, Tory; Yonekura, Shinichi; Gao, Shuying; Wang, Jian; Serpe, Mihaela; O’Connor, Michael B.; Zipursky, S. Lawrence; Lee, Chi-Hon

    2009-01-01

    Summary The organization of neuronal wiring into layers and columns is a common feature of both vertebrate and invertebrate brains. In the Drosophila visual system, each R7 photoreceptor axon projects within a single column to a specific layer of the optic lobe. We refer to the restriction of terminals to single columns as tiling. In a genetic screen based on an R7-dependent behavior, we identified the Activin receptor Baboon and the nuclear import adaptor Importin-α3 as being required to prevent R7 axon terminals from overlapping with the terminals of R7s in neighboring columns. This tiling function requires the Baboon ligand, dActivin, the transcription factor, dSmad2, and retrograde transport from the growth cone to the R7 nucleus. We propose that dActivin is an autocrine signal that restricts R7 growth cone motility, and we demonstrate that it acts in parallel with a paracrine signal that mediates repulsion between R7 terminals. PMID:18054857

  9. Homeotic function of Drosophila Bithorax-Complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the central nervous system

    PubMed Central

    Garaulet, Daniel L.; Castellanos, Monica; Bejarano, Fernando; Sanfilippo, Piero; Tyler, David M.; Allan, Douglas W.; Sánchez-Herrero, Ernesto; Lai, Eric C.

    2014-01-01

    The Drosophila Bithorax-Complex (BX-C) Hox cluster contains a bidirectionally-transcribed miRNA locus, and a deletion mutant (∆mir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the central nervous system. ∆mir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, since sterility of ∆mir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in ∆mir females, and substantially rescued by heterozygosity of ∆mir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation, and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior. PMID:24909902

  10. Spontaneous mitotic recombination and evidence for an x-ray-inducible system for the repair of DNA damage in Drosophila melanogaster

    SciTech Connect

    Kennison, J.A.; Ripoll, P.

    1981-05-01

    Spontaneous mitotic recombination in the left arm of chromosome 3 was examined in both unirradiated control flies and sibs irradiated early in development by determining the sizes and frequencies of multiple-wing-hair (mwh) clones in the wing blade of heterozygous mwh/+ flies. Approximately 16% of the spontaneous mwh clones arise from events generating cells with an average cell division rate one-third that of the surrounding cells;these are thought to result from events that generate aneuploid cells. Such clones probably arise from a failure correctly to repair spontaneous DNA damage. The frequency of spontaneous events late in development decreases significantly after irradiation as much as 150 hours earlier in development. The suppression of spontaneous events decreases with a longer period of time between irradiation and the final cell divisions in the wing blade. These results suggest the existence of a repair system for DNA damage in Drosophila that is induced by irradiation. The decrease in effect with time following irradiation could result from slow degradation or dilution by subsequent cell growth and division.

  11. Studies on three structurally related phenylenediamines with the mouse micronucleus assay system.

    PubMed

    Soler-Niedziela, L; Shi, X; Nath, J; Ong, T

    1991-01-01

    Three structurally related compounds, 4-chloro-o-phenylenediamine (COP), 4-nitro-o-phenylenediamine (NOP) and p-phenylenediamine dihydrochloride (PPD), are used in fur dyes, inks and hair coloring formulations. COP has been reported to be carcinogenic in both rats and mice. NOP and PPD are non-carcinogens, but have consistently tested positive in short-term in vitro genotoxicity assays. Studies were undertaken to evaluate their genotoxicity with the in vivo mouse bone-marrow micronucleus assay. Five CD-1 male mice per dose were injected i.p. with the compounds and sacrificed at intervals of 24, 48 and 72 h. 2000 cells were scored per animal to determine the frequency of micronucleated-polychromatic erythrocytes (MPCE). COP induced significant dose-related increases in MPCE over the 3 doses tested at each of the sampling intervals. The peak response occurred at 24 h. No response was observed in animals treated with PPD or NOP. PMID:1703280

  12. Final Report Nucleic Acid System - PCR, Multiplex Assays and Sample Preparation Project

    SciTech Connect

    Koopman, R.P.; Langlois, R.G.; Nasarabadi, S.; Benett, W.J.; Richards, J.B.; Hadley, D.R.; Miles, R.R.; Brown, S.B.; Stratton, P.L.; Milanovich, F.P.

    2001-04-20

    The objective of this project was to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction). This entailed not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This project had two principal deliverables: (1) design, construct, test and deliver a 24 chamber, multiplex capable suitcase sized PCR instrument, and (2) develop and reduce to practice a multiplex assay for the detection of PCR product by flow cytometry. In addition, significant resources were allocated to test and evaluation of the Hand-held Advanced Nucleic Acid Analyzer (HANAA). This project helps provide the signature and intelligence gathering community the ability to perform, on-site or remote, rapid analysis of environmental or like samples for the presence of a suite of biological warfare pathogens.

  13. Hardware and software system for automatic microemulsion assay evaluation by analysis of optical properties

    NASA Astrophysics Data System (ADS)

    Maeder, Ulf; Schmidts, Thomas; Burg, Jan-Michael; Heverhagen, Johannes T.; Runkel, Frank; Fiebich, Martin

    2010-03-01

    A new hardware device called Microemulsion Analyzer (MEA), which facilitates the preparation and evaluation of microemulsions, was developed. Microemulsions, consisting of three phases (oil, surfactant and water) and prepared on deep well plates according to the PDMPD method can be automatically evaluated by means of the optical properties. The ratio of ingredients to form a microemulsion strongly depends on the properties and the amounts of the used ingredients. A microemulsion assay is set up on deep well plates to determine these ratios. The optical properties of the ingredients change from turbid to transparent as soon as a microemulsion is formed. The MEA contains a frame and an imageprocessing and analysis algorithm. The frame itself consists of aluminum, an electro luminescent foil (ELF) and a camera. As the frame keeps the well plate at the correct position and angle, the ELF provides constant illumination of the plate from below. The camera provides an image that is processed by the algorithm to automatically evaluate the turbidity in the wells. Using the determined parameters, a phase diagram is created that visualizes the information. This build-up can be used to analyze microemulsion assays and to get results in a standardized way. In addition, it is possible to perform stability tests of the assay by creating special differential stability diagrams after a period of time.

  14. Molecular evolution of a Drosophila homolog of human BRCA2

    PubMed Central

    Bennett, Sarah M.; Noor, Mohamed A. F.

    2009-01-01

    The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region (“BRC repeats”) with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health. PMID:19554456

  15. Insights From Natural Host-Parasite Interactions: The Drosophila Model

    PubMed Central

    Keebaugh, Erin S.; Schlenke, Todd A.

    2013-01-01

    Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, particularly plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R/Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens’ virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune mechanisms that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss exciting prospects for future research on select natural pathogens of Drosophila. PMID:23764256

  16. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  17. Molecular evolution of a Drosophila homolog of human BRCA2.

    PubMed

    Bennett, Sarah M; Noor, Mohamed A F

    2009-11-01

    The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region ("BRC repeats") with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.

  18. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  19. Identification and Functional Analysis of Healing Regulators in Drosophila

    PubMed Central

    Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique

    2015-01-01

    Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. PMID:25647511

  20. Identification and functional analysis of healing regulators in Drosophila.

    PubMed

    Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique

    2015-01-01

    Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response.

  1. A capture enzyme-linked immunosorbent assay for virus infectivity titrations as exemplified in an adenovirus system.

    PubMed

    Everitt, E; Varga, M J

    1993-01-01

    An enzyme-linked immunosorbent assay (ELISA), employing a capturing antihexon monoclonal antibody specifically recognizing free hexons, was developed for quantitative infectivity titration of adenovirus in a microscale titration assay. The method is based on the quantitative assessment of the total excess production of the major structural protein late in infection in samples consisting of 10(5) virus-infected HeLa cells maintained as stationary suspension cultures. Results are obtained with a coefficient of variation of 10% within 50 hours after virus infection. The method was designed for monitoring substances interfering with viral replication, e.g., neutralizing antibodies or antiviral drugs. Since it measured the total antigen content associated with cells as well as antigens possibly released into the growth medium the general approach should be applicable to any viral system where a structural protein is synthesized in excess.

  2. Experimental verification of modeling results for a PGNAA system for nondestructive assay of RCRA metals in drums

    PubMed

    Dulloo; Ruddy; Congedo; Seidel; McIlwain

    2000-10-01

    The use of pulsed gamma neutron activation analysis (PGNAA) for the nondestructive assay of mercury, cadmium and lead in a concrete matrix has been demonstrated. Calculations have also been performed to study interference with PGNAA detection sensitivity resulting from the presence of 238U, 235U, and 239Pu at levels expected in mixed waste. Analyses based on transport calculations examined the effects of these nuclides on neutron kinetics, and the contribution from the capture, fission and decay gamma-rays emitted by the nuclides to the gamma-ray spectrum. These calculations predicted insignificant effects on the system's detection limits (115, 9 and 4400 ppm for Hg, Cd and Pb, respectively, for a 2000 s assay). This paper describes verification measurements recently conducted using samples of 235U and 231U in the test drum geometry, which have provided experimental confirmation of the modeling results.

  3. A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion.

    PubMed Central

    Pan, David A; Hardie, D Grahame

    2002-01-01

    We have identified single genes encoding homologues of the alpha, beta and gamma subunits of mammalian AMP-activated protein kinase (AMPK) in the genome of Drosophila melanogaster. Kinase activity could be detected in extracts of a Drosophila cell line using the SAMS peptide, which is a relatively specific substrate for the AMPK/SNF1 kinases in mammals and yeast. Expression of double stranded (ds) RNAs targeted at any of the putative alpha, beta or gamma subunits ablated this activity, and abolished expression of the alpha subunit. The Drosophila kinase (DmAMPK) was activated by AMP in cell-free assays (albeit to a smaller extent than mammalian AMPK), and by stresses that deplete ATP (oligomycin and hypoxia), as well as by carbohydrate deprivation, in intact cells. Using a phosphospecific antibody, we showed that activation was associated with phosphorylation of a threonine residue (Thr-184) within the 'activation loop' of the alpha subunit. We also identified a homologue of acetyl-CoA carboxylase (DmACC) in Drosophila and, using a phosphospecific antibody, showed that the site corresponding to the regulatory AMPK site on the mammalian enzyme became phosphorylated in response to oligomycin or hypoxia. By immunofluorescence microscopy of oligomycin-treated Dmel2 cells using the phosphospecific antibody, the phosphorylated DmAMPK alpha subunit was mainly detected in the nucleus. Our results show that the AMPK system is highly conserved between insects and mammals. Drosophila cells now represent an attractive system to study this pathway, because of the small, well-defined genome and the ability to ablate expression of specific gene products using interfering dsRNAs. PMID:12093363

  4. The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression.

    PubMed

    Lung, Oliver; Tram, Uyen; Finnerty, Casey M; Eipper-Mains, Marcie A; Kalb, John M; Wolfner, Mariana F

    2002-01-01

    Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, approximately 10% enters the circulatory system while approximately 90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating. PMID:11805057

  5. An improved system for exposure of cultured mammalian cells to gaseous compounds in the chromosomal aberration assay.

    PubMed

    Asakura, Masumi; Sasaki, Toshiaki; Sugiyama, Toshie; Arito, Heihachiro; Fukushima, Shoji; Matsushima, Taijiro

    2008-04-30

    A gas exposure system using rotating vessels was improved for exposure of cultured mammalian cells to gaseous compounds in the chromosomal aberration assay. This system was composed of 12 square culture vessels, a device for preparation of air containing test gas, and positive and negative control gases at target concentrations and for supplying these gases to the culture vessels, and a roller apparatus in an incubator. Chinese hamster lung cells (CHL/IU) were grown on one side of the inner surface of the square culture vessel in the MEM medium. Immediately prior to exposure, the medium was changed to the modified MEM. Air in the culture vessel was replaced with air containing test gas, positive or negative control gas. Then, the culture vessels were rotated at 1.0 rpm. The monolayered culture cells were exposed to test gas during about 3/4 rotation at upper positions and alternatively immersed into the culture medium during about 1/4 rotation at lower positions. This system allowed the chromosomal aberration assay simultaneously at least at three different concentrations of a test gas together with positive and negative control gases with and without metabolic activations, and duplicate culture at each exposure concentration. Seven gaseous compounds, 1,3-butadiene, chlorodifluoromethane, ethyl chloride, methyl bromide, methyl chloride, propyne, and vinyl chloride, none of which has been tested to date, were tested on CHL/IU for the chromosomal aberration assay using this gas exposure system. All the compounds except chlorodifluoromethane showed positive responses of the structural chromosomal aberrations, whereas polyploidy was not induced by any of these gases. This improved gas exposure system proved to be useful for detecting chromosomal aberrations of gaseous compounds.

  6. An improved system for exposure of cultured mammalian cells to gaseous compounds in the chromosomal aberration assay.

    PubMed

    Asakura, Masumi; Sasaki, Toshiaki; Sugiyama, Toshie; Arito, Heihachiro; Fukushima, Shoji; Matsushima, Taijiro

    2008-04-30

    A gas exposure system using rotating vessels was improved for exposure of cultured mammalian cells to gaseous compounds in the chromosomal aberration assay. This system was composed of 12 square culture vessels, a device for preparation of air containing test gas, and positive and negative control gases at target concentrations and for supplying these gases to the culture vessels, and a roller apparatus in an incubator. Chinese hamster lung cells (CHL/IU) were grown on one side of the inner surface of the square culture vessel in the MEM medium. Immediately prior to exposure, the medium was changed to the modified MEM. Air in the culture vessel was replaced with air containing test gas, positive or negative control gas. Then, the culture vessels were rotated at 1.0 rpm. The monolayered culture cells were exposed to test gas during about 3/4 rotation at upper positions and alternatively immersed into the culture medium during about 1/4 rotation at lower positions. This system allowed the chromosomal aberration assay simultaneously at least at three different concentrations of a test gas together with positive and negative control gases with and without metabolic activations, and duplicate culture at each exposure concentration. Seven gaseous compounds, 1,3-butadiene, chlorodifluoromethane, ethyl chloride, methyl bromide, methyl chloride, propyne, and vinyl chloride, none of which has been tested to date, were tested on CHL/IU for the chromosomal aberration assay using this gas exposure system. All the compounds except chlorodifluoromethane showed positive responses of the structural chromosomal aberrations, whereas polyploidy was not induced by any of these gases. This improved gas exposure system proved to be useful for detecting chromosomal aberrations of gaseous compounds. PMID:18342567

  7. Biotesting of wastewater: Comparative study using the Salmonella and CHO assay systems

    SciTech Connect

    Waters, L.C.; Schenley, R.L.; Owen, B.A.; Jolley, R.L.; Buchanan, M.V. ); Walsh, P.J. ); Hsie, A.W. ); Condie, L.W. )

    1989-01-01

    Means to assess the toxicity of wastewaters are essential to implementing the Federal Clean Water Act. Health risk assessment based on single chemicals is limited by the number of chemicals that can be identified and to those chemicals for which toxicity data are available. Long-term whole animal tests on large numbers of waste-water samples are not practical. In this study, two short-term tests, the Salmonella mutagenicity assay and the Chinese hamster ovary (CHO) cell assay for mutagenicity and cytotoxicity, were evaluated as potentially useful biomonitors of wastewaters. Cytotoxicity and mutagenicity were detected in some unconcentrated wastewater samples using these modifications. Data on eight wastewater samples, representing five different sites, indicated that the Salmonella test is the more sensitive indicator of mutagenic activity in those samples, whereas the CHO test is a sensitive indicator of the presence of cytotoxic components. Wastewater concentrates, prepared by adsorption onto XAD-2 and blue cotton, were compared in the two bioassays. In a single concentrate, the two short-term tests detected distinctly different mutagens. Advantages of using the CHO-AS52 cell line instead of the CHO-K{sub 1}BH{sub 4} line for detecting wastewater mutagens were indicated. This study illustrates the complementary use of multiple bioassays and concentration methods to detect and characterize toxic components in wastewater.

  8. Antigenotoxic activity of watercress extract in an in vitro mammalian system using comet assay.

    PubMed

    Casanova, Natalia A; Carballo, Marta A

    2011-12-01

    Watercress (Cruciferae), an integral part of Mediterranean diets, is a nutritive food which is used in the treatment of several diseases. Oxidative DNA damage seems to play a crucial role in chronic, aging-related diseases and it is considered an important and probably carcinogenic factor. The aim of this work was to determine the impact of watercress extract on cell viability and its potential antigenotoxic properties against induced oxidative damage, using a comet assay and peripheral blood cells as an in vitro model. An aqueous extract of the leaves was prepared using a juice processor, centrifuged, filtered and preserved at -20 °C. Two concentrations of the aqueous extract (13.2 and 26.4 mg/mL) were assayed. No differences were found in cell viability between the control and treated groups at any time. Significant antigenotoxic effects were observed for both concentrations, expressed as the damage index (p = 0.005 at 30 min; p < 0.001 at 60 and 90 min), the percentage reductions in damage being similar between them (67.1-75.2% respectively). These results suggest that the consumption watercress in the diet is a powerful tool for improving health and the quality of life.

  9. Specification of the somatic musculature in Drosophila.

    PubMed

    Dobi, Krista C; Schulman, Victoria K; Baylies, Mary K

    2015-01-01

    The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism.

  10. Drosophila by the dozen

    SciTech Connect

    Celniker, Susan E.; Hoskins, Roger A.

    2007-07-13

    This year's conference on Drosophila research illustratedwell the current focus of Drosophila genomics on the comprehensiveidentification of functional elements in the genome sequence, includingmRNA transcripts arising from multiple alternative start sites and splicesites, a multiplicity of noncoding transcripts and small RNAs,identification of binding sites for transcription factors, sequenceconservation in related species and sequence variation within species.Resources and technologies for genetics and functional genomics aresteadily being improved, including the building of collections oftransposon insertion mutants and hairpin constructs for RNA interference(RNAi). The conference also highlighted progress in the use of genomicinformation by many laboratories to study diverse aspects of biology andmodels of human disease. Here we will review a few highlights of especialinterest to readers of Genome Biology.

  11. FLIC: high-throughput, continuous analysis of feeding behaviors in Drosophila.

    PubMed

    Ro, Jennifer; Harvanek, Zachary M; Pletcher, Scott D

    2014-01-01

    We present a complete hardware and software system for collecting and quantifying continuous measures of feeding behaviors in the fruit fly, Drosophila melanogaster. The FLIC (Fly Liquid-Food Interaction Counter) detects analog electronic signals as brief as 50 µs that occur when a fly makes physical contact with liquid food. Signal characteristics effectively distinguish between different types of behaviors, such as feeding and tasting events. The FLIC system performs as well or better than popular methods for simple assays, and it provides an unprecedented opportunity to study novel components of feeding behavior, such as time-dependent changes in food preference and individual levels of motivation and hunger. Furthermore, FLIC experiments can persist indefinitely without disturbance, and we highlight this ability by establishing a detailed picture of circadian feeding behaviors in the fly. We believe that the FLIC system will work hand-in-hand with modern molecular techniques to facilitate mechanistic studies of feeding behaviors in Drosophila using modern, high-throughput technologies.

  12. Functional dissection of the Hox protein Abdominal-B in Drosophila cell culture

    SciTech Connect

    Zhai, Zongzhao; Yang, Xingke; Lohmann, Ingrid

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer ct340 CRM was identified to be the posterior spiracle enhancer of gene cut. Black-Right-Pointing-Pointer ct340 is under the direct transcriptional control of Hox protein Abd-B. Black-Right-Pointing-Pointer An efficient cloning system was developed to assay protein-DNA interaction. Black-Right-Pointing-Pointer New features of Abd-B dependent target gene regulation were detected. -- Abstract: Hox transcription factors regulate the morphogenesis along the anterior-posterior (A/P) body axis through the interaction with small cis-regulatory modules (CRMs) of their target gene, however so far very few Hox CRMs are known and have been analyzed in detail. In this study we have identified a new Hox CRM, ct340, which guides the expression of the cell type specification gene cut (ct) in the posterior spiracle under the direct control of the Hox protein Abdominal-B (Abd-B). Using the ct340 enhancer activity as readout, an efficient cloning system to generate VP16 activation domain fusion protein was developed to unambiguously test protein-DNA interaction in Drosophila cell culture. By functionally dissecting the Abd-B protein, new features of Abd-B dependent target gene regulation were detected. Due to its easy adaptability, this system can be generally used to map functional domains within sequence-specific transcriptional factors in Drosophila cell culture, and thus provide preliminary knowledge of the protein functional domain structure for further in vivo analysis.

  13. FLIC: High-Throughput, Continuous Analysis of Feeding Behaviors in Drosophila

    PubMed Central

    Pletcher, Scott D.

    2014-01-01

    We present a complete hardware and software system for collecting and quantifying continuous measures of feeding behaviors in the fruit fly, Drosophila melanogaster. The FLIC (Fly Liquid-Food Interaction Counter) detects analog electronic signals as brief as 50 µs that occur when a fly makes physical contact with liquid food. Signal characteristics effectively distinguish between different types of behaviors, such as feeding and tasting events. The FLIC system performs as well or better than popular methods for simple assays, and it provides an unprecedented opportunity to study novel components of feeding behavior, such as time-dependent changes in food preference and individual levels of motivation and hunger. Furthermore, FLIC experiments can persist indefinitely without disturbance, and we highlight this ability by establishing a detailed picture of circadian feeding behaviors in the fly. We believe that the FLIC system will work hand-in-hand with modern molecular techniques to facilitate mechanistic studies of feeding behaviors in Drosophila using modern, high-throughput technologies. PMID:24978054

  14. Evidence for transgenerational metabolic programming in Drosophila.

    PubMed

    Buescher, Jessica L; Musselman, Laura P; Wilson, Christina A; Lang, Tieming; Keleher, Madeline; Baranski, Thomas J; Duncan, Jennifer G

    2013-09-01

    Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie) feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon.

  15. Evidence for transgenerational metabolic programming in Drosophila

    PubMed Central

    Buescher, Jessica L.; Musselman, Laura P.; Wilson, Christina A.; Lang, Tieming; Keleher, Madeline; Baranski, Thomas J.; Duncan, Jennifer G.

    2013-01-01

    SUMMARY Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie) feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon. PMID:23649823

  16. Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems

    PubMed Central

    von Netzer, Frederick; Pilloni, Giovanni; Kleindienst, Sara; Krüger, Martin; Knittel, Katrin; Gründger, Friederike

    2013-01-01

    The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems. PMID:23124238

  17. Evaluation of phytotoxicity and genotoxicity of nitrobenzene with a battery of Vicia faba assay system.

    PubMed

    Ma, Jun; Guo, Donglin; Su, Wenyue; Wang, Dan; Guo, Changhong

    2013-06-01

    Nitrobenzene (NB) is an important organic compound intermediate that is used widely in industry. In the present study, to evaluate the phytotoxicity and genotoxicity of NB on plants, Vicia faba was exposed to increasing concentrations of NB (5 mg L(-1) , 10 mg L(-1) , 25 mg L(-1) , 50 mg L(-1) , and 100 mg L(-1) ). The data revealed that germination rate and radicle length of V. faba seedlings were promoted by low NB concentrations and short exposure periods, whereas these parameters were inhibited at greater NB concentrations and longer exposures. When assessed by mitotic index, micronucleus, and chromosomal aberration assays, NB showed dose-dependent genotoxicity at 0 mg L(-1) to 50 mg L(-1).

  18. Verification of HEPA Filter Analysis for the Canberra Q2 Waste Assay System

    SciTech Connect

    Casella, V.R.

    2002-12-06

    Data from measurements of a standard 20 inches x 20 inches source positioned on the end and in the middle of a HEPA filter verified that assaying HEPA filters with the Canberra Q2 and using the standard drum calibration with a percent full parameter of 70 percent gives acceptable results for gamma rays above 122 keV. For the gamma-ray energy range of 122 keV to 1400 keV, nuclide concentrations would be somewhat overestimated by from about 35 percent (122 keV) to about 10 percent (1400 keV). Also, Am-241 (60 keV) is conservatively overestimated by about a factor of 2.6 using this configuration.

  19. Validation of Non-Invasive Waste Assay System (Gamma Box Counter) Performance at AECL Whiteshell Laboratories - 13136

    SciTech Connect

    Attas, E.M.; Bialas, E.; Rhodes, M.J.

    2013-07-01

    Low-level radioactive waste (LLW) in solid form, resulting from decommissioning and operations activities at AECL's Whiteshell Laboratories (WL), is packaged in B-25 and B-1000 standard waste containers and characterized before it is shipped to an on-site interim storage facility, pending AECL decisions on long term management of its LLW. Assay of the waste packages before shipment contributes to an inventory of the interim storage facility and provides data to support acceptance at a future repository. A key characterization step is a gamma spectrometric measurement carried out under standard conditions using an automated, multi-detector Waste Assay System (WAS), purchased from Antech Corporation. A combination of ORTEC gamma acquisition software and custom software is used in this system to incorporate multiple measurements from two collimated high-resolution detectors. The software corrects the intensities of the gamma spectral lines for geometry and attenuation, and generates a table of calculated activities or limits of detection for a user-defined list of radioisotopes that may potentially be present. Validation of WAS performance was a prerequisite to routine operation. Documentation of the validation process provides assurance of the quality of the results produced, which may be needed one or two decades after they were generated. Aspects of the validation included setting up a quality control routine, measurements of standard point sources in reproducible positions, study of the gamma background, optimization of user-selectable software parameters, investigation of the effect of non-uniform distribution of materials and radionuclides, and comparison of results with measurements made using other gamma detector systems designed to assay bulk materials. The following key components of the validation process have been established. A daily quality control routine has been instituted, to verify stability of the gamma detector operation and the background levels

  20. Serum Amyloid P Component Ameliorates Neurological Damage Caused by Expressing a Lysozyme Variant in the Central Nervous System of Drosophila melanogaster.

    PubMed

    Helmfors, Linda; Bergkvist, Liza; Brorsson, Ann-Christin

    2016-01-01

    Lysozyme amyloidosis is a hereditary disease in which mutations in the gene coding for lysozyme leads to misfolding and consequently accumulation of amyloid material. To improve understanding of the processes involved we expressed human wild type (WT) lysozyme and the disease-associated variant F57I in the central nervous system (CNS) of a Drosophila melanogaster model of lysozyme amyloidosis, with and without co-expression of serum amyloid p component (SAP). SAP is known to be a universal constituent of amyloid deposits and to associate with lysozyme fibrils. There are clear indications that SAP may play an important role in lysozyme amyloidosis, which requires further elucidation. We found that flies expressing the amyloidogenic variant F57I in the CNS have a shorter lifespan than flies expressing WT lysozyme. We also identified apoptotic cells in the brains of F57I flies demonstrating that the flies' neurological functions are impaired when F57I is expressed in the nerve cells. However, co-expression of SAP in the CNS prevented cell death and restored the F57I flies' lifespan. Thus, SAP has the apparent ability to protect nerve cells from damage caused by F57I. Furthermore, it was found that co-expression of SAP prevented accumulation of insoluble forms of lysozyme in both WT- and F57I-expressing flies. Our findings suggest that the F57I mutation affects the aggregation process of lysozyme resulting in the formation of cytotoxic species and that SAP is able to prevent cell death in the F57I flies by preventing accumulation of toxic F57I structures. PMID:27428539

  1. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila.

    PubMed

    Nakato, H; Futch, T A; Selleck, S B

    1995-11-01

    We have devised a genetic screen to obtain mutants affecting cell division patterning in the developing central nervous system of Drosophila. The division abnormally delayed (dally) locus was identified using a combination of "enhancer trap" and behavioral screening methods. The ordered cell cycle progression of lamina precursor cells, which generate synaptic target neurons for photoreceptors, is disrupted in dally mutants. The first of two lamina precursor cell divisions shows a delayed entry into mitosis. The second division, one that is triggered by an intercellular signal from photoreceptor axons, fails to take place. Similar to lamina precursors, cells that generate the ommatidia of the adult eye show two synchronized divisions found along the morphogenetic furrow in the eye disc and the first division cycle in dally mutants displays a delayed progression into M phase like that found in the first lamina precursor cell division. dally mutations also affect viability and produce morphological defects in several adult tissues, including the eye, antenna, wing and genitalia. Sequencing of a dally cDNA reveals a potential open reading frame of 626 amino acids with homology to a family of Glypican-related integral membrane proteoglycans. These heparan sulfate-containing proteins are attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol linkage. Heparan sulfate proteoglycans may serve as co-receptors for a variety of secreted proteins including fibroblast growth factor, vascular endothelial growth factor, hepatocyte growth factor and members of the Wnt, TGF-beta and Hedgehog families. The cell division defects found in dally mutants implicate the Glypican group of integral membrane proteoglycans in the control of cell division during development.

  2. Postembryonic lineages of the Drosophila ventral nervous system: Neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres

    PubMed Central

    Harris, Robin; Williams, Darren W.; Truman, James W.

    2016-01-01

    During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult‐specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167–5184) identified 24 adult‐specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian‐positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage‐specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677–2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26878258

  3. Serum Amyloid P Component Ameliorates Neurological Damage Caused by Expressing a Lysozyme Variant in the Central Nervous System of Drosophila melanogaster

    PubMed Central

    2016-01-01

    Lysozyme amyloidosis is a hereditary disease in which mutations in the gene coding for lysozyme leads to misfolding and consequently accumulation of amyloid material. To improve understanding of the processes involved we expressed human wild type (WT) lysozyme and the disease-associated variant F57I in the central nervous system (CNS) of a Drosophila melanogaster model of lysozyme amyloidosis, with and without co-expression of serum amyloid p component (SAP). SAP is known to be a universal constituent of amyloid deposits and to associate with lysozyme fibrils. There are clear indications that SAP may play an important role in lysozyme amyloidosis, which requires further elucidation. We found that flies expressing the amyloidogenic variant F57I in the CNS have a shorter lifespan than flies expressing WT lysozyme. We also identified apoptotic cells in the brains of F57I flies demonstrating that the flies’ neurological functions are impaired when F57I is expressed in the nerve cells. However, co-expression of SAP in the CNS prevented cell death and restored the F57I flies’ lifespan. Thus, SAP has the apparent ability to protect nerve cells from damage caused by F57I. Furthermore, it was found that co-expression of SAP prevented accumulation of insoluble forms of lysozyme in both WT- and F57I-expressing flies. Our findings suggest that the F57I mutation affects the aggregation process of lysozyme resulting in the formation of cytotoxic species and that SAP is able to prevent cell death in the F57I flies by preventing accumulation of toxic F57I structures. PMID:27428539

  4. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease.

    PubMed

    Chouhan, Amit K; Guo, Caiwei; Hsieh, Yi-Chen; Ye, Hui; Senturk, Mumine; Zuo, Zhongyuan; Li, Yarong; Chatterjee, Shreyasi; Botas, Juan; Jackson, George R; Bellen, Hugo J; Shulman, Joshua M

    2016-01-01

    Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest

  5. Technical note: A portable on-chip assay system for absorbance and plasmonic detection of protein hormone in milk.

    PubMed

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2015-07-01

    This paper reports a portable device and method to extract and detect protein hormone in milk samples. Recombinant protein hormone spiked into milk samples was extracted by solid-phase extraction, and detection was carried out using the plasmonic property of gold nanoislands deposited on a glass substrate. Trace levels of hormone spiked in milk were analyzed by their optical absorbance property using a microfluidic chip. We built a portable assay system using disposable lab-on-chip devices. The proposed method is able to detect spiked recombinant protein hormone in milk at concentrations as low as 5ng/mL.

  6. Contrasting evolutionary patterns in Drosophila immune receptors.

    PubMed

    Jiggins, Francis M; Kim, Kang-Wook

    2006-12-01

    Vertebrate immune system molecules that bind directly to parasites are commonly subject to strong directional natural selection, probably because they are engaged in an evolutionary arms race with parasites. We have investigated whether similar patterns of evolution are seen in components of the Drosophila immune system that bind parasite-derived molecules. In insects, TEPs (thioester-containing proteins) function as opsonins, binding to parasites and promoting their phagocytosis or encapsulation. The Drosophila melanogaster genome encodes four TEPs, three of which are upregulated after an immune challenge. We report that two of these three Drosophila genes evolve rapidly under positive selection and that, in both TepI and TepII, the "bait-like region" (also known as the variable region) shows the strongest signature of positive selection. This region may be the site of proteolytic cleavage that leads to the activation of the molecule. It is possible that the proteolytic activation of TEPs is a target of host-parasite coevolution, with parasites evolving to prevent proteolysis, which in turn favors mutations in the bait-like region that restore the response. We also sequenced three gram-negative binding proteins (GNBPs) and two immune-induced peptides with strong homology to the GNBPs. In contrast to the Tep genes, the GNBP genes are highly conserved. We discuss the reasons why different components of the immune system have such different patterns of evolution.

  7. Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification.

    PubMed

    Wu, Zai-Sheng; Zhou, Hui; Zhang, Songbai; Shen, Guoli; Yu, Ruqin

    2010-03-15

    A reusable aptameric recognition system was described for the electrochemical detection of the protein PDGF-BB based on the target binding-induced rolling circle amplification (RCA). A complementary DNA (CDNA), linear padlock probe, and primer probe were utilized to introduce a RCA process into the aptamer-target binding event while a new aptamer was elegantly designed via lengthening the original aptamer by the complement to the CDNA. The aptameric sensing system facilitates the integration of multiple functional elements into a signaling scheme: a unique electrochemical technique, an attractive RCA process, reversible DNA hybridization, and desirable aptameric target recognition. This RCA-based electrochemical recognition system not only exhibits excellent performance (e.g., a detection limit of 6.3 x 10(-11) M, a linear dynamic range of 2 orders of magnitude, high specificity, and satisfactory repeatability) but also overcomes the limitations associated with conventional aptameric biosensors (e.g., dependence of signaling target binding on specific aptamer sequence or requirement of sandwich assays for two or more binding sites per target molecule). A recovery test demonstrated the feasibility of the developed target protein assay. Given the attractive characteristics, this aptameric recognition platform is expected to be a candidate for the detection of proteins and other ligands of interest in both fundamental and applied research.

  8. The rat whole embryo culture assay using the Dysmorphology Score system.

    PubMed

    Zhang, Cindy; Panzica-Kelly, Julie; Augustine-Rauch, Karen

    2013-01-01

    The rat whole embryo culture (WEC) system has been used extensively for characterizing teratogenic properties of test chemicals. In this chapter, we describe the methodology for culturing rat embryos as well as a new morphological score system, the Dysmorphology Score (DMS) system for assessing morphology of mid gestation (gestational day 11) rat embryos. In contrast to the developmental stage focused scoring associated with the Brown and Fabro score system, this new score system assesses the respective degree of severity of dysmorphology, which delineates normal from abnormal morphology of specific embryonic structures and organ systems. This score system generates an approach that allows rapid identification and quantification of adverse developmental findings, making it conducive for characterization of compounds for teratogenic properties and screening activities.

  9. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    PubMed

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  10. Genes encoding vitamin-K epoxide reductase are present in Drosophila and trypanosomatid protists.

    PubMed

    Robertson, Hugh M

    2004-10-01

    Vitamin-K epoxide reductase is encoded by the VKORC1 gene in mammals and other vertebrates, which also have a paralog, VKORC1L1. Single homologs are present in basal deuterostome and insect genomes, including Drosophila, and three trypanosomatid protists. VKOR is therefore an ancient gene/protein that can be studied in the Drosophila model system.

  11. Imaging Calcium in Drosophila at Egg Activation.

    PubMed

    Derrick, Christopher J; York-Andersen, Anna H; Weil, Timothy T

    2016-01-01

    Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca(2+)) often termed a 'Ca(2+) wave'. While the speed and number of oscillations of the Ca(2+) wave varies between species, the change in intracellular Ca(2+) is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton. In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca(2+)-dependent events. Here we present a protocol for imaging the Ca(2+) wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca(2+) wave and the downstream changes associated with it. PMID:27584955

  12. Motor control of Drosophila courtship song.

    PubMed

    Shirangi, Troy R; Stern, David L; Truman, James W

    2013-11-14

    Many animals utilize acoustic signals-or songs-to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1) that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a "modular" anatomical substrate for the evolution of diverse songs.

  13. Flightless Flies: Drosophila models of neuromuscular disease

    PubMed Central

    Lloyd, Thomas E.; Taylor, J. Paul

    2010-01-01

    The fruit fly, Drosophila melanogaster, has a long and rich history as an important model organism for biologists. In particular, study of the fruit fly has been essential to much of our fundamental understanding of the development and function of the nervous system. In recent years, studies using fruit flies have provided important insights into the pathogenesis of neurodegenerative and neuromuscular diseases. Fly models of spinal muscular atrophy, spinobulbar muscular atrophy, myotonic dystrophy, dystrophinopathies and other inherited neuromuscular diseases recapitulate many of the key pathologic features of the human disease. The ability to perform genetic screens holds promise for uncovering the molecular mechanisms of disease, and indeed, for identifying novel therapeutic targets. This review will summarize recent progress in developing fly models of neuromuscular diseases and will emphasize the contribution that Drosophila has made to our understanding of these diseases. PMID:20329357

  14. The genome sequence of Drosophila melanogaster.

    SciTech Connect

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.