Science.gov

Sample records for drosophila mitochondrial genes

  1. Gene Expression in a Drosophila Model of Mitochondrial Disease

    PubMed Central

    Fernández-Ayala, Daniel J. M.; Chen, Shanjun; Kemppainen, Esko; O'Dell, Kevin M. C.; Jacobs, Howard T.

    2010-01-01

    Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed. PMID:20066047

  2. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila.

    PubMed

    Gallach, Miguel; Chandrasekaran, Chitra; Betrán, Esther

    2010-01-01

    Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.

  3. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    PubMed

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  4. Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene.

    PubMed

    Rai, Mamta; Katti, Prasanna; Nongthomba, Upendra

    2014-01-01

    Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

  5. Characterization of mitochondrial ferritin in Drosophila

    PubMed Central

    Missirlis, Fanis; Holmberg, Sara; Georgieva, Teodora; Dunkov, Boris C.; Rouault, Tracey A.; Law, John H.

    2006-01-01

    Mitochondrial function depends on iron-containing enzymes and proteins, whose maturation requires available iron for biosynthesis of iron–sulfur clusters and heme. Little is known about how mitochondrial iron homeostasis is maintained, although the recent discovery of a mitochondrial ferritin in mammals and plants has uncovered a potential key player in the process. Here, we show that Drosophila melanogaster expresses mitochondrial ferritin from an intron-containing gene. It has high similarity to the mouse and human mitochondrial ferritin sequences and, as in mammals, is expressed mainly in testis. This ferritin contains a putative mitochondrial targeting sequence and an epitope-tagged version localizes to mitochondria in transfected cells. Overexpression of mitochondrial ferritin fails to alter both total-body iron levels and iron that is bound to secretory ferritins. However, the viability of iron-deficient flies is compromised by overexpression of mitochondrial ferritin, suggesting that it may sequester iron at the expense of other important cellular functions. The conservation of mitochondrial ferritin in an insect species underscores the importance of this iron-storage molecule. PMID:16571656

  6. Inhibition of mitochondrial calcium uptake 1 in Drosophila neurons.

    PubMed

    M'Angale, P G; Staveley, B E

    2017-02-08

    The mitochondrial calcium uptake 1 (MICU1) is a regulatory subunit of the mitochondrial calcium uniporter that plays an important role in calcium sensing. It contains two EF-hand domains that are well conserved across diverse species from protozoa to plants and metazoans. The loss of MICU1 function in mammals is attributed to several neurological disorders that involve movement dysfunction. The CG4495 gene in Drosophila melanogaster was identified as a putative homolog of MICU1 in the HomoloGene database of the National Centre for Biotechnology Information (NCBI). In agreement with previous studies that have shown the development of neurological disorders and movement defects in MICU1 loss-of-function organisms, we attempted to identify the function of CG4495/MICU1 in Drosophila neurons. We analyzed survival and locomotor ability of these flies and additionally performed biometric analysis of the Drosophila developing eye. The inducible RNA interference-mediated inhibition of CG4495/MICU1 in the Ddc-Gal4-expressing neurons of Drosophila presented with reduction in survival coupled with a precocious loss of locomotor ability. Since the pro-survival Bcl-2 family genes have been shown to be protective towards mitochondria, and CG4495/MICU1 has a mitochondrial targeting sequence, we attempted to rescue the phenotypes resulting from the inhibition of CG4495/MICU1 by overexpressing Buffy, the sole Bcl-2 homologue in Drosophila. The co-expression of CG4495/MICU1-RNAi along with Buffy resulted in the suppression of the phenotypes induced by the inhibition of CG4495/MICU1. Subsequently, the inhibition of CG4495/MICU1 in the Drosophila developing eye, a neuron-rich organ, resulted in reduced number of ommatidia and a highly fused ommatidial array. These developmental eye defects were rescued by the overexpression of Buffy. Our study suggests an important role for MICU1 in the normal function of neurons in Drosophila.

  7. Analysis of the mitochondrial ATP synthase beta-subunit gene in Drosophilidae: structure, transcriptional regulatory features and developmental pattern of expression in Drosophila melanogaster.

    PubMed Central

    Peña, P; Ugalde, C; Calleja, M; Garesse, R

    1995-01-01

    We have cloned and determined the structure of the gene encoding the H(+)-ATP synthase beta subunit in two distantly related Drosophila species, D. melanogaster and D. virilis. The gene contains three exons that are extremely well conserved at the amino acid level, not only in the region encoding the mature protein but also in that encoding the leader peptide. Primer extension analysis indicates that the 5' untranslated region is extremely short, and reveals the presence of multiple initiation sites of transcription in both Drosophila species. The promoters of D. melanogaster and D. virilis H(+)-ATP synthase beta-subunit genes contain a conserved region surrounding the initiation transcription sites. Nucleotide sequence analysis has revealed the absence of canonical TATA and CCAAT boxes and the presence of several putative regulatory elements in both promoter regions, including GAGA, GATA and Ets binding sites. We have analysed the pattern of gene expression during D. melanogaster development. The mRNA is stored in oocytes, and activation of transcription takes place after 10 h of development. The expression of the nuclear-encoded H(+)-ATP synthase beta subunit is strictly coordinated with the expression of subunits 6 and 8 of the same complex that are encoded in the mitochondrial genome. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:8554535

  8. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease.

    PubMed

    Sen, A; Cox, R T

    2017-01-01

    Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance.

  9. Preparation of Mitochondrial Enriched Fractions for Metabolic Analysis in Drosophila

    PubMed Central

    Villa-Cuesta, Eugenia; Rand, David M.

    2015-01-01

    Since mitochondria play roles in amino acid metabolism, carbohydrate metabolism and fatty acid oxidation, defects in mitochondrial function often compromise the lives of those who suffer from these complex diseases. Detecting mitochondrial metabolic changes is vital to the understanding of mitochondrial disorders and mitochondrial responses to pharmacological agents. Although mitochondrial metabolism is at the core of metabolic regulation, the detection of subtle changes in mitochondrial metabolism may be hindered by the overrepresentation of other cytosolic metabolites obtained using whole organism or whole tissue extractions. Here we describe an isolation method that detected pronounced mitochondrial metabolic changes in Drosophila that were distinct between whole-fly and mitochondrial enriched preparations. To illustrate the sensitivity of this method, we used a set of Drosophila harboring genetically diverse mitochondrial DNAs (mtDNA) and exposed them to the drug rapamycin. Using this method we showed that rapamycin modifies mitochondrial metabolism in a mitochondrial-genotype-dependent manner. However, these changes are much more distinct in metabolomics studies when metabolites were extracted from mitochondrial enriched fractions. In contrast, whole tissue extracts only detected metabolic changes mediated by the drug rapamycin independently of mtDNAs. PMID:26485391

  10. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila.

    PubMed

    Sanz, Alberto; Fernández-Ayala, Daniel J M; Stefanatos, Rhoda Ka; Jacobs, Howard T

    2010-04-01

    The Mitochondrial Free Radical Theory of Aging (MFRTA) is currently one of the most widely accepted theories used to explain aging. From MFRTA three basic predictions can be made: long-lived individuals or species should produce fewer mitochondrial Reactive Oxygen Species (mtROS) than short-lived individuals or species; a decrease in mtROS production will increase lifespan; and an increase in mtROS production will decrease lifespan. It is possible to add a further fourth prediction: if ROS is controlling longevity separating these parameters through selection would be impossible. These predictions have been tested in Drosophila melanogaster. Firstly, we studied levels of mtROS production and lifespan of three wild-type strains of Drosophila, Oregon R, Canton S and Dahomey. Oregon R flies live the longest and produce significantly fewer mtROS than both Canton S and Dahomey. These results are therefore in accordance with the first prediction. A new transgenic Drosophila model expressing the Ciona intestinalis Alternative Oxidase (AOX) was used to test the second prediction. In fungi and plants, AOX expression regulates both free radical production and lifespan. In Drosophila, AOX expression decreases mtROS production, but does not increase lifespan. This result contradicts the second prediction of MFRTA. The third prediction was tested in flies mutant for the gene dj-1beta. These flies are characterized by an age-associated decline in locomotor function and increased levels of mtROS production. Nevertheless, dj-1beta mutant flies do not display decreased lifespan, which again is in contradiction with MFRTA. In our final experiment we utilized flies with DAH mitochondrial DNA in an OR nuclear background, and OR mitochondrial DNA in DAH nuclear background. From this, Mitochondrial DNA does not control free radical production, but it does determine longevity of females independently of mtROS production. In summary, these results do not systematically support the

  11. The organization of Drosophila genes.

    PubMed

    Maroni, G

    1994-01-01

    This study was designed to examine the range of size variations in the major functional elements of Drosophila genes and to test whether those size variations occur independently of each other. In a sample of 111 genes the following median values occur: leaders, 123 base pairs (bp); coding regions, 1242 bp; 3' untranslated regions (3'UTR), 246 bp; mRNAs, 1803 bp; 3' terminal exons 843 bp; and exons upstream of the last one 233 bp. Introns show a bimodal distribution with medians of 62 and 595 bp. Unexpected size correlations are evident for several of these elements. The size of the leader, for example, is correlated with the sizes of the coding region and the 3'UTR with very high levels of significance, and the size of the first intron is similarly correlated with the sizes of each of the individual components of the mature mRNA.

  12. Loss of mitochondrial DNA with aging in Drosophila melanogaster.

    PubMed

    Massie, H R; Baird, M B; McMahon, M M

    1975-01-01

    The buoyant densities of nuclear and mitochondrial DNA from Drosophila melanogaster lysates has been found to show no change with increasing age in both CsCl and Cs2SO4 equilibrium density gradients. Whole fly homogenates were used to demonstrate no change in nuclear DNA content during adult life. Mitochondrial DNA increased from 1.2 to 4.3% of the total DNA during the first week of adult life and then decreased during senescence to a minimum of 1.5% at 10 weeks of age which represented a 65% loss in mitochondrial DNA content with age. These data are interpreted to support the proposal that mitochondria destruction occurs during senescence.

  13. Identification of novel modulators of mitochondrial function by a genome-wide RNAi screen in Drosophila melanogaster

    PubMed Central

    Chen, Jian; Shi, Xiaoying; Padmanabhan, Ranjani; Wang, Qiong; Wu, Zhidan; Stevenson, Susan C.; Hild, Marc; Garza, Dan; Li, Hao

    2008-01-01

    Mitochondrial dysfunction is associated with many human diseases. There has not been a systematic genetic approach for identifying regulators of basal mitochondrial biogenesis and function in higher eukaryotes. We performed a genome-wide RNA interference (RNAi) screen in Drosophila cells using mitochondrial Citrate synthase (CS) activity as the primary readout. We screened 13,071 dsRNAs and identified 152 genes that modulate CS activity. These modulators are involved in a wide range of biological processes and pathways including mitochondrial-related functions, transcriptional and translational regulation, and signaling pathways. Selected hits among the 152 genes were further analyzed for their effect on mitochondrial CS activity in transgenic flies or fly mutants. We confirmed a number of gene hits including HDAC6, Rpd3(HDAC1), CG3249, vimar, Src42A, klumpfuss, barren, and smt3 which exert effects on mitochondrial CS activities in vivo, demonstrating the value of Drosophila genome-wide RNAi screens for identifying genes and pathways that modulate mitochondrial function. PMID:18042644

  14. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  15. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    SciTech Connect

    Rai, Mamta; Nongthomba, Upendra

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  16. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression

    PubMed Central

    Xie, Xie; Dubrovsky, Edward B.

    2015-01-01

    RNase ZL is a highly conserved tRNA 3′-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase ZL (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase ZL in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry. PMID:26553808

  17. Flagellar mitochondrial association of the male-specific Don Juan protein in Drosophila spermatozoa.

    PubMed

    Santel, A; Blümer, N; Kämpfer, M; Renkawitz-Pohl, R

    1998-11-01

    The Drosophila don juan gene encodes a basic protein (Don Juan protein), which is solely expressed postmeiotically during spermiogenesis in elongated spermatids and in mature sperm. Transgenic expression of a GFP-tagged Don Juan protein (DJ-GFP) in the male germ line showed an association of the fusion protein with the sperm tail. Detailed examination of DJ-GFP localization revealed novel insights into its distinct temporal and spatial distribution along the sperm tail during the last phase of spermatid maturation. Co-localization of DJ-GFP with actin-labeled cysts demonstrated its emergence in elongated spermatids during individualization. Additionally, the endogenous Don Juan protein was detected with epitope-specific antibodies in finally elongated nuclei of spermatids. After completion of nuclear shaping Don Juan is no longer detectable in the sperm heads with the onset of individualization. Mislocalization of the DJ-GFP protein in flagella of a mutant with defective mitochondrial differentiation provides evidence of mitochondrial association of the fusion protein with flagellar mitochondrial arrays. Ectopically expressed DJ-GFP in premeiotic germ cells as well as salivary gland cells confirmed the capability of the fusion protein to associate with mitochondria. Therefore we suppose that Don Juan is a nuclear-encoded, germ-cell specifically expressed mitochondrial protein, which might be involved in the final steps of mitochondrial differentiation within the flagellum.

  18. The Congested-like Tracheae Gene of Drosophila Melanogaster Encodes a Member of the Mitochondrial Carrier Family Required for Gas-Filling of the Tracheal System and Expansion of the Wings after Eclosion

    PubMed Central

    Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B. M.

    1997-01-01

    A recessive semi-lethal mutation resulting from the insertion of a P-lacW transposon at the cytological position 23A on the polytene chromosomes of Drosophila melanogaster was found to affect the unfolding and expansion of the wings resulting in a loss of venation and a marked decrease in their size. Lethality was polyphasic with numerous animals dying during early larval development and displaying apparently collapsed tracheal trees. The gene was therefore designated as congested-like tracheae, or colt. The colt mutation resulted from the insertion of a P-lacW transposon within the coding region of a 1.4-kb transcript. Wild-type function was restored by inducing a precise excision of the P-lacW transposon, while a deletion of the colt locus, produced by imprecise excision of the P element, showed a phenotype similar to that of the original P insert. The colt gene consists of a single exon and encodes a protein of 306 amino acids made of three tandem repeats, each characterized by two predicted transmembrane segments and a loop domain. The COLT protein shares extensive homology with proteins in the mitochondrial carrier family and particularly with the DIF-1 protein of Caenorhabditis elegans, which has been shown to be maternally required for embryonic tissue differentiation. Our analysis revealed that zygotic colt function is dispensable for normal embryonic morphogenesis but is required for gas-filling of the tracheal system at hatching time of the embryo and for normal epithelial morphogenesis of the wings. PMID:9409834

  19. Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis

    PubMed Central

    2010-01-01

    Background Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the role of Drosophila mitoferrin (dmfrn), which is a mitochondrial carrier protein with an established role in the mitochondrial iron metabolism, during spermatogenesis. Results We found that P-element insertions into the 5'-untranslated region of the dmfrn gene cause recessive male sterility, which was rescued by a fluorescently tagged transgenic dmfrn genomic construct (dmfrnvenus). Testes of mutant homozygous dmfrnSH115 flies were either small with unorganized content or contained some partially elongated spermatids, or testes were of normal size but lacked mature sperm. Testis squashes indicated that spermatid elongation was defective and electron micrographs showed mitochondrial defects in elongated spermatids and indicated failed individualization. Using a LacZ reporter and the dmfrnvenus transgene, we found that dmfrn expression in testes was highest in spermatids, coinciding with the stages that showed defects in the mutants. Dmfrn-venus protein accumulated in mitochondrial derivatives of spermatids, where it remained until most of it was stripped off during individualization and disposed of in waste bags. Male sterility in flies with the hypomorph alleles dmfrnBG00456 and dmfrnEY01302 over the deletion Df(3R)ED6277 was increased by dietary iron chelation and suppressed by iron supplementation of the food, while male sterility of dmfrnSH115/Df(3R)ED6277 flies was not affected by food iron levels. Conclusions In this work, we show that mutations in the Drosophila mitoferrin gene

  20. The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster.

    PubMed

    Iacopetta, Domenico; Carrisi, Chiara; De Filippis, Giuseppina; Calcagnile, Valeria M; Cappello, Anna R; Chimento, Adele; Curcio, Rosita; Santoro, Antonella; Vozza, Angelo; Dolce, Vincenza; Palmieri, Ferdinando; Capobianco, Loredana

    2010-03-01

    The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides and cofactors across the inner mitochondrial membrane. The genome of Drosophila melanogaster encodes at least 46 members of this family. Only five of these have been characterized, whereas the transport functions of the remainder cannot be assessed with certainty. In the present study, we report the functional identification of two D. melanogaster genes distantly related to the human and yeast thiamine pyrophosphate carrier (TPC) genes as well as the corresponding expression pattern throughout development. Furthermore, the functional characterization of the D. melanogaster mitochondrial thiamine pyrophosphate carrier protein (DmTpc1p) is described. DmTpc1p was over-expressed in bacteria, the purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. Reconstituted DmTpc1p transports thiamine pyrophosphate and, to a lesser extent, pyrophosphate, ADP, ATP and other nucleotides. The expression of DmTpc1p in Saccharomyces cerevisiaeTPC1 null mutant abolishes the growth defect on fermentable carbon sources. The main role of DmTpc1p is to import thiamine pyrophosphate into mitochondria by exchange with intramitochondrial ATP and/or ADP.

  1. A novel Drosophila mitochondrial carrier protein acts as a Mg(2+) exporter in fine-tuning mitochondrial Mg(2+) homeostasis.

    PubMed

    Cui, Yixian; Zhao, Shanke; Wang, Xudong; Zhou, Bing

    2016-01-01

    The homeostasis of magnesium (Mg(2+)), an abundant divalent cation indispensable for many biological processes including mitochondrial functions, is underexplored. In yeast, the mitochondrial Mg(2+) homeostasis is accurately controlled through the combined effects of importers, Mrs2 and Lpe10, and an exporter, Mme1. However, little is known about this Mg(2+) homeostatic process in multicellular organisms. Here, we identified the first mitochondrial Mg(2+) transporter in Drosophila, the orthologue of yeast Mme1, dMme1, by homologous comparison and functional complementation. dMme1 can mediate the exportation of mitochondrial Mg(2+) when heterologously expressed in yeast. Altering the expression of dMme1, although only resulting in about a 10% change in mitochondrial Mg(2+) levels in either direction, led to a significant survival reduction in Drosophila. Furthermore, the reduced survival resulting from dMme1 expression changes could be completely rescued by feeding the dMME1-RNAi flies Mg(2+)-restricted food or the dMME1-over-expressing flies the Mg(2+)-supplemented diet. Our studies therefore identified the first Drosophila mitochondrial Mg(2+) exporter, which is involved in the precise control of mitochondrial Mg(2+) homeostasis to ensure an optimal state for survival.

  2. Approaches to mitochondrial gene therapy.

    PubMed

    D'Souza, Gerard G M; Weissig, Volkmar

    2004-09-01

    Since their discovery during the end of the 80's the number of diseases found to be associated with defects in the mitochondrial genome has grown significantly. Organs affected by mutations in mitochondrial DNA (mtDNA) include in decreasing order of vulnerability the brain, skeletal muscle, heart, kidney and liver. Hence neuromuscular and neurodegenerative diseases represent the two largest groups of mtDNA diseases. Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is however no satisfactory treatment available to the vast majority of patients. This is largely due to the fact that most of these patients have respiratory chain defects, i.e. defects that involve the final common pathway of oxidative metabolism, making it impossible to bypass the defect by administering alternative metabolic carriers of energy. Conventional biochemical treatment having reached an impasse, the exploration of gene therapeutic approaches for patients with mtDNA defects is warranted. For now mitochondrial gene therapy appears to be only theoretical and speculative. Any possibility for gene replacement is dependent on the development of an efficient mitochondrial transfection vector. In this review we describe the current state of the development of mitochondria-specific DNA delivery systems. We summarize our own efforts in exploring the properties of dequalinium and other similar cationic bolaamphiphiles with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells. Further, we outline some unique hurdles that need to be overcome if the development of such delivery systems is to progress.

  3. Modeling pathogenic mutations of human twinkle in Drosophila suggests an apoptosis role in response to mitochondrial defects.

    PubMed

    Sanchez-Martinez, Alvaro; Calleja, Manuel; Peralta, Susana; Matsushima, Yuichi; Hernandez-Sierra, Rosana; Whitworth, Alexander J; Kaguni, Laurie S; Garesse, Rafael

    2012-01-01

    The human gene C10orf2 encodes the mitochondrial replicative DNA helicase Twinkle, mutations of which are responsible for a significant fraction of cases of autosomal dominant progressive external ophthalmoplegia (adPEO), a human mitochondrial disease caused by defects in intergenomic communication. We report the analysis of orthologous mutations in the Drosophila melanogaster mitochondrial DNA (mtDNA) helicase gene, d-mtDNA helicase. Increased expression of wild type d-mtDNA helicase using the UAS-GAL4 system leads to an increase in mtDNA copy number throughout adult life without any noteworthy phenotype, whereas overexpression of d-mtDNA helicase containing the K388A mutation in the helicase active site results in a severe depletion of mtDNA and a lethal phenotype. Overexpression of two d-mtDNA helicase variants equivalent to two human adPEO mutations shows differential effects. The A442P mutation exhibits a dominant negative effect similar to that of the active site mutant. In contrast, overexpression of d-mtDNA helicase containing the W441C mutation results in a slight decrease in mtDNA copy number during the third instar larval stage, and a moderate decrease in life span in the adult population. Overexpression of d-mtDNA helicase containing either the K388A or A442P mutations causes a mitochondrial oxidative phosphorylation (OXPHOS) defect that significantly reduces cell proliferation. The mitochondrial impairment caused by these mutations promotes apoptosis, arguing that mitochondria regulate programmed cell death in Drosophila. Our study of d-mtDNA helicase overexpression provides a tractable Drosophila model for understanding the cellular and molecular effects of human adPEO mutations.

  4. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster.

    PubMed

    Hurd, Thomas Ryan; Herrmann, Beate; Sauerwald, Julia; Sanny, Justina; Grosch, Markus; Lehmann, Ruth

    2016-12-05

    Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.

  5. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  6. The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster

    PubMed Central

    Grönke, Sebastian; Stewart, James B.; Mourier, Arnaud; Ruzzenente, Benedetta; Kukat, Christian; Wibom, Rolf; Habermann, Bianca; Partridge, Linda; Larsson, Nils-Göran

    2011-01-01

    The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation. PMID:22022283

  7. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  8. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

    PubMed Central

    Mossman, Jim A.; Tross, Jennifer G.; Li, Nan; Wu, Zhijin; Rand, David M.

    2016-01-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. PMID:27558138

  9. Impaired fatty acid oxidation in a Drosophila model of mitochondrial trifunctional protein (MTP) deficiency.

    PubMed

    Kishita, Yoshihito; Tsuda, Manabu; Aigaki, Toshiro

    2012-03-09

    Mitochondrial trifunctional protein (MTP), which consists of the MTPα and MTPβ subunits, catalyzes long-chain fatty acid β-oxidation. MTP deficiency in humans results in Reye-like syndrome. Here, we generated Drosophila models of MTP deficiency by targeting two genes encoding Drosophila homologs of human MTPα and MTPβ, respectively. Both Mtpα(KO) and Mtpβ(KO) flies were viable, but demonstrated reduced lifespan, defective locomotor activity, and reduced fecundity represented by the number of eggs laid by the females. The phenotypes of Mtpα(KO) flies were generally more striking than those of Mtpβ(KO) flies. Mtpα(KO) flies were hypersensitive to fasting, and retained lipid droplets in their fat body cells as in non-fasting conditions. The amount of triglyceride was also unchanged upon fasting in Mtpα(KO) flies, suggesting that lipid mobilization was disrupted. Finally, we showed that both Mtpα(KO) and Mtpβ(KO) flies accumulated acylcarnitine and hydroxyacylcarnitine, diagnostic markers of MTP deficiencies in humans. Our results indicated that both Mtpα(KO) and Mtpβ(KO) flies were impaired in long-chain fatty acid β-oxidation. These flies should be useful as a model system to investigate the molecular pathogenesis of MTP deficiency.

  10. Gene Networks Underlying Chronic Sleep Deprivation in Drosophila

    DTIC Science & Technology

    2014-06-15

    SECURITY CLASSIFICATION OF: Studies of the gene network affected by sleep deprivation and stress in the fruit fly Drosophila have revealed the...transduction pathways are affected. Subseuqent tests of mutants in these pathways demonstrated a strong effect on sleep maintenance. Further...15-Apr-2009 14-Apr-2013 Approved for Public Release; Distribution Unlimited Gene Networks Underlying Chronic Sleep Deprivation in Drosophila The

  11. The ribosomal protein genes and Minute loci of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R

    2007-01-01

    Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810

  12. Essential role of Drosophila black-pearl is mediated by its effects on mitochondrial respiration

    PubMed Central

    Roy, Soumit; Short, Mary K.; Stanley, E. Richard; Jubinsky, Paul T.

    2012-01-01

    Black-pearl (Blp) is a highly conserved, essential inner-mitochondrial membrane protein. The yeast Blp homologue, Magmas/Pam16, is required for mitochondrial protein transport, growth, and survival. Our purpose was to determine the role of Drosophila Blp in mitochondrial function, cell survival, and proliferation. To this end, we performed mitotic recombination in Drosophila melanogaster, RNAi-mediated knockdown, MitoTracker staining, measurement of reactive oxygen species (ROS), flow cytometry, electron transport chain complex assays, and hemocyte isolation from Drosophila larvae. Proliferation-defective, Blp-deficient Drosophila Schneider cells exhibited mitochondrial membrane depolarization, a 60% decrease in ATP levels, increased amounts of ROS (3.5-fold), cell cycle arrest, and activation of autophagy that were associated with a selective 65% reduction of cytochrome c oxidase activity. N-acetyl cysteine (NAC) rescued Blp-RNAi-treated cells from cell cycle arrest, indicating that increased production of ROS is the primary cause of the proliferation and survival defects in Blp-depleted cells. blp hypomorph larvae had a 35% decreased number of plasmatocytes with a 45% reduced active mitochondrial staining and their viability was increased 2-fold by administration of NAC, which blocked melanotic lesions. Loss of Blp decreases cytochrome c oxidase activity and uncouples oxidative phosphorylation, causing ROS production, which selectively affects mitochondria-rich plasmatocyte survival and function, leading to melanotic lesions in Blp-deficient flies.—Roy, S., Short, M. K., Stanley, E. R., Jubinsky, P. T. Essential role of Drosophila black-pearl is mediated by its effects on mitochondrial respiration. PMID:22700875

  13. Mitochondrial and Nuclear Genes of Mitochondrial Components in Cancer

    PubMed Central

    Kirches, E

    2009-01-01

    Although the observation of aerobic glycolysis of tumor cells by Otto v. Warburg had demonstrated abnormalities of mitochondrial energy metabolism in cancer decades ago, there was no clear evidence for a functional role of mutant mitochondrial proteins in cancer development until the early years of the 21st century. In the year 2000, a major breakthrough was achieved by the observation, that several genes coding for subunits of the respiratory chain (ETC) complex II, succinate dehydrogenase (SDH) are tumor suppressor genes in heritable paragangliomas, fulfilling Knudson’s classical two-hit hypothesis. A functional inactivation of both alleles by germline mutations and chromosomal losses in the tumor tissue was found in the patients. Later, SDH mutations were also identified in sporadic paragangliomas and pheochromocytomas. Genes of the mitochondrial ATP-synthase and of mitochondrial iron homeostasis have been implicated in cancer development at the level of cell culture and mouse experiments. In contrast to the well established role of some nuclear SDH genes, a functional impact of the mitochondrial genome itself (mtDNA) in cancer development remains unclear. Nevertheless, the extremely high frequency of mtDNA mutations in solid tumors raises the question, whether this small circular genome might be applicable to early cancer detection. This is a meaningful approach, especially in cancers, which tend to spread tumor cells early into bodily fluids or faeces, which can be screened by non-invasive methods. PMID:19949549

  14. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  15. [Regulatory functions of Pax gene family in Drosophila development].

    PubMed

    Li, Li; Yang, Yang; Xue, Lei

    2010-02-01

    The Pax gene family encodes a group of important transcription factors that have been evolutionary conserved from Drosophila to human. Pax genes play pivotal roles in regulating diverse signal transduction pathways and organogenesis during embryonic development through modulating cell proliferation and self-renewal, embryonic precursor cell migration, and the coordination of specific differentiation programs. Ten members of the Pax gene family, which perform crucial regulatory functions during embryonic and postembryonic development, have been identified in Drosophila. In this report, we described the protein structures, expression patterns, and main functions of Drosophila Pax genes.

  16. An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila

    PubMed Central

    Meiklejohn, Colin D.; Holmbeck, Marissa A.; Siddiq, Mohammad A.; Abt, Dawn N.; Rand, David M.; Montooth, Kristi L.

    2013-01-01

    Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNATyr to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity. PMID:23382693

  17. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  18. Functional requirements driving the gene duplication in 12 Drosophila species

    PubMed Central

    2013-01-01

    Background Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. Results In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. Conclusions This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila. PMID:23945147

  19. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  20. Gene Conversion Shapes Linear Mitochondrial Genome Architecture

    PubMed Central

    Smith, David Roy; Keeling, Patrick J.

    2013-01-01

    Recently, it was shown that gene conversion between the ends of linear mitochondrial chromosomes can cause telomere expansion and the duplication of subtelomeric loci. However, it is not yet known how widespread this phenomenon is and how significantly it has impacted organelle genome architecture. Using linear mitochondrial DNAs and mitochondrial plasmids from diverse eukaryotes, we argue that telomeric recombination has played a major role in fashioning linear organelle chromosomes. We find that mitochondrial telomeres frequently expand into subtelomeric regions, resulting in gene duplications, homogenizations, and/or fragmentations. We suggest that these features are a product of subtelomeric gene conversion, provide a hypothetical model for this process, and employ genetic diversity data to support the idea that the greater the effective population size the greater the potential for gene conversion between subtelomeric loci. PMID:23572386

  1. Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death

    PubMed Central

    Duncan, Dianne M.; Kiefel, Paula; Duncan, Ian

    2017-01-01

    The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three “type” alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells. PMID:28104670

  2. Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death.

    PubMed

    Duncan, Dianne M; Kiefel, Paula; Duncan, Ian

    2017-03-10

    The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three "type" alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells.

  3. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  4. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    PubMed

    Yin, Songyue; Xue, Jin; Sun, Haidan; Wen, Bo; Wang, Quanhui; Perkins, Guy; Zhao, Huiwen W; Ellisman, Mark H; Hsiao, Yu-hsin; Yin, Liang; Xie, Yingying; Hou, Guixue; Zi, Jin; Lin, Liang; Haddad, Gabriel G; Zhou, Dan; Liu, Siqi

    2013-01-01

    Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively), examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ). A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional) in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  5. In Situ Labeling of Mitochondrial DNA Replication in Drosophila Adult Ovaries by EdU Staining.

    PubMed

    Chen, Zhe; Xu, Hong

    2016-10-15

    The mitochondrial genome is inherited exclusively through the maternal line. Understanding of how the mitochondrion and its genome are proliferated and transmitted from one generation to the next through the female oocyte is of fundamental importance. Because of the genetic tractability, and the elegant, ordered simplicity by which oocyte development proceeds, Drosophila oogenesis has become an invaluable system for mitochondrial study. An EdU (5-ethynyl-2´-deoxyuridine) labeling method was utilized to detect mitochondrial DNA (mtDNA) replication in Drosophila ovaries. This method is superior to the BrdU (5-bromo-2'-deoxyuridine) labeling method in that it allows for good structural preservation and efficient fluorescent dye penetration of whole-mount tissues. Here we describe a detailed protocol for labeling replicating mitochondrial DNA in Drosophila adult ovaries with EdU. Some technical solutions are offered to improve the viability of the ovaries, maintain their health during preparation, and ensure high-quality imaging. Visualization of newly synthesized mtDNA in the ovaries not only reveals the striking temporal and spatial pattern of mtDNA replication through oogenesis, but also allows for simple quantification of mtDNA replication under various genetic and pharmacological perturbations.

  6. In Situ Labeling of Mitochondrial DNA Replication in Drosophila Adult Ovaries by EdU Staining

    PubMed Central

    Chen, Zhe; Xu, Hong

    2016-01-01

    The mitochondrial genome is inherited exclusively through the maternal line. Understanding of how the mitochondrion and its genome are proliferated and transmitted from one generation to the next through the female oocyte is of fundamental importance. Because of the genetic tractability, and the elegant, ordered simplicity by which oocyte development proceeds, Drosophila oogenesis has become an invaluable system for mitochondrial study. An EdU (5-ethynyl-2´-deoxyuridine) labeling method was utilized to detect mitochondrial DNA (mtDNA) replication in Drosophila ovaries. This method is superior to the BrdU (5-bromo-2'-deoxyuridine) labeling method in that it allows for good structural preservation and efficient fluorescent dye penetration of whole-mount tissues. Here we describe a detailed protocol for labeling replicating mitochondrial DNA in Drosophila adult ovaries with EdU. Some technical solutions are offered to improve the viability of the ovaries, maintain their health during preparation, and ensure high-quality imaging. Visualization of newly synthesized mtDNA in the ovaries not only reveals the striking temporal and spatial pattern of mtDNA replication through oogenesis, but also allows for simple quantification of mtDNA replication under various genetic and pharmacological perturbations. PMID:27805603

  7. The life cycle of Drosophila orphan genes.

    PubMed

    Palmieri, Nicola; Kosiol, Carolin; Schlötterer, Christian

    2014-02-19

    Orphans are genes restricted to a single phylogenetic lineage and emerge at high rates. While this predicts an accumulation of genes, the gene number has remained remarkably constant through evolution. This paradox has not yet been resolved. Because orphan genes have been mainly analyzed over long evolutionary time scales, orphan loss has remained unexplored. Here we study the patterns of orphan turnover among close relatives in the Drosophila obscura group. We show that orphans are not only emerging at a high rate, but that they are also rapidly lost. Interestingly, recently emerged orphans are more likely to be lost than older ones. Furthermore, highly expressed orphans with a strong male-bias are more likely to be retained. Since both lost and retained orphans show similar evolutionary signatures of functional conservation, we propose that orphan loss is not driven by high rates of sequence evolution, but reflects lineage-specific functional requirements. DOI: http://dx.doi.org/10.7554/eLife.01311.001.

  8. Metallothionein genes in Drosophila melanogaster constitute a dual system.

    PubMed Central

    Mokdad, R; Debec, A; Wegnez, M

    1987-01-01

    We have selected a metallothionein (MT) cDNA clone from a cadmium-resistant Drosophila melanogaster cell line. This clone includes an open reading frame coding for a 43-amino acid protein whose characteristics are a high cysteine content (12 cysteines, 28% of all residues) and a lack of aromatic amino acids. This protein differs markedly from the Drosophila MT (Mtn gene) previously reported [Lastowski-Perry, D., Otto, E. & Maroni, G. (1985) J. Biol. Chem. 260, 1527-1530). The MT system of Drosophila thus consists of at least two distantly related genes, in sharp contrast with vertebrate MT systems, in which the different members of MT gene families display high similarity. The gene corresponding to our MT cDNA (Mto) is inducible in Drosophila cell lines and in both larval and adult flies. Images PMID:3106973

  9. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  10. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  11. Characterization of the mus308 gene in Drosophila melanogaster

    SciTech Connect

    Leonhardt, E.A.; Henderson, D.S.; Rinehart, J.E.; Boyd, J.B. )

    1993-01-01

    Among the available mutagen-sensitive mutations in Drosophila, those at the mus3O8 locus are unique in conferring hypersensitivity to DNA cross-linking agents but not to monofunctional agents. Those mutations are also associated with an elevated frequency of chromosomal aberrations, altered DNA metabolism and the modification of a deoxyribonuclease. This spectrum of phenotypes is shared with selected mammalian mutations including Fanconi anemia in humans. In anticipation of the molecular characterization of the mus3O8 gene, it has been localized cytogenetically to 87C9-87D1,2 on the right arm of chromosome three. Nine new mutant alleles of the gene have been generated by X-ray mutagenesis and one was recovered following hybrid dysgenesis. Characterization of these new alleles has uncovered additional phenotypes of mutations at this locus. Homozygous mus3O8 flies that have survived moderate mutagen treatment exhibit an altered wing position that is correlated with reduced flight ability and an altered mitochondrial morphology. In addition, observations of elevated embryo mortality are potentially explained by an aberrant distribution of nuclear material in early embryos which is similar to that seen in the mutant giant nuclei.

  12. Evolution of mitochondrial gene order in Annelida.

    PubMed

    Weigert, Anne; Golombek, Anja; Gerth, Michael; Schwarz, Francine; Struck, Torsten H; Bleidorn, Christoph

    2016-01-01

    Annelida is a highly diverse animal group with over 21,000 described species. As part of Lophotrochozoa, the vast majority of annelids are currently classified into two groups: Errantia and Sedentaria, together forming Pleistoannelida. Besides these taxa, Sipuncula, Amphinomidae, Chaetopteridae, Oweniidae and Magelonidae can be found branching at the base of the tree. Comparisons of mitochondrial genomes have been used to investigate phylogenetic relationship within animal taxa. Complete annelid mitochondrial genomes are available for some Sedentaria and Errantia and in most cases exhibit a highly conserved gene order. Only two complete genomes have been published from the basal branching lineages and these are restricted to Sipuncula. We describe the first complete mitochondrial genome sequences for all other basal branching annelid families: Owenia fusiformis (Oweniidae), Magelona mirabilis (Magelonidae), Eurythoe complanata (Amphinomidae), Chaetopterus variopedatus and Phyllochaetopterus sp. (Chaetopteridae). The mitochondrial gene order of all these taxa is substantially different from the pattern found in Pleistoannelida. Additionally, we report the first mitochondrial genomes in Annelida that encode genes on both strands. Our findings demonstrate that the supposedly highly conserved mitochondrial gene order suggested for Annelida is restricted to Pleistoannelida, representing the ground pattern of this group. All investigated basal branching annelid taxa show a completely different arrangement of genes than observed in Pleistoannelida. The gene order of protein coding and ribosomal genes in Magelona mirabilis differs only in two transposition events from a putative lophotrochozoan ground pattern and might be the closest to an ancestral annelid pattern. The mitochondrial genomes of Myzostomida show the conserved pattern of Pleistoannelida, thereby supporting their inclusion in this taxon.

  13. Evolution of mitochondrial gene orders in echinoderms.

    PubMed

    Perseke, Marleen; Fritzsch, Guido; Ramsch, Kai; Bernt, Matthias; Merkle, Daniel; Middendorf, Martin; Bernhard, Detlef; Stadler, Peter F; Schlegel, Martin

    2008-05-01

    A comprehensive analysis of the mitochondrial gene orders of all previously published and two novel Antedon mediterranea (Crinoidea) and Ophiura albida (Ophiuroidea) complete echinoderm mitochondrial genomes shows that all major types of rearrangement operations are necessary to explain the evolution of mitochondrial genomes. In addition to protein coding genes we include all tRNA genes as well as the control region in our analysis. Surprisingly, 7 of the 16 genomes published in the GenBank database contain misannotations, mostly unannotated tRNAs and/or mistakes in the orientation of tRNAs, which we have corrected here. Although the gene orders of mt genomes appear very different, only 8 events are necessary to explain the evolutionary history of echinoderms with the exception of the ophiuroids. Only two of these rearrangements are inversions, while we identify three tandem-duplication-random-loss events and three transpositions.

  14. Molecular phylogeny of the Drosophila virilis section (Diptera: Drosophilidae) based on mitochondrial and nuclear sequences.

    PubMed

    Wang, Bao-cheng; Park, Jecheol; Watabe, Hide-aki; Gao, Jian-jun; Xiangyu, Jing-gong; Aotsuka, Tadashi; Chen, Hong-wei; Zhang, Ya-ping

    2006-08-01

    Regardless of the well-documented virilis species group, most groups of the Drosophila virilis section have not been completely studied at molecular level since it was suggested. Therefore, phylogenetic relationships among and within species groups of the virilis section are generally unknown. In present paper, the complete mitochondrial ND2 gene and fragment of COI gene in combination with a nuclear gene, Adh coding region, were used to derive the most extensive molecular phylogeny to date for the Drosophila virilis section. A total of 111 individuals covering 61 species were sampled in this study. Novel phylogenetic findings included (1) support for the paraphyly of the melanica and robusta species group and at least two subgroups of the robusta species group, the lacertosa and okadai subgroups, were distinguished as paraphyletic taxa. In addition, (2) present results revealed the sister relationship between D. moriwakii and the robusta subgroup, conflicting with current taxonomy regarding D. moriwakii, which was shifted from the robusta species group to the melanica group. (3) In contrast to the robusta and melanica species groups, monophyly of the polychaeta species group, the angor group and the virilis group was confirmed, respectively. However, the monophyletic quadrisetata species group was resolved with uncertainty. (4) Our analyses of combined data set suggested close relationship between the quadrisetata species group and the unpublished clefta group, and the okadai subgroup is sister to the clade comprising of the quadrisetata and clefta species groups. Within the virilis section, D. fluvialis and three tropical species groups, the polychaeta group, the angor group and the repleta group, are found to branch off earlier than other ingroup taxa. This suggests that the virilis section might have originated in the Old World tropics. Besides, the derived status of the close affinities of the quadrisetata group, the clefta group, and the melanica and robusta

  15. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    SciTech Connect

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke . E-mail: ryosuket@kuhp.kyoto-u.ac.jp; Miura, Masayuki . E-mail: miura@mol.f.u-tokyo.ac.jp

    2007-05-18

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.

  16. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  17. Mitochondrial defects and neuromuscular degeneration caused by altered expression of Drosophila Gdap1: implications for the Charcot-Marie-Tooth neuropathy.

    PubMed

    López Del Amo, Víctor; Seco-Cervera, Marta; García-Giménez, José Luís; Whitworth, Alexander J; Pallardó, Federico V; Galindo, Máximo Ibo

    2015-01-01

    One of the genes involved in Charcot-Marie-Tooth (CMT) disease, an inherited peripheral neuropathy, is GDAP1. In this work, we show that there is a true ortholog of this gene in Drosophila, which we have named Gdap1. By up- and down-regulation of Gdap1 in a tissue-specific manner, we show that altering its levels of expression produces changes in mitochondrial size, morphology and distribution, and neuronal and muscular degeneration. Interestingly, muscular degeneration is tissue-autonomous and not dependent on innervation. Metabolic analyses of our experimental genotypes suggest that alterations in oxidative stress are not a primary cause of the neuromuscular degeneration but a long-term consequence of the underlying mitochondrial dysfunction. Our results contribute to a better understanding of the role of mitochondria in CMT disease and pave the way to generate clinically relevant disease models to study the relationship between mitochondrial dynamics and peripheral neurodegeneration.

  18. Development of mitochondrial gene replacement therapy.

    PubMed

    Khan, Shaharyar M; Bennett, James P

    2004-08-01

    Many "classic" mitochondrial diseases have been described that arise from single homoplasmic mutations in mitochondrial DNA (mtDNA). These diseases typically affect nonmitotic tissues (brain, retina, muscle), present with variable phenotypes, can appear sporadically, and are untreatable. Evolving evidence implicates mtDNA abnormalities in diseases such as Alzheimer's, Parkinson's, and type II diabetes, but specific causal mutations for these conditions remain to be defined. Understanding the mtDNA genotype-phenotype relationships and developing specific treatment for mtDNA-based diseases is hampered by inability to manipulate the mitochondrial genome. We present a novel protein transduction technology ("protofection") that allows insertion and expression of the human mitochondrial genome into mitochondria of living cells. With protofection, the mitochondrial genotype can be altered, or exogenous genes can be introduced to be expressed and either retained in mitochondria or be directed to other organelles. Protofection also delivers mtDNA in vivo, opening the way to rational development of mitochondrial gene replacement therapy of mtDNA-based diseases.

  19. Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: A potential case of cytonuclear cointrogression

    PubMed Central

    Beck, Emily A.; Thompson, Aaron C.; Sharbrough, Joel; Brud, Evgeny; Llopart, Ana

    2015-01-01

    Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression. PMID:26155926

  20. Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans.

    PubMed

    Wolff, J N; Nafisinia, M; Sutovsky, P; Ballard, J W O

    2013-01-01

    Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS-PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.

  1. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes

    NASA Technical Reports Server (NTRS)

    Staton, J. L.; Daehler, L. L.; Brown, W. M.; Jacobs, D. K. (Principal Investigator)

    1997-01-01

    Numerous complete mitochondrial DNA sequences have been determined for species within two arthropod groups, insects and crustaceans, but there are none for a third, the chelicerates. Most mitochondrial gene arrangements reported for crustaceans and insect species are identical or nearly identical to that of Drosophila yakuba. Sequences across 36 of the gene boundaries in the mitochondrial DNA (mtDNA) of a representative chelicerate. Limulus polyphemus L., also reveal an arrangement like that of Drosophila yakuba. Only the position of the tRNA(LEU)(UUR) gene differs; in Limulus it is between the genes for tRNA(LEU)(CUN) and ND1. This positioning is also found in onychophorans, mollusks, and annelids, but not in insects and crustaceans, and indicates that tRNA(LEU)(CUN)-tRNA(LEU)(UUR)-ND1 was the ancestral gene arrangement for these groups, as suggested earlier. There are no differences in the relative arrangements of protein-coding and ribosomal RNA genes between Limulus and Drosophila, and none have been observed within arthropods. The high degree of similarity of mitochondrial gene arrangements within arthropods is striking, since some taxa last shared a common ancestor before the Cambrian, and contrasts with the extensive mtDNA rearrangements occasionally observed within some other metazoan phyla (e.g., mollusks and nematodes).

  2. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    PubMed Central

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell

  3. Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons

    PubMed Central

    Vagnoni, Alessio; Hoffmann, Patrick C.; Bullock, Simon L.

    2016-01-01

    ABSTRACT Defective transport of mitochondria in axons is implicated in the pathogenesis of several age-associated neurodegenerative diseases. However, the regulation and function of axonal mitochondrial motility during normal ageing is poorly understood. Here, we use novel imaging procedures to characterise axonal transport of these organelles in the adult Drosophila wing nerve. During early adult life there is a boost and progressive decline in the proportion of mitochondria that are motile, which is not due to general changes in cargo transport. Experimental inhibition of the mitochondrial transport machinery specifically in adulthood accelerates the appearance of focal protein accumulations in ageing axons, which is suggestive of defects in protein homeostasis. Unexpectedly, lowering levels of Lissencephaly-1 (Lis1), a dynein motor co-factor, augments axonal mitochondrial transport in ageing wing neurons. Lis1 mutations suppress focal protein accumulations in ageing neurons, including those caused by interfering with the mitochondrial transport machinery. Our data provide new insights into the dynamics of mitochondrial motility in adult neurons in vivo, identify Lis1 as a negative regulator of transport of these organelles, and provide evidence of a link between mitochondrial movement and neuronal protein homeostasis. PMID:26598558

  4. FlyTED: the Drosophila Testis Gene Expression Database.

    PubMed

    Zhao, Jun; Klyne, Graham; Benson, Elizabeth; Gudmannsdottir, Elin; White-Cooper, Helen; Shotton, David

    2010-01-01

    FlyTED, the Drosophila Testis Gene Expression Database, is a biological research database for gene expression images from the testis of the fruit fly Drosophila melanogaster. It currently contains 2762 mRNA in situ hybridization images and ancillary metadata revealing the patterns of gene expression of 817 Drosophila genes in testes of wild type flies and of seven meiotic arrest mutant strains in which spermatogenesis is defective. This database has been built by adapting a widely used digital library repository software system, EPrints (http://eprints.org/software/), and provides both web-based search and browse interfaces, and programmatic access via an SQL dump, OAI-PMH and SPARQL. FlyTED is available at http://www.fly-ted.org/.

  5. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila

    PubMed Central

    Montooth, Kristi L.; Meiklejohn, Colin D.; Abt, Dawn N.; Rand, David M.

    2010-01-01

    Efficient mitochondrial function requires physical interactions between the proteins encoded by the mitochondrial and nuclear genomes. Co-evolution between these genomes may result in the accumulation of incompatibilities between divergent lineages. We test whether mitochondrial-nuclear incompatibilities have accumulated within the Drosophila melanogaster species subgroup by combining divergent mitochondrial and nuclear lineages and quantifying the effects on relative fitness. Precise placement of nine mtDNAs from D. melanogaster, D. simulans and D. mauritiana into two D. melanogaster nuclear genetic backgrounds reveals significant mitochondrial-nuclear epistasis affecting fitness in females. Combining the mitochondrial genomes with three different D. melanogaster X chromosomes reveals significant epistasis for male fitness between X-linked and mitochondrial variation. However, we find no evidence that the more than 500 fixed differences between the mitochondrial genomes of D. melanogaster and the D. simulans species complex are incompatible with the D. melanogaster nuclear genome. Rather, the interactions of largest effect occur between mitochondrial and nuclear polymorphisms that segregate within species of the D. melanogaster species subgroup. We propose that a low mitochondrial substitution rate, resulting from a low mutation rate and/or efficient purifying selection, precludes the accumulation of mitochondrial-nuclear incompatibilities among these Drosophila species. PMID:20624176

  6. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells.

    PubMed

    Zhang, Baoyan; Xu, Zhiping; Zhang, Yixi; Shao, Xusheng; Xu, Xiaoyong; Cheng, Jiaogao; Li, Zhong

    2015-03-01

    Fipronil is the first phenylpyrazole insecticide widely used in controlling pests, including pyrethroid, organophosphate and carbamate insecticides. It is generally accepted that fipronil elicits neurotoxicity via interactions with GABA and glutamate receptors, although alternative mechanisms have recently been proposed. This study evaluates the genotoxicity of fipronil and its likely mode of action in Drosophila S2 cells, as an in vitro model. Fipronil administrated the concentration- and time-dependent S2 cell proliferation. Intracellular biochemical assays showed that fipronil-induced S2 cell apoptosis coincided with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, a significant decrease of Bcl-2 and DIAP1, and a marked augmentation of Cyt c and caspase-3. Because caspase-3 is the major executioner caspase downstream of caspase-9 in Drosophila, enzyme activity assays were used to determine the activities of caspase-3 and caspase-9. Our results indicated that fipronil effectively induced apoptosis in Drosophila S2 cells through caspase-dependent mitochondrial pathways.

  7. Analysis of Replication Intermediates Indicates That Drosophila melanogaster Mitochondrial DNA Replicates by a Strand-Coupled Theta Mechanism

    PubMed Central

    Jõers, Priit; Jacobs, Howard T.

    2013-01-01

    Mitochondrial DNA synthesis is necessary for the normal function of the organelle and for the eukaryotic organism as a whole. Here we demonstrate, using two-dimensional agarose gel electrophoresis to analyse replication intermediates, that unidirectional, strand-coupled DNA synthesis is the prevalent mode of mtDNA replication in Drosophila melanogaster. Commencing within the single, extended non-coding region (NCR), replication proceeds around the circular genome, manifesting an irregular rate of elongation, and pausing frequently in specific regions. Evidence for a limited contribution of strand-asynchronous DNA synthesis was found in a subset of mtDNA molecules, but confined to the ribosomal RNA gene region, just downstream of the NCR. Our findings imply that strand-coupled replication is widespread amongst metazoans, and should inform future research on mtDNA metabolism in D. melanogaster. PMID:23308172

  8. Green tea polyphenols require the mitochondrial iron transporter, mitoferrin, for lifespan extension in Drosophila melanogaster.

    PubMed

    Lopez, Terry E; Pham, Hoang M; Nguyen, Benjamin V; Tahmasian, Yerazik; Ramsden, Shannon; Coskun, Volkan; Schriner, Samuel E; Jafari, Mahtab

    2016-12-01

    Green tea has been found to increase the lifespan of various experimental animal models including the fruit fly, Drosophila melanogaster. High in polyphenolic content, green tea has been shown to reduce oxidative stress in part by its ability to bind free iron, a micronutrient that is both essential for and toxic to all living organisms. Due to green tea's iron-binding properties, we questioned whether green tea acts to increase the lifespan of the fruit fly by modulating iron regulators, specifically, mitoferrin, a mitochondrial iron transporter, and transferrin, found in the hemolymph of flies. Publicly available hypomorph mutants for these iron regulators were utilized to investigate the effect of green tea on lifespan and fertility. We identified that green tea could not increase the lifespan of mitoferrin mutants but did rescue the reduced male fertility phenotype. The effect of green tea on transferrin mutant lifespan and fertility were comparable to w(1118) flies, as observed in our previous studies, in which green tea increased male fly lifespan and reduced male fertility. Expression levels in both w(1118) flies and mutant flies, supplemented with green tea, showed an upregulation of mitoferrin but not transferrin. Total body and mitochondrial iron levels were significantly reduced by green tea supplementation in w(1118) and mitoferrin mutants but not transferrin mutant flies. Our results demonstrate that green tea may act to increase the lifespan of Drosophila in part by the regulation of mitoferrin and reduction of mitochondrial iron.

  9. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress.

    PubMed

    Colinet, Hervé; Renault, David; Roussel, Damien

    2017-01-01

    Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.

  10. Mitochondrial genes at Cold Spring Harbor.

    PubMed

    Grivell, L A

    1981-12-01

    The flowering dogwood trees and green lawns of Cold Spring Harbor provided the setting for a meeting devoted to Mitochondrial Genes from May 13-17th, 1981. Dedicated to the memory of Boris Ephrussi, who pioneered mitochondrial genetics at a time when the only kinds of genetics were nuclear or unclear, the meeting showed that the study of mtDNA has had impact on many areas of molecular biology including the genetic code and decoding, tRNA function, mechanisms of splicing and molecular evolution. Curiously, as Herschel Roman pointed out in his opening address, Ephrussi took great pains to avoid any mention of mitochondrial DNA in connection with his observations on cytoplasmic inheritance, preferring instead to refer to 'cytoplasmic particles, endowed with genetic continuity' (Ephrussi 1953). This reticence was not shared by participants at the meeting, as the following, brief report will show.

  11. Transcriptional regulation of the Drosophila ANT gene by the DRE/DREF system.

    PubMed

    Kim, Young Shin; Shin, Meong Joo; Yang, Dong Jin; Yamaguchi, Masamitsu; Park, So Young; Yoo, Mi Ae

    2007-05-01

    Adenine nucleotide translocase (ANT) is a crucial component in the maintenance of cellular energy homeostasis, as well as in the formation of the mitochondrial permeability transition pores. However, the molecular mechanisms regulating the expression of the ANT gene are poorly understood. In this study, we have identified three DNA replication-related elements (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila ANT (dANT) gene. Gel-mobility shift analyses revealed that all three of the DREs were recognized by the DRE-binding factor (DREF). The site-directed mutagenesis of these DRE sites induces a considerable reduction in the activity of the dANT gene promoter in vitro. Analyses with transgenic flies harboring a dANT-lacZ fusion gene bearing the wild-type or mutant DRE sites showed that the DRE sites were required for the expression of dANT in vivo. We determined that the over-expression or knockdown of DREF exerts a regulatory effect on the activity of the dANT promoter. In addition, we observed the collapse of mitochondrial membrane potential in the eye imaginal discs in which DREF was over-expressed. These results show that DRE/DREF is a crucial regulator of dANT gene expression, and also suggest the possibility that cross-talk may occur between the DRE/DREF system and mitochondrial functioning.

  12. Evidence for Non-Neutrality of Mitochondrial DNA Haplotypes in Drosophila Pseudoobscura

    PubMed Central

    MacRae, A. F.; Anderson, W. W.

    1988-01-01

    Mitochondrial DNA (mtDNA) haplotypes usually are assumed to be neutral, unselected markers of evolving female lineages. This assumption was tested by monitoring haplotype frequencies in 12 experimental populations of Drosophila pseudoobscura which were polymorphic for mtDNA haplotypes. Populations were maintained for at least 10 generations, and in one case for 32 generations, while tests of mtDNA selective neutrality were conducted. In an initial population, formed from a mixture of two strains with different mitochondrial haplotypes, the frequency of the Bogota haplotype increased 46% in 3 generations, reaching an apparent equilibrium frequency of 82% after 32 generations. Perturbation of this equilibrium by addition of the less common haplotype resulted in a rapid, dramatic increase in frequency of the second haplotype, and a return to essentially the same equilibrium frequency as before perturbation. This behavior is not consistent with mtDNA neutrality, nor is the equilibrium consistent with a simple model of constant selection on the haploid mtDNAs. Replicate cage experiments with mtDNA haplotypes did not always generate the same result as the initial cage. Several lines of evidence, including manipulations of the nuclear genome, support the idea that both nuclear and mitochondrial genomes are involved in the dramatic mtDNA frequency changes. In another experiment, strong female viability selection was implicated via mtDNA frequency changes. Although the causes of the dramatic mtDNA frequency changes in our populations are not obvious, it is clear that Drosophila mitochondrial haplotypes are not always simply neutral markers. Our findings are relevant to the introduction of a novel mtDNA variant from one species or one population into another. Such introductions could be strongly favored by selection, even if it is sporadic. PMID:3197957

  13. Structure and expression of ubiquitin genes of Drosophila melanogaster.

    PubMed Central

    Lee, H S; Simon, J A; Lis, J T

    1988-01-01

    We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock. Images PMID:2463465

  14. Higher plant mitochondrial DNA: Genomes, genes, mutants, transcription, translation

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains brief summaries of 63 presentations given at the International Workshop on Higher Plant Mitochondrial DNA. The presentations are organized into topical discussions addressing plant genomes, mitochondrial genes, cytoplasmic male sterility, transcription, translation, plasmids and tissue culture. (DT)

  15. In vivo chromatin accessibility correlates with gene silencing in Drosophila.

    PubMed Central

    Boivin, A; Dura, J M

    1998-01-01

    Gene silencing by heterochromatin is a well-known phenomenon that, in Drosophila, is called position effect variegation (PEV). The long-held hypothesis that this gene silencing is associated with an altered chromatin structure received direct support only recently. Another gene-silencing phenomenon in Drosophila, although similar in its phenotype of variegation, has been shown to be associated with euchromatic sequences and is dependent on developmental regulators of the Polycomb group (Pc-G) of gene products. One model proposes that the Pc-G products may cause a local heterochromatinization that maintains a repressed state of transcription of their target genes. Here, we test these models by measuring the accessibility of white or miniwhite sequences, in different contexts, to the Escherichia coli dam DNA methyltransferase in vivo. We present evidence that PEV and Pc-G-mediated repression mechanisms, although based on different protein factors, may indeed involve similar higher-order chromatin structure. PMID:9832530

  16. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila.

    PubMed

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R

    2016-09-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa.

  17. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila

    PubMed Central

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R.

    2016-01-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  18. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development.

  19. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  20. A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis.

    PubMed

    Cox, Rachel T; Spradling, Allan C

    2003-04-01

    Maternally inherited mitochondria and other cytoplasmic organelles play essential roles supporting the development of early embryos and their germ cells. Using methods that resolve individual organelles, we studied the origin of oocyte and germ plasm-associated mitochondria during Drosophila oogenesis. Mitochondria partition equally on the spindle during germline stem cell and cystocyte divisions. Subsequently, a fraction of cyst mitochondria and Golgi vesicles associates with the fusome, moves through the ring canals, and enters the oocyte in a large mass that resembles the Balbiani bodies of Xenopus, humans and diverse other species. Some mRNAs, including oskar RNA, specifically associate with the oocyte fusome and a region of the Balbiani body prior to becoming localized. Balbiani body development requires an intact fusome and microtubule cytoskeleton as it is blocked by mutations in hu-li tai shao, while egalitarian mutant follicles accumulate a large mitochondrial aggregate in all 16 cyst cells. Initially, the Balbiani body supplies virtually all the mitochondria of the oocyte, including those used to form germ plasm, because the oocyte ring canals specifically block inward mitochondrial transport until the time of nurse cell dumping. Our findings reveal new similarities between oogenesis in Drosophila and vertebrates, and support our hypothesis that developing oocytes contain specific mechanisms to ensure that germ plasm is endowed with highly functional organelles.

  1. Drosophila GRAIL: An intelligent system for gene recognition in Drosophila DNA sequences

    SciTech Connect

    Xu, Ying; Einstein, J.R.; Uberbacher, E.C.; Helt, G.; Rubin, G.

    1995-06-01

    An AI-based system for gene recognition in Drosophila DNA sequences was designed and implemented. The system consists of two main modules, one for coding exon recognition and one for single gene model construction. The exon recognition module finds a coding exon by recognition of its splice junctions (or translation start) and coding potential. The core of this module is a set of neural networks which evaluate an exon candidate for the possibility of being a true coding exon using the ``recognized`` splice junction (or translation start) and coding signals. The recognition process consists of four steps: generation of an exon candidate pool, elimination of improbable candidates using heuristic rules, candidate evaluation by trained neural networks, and candidate cluster resolution and final exon prediction. The gene model construction module takes as input the clustered exon candidates and builds a ``best`` possible single gene model using an efficient dynamic programming algorithm. 129 Drosophila sequences consisting of 441 coding exons including 216358 coding bases were extructed from GenBank and used to build statistical matrices and to train the neural networks. On this training set the system recognized 97% of the coding messages and predicted only 5% false messages. Among the ``correctly`` predicted exons, 68% match the actual exon exactly and 96% have at least one edge predicted correctly. On an independent test set consisting of 30 Drosophila sequences, the system recognized 96% of the coding messages and predicted 7% false messages.

  2. Sleep and wakefulness modulate gene expression in Drosophila.

    PubMed

    Cirelli, Chiara; LaVaute, Timothy M; Tononi, Giulio

    2005-09-01

    In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.

  3. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  4. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion

    PubMed Central

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S.; Sharma, Yashoda; Eberl, Daniel F.; Göpfert, Martin C.; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-01-01

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC’s roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  5. Drosophila Myc is required for normal DREF gene expression

    SciTech Connect

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm{sup 4}/Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm{sup 2}/dm{sup 2} homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression.

  6. Drosophila Myc is required for normal DREF gene expression.

    PubMed

    Thao, Dang Thi Phuong; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm(4)/Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm(2)/dm(2) homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression.

  7. Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors.

    PubMed Central

    Sauer, F; Jäckle, H

    1995-01-01

    The Drosophila gap gene Krüppel (Kr) encodes a transcriptional regulator. It acts both as an integral part of the Drosophila segmentation gene in the early blastoderm and in a variety of tissues and organs at later stages of embryogenesis. In transfected tissue culture cells, the Kr protein (Kr) was shown to both activate and repress gene expression in a concentration-dependent manner when acting from a single binding site close to the promoter. Here we show that KR can associate with the transcription factors encoded by the gap genes knirps (kni) and hunchback (hb) which affect KR-dependent gene expression in Drosophila tissue culture cells. The association of DNA-bound hb protein or free kni protein with distinct but different regions of KR results in the formation of DNA-bound transcriptional repressor complexes. Our results suggest that individual transcription factors can associate to form protein complexes which act as direct repressors of transcription. The interactions shown here add an unexpected level of complexity to the control of gene expression. Images PMID:7588607

  8. Microevolutionary divergence pattern of the segmentation gene hunchback in Drosophila.

    PubMed

    Tautz, D; Nigro, L

    1998-11-01

    To study the microevolutionary processes shaping the evolution of the segmentation gene hunchback (hb) from Drosophila melanogaster, we cloned and sequenced the gene from 12 isofemale lines representing wild-type populations of D. melanogaster, as well as from the closely related species Drosophila sechellia, Drosophila orena, and Drosophila yakuba. We find a relatively low degree of sequence variation in D. melanogaster (theta = 0.0017), which is, however, consistent with its chromosomal location in a region of low recombination. Tests of neutrality do not reject a neutral-evolution model for the whole region. However, pairwise tests with different subregions indicate that there is a relative excess of polymorphic sites in the leader and the intron. Codon usage pattern analysis shows a particularly biased codon usage in the highly conserved regions, which is in line with the hypothesis that selection on translational accuracy is the driving force behind such a bias. A comparison of the expression pattern of hb in different sibling species of D. melanogaster reveals some regulatory changes in D. yakuba, which could be interpreted as changes in the timing of secondary expression domains.

  9. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene.

    PubMed Central

    Goldberg, D A

    1980-01-01

    The alcohol dehydrogenase (ADH; alcohol: NAD+ oxidoreductase, EC 1.1.1.1) gene (Adh) of Drosophila melanogaster was isolated by utilizing a mutant strain in which the Adh locus is deleted. Adult RNA from wild-type flies was enriched in ADH sequences by gel electrophoresis and then used to prepare labeled cDNA for screening a bacteriophage lambda library of genomic Drosophila DNA. Of the clones that hybridized in the initial screen, one clone was identified that hybridized with labeled cDNA prepared from a wild-type Drosophila strain but did not hybridize with cDNA prepared from an Adh deletion strain. This clone was shown to contain ADH structural gene sequences by three criteria: in situ hybridization, in vitro translation of mRNA selected by hybridization to the cloned DNA, and comparison of the ADH protein sequence with a nucleotide sequence derived from the cloned DNA. Comparison of the restriction site maps from clones of three different wild-type Drosophila strains revealed the presence of a 200-nucleotide sequence in one strain that was absent from the other two strains. The ADH mRNA sequences were located within the cloned DNA by hybridization mapping experiments. Two intervening sequences were identified within Adh by S1 nuclease mapping experiments. Images PMID:6777776

  10. Transgene expression of Drosophila melanogaster nucleoside kinase reverses mitochondrial thymidine kinase 2 deficiency.

    PubMed

    Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A; Kuiper, Raoul V; Curbo, Sophie; Karlsson, Anna

    2013-02-15

    A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK(+/-) transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK(+/-)TK2(-/-) mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK(+/-)TK2(-/-) mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency.

  11. The mitochondrial genome of Raphanus sativus and gene evolution of cruciferous mitochondrial types.

    PubMed

    Chang, Shengxin; Chen, Jianmei; Wang, Yankun; Gu, Bingchao; He, Jianbo; Chu, Pu; Guan, Rongzhan

    2013-03-20

    To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorganization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other reported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non-conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.

  12. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Noh, Su Jin; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis. PMID:25196935

  13. Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis.

    PubMed

    Altanbyek, Volodya; Cha, Sun-Joo; Kang, Ga-Un; Im, Dai Sig; Lee, Seongsoo; Kim, Hyung-Jun; Kim, Kiyoung

    2016-12-09

    Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease, characterized by progressive and selective loss of motor neurons in the brain and spinal cord. DNA/RNA-binding proteins such as TDP-43, FUS, and TAF15 have been linked with the sporadic and familial forms of ALS. However, the exact pathogenic mechanism of ALS is still unknown. Recently, we found that ALS-causing genes such as TDP-43, FUS, and TAF15 genetically interact with mitochondrial dynamics regulatory genes. In this study, we show that mitochondrial fission was highly enhanced in muscles and motor neurons of TDP-43, FUS, and TAF15-induced fly models of ALS. Furthermore, the mitochondrial fission defects were rescued by co-expression of mitochondrial dynamics regulatory genes such as Marf, Opa1, and the dominant negative mutant form of Drp1. Moreover, we found that the expression level of Marf was decreased in ALS-induced flies. These results indicate that the imbalance of mitochondrial dynamics caused by instability of Marf is linked to the pathogenesis of TDP-43, FUS, and TAF15-associated ALS.

  14. A Novel MitoTimer Reporter Gene for Mitochondrial Content, Structure, Stress, and Damage in Vivo*

    PubMed Central

    Laker, Rhianna C.; Xu, Peng; Ryall, Karen A.; Sujkowski, Alyson; Kenwood, Brandon M.; Chain, Kristopher H.; Zhang, Mei; Royal, Mary A.; Hoehn, Kyle L.; Driscoll, Monica; Adler, Paul N.; Wessells, Robert J.; Saucerman, Jeffrey J.; Yan, Zhen

    2014-01-01

    Mitochondrial dysfunction plays important roles in many diseases, but there is no satisfactory method to assess mitochondrial health in vivo. Here, we engineered a MitoTimer reporter gene from the existing Timer reporter gene. MitoTimer encodes a mitochondria-targeted green fluorescent protein when newly synthesized, which shifts irreversibly to red fluorescence when oxidized. Confocal microscopy confirmed targeting of the MitoTimer protein to mitochondria in cultured cells, Caenorhabditis elegans touch receptor neurons, Drosophila melanogaster heart and indirect flight muscle, and mouse skeletal muscle. A ratiometric algorithm revealed that conditions that cause mitochondrial stress led to a significant shift toward red fluorescence as well as accumulation of pure red fluorescent puncta of damaged mitochondria targeted for mitophagy. Long term voluntary exercise resulted in a significant fluorescence shift toward green, in mice and D. melanogaster, as well as significantly improved structure and increased content in mouse FDB muscle. In contrast, high-fat feeding in mice resulted in a significant shift toward red fluorescence and accumulation of pure red puncta in skeletal muscle, which were completely ameliorated by voluntary wheel running. Hence, MitoTimer allows for robust analysis of multiple parameters of mitochondrial health under both physiological and pathological conditions and will be highly useful for future research of mitochondrial health in multiple disciplines in vivo. PMID:24644293

  15. Estrogen related receptor is required for the testicular development and for the normal sperm axoneme/mitochondrial derivatives in Drosophila males

    PubMed Central

    Misra, Snigdha; Pandey, Anuj Kumar; Gupta, Snigdha; Kumar, Ajay; Khanna, Priyanka; shankar, Jai; Ravi Ram, Kristipati

    2017-01-01

    Estrogen related receptors (ERRs), categorized as orphan nuclear receptors, are critical for energy homeostasis and somatic development. However, significance of ERRs in the development of reproductive organs/organelles/cells remain poorly understood, albeit their homology to estrogen receptors. In this context, here, we show that knockdown of ERR in the testes leads to improperly developed testes with mis-regulation of genes (aly, mia, bruce, bam, bgcn, fzo and eya) involved in spermatogenesis, resulting in reduced male fertility. The observed testicular deformity is consistent with the down-regulation of SOX-E group of gene (SOX100B) in Drosophila. We also show dispersion/disintegration of fusomes (microtubule based structures associated with endoplasmic reticulum derived vesicle, interconnecting spermatocytes) in ERR knockdown testes. A few ERR knockdown testes go through spermatogenesis but have significantly fewer sperm. Moreover, flagella of these sperm are defective with abnormal axoneme and severely reduced mitochondrial derivatives, suggesting a possible role for ERR in mitochondrial biogenesis, analogous to mammalian ERRα. Interestingly, similar knockdown of remaining seventeen nuclear receptors did not yield a detectable reproductive or developmental defect in Drosophila. These findings add newer dimensions to the functions envisaged for ERR and provide the foundation for deciphering the relevance of orphan nuclear receptors in ciliopathies and testicular dysgenesis. PMID:28094344

  16. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes.

    PubMed Central

    Bellen, Hugo J; Levis, Robert W; Liao, Guochun; He, Yuchun; Carlson, Joseph W; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P Robin; Schulze, Karen L; Rubin, Gerald M; Hoskins, Roger A; Spradling, Allan C

    2004-01-01

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in >30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7140 lines. It now includes individual lines predicted to disrupt 5362 of the 13,666 currently annotated Drosophila genes (39%). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene misexpression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool. PMID:15238527

  17. The BDGP gene disruption project: Single transposon insertions associated with 40 percent of Drosophila genes

    SciTech Connect

    Bellen, Hugo J.; Levis, Robert W.; Liao, Guochun; He, Yuchun; Carlson, Joseph W.; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P. Robin; Schulze, Karen L.; Rubin, Gerald M.; Hoskins, Roger A.; Spradling, Allan C.

    2004-01-13

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in more than 30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6,300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7,140 lines. It now includes individual lines predicted to disrupt 5,362 of the 13,666 currently annotated Drosophila genes (39 percent). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene mis-expression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.

  18. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation.

    PubMed

    Chen, Chao; Chen, Ye; Guan, Min-Xin

    2015-12-01

    Mitochondrial genome is responsible for multiple human diseases in a maternal inherited pattern, yet phenotypes of patients in a same pedigree frequently vary largely. Genes involving in epigenetic modification, RNA processing, and other biological pathways, rather than "threshold effect" and environmental factors, provide more specific explanation to the aberrant phenotype. Thus, the double hit theory, mutations both in mitochondrial DNA and modifying genes aggravating the symptom, throws new light on mitochondrial dysfunction processes. In addition, mitochondrial retrograde signaling pathway that leads to reconfiguration of cell metabolism to adapt defects in mitochondria may as well play an active role. Here we review selected examples of modifier genes and mitochondrial retrograde signaling in mitochondrial disorders, which refine our understanding and will guide the rational design of clinical therapies.

  19. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants

    PubMed Central

    Klein, Pontus; Müller-Rischart, Anne Kathrin; Motori, Elisa; Schönbauer, Cornelia; Schnorrer, Frank; Winklhofer, Konstanze F; Klein, Rüdiger

    2014-01-01

    Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (RetMEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of RetMEN2B significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD. PMID:24473149

  20. Complete mitochondrial genome sequences of thirteen globally sourced strains of fruit fly (Drosophila melanogaster) form a powerful model for mitochondrial research.

    PubMed

    Wolff, Jonci N; Camus, M Florencia; Clancy, David J; Dowling, Damian K

    2016-11-01

    The complete mitogenomes of 13 strains of the fruit fly Drosophila melanogaster were sequenced. Haplotypes varied between 19 532 and 19 537 bp in length, and followed standard dipteran mitogenome content and organization. We detected a total of 354 variable sites between all thirteen haplotypes, while single pairs of haplotypes were separated by an average of 123 variable sites. The sequenced fly strains form a powerful model for mitochondrial research, when it comes to elucidating the links between the mitochondrial genotype and the phenotype.

  1. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  2. Conserved Arrangement of Nested Genes at the Drosophila Gart Locus

    PubMed Central

    Henikoff, Steven; Eghtedarzadeh, Mohammad K.

    1987-01-01

    The Drosophila melanogaster Gart gene encodes three enzymatic activities in the pathway for purine de novo synthesis. Alternative processing of the primary transcript leads to the synthesis of two overlapping polypeptides. The coding sequence for both polypeptides is interrupted by an intron that contains a functional cuticle protein gene encoded on the opposite DNA strand. Here we show that this nested organization also exists at the homologous locus of a distantly related species, Drosophila pseudoobscura. In both species, the intronic cuticle gene is expressed in wandering larvae and in prepupae. Remarkably, there are 24 different highly conserved noncoding segments within the intron containing the cuticle gene. These are found upstream of the transcriptional start, at the 3' end, and even within the single intronic gene intron. Other introns in the purine gene, including the intron at which alternative processing occurs, show no such homologies. It seems likely that at least some of the conserved noncoding regions are involved in specifying the high level developmental expression of the cuticle gene. We discuss the possibility that shared cis-acting regulatory sites might enhance transcription of both genes and help explain their nested arrangement. PMID:3123310

  3. A role for the Drosophila neurogenic genes in mesoderm differentiation.

    PubMed

    Corbin, V; Michelson, A M; Abmayr, S M; Neel, V; Alcamo, E; Maniatis, T; Young, M W

    1991-10-18

    The neurogenic genes of Drosophila have long been known to regulate cell fate decisions in the developing ectoderm. In this paper we show that these genes also control mesoderm development. Embryonic cells that express the muscle-specific gene nautilus are overproduced in each of seven neurogenic mutants (Notch, Delta, Enhancer of split, big brain, mastermind, neuralized, and almondex), at the apparent expense of neighboring, nonexpressing mesodermal cells. The mesodermal defect does not appear to be a simple consequence of associated neural hypertrophy, suggesting that the neurogenic genes may function similarly and independently in establishing cell fates in both ectoderm and mesoderm. Altered patterns of beta 3-tubulin and myosin heavy chain gene expression in the mutants indicate a role for the neurogenic genes in development of most visceral and somatic muscles. We propose that the signal produced by the neurogenic genes is a general one, effective in both ectoderm and mesoderm.

  4. Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...

  5. NELF Potentiates Gene Transcription in the Drosophila Embryo

    PubMed Central

    Wang, Xiaoling; Hang, Saiyu; Prazak, Lisa; Gergen, J. Peter

    2010-01-01

    A hallmark of genes that are subject to developmental regulation of transcriptional elongation is association of the negative elongation factor NELF with the paused RNA polymerase complex. Here we use a combination of biochemical and genetic experiments to investigate the in vivo function of NELF in the Drosophila embryo. NELF associates with different gene promoter regions in correlation with the association of RNA polymerase II (Pol II) and the initial activation of gene expression during the early stages of embryogenesis. Genetic experiments reveal that maternally provided NELF is required for the activation, rather than the repression of reporter genes that emulate the expression of key developmental control genes. Furthermore, the relative requirement for NELF is dictated by attributes of the flanking cis-regulatory information. We propose that NELF-associated paused Pol II complexes provide a platform for high fidelity integration of the combinatorial spatial and temporal information that is central to the regulation of gene expression during animal development. PMID:20634899

  6. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    PubMed Central

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  7. Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila

    PubMed Central

    Kandul, Nikolay P.; Zhang, Ting; Hay, Bruce A.; Guo, Ming

    2016-01-01

    Mitochondrial DNA (mtDNA) often exists in a state of heteroplasmy, in which mutant mtDNA co-exists in cells with wild-type mtDNA. High frequencies of pathogenic mtDNA result in maternally inherited diseases; maternally and somatically acquired mutations also accumulate over time and contribute to diseases of ageing. Reducing heteroplasmy is therefore a therapeutic goal and in vivo models in post-mitotic tissues are needed to facilitate these studies. Here we describe a transgene-based model of a heteroplasmic lethal mtDNA deletion (mtDNAΔ) in adult Drosophila muscle. Stimulation of autophagy, activation of the PINK1/parkin pathway or decreased levels of mitofusin result in a selective decrease in mtDNAΔ. Decreased levels of mitofusin and increased levels of ATPIF1, an inhibitor of ATP synthase reversal-dependent mitochondrial repolarization, result in a further decrease in mtDNAΔ levels. These results show that an adult post-mitotic tissue can be cleansed of a deleterious genome, suggesting that therapeutic removal of mutant mtDNA can be achieved. PMID:27841259

  8. A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease

    PubMed Central

    Celotto, Alicia M; Liu, Zhaohui; VanDemark, Andrew P; Palladino, Michael J

    2012-01-01

    Reactive oxygen species (ROS) play essential roles in cell signaling, survival, and homeostasis. Aberrant ROS lead to disease and contribute to the aging process. Numerous enzymes and vigilant antioxidant pathways are required to regulate ROS for normal cellular health. Mitochondria are a major source of ROS, and mechanisms to prevent elevated ROS during oxidative phosphorylation require super oxide dismutase (SOD) activity. SOD2, also known as MnSOD, is targeted to mitochondria and is instrumental in regulating ROS by conversion of superoxides to hydrogen peroxide, which is further broken down into H2O and oxygen. Here, we describe the identification of a novel mutation within the mitochondrial SOD2 enzyme in Drosophila that results in adults with an extremely shortened life span, sensitivity to hyperoxia, and neuropathology. Additional studies demonstrate that this novel mutant, SOD2bewildered, exhibits abnormal brain morphology, suggesting a critical role for this protein in neurodevelopment. We investigated the basis of this neurodevelopmental defect and discovered an increase in aberrant axonal that could underlie the aberrant neurodevelopment and brain morphology defects. This novel allele, SOD2bewildered, provides a unique opportunity to study the effects of increased mitochondrial ROS on neural development, axonal targeting, and neural cell degeneration in vivo. PMID:22950046

  9. Drosophila X-Linked Genes Have Lower Translation Rates than Autosomal Genes.

    PubMed

    Zhang, Zhenguo; Presgraves, Daven C

    2016-02-01

    In Drosophila, X-linked and autosomal genes achieve comparable expression at the mRNA level. Whether comparable X-autosome gene expression is realized at the translational and, ultimately, the protein levels is, however, unknown. Previous studies suggest the possibility of higher translation rates for X-linked genes owing to stronger usage of preferred codons. In this study, we use public ribosome profiling data from Drosophila melanogaster to infer translation rates on the X chromosome versus the autosomes. We find that X-linked genes have consistently lower ribosome densities than autosomal genes in S2 cells, early embryos, eggs, and mature oocytes. Surprisingly, the lower ribosome densities of X-linked genes are not consistent with faster translation elongation but instead imply slower translation initiation. In particular, X-linked genes have sequence features known to slow translation initiation such as stronger mRNA structure near start codons and longer 5'-UTRs. Comparison to outgroup species suggests that stronger mRNA structure is an evolved feature of Drosophila X chromosomes. Finally, we find that the magnitude of the X-autosome difference in ribosome densities is smaller for genes encoding members of protein complexes, suggesting that stoichiometry constrains the evolution of translation rates. In sum, our analyses suggest that Drosophila X-linked genes have evolved lower translation rates than autosomal genes despite stronger usage of preferred codons.

  10. Using FlyBase, a Database of Drosophila Genes & Genomes

    PubMed Central

    Marygold, Steven J.; Crosby, Madeline A.; Goodman, Joshua L.

    2016-01-01

    SUMMARY For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic and high-throughput technologies add to the quantity and diversity of available data and resources. FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback. This chapter provides an overview of the data content, organization and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries. PMID:27730573

  11. Analysis of mitochondrial respiratory-related genes reveals nuclear and mitochondrial genome cooperation in allotetraploid hybrid.

    PubMed

    Peng, L-Y; Wang, J; Tao, M; You, C-P; Ye, L; Xiao, J; Zhang, C; Liu, Y; Liu, S-J

    2014-01-01

    An allotetraploid hybrid lineage derived from the distant hybridization of red crucian carp (Carassius auratus red var., ♀, 2n =100) × common carp (Cyprinus carpio L., ♂, 2n =100) was investigated for its mitochondrial and nuclear genome inheritance patterns. Based on liver transcriptomic data for this hybrid, red crucian carp, and common carp, we identified 94, 136, and 86 contigs corresponding to 41, 46, and 37 mitochondrial respiratory chain nuclear genes, respectively. Mitochondrial respiratory chain nuclear gene sequences from red crucian carp and common carp were both detected in the allotetraploid hybrid, indicating that both parental nuclear genomes were participated in the synthesis of mitochondrial respiratory protein complexes in the hybrid. For mitochondrial respiratory related genes, high sequence similarity (>90%) and a low nucleotide divergence rate (<0.2) between red crucian carp and common carp could be a critical factor allowing cooperation of the three genomes (red crucian carp mitochondrial genome, red crucian and common carp nuclear genomes) in the allotetraploid hybrid lineage. Interestingly, gene duplication events were identified in the allotetraploid hybrid, red crucian and common carp, as confirmed by analysis of orthologous gene trees for these fish. Our findings provide valuable information with which to study cooperation between the nuclear and mitochondrial genomes of other hybrids, and will provide basic genetic information of relevance to mitochondrial-related diseases in humans and animals.

  12. Competition between Mitochondrial Haplotypes in Distinct Nuclear Genetic Environments: Drosophila Pseudoobscura Vs. D. Persimilis

    PubMed Central

    Hutter, C. M.; Rand, D. M.

    1995-01-01

    A test for coadaptation of nuclear and mitochondrial genomes was performed using the sibling species, Drosophila pseudoobscura and D. persimilis. Two lines of flies with ``disrupted'' cytonuclear genotypes were constructed by repeated backcrossing of males from one species to females carrying mitochondrial DNA (mtDNA) from the other species. Each ``disrupted'' strain was competed in population cages with the original stock of each species from which the recurrent males were obtained during the backcrossing. As such, the two species' mitochondrial types were competed reciprocally in the nuclear genetic environments of each species. The trajectories of mtDNA haplotypes were followed in discrete-generation population cages using a PCR-four-cutter approach. A significant increase in the frequency of D. pseudoobscura mtDNA was observed in each of four replicate cages with a D. pseudoobscura nuclear background. In the D. persimilis nuclear background, one cage actually showed an increase in frequency of D. pseudoobscura mtDNA, although together the four replicate cages show little change in frequency. These results were repeated after frequency perturbations and reinitiation of each cage. An analysis of fitness components revealed that fertility selection greatly outweighed viability selection in these cytonuclear competition experiments. The asymmetry of the fitnesses of the mtDNA haplotypes on the two genetic backgrounds is consistent in direction with the previously reported asymmetry of female fertility in backcrosses between these two species. While our experiments do not allow us to identify mtDNA as the sole source of fitness variation, at a minimum the data indicate a fitness association between nuclear fertility factors and the D. pseudoobscura mtDNA on its own genetic background. PMID:7498735

  13. Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction.

    PubMed

    Hosamani, Ravikumar

    2013-05-01

    Paraquat (PQ; 1, 1'-dimethyl-4-4'-bipyridinium), an herbicide and model neurotoxicant, is identified to be one of the prime risk factors in Parkinson's disease (PD). In the Drosophila system, PQ is commonly used to measure acquired resistance against oxidative stress (PQ resistance test). Despite this, under acute PQ exposure, data on the oxidative stress response and associated impact on mitochondria among flies is limited. Accordingly, in this study, we measured markers of oxidative stress and mitochondrial dysfunctions among adult male flies (8-10 days old) exposed to varying concentrations of PQ (10, 20, and 40 mM in 5% sucrose solution) employing a conventional filter disc method for 24 h. PQ exposure resulted in significant elevation in the levels of oxidative stress biomarkers (malondialdehyde: 43% increase: hydroperoxide: 32-39% increase), with concomitant enhancement in reduced glutathione and total thiol levels in cytosol. Higher activity of antioxidant enzymes were also evident along with increased free iron levels. Furthermore, PQ exposure caused a concentration-dependent increase in mitochondrial superoxide generation and activity of manganese-superoxide dismutase (Mn-SOD). The activity levels of complex I-III, complex II-III, and Mg+2 adinosine triphosphatase (ATPase) were also decreased significantly. A robust diminution in the activity of succinate dehydrogenase and moderate decline in the citrate synthase activity suggested a specific effect on citric acid cycle enzymes. Collectively, these data suggest that acute PQ exposure causes significant oxidative stress and mitochondrial dysfunction among flies in vivo. It is suggested that in various experimental settings, while conducting the "PQ resistance stress test" incorporation of selected biochemical end points is likely to enhance the quality of the data.

  14. A Mitochondrial ATP synthase Subunit Interacts with TOR Signaling to Modulate Protein Homeostasis and Lifespan in Drosophila

    PubMed Central

    Sun, Xiaoping; Wheeler, Charles T.; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige

    2014-01-01

    SUMMARY Diet composition is a critical determinant of lifespan and nutrient imbalance is detrimental health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets, but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress, transcriptional changes in metabolism, proteostasis and immune genes, reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and MAPK signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. PMID:25220459

  15. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults

    PubMed Central

    Barry, William E; Thummel, Carl S

    2016-01-01

    Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal. DOI: http://dx.doi.org/10.7554/eLife.11183.001 PMID:27185732

  16. The rearranged mitochondrial genome of Leptopilina boulardi (Hymenoptera: Figitidae), a parasitoid wasp of Drosophila

    PubMed Central

    Oliveira, Daniel S.; Gomes, Tiago M.F.F.; Loreto, Elgion L.S.

    2016-01-01

    Abstract The partial mitochondrial genome sequence of Leptopilina boulardi (Hymenoptera: Figitidae) was characterized. Illumina sequencing was used yielding 35,999,679 reads, from which 102,482 were utilized in the assembly. The length of the sequenced region of this partial mitochondrial genome is 15,417 bp, consisting of 13 protein-coding, two rRNA, and 21tRNA genes (the trnaM failed to be sequenced) and a partial A+T-rich region. All protein-coding genes start with ATN codons. Eleven protein-coding genes presented TAA stop codons, whereas ND6 and COII that presented TA, and T nucleotides, respectively. The gene pattern revealed extensive rearrangements compared to the typical pattern generally observed in insects. These rearrangements involve two protein-coding and two ribosomal genes, along with the 16 tRNA genes. This gene order is different from the pattern described for Ibalia leucospoides (Ibaliidae, Cynipoidea), suggesting that this particular gene order can be variable among Cynipoidea superfamily members. A maximum likelihood phylogenetic analysis of the main groups of Apocrita was performed using amino acid sequence of 13 protein-coding genes, showing monophyly for the Cynipoidea superfamily within the Hymenoptera phylogeny. PMID:27648767

  17. Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies.

    PubMed

    Lunetti, Paola; Cappello, Anna Rita; Marsano, René Massimiliano; Pierri, Ciro Leonardo; Carrisi, Chiara; Martello, Emanuela; Caggese, Corrado; Dolce, Vincenza; Capobianco, Loredana

    2013-10-01

    The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.

  18. BMP-dependent gene repression cascade in Drosophila eggshell patterning

    PubMed Central

    Charbonnier, Enrica; Fuchs, Alisa; Cheung, Lily S.; Chayengia, Mrinal; Veikkolainen, Ville; Seyfferth, Janine; Shvartsman, Stanislav Y.; Pyrowolakis, George

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation. PMID:25704512

  19. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    SciTech Connect

    Prud`homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A.

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.

  20. Genes for host-plant selection in Drosophila.

    PubMed

    Matsuo, Takashi

    2008-01-01

    Interactions between herbivorous insects and their host plants are rich in diversity. How such interactions evolved has been a central issue in ecology. A series of analyses on an example of host-plant adaptation in a Drosophila species suggest that neurogenetics can be a powerful tool for understanding how insects' ability to select a specific host plant has evolved. Drosophila sechellia is a specialist species that exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic to other Drosophila species, including D. melanogaster and D. simulans, which are phylogenetically close to D. sechellia. Genetic analyses have revealed that multiple loci are involved in the physiological and behavioral adaptations of D. sechellia to the Morinda fruit. The behavioral adaptation includes the loss of avoidance of the host toxin and the enhanced sensitivity to the host odor. Two odorant-binding protein genes, Obp57d and Obp57e, are involved in the perception of the host toxin. D. sechellia has lost several putative bitter-taste receptor genes, which might also be involved in the loss of avoidance of the host toxin. The available genetic data support an evolutionary scenario, in which the shift in the host-plant selection was not achieved by the acquisition of novel abilities, but by the loss of already existing abilities. It is also suggested that the size of chemosensory gene families has a potential to be an index of complexity in insect-environment interaction, providing an opportunity to reexamine the longstanding "specialization as an evolutionary dead end" hypothesis.

  1. Two rapidly evolving genes contribute to male fitness in Drosophila

    PubMed Central

    Reinhardt, Josephine A; Jones, Corbin D

    2013-01-01

    Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323 – herein named jean-baptiste (jb) and karr respectively – does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function. PMID:24221639

  2. Drosophila cyclin D/Cdk4 regulates mitochondrial biogenesis and aging and sensitizes animals to hypoxic stress

    PubMed Central

    Icreverzi, Amalia; Flor de la Cruz, Aida; Van Voorhies, Wayne A

    2012-01-01

    Drosophila cyclin D (CycD) is the single fly ortholog of the mammalian cyclin D1 and promotes both cell cycle progression and cellular growth. However, little is known about how CycD promotes cell growth. We show here that CycD/Cdk4 hyperactivity leads to increased mitochondrial biogenesis (mitobiogenesis), mitochondrial mass, NRF-1 activity (Tfam transcript levels) and metabolic activity in Drosophila, whereas loss of CycD/Cdk4 activity has the opposite effects. Surprisingly, both CycD/Cdk4 addition and loss of function increase mitochondrial superoxide production and decrease lifespan, indicating that an imbalance in mitobiogenesis may lead to oxidative stress and aging. In addition, we provide multiple lines of evidence indicating that CycD/Cdk4 activity affects the hypoxic status of cells and sensitizes animals to hypoxia. Both mitochondrial and hypoxia-related effects can be detected at global transcriptional level. We propose that mitobiogenesis and the hypoxic stress response have an antagonistic relationship, and that CycD/Cdk4 levels regulate mitobiogenesis contemporaneous to the cell cycle, such that only when cells are sufficiently oxygenated can they proliferate. PMID:22293404

  3. Functional conservation of the Drosophila hybrid incompatibility gene Lhr

    PubMed Central

    2011-01-01

    Background Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. Results Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. Conclusions We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin. PMID:21366928

  4. Variable Rates of Evolution among Drosophila Opsin Genes

    PubMed Central

    Carulli, J. P.; Hartl, D. L.

    1992-01-01

    DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 to more than 95% for Rh1 and Rh4. Variation in the rate of synonymous site substitution is especially striking: the major opsin, encoded by the Rh1 locus, differs at only 26.1% of synonymous sites between D. pseudoobscura and D. melanogaster, while the other opsin loci differ by as much as 39.2% at synonymous sites. Rh3 and Rh4 have similar levels of synonymous nucleotide substitution but significantly different amounts of amino acid replacement. This decoupling of nucleotide substitution and amino acid replacement suggests that different selective pressures are acting on these similar genes. There is significant heterogeneity in base composition and codon usage bias among the opsin genes in both species, but there are no consistent relationships between these factors and the rate of evolution of the opsins. In addition to exhibiting variation in evolutionary rates, the opsin loci in these species reveal rearrangements of chromosome elements. PMID:1398053

  5. Regulation of mitochondrial gene expression, the epigenetic enigma.

    PubMed

    Mposhi, Archibold; Van der Wijst, Monique Gp; Faber, Klaas Nico; Rots, Marianne G

    2017-03-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether mitochondrial DNA (mtDNA) undergoes similar epigenetic changes to regulate mitochondrial gene expression. Recently, it has been shown that mtDNA is differentially methylated in various diseases such as diabetes and colorectal cancer. Interestingly, this differential methylation was often associated with altered mitochondrial gene expression. However, the direct role of mtDNA methylation on gene expression remains elusive. Alternatively, the activity of the mitochondrial transcription factor A (TFAM), a protein involved in mtDNA packaging, might also influence gene expression. This review discusses the role of mtDNA methylation and potential epigenetic-like modifications of TFAM with respect to mtDNA transcription and replication. We suggest three mechanisms: (1) methylation within the non-coding D-loop, (2) methylation at gene start sites (GSS) and (3) post-translational modifications (PTMs) of TFAM. Unraveling mitochondrial gene expression regulation could open new therapeutic avenues for mitochondrial diseases.

  6. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  7. A proteomic screen with Drosophila Opa1-like identifies Hsc70-5/Mortalin as a regulator of mitochondrial morphology and cellular homeostasis.

    PubMed

    Banerjee, Shamik; Chinthapalli, Balaji

    2014-09-01

    Mitochondrial morphology is regulated by conserved proteins involved in fusion and fission processes. The mammalian Optic atrophy 1 (OPA1) that functions in mitochondrial fusion is associated with Optic Atrophy and has been implicated in inner membrane cristae remodeling during cell death. Here, we show Drosophila Optic atrophy 1-like (Opa1-like) influences mitochondrial morphology through interaction with 'mitochondria-shaping' proteins like Mitochondrial assembly regulatory factor (Marf) and Drosophila Mitofilin (dMitofilin). To gain an insight into Opa1-like's network, we delineated bonafide interactors like dMitofilin, Marf, Serine protease High temperature requirement protein A2 (HTRA2), Rhomboid-7 (Rho-7) along with novel interactors such as Mortalin ortholog (Hsc70-5) from Drosophila mitochondrial extract. Interestingly, RNAi mediated down-regulation of hsc70-5 in Drosophila wing imaginal disc's peripodial cells resulted in fragmented mitochondria with reduced membrane potential leading to proteolysis of Opa1-like. Increased ecdysone activity induced dysfunctional fragmented mitochondria for clearance through lysosomes, an effect enhanced in hsc70-5 RNAi leading to increased cell death. Over-expression of Opa1-like rescues mitochondrial morphology and cell death in prepupal tissues expressing hsc70-5 RNAi. Taken together, we have identified a novel interaction between Hsc70-5/Mortalin and Opa1-like that influences cellular homeostasis through mitochondrial fusion.

  8. An autoregulatory enhancer element of the Drosophila homeotic gene Deformed.

    PubMed

    Bergson, C; McGinnis, W

    1990-12-01

    The stable determination of different anterior-posterior regions of the Drosophila embryo is controlled by the persistent expression of homeotic selector genes. One mechanism that has been proposed to explain the persistent expression of the homeotic gene Deformed is an autoactivation circuit that would be used once Deformed expression had been established by earlier acting patterning genes. Here we show that a large cis-regulatory element mapping approximately 5 kb upstream of the Deformed transcription start has the properties predicted for a Deformed autoregulatory enhancer. This element provides late, spatially localized expression in the epidermal cells of the maxillary and mandibular segments which is wholly dependent upon endogenous Deformed function. In addition, the autoregulatory enhancer can be activated ectopically in embryos and in imaginal disc cells by ectopic expression of Deformed protein. Deletion analysis of the autoregulatory element indicates that it contains compartment specific sub-elements similar to those of other homeotic loci.

  9. The Question of the Total Gene Number in DROSOPHILA MELANOGASTER

    PubMed Central

    Lefevre, George; Watkins, William

    1986-01-01

    A statistical analysis has been carried out on the distribution and allelism of nearly 500 sex-linked, X-ray-induced, cytologically normal and rearranged lethal mutations in Drosophila melanogaster that were obtained by G. Lefevre. The mutations were induced in four different regions of the X chromosome: (1) 1A1-3E8, (2) 6D1-8A5, (3) 9E1-11A7 and (4) 19A1-20F4, which together comprise more than one-third of the entire chromosome.—The analysis shows that the number of alleles found at different loci does not fit a Poisson distribution, even when the proper procedures are taken to accomodate the truncated nature of the data. However, the allele distribution fits a truncated negative binomial distribution quite well, with cytologically normal mutations fitting better than rearrangement mutations. This indicates that genes are not equimutable, as required for the data to fit a Poisson distribution.—Using the negative binomial parameters to estimate the number of genes that did not produce a detectable lethal mutation in our experiment (n0) gave a larger number than that derived from the use of the Poisson parameter. Unfortunately, we cannot estimate the total numbers of nonvital loci, loci with undetectable phenotypes and loci having extremely low mutabilities. In any event, our estimate of the total vital gene number was far short of the total number of bands in the analyzed regions; yet, in several short intervals, we have found more vital genes than bands; in other intervals, fewer. We conclude that the one-band, one-gene hypothesis, in its literal sense, is not true; furthermore, it is difficult to support, even approximately.—The question of the total gene number in Drosophila will, not doubt, eventually be solved by molecular analyses, not by statistical analysis of mutation data or saturation studies. PMID:3091446

  10. Question of the total gene number in Drosophila melanogaster

    SciTech Connect

    Lefevre, G.; Watkins, W.

    1986-08-01

    A statistical analysis has been carried out on the distribution and allelism of nearly 500 sex-linked, X-ray-induced, cytologically normal and rearranged lethal mutations in Drosophila melanogaster that were obtained by G. Lefevre. The mutations were induced in four different regions of the X chromosome: (1) 1A1-3E8, (2) 6D1-8A5, (3) 9E1-11A7 and (4) 19A1-20F4, which together comprise more than one-third of the entire chromosome.--The analysis shows that the number of alleles found at different loci does not fit a Poisson distribution, even when the proper procedures are taken to accommodate the truncated nature of the data. However, the allele distribution fits a truncated negative binomial distribution quite well, with cytologically normal mutations fitting better than rearrangement mutations. This indicates that genes are not equimutable, as required for the data to fit a Poisson distribution.--Using the negative binomial parameters to estimate the number of genes that did not produce a detectable lethal mutation in our experiment (n0) gave a larger number than that derived from the use of the Poisson parameter. Unfortunately, we cannot estimate the total numbers of nonvital loci, loci with undetectable phenotypes and loci having extremely low mutabilities. In any event, our estimate of the total vital gene number was far short of the total number of bands in the analyzed regions; yet, in several short intervals, we have found more vital genes than bands; in other intervals, fewer. We conclude that the one-band, one-gene hypothesis, in its literal sense, is not true; furthermore, it is difficult to support, even approximately.--The question of the total gene number in Drosophila will, not doubt, eventually be solved by molecular analyses, not by statistical analysis of mutation data or saturation studies.

  11. Nuclear and mitochondrial genes for inferring Trichuris phylogeny.

    PubMed

    Callejón, Rocío; Cutillas, Cristina; Nadler, Steven A

    2015-12-01

    Nucleotide sequences of the triose phosphate isomerase (TPI) gene (624 bp) and mitochondrial cytochrome b (cob) gene (520 bp) were obtained by PCR and evaluated for utility in inferring the phylogenetic relationships among Trichuris species. Published sequences of one other nuclear gene (18S or SSU rRNA, 1816-1846 bp) and one additional mitochondrial (mtDNA) gene (cytochrome oxidase 1, cox1, 342 bp) were also analyzed. Maximum likelihood and Bayesian inference methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data (two genes), the combined nuclear data (two genes), and the total evidence (four gene) dataset. Few Trichuris clades were uniformly resolved across separate analyses of individual genes. For the mtDNA, the cob gene trees had greater phylogenetic resolution and tended to have higher support values than the cox1 analyses. For nuclear genes, the SSU gene trees had slightly greater resolution and support values than the TPI analyses, but TPI was the only gene with reliable support for the deepest nodes in the tree. Combined analyses of genes yielded strongly supported clades in most cases, with the exception of the relationship among Trichuris clades 1, 2, and 3, which showed conflicting results between nuclear and mitochondrial genes. Both the TPI and cob genes proved valuable for inferring Trichuris relationships, with greatest resolution and support values achieved through combined analysis of multiple genes. Based on the phylogeny of the combined analysis of nuclear and mitochondrial genes, parsimony mapping of definitive host utilization depicts artiodactyls as the ancestral hosts for these Trichuris, with host-shifts into primates, rodents, and Carnivora.

  12. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  13. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  14. Population and sex differences in Drosophila melanogaster brain gene expression

    PubMed Central

    2012-01-01

    Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues. PMID:23170910

  15. Genes and circuits of courtship behaviour in Drosophila males.

    PubMed

    Yamamoto, Daisuke; Koganezawa, Masayuki

    2013-10-01

    In Drosophila melanogaster, the causal links among a complex behaviour, single neurons and single genes can be demonstrated through experimental manipulations. A key player in establishing the male courtship circuitry is the fruitless (fru) gene, the expression of which yields the FruM proteins in a subset of male but not female neurons. FruM probably regulates chromatin states, leading to single-neuron sex differences and, consequently, a sexually dimorphic circuitry. The mutual connections among fru-expressing neurons--including primary sensory afferents, central interneurons such as the P1 neuron cluster that triggers courtship, and courtship motor pattern generators--probably form the core portion of the male courtship circuitry.

  16. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  17. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  18. Using Drosophila melanogaster to identify chemotherapy toxicity genes.

    PubMed

    King, Elizabeth G; Kislukhin, Galina; Walters, Kelli N; Long, Anthony D

    2014-09-01

    The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DNA variants predictive of toxicity. We use the Drosophila Synthetic Population Resource (DSPR), a panel of recombinant inbred lines derived from a multiparent advanced intercross, to map quantitative trait loci affecting chemotoxicity. We identify two QTL each for carboplatin and gemcitabine toxicity and none for mitomycin. One QTL is associated with fly orthologs of a priori human carboplatin candidate genes ABCC2 and MSH2, and a second QTL is associated with fly orthologs of human gemcitabine candidate genes RRM2 and RRM2B. The third, a carboplatin QTL, is associated with a posteriori human orthologs from solute carrier family 7A, INPP4A&B, and NALCN. The fourth, a gemcitabine QTL that also affects methotrexate toxicity, is associated with human ortholog GPx4. Mapped QTL each explain a significant fraction of variation in toxicity, yet individual SNPs and transposable elements in the candidate gene regions fail to singly explain QTL peaks. Furthermore, estimates of founder haplotype effects are consistent with genes harboring several segregating functional alleles. We find little evidence for nonsynonymous SNPs explaining mapped QTL; thus it seems likely that standing variation in toxicity is due to regulatory alleles.

  19. Microenvironmental Gene Expression Plasticity Among Individual Drosophila melanogaster

    PubMed Central

    Lin, Yanzhu; Chen, Zhen-Xia; Oliver, Brian; Harbison, Susan T.

    2016-01-01

    Differences in phenotype among genetically identical individuals exposed to the same environmental condition are often noted in genetic studies. Despite this commonplace observation, little is known about the causes of this variability, which has been termed microenvironmental plasticity. One possibility is that stochastic or technical sources of variance produce these differences. A second possibility is that this variation has a genetic component. We have explored gene expression robustness in the transcriptomes of 730 individual Drosophila melanogaster of 16 fixed genotypes, nine of which are infected with Wolbachia. Three replicates of flies were grown, controlling for food, day/night cycles, humidity, temperature, sex, mating status, social exposure, and circadian timing of RNA extraction. Despite the use of inbred genotypes, and carefully controlled experimental conditions, thousands of genes were differentially expressed, revealing a unique and dynamic transcriptional signature for each individual fly. We found that 23% of the transcriptome was differentially expressed among individuals, and that the variability in gene expression among individuals is influenced by genotype. This transcriptional variation originated from specific gene pathways, suggesting a plastic response to the microenvironment; but there was also evidence of gene expression differences due to stochastic fluctuations. These observations reveal previously unappreciated genetic sources of variability in gene expression among individuals, which has implications for complex trait genetics and precision medicine. PMID:27770026

  20. Evolution of the Drosophila Feminizing Switch Gene Sex-lethal

    PubMed Central

    Cline, Thomas W.; Dorsett, Maia; Sun, Sha; Harrison, Melissa M.; Dines, Jessica; Sefton, Louise; Megna, Lisa

    2010-01-01

    In Drosophila melanogaster, the gene Sex-lethal (Sxl) controls all aspects of female development. Since melanogaster males lacking Sxl appear wild type, Sxl would seem to be functionally female specific. Nevertheless, in insects as diverse as honeybees and houseflies, Sxl seems not to determine sex or to be functionally female specific. Here we describe three lines of work that address the questions of how, when, and even whether the ancestor of melanogaster Sxl ever shed its non-female-specific functions. First, to test the hypothesis that the birth of Sxl's closest paralog allowed Sxl to lose essential ancestral non-female-specific functions, we determined the CG3056 null phenotype. That phenotype failed to support this hypothesis. Second, to define when Sxl might have lost ancestral non-female-specific functions, we isolated and characterized Sxl mutations in D. virilis, a species distant from melanogaster and notable for the large amount of Sxl protein expression in males. We found no change in Sxl regulation or functioning in the 40+ MY since these two species diverged. Finally, we discovered conserved non-sex-specific Sxl mRNAs containing a previously unknown, potentially translation-initiating exon, and we identified a conserved open reading frame starting in Sxl male-specific exon 3. We conclude that Drosophila Sxl may appear functionally female specific not because it lost non-female-specific functions, but because those functions are nonessential in the laboratory. The potential evolutionary relevance of these nonessential functions is discussed. PMID:20837995

  1. Functional dissection of Odorant binding protein genes in Drosophila melanogaster

    PubMed Central

    Swarup, S; Williams, T I; Anholt, R R H

    2011-01-01

    Most organisms rely on olfaction for survival and reproduction. The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems and serves as a prototype for understanding insect olfaction. Olfaction in Drosophila is mediated by multigene families of odorant receptors and odorant binding proteins (OBPs). Although molecular response profiles of odorant receptors have been well documented, the contributions of OBPs to olfactory behavior remain largely unknown. Here, we used RNAi-mediated suppression of Obp gene expression and measurements of behavioral responses to 16 ecologically relevant odorants to systematically dissect the functions of 17 OBPs. We quantified the effectiveness of RNAi-mediated suppression by quantitative real-time polymerase chain reaction and used a proteomic liquid chromatography and tandem mass spectrometry procedure to show target-specific suppression of OBPs expressed in the antennae. Flies in which expression of a specific OBP is suppressed often show altered behavioral responses to more than one, but not all, odorants, in a sex-dependent manner. Similarly, responses to a specific odorant are frequently affected by suppression of expression of multiple, but not all, OBPs. These results show that OBPs are essential for mediating olfactory behavioral responses and suggest that OBP-dependent odorant recognition is combinatorial. PMID:21605338

  2. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model.

    PubMed

    Keeney, Paula M; Quigley, Caitlin K; Dunham, Lisa D; Papageorge, Christina M; Iyer, Shilpa; Thomas, Ravindar R; Schwarz, Kathleen M; Trimmer, Patricia A; Khan, Shaharyar M; Portell, Francisco R; Bergquist, Kristen E; Bennett, James P

    2009-08-01

    Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology ("ProtoFection") that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-terminal protein transduction domain (PTD) followed by the SOD2 mitochondrial localization signal (MLS) to deliver mtDNA cargo to the mitochondria of living cells. MTD-TFAM (MTD = PTD + MLS = "mitochondrial transduction domain") binds mtDNA and rapidly transports it across plasma membranes to mitochondria. For therapeutic proof-of-principle we tested ProtoFection technology in Parkinson's disease cybrid cells, using mtDNA generated from commercially available human genomic DNA (gDNA; Roche). Nine to 11 weeks after single exposures to MTD-TFAM + mtDNA complex, PD cybrid cells with impaired respiration and reduced mtDNA genes increased their mtDNA gene copy numbers up to 24-fold, mtDNA-derived RNAs up to 35-fold, TFAM and ETC proteins, cell respiration, and mitochondrial movement velocities. Cybrid cells with no or minimal basal mitochondrial impairments showed reduced or no responses to treatment, suggesting the possibility of therapeutic selectivity. Exposure of PD but not control cybrid cells to MTD-TFAM protein alone or MTD-TFAM + mtDNA complex increased expression of PGC-1alpha, suggesting activation of mitochondrial biogenesis. ProtoFection technology for mitochondrial gene therapy holds promise for improving bioenergetic function in impaired PD neurons and needs additional development to define its pharmacodynamics and delineate its molecular mechanisms. It also is unclear whether single-donor gDNA for generating mtDNA would be a preferred therapeutic compared with the pooled

  3. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-02

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.

  4. Mitochondrial genes are altered in blood early in Alzheimer's disease.

    PubMed

    Lunnon, Katie; Keohane, Aoife; Pidsley, Ruth; Newhouse, Stephen; Riddoch-Contreras, Joanna; Thubron, Elisabeth B; Devall, Matthew; Soininen, Hikka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Schalkwyk, Leonard; Dobson, Richard; Malik, Afshan N; Powell, John; Lovestone, Simon; Hodges, Angela

    2017-01-07

    Although mitochondrial dysfunction is a consistent feature of Alzheimer's disease in the brain and blood, the molecular mechanisms behind these phenomena are unknown. Here we have replicated our previous findings demonstrating reduced expression of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and subunits required for the translation of mitochondrial-encoded OXPHOS genes in blood from people with Alzheimer's disease and mild cognitive impairment. Interestingly this was accompanied by increased expression of some mitochondrial-encoded OXPHOS genes, namely those residing closest to the transcription start site of the polycistronic heavy chain mitochondrial transcript (MT-ND1, MT-ND2, MT-ATP6, MT-CO1, MT-CO2, MT-C03) and MT-ND6 transcribed from the light chain. Further we show that mitochondrial DNA copy number was unchanged suggesting no change in steady-state numbers of mitochondria. We suggest that an imbalance in nuclear and mitochondrial genome-encoded OXPHOS transcripts may drive a negative feedback loop reducing mitochondrial translation and compromising OXPHOS efficiency, which is likely to generate damaging reactive oxygen species.

  5. The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis.

    PubMed

    Bhat, K M

    1999-04-01

    In a variety of tissues in eukaryotes, multipotential stem cells are responsible for maintaining a germinal population and generating a differentiated progeny. The Drosophila germline is one such tissue where a continuous supply of eggs or sperm relies on the normal functioning of stem cells. Recent studies have implicated a possible role for the posterior determinant gene nanos (nos) in stem cells. Here, I report that nanos is required in the Drosophila female germline as well as in the male germline. In the female, nos is required for the functioning of stem cells. In nos mutants, while the stem cells are specified, these cells divide only a few times at the most and then degenerate. The loss of germline stem cells in nos mutant mothers appears to be due to a progressive degeneration of the plasma membrane. Furthermore, following germ cell loss, the germaria in the nos mutant mothers appear to carry on massive mitochondrial biogenesis activity. Thus, the syncytia of such germaria are filled with mitochondria. In the male germline, the male fertility assay indicates that nos appears to be also required for the maintenance of stem cells. In these mutant males, spermatogenesis is progressively affected and these males eventually become sterile. These results indicate novel requirements for nos in the Drosophila germline.

  6. Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor

    SciTech Connect

    Lossky, M.; Wensink, P.C.

    1995-12-01

    This report investigates the expression of the genes for yolk protein of Drosophila melanogaster and the tissue specific function of the regulatory element which activates transcription in vivo. 70 refs., 8 figs.

  7. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila.

    PubMed

    Zhu, Jun-Yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-20

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors.

  8. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    PubMed

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  9. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart

    PubMed Central

    Barton, Gregory P.; Sepe, Joseph J.; McKiernan, Susan H.; Aiken, Judd M.; Diffee, Gary M.

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  10. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron.

    PubMed

    Zhang, Li; Kang, Han; Jin, Shan; Zeng, Qing Tao; Yang, Yong

    2016-06-01

    In Drosophila, heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense response against fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologous Hsp27 nucleotide sequences from different Drosophila species were amplified by PCR and reverse transcription PCR, and the phylogenetic relationships were analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from analysis with different algorithms were similar, suggesting that the Hsp27 gene was split by a recently acquired intron during the evolution of the Drosophila ananassae subgroup.

  11. Molecular and developmental characterization of the heat shock cognate 4 gene of Drosophila melanogaster.

    PubMed Central

    Perkins, L A; Doctor, J S; Zhang, K; Stinson, L; Perrimon, N; Craig, E A

    1990-01-01

    The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape. Images PMID:2111451

  12. Inferring Kangaroo Phylogeny from Incongruent Nuclear and Mitochondrial Genes

    PubMed Central

    Phillips, Matthew J.; Haouchar, Dalal; Pratt, Renae C.; Gibb, Gillian C.; Bunce, Michael

    2013-01-01

    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression. PMID:23451266

  13. Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes.

    PubMed

    Phillips, Matthew J; Haouchar, Dalal; Pratt, Renae C; Gibb, Gillian C; Bunce, Michael

    2013-01-01

    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.

  14. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes.

    PubMed

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-04-25

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.

  15. Systematically fragmented genes in a multipartite mitochondrial genome

    PubMed Central

    Vlcek, Cestmir; Marande, William; Teijeiro, Shona; Lukeš, Julius; Burger, Gertraud

    2011-01-01

    Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema. PMID:20935050

  16. Comparison of homeobox-containing genes of the honeybee and Drosophila.

    PubMed Central

    Walldorf, U; Fleig, R; Gehring, W J

    1989-01-01

    We report the isolation of seven homeobox-containing genes from the honeybee (Apis mellifera). Sequence analysis of all homeoboxes and some flanking sequences showed that six of seven genes are more than 90% identical to their corresponding Drosophila homologues within the homeobox and, with one exception, also in the flanking sequences. The homologues that were identified include three homeotic selector genes [Sex combs reduced (Scr), Antennapedia (Antp), and abdominal-A (abd-A); the two engrailed (en) genes; and the muscle segment homeobox (msh)]. Surprisingly, no homologue of the segmentation gene fushi tarazu was found in the honeybee. For the remaining bee gene, a Drosophila homologue is not known. This indicates that, with some exceptions, structurally homologous genes are involved in the control of bee and Drosophila development, although Hymenoptera differ significantly in their embryogenesis from Diptera and have evolved separately for some 250 million years. Images PMID:2574865

  17. Identification of methylmercury tolerance gene candidates in Drosophila.

    PubMed

    Mahapatra, Cecon T; Bond, Jeffrey; Rand, David M; Rand, Matthew D

    2010-07-01

    Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/-selection and +/-MeHg) identified a "down-down-up" expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway-regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms.

  18. Cloning and Characterization of the Scarlet Gene of Drosophila Melanogaster

    PubMed Central

    Tearle, R. G.; Belote, J. M.; McKeown, M.; Baker, B. S.; Howells, A. J.

    1989-01-01

    DNA from the scarlet (st) region of Drosophila melanogaster has been cloned by chromosome walking, using the breakpoints of a new X-ray-induced third chromosome inversion (In(3LR)st-a27) which breaks in the scarlet (73A3.4) and rosy (87D13-14) regions. Two spontaneous mutants of st(st(1) and st(sp)) contain insertions of non-st DNA located within 3.0 kb of the site of the inversion breakpoint used to isolate the gene, and a second scarlet inversion breaks within 6.5 kb of this site. However no changes detectable by Southern blotting were found in 5 X-ray-induced st mutants with cytologically normal third chromosomes. A 2.3-kb transcript arising from the st gene region (as defined by mutant analysis and DNA transformation) has been detected. This transcript is present throughout development at low levels, with a peak level during the early to mid-pupal stage. The size and amount of this transcript is altered in st(1), and its amount is drastically reduced in st(sp). Flies carrying the white(1) mutation show normal levels of expression of the st transcript, suggesting that the w(+) gene does not regulate transcription of the st(+) gene. Nucleotide homology between sequences from the st transcription unit and a fragment carrying coding information from the white gene has been detected. This suggests that the st and w proteins are related; they appear to belong to a family of membrane-spanning, ATP-binding proteins involved in the transport of pigment precursors into cells. PMID:2503416

  19. Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms

    PubMed Central

    Yamamoto, Shinya; Seto, Elaine S.

    2014-01-01

    Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans. PMID:24770636

  20. Nucleotide Sequence and Gene Organization of the Starfish Asterina Pectinifera Mitochondrial Genome

    PubMed Central

    Asakawa, S.; Himeno, H.; Miura, K. I.; Watanabe, K.

    1995-01-01

    The 16,260-bp mitochondrial DNA (mtDNA) from the starfish Asterina pectinifera has been sequenced. The genes for 13 proteins, two rRNAs and 22 tRNAs are organized in an extremely economical fashion, similar to those of other animal mtDNAs, with some of the genes overlapping each other. The gene organization is the same as that for another echinoderm, sea urchin, except for the inversion of a 4.6-kb segment that contains genes for two proteins, 13 tRNAs and the 16S rRNA. Judging from the organization of the protein coding genes, mammalian mtDNAs resemble the sea urchin mtDNA more than that of the starfish. The region around the 3' end of the 12S rRNA gene of the starfish shows a high similarity with those for vertebrates. This region encodes a possible stem and loop structure; similar potential structures occur in this region of vertebrate mtDNAs and also in nonmitochondrial small subunit rRNA. A similar stem and loop structure is also found at the 3' end of the 16S rRNA genes in A. pectinifera, in another starfish Pisaster ochraceus, in vertebrates and in Drosophila, but not in sea urchins. The full sequence data confirm the presumption that AGA/AGG, AUA and AAA codons, respectively, code for serine, isoleucine, and asparagine in the starfish mitochondria, and that AGA/AGG codons are read by tRNA(GCU)(Ser), which possesses a truncated dihydrouridine arm, that was previously suggested from a partial mtDNA sequence. The structural characteristics of tRNAs and possible mechanisms for the change in the mitochondrial genetic code are also discussed. PMID:7672576

  1. Genetic analysis of the Drosophila Gs(alpha) gene.

    PubMed

    Wolfgang, W J; Hoskote, A; Roberts, I J; Jackson, S; Forte, M

    2001-07-01

    One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells.

  2. The pebble gene is required for cytokinesis in Drosophila.

    PubMed

    Lehner, C F

    1992-12-01

    Cytokinesis is developmentally controlled during Drosophila embryogenesis. It is omitted during the initial nuclear division cycles. The nuclei of the resulting syncytium are then cellularized at a defined stage, and cytokinesis starts in somatic cells with mitosis 14. However, cytokinesis never occurs in somatic cells of embryos homozygous or transheterozygous for mutations in the pebble gene. Interestingly, the process of cellularization, which involves steps mechanistically similar to cytokinesis, is not affected. Moreover, all the nuclear aspects of mitosis (nuclear envelope breakdown, chromosome condensation, spindle assembly and function) proceed normally in pebble mutant embryos, indicating that pebble is specifically required for the coordination of mitotic spindle and contractile ring functions. The pebble phenotype is also observed, but only with very low penetrance, during the early divisions of the germ line progenitors (the pole cells). alpha-Amanitin injection experiments indicate that these early pole cell divisions, the first cell divisions during embryogenesis, do not require zygotic gene expression. These divisions might therefore rely on maternally contributed pebble function. The maternal contribution from heterozygous mothers might be insufficient in rare cases for all the pole cell divisions.

  3. Genetic analysis of the Drosophila Gs(alpha) gene.

    PubMed Central

    Wolfgang, W J; Hoskote, A; Roberts, I J; Jackson, S; Forte, M

    2001-01-01

    One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells. PMID:11454767

  4. Towards mitochondrial gene therapy: DQAsomes as a strategy.

    PubMed

    Weissig, V; Torchilin, V P

    2001-01-01

    Mitochondrial dysfunction is a cause, or major contributing factor in the development, of degenerative diseases, aging, cancer, many cases of Alzheimer's and Parkinson's disease and Type II diabetes (D. C. Wallace, Science 283, 1482-1488, 1999). Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment for the vast majority of patients available. Objective limitations of conventional biochemical treatment for patients with defects of mtDNA warrant the exploration of gene therapeutic approaches. However, mitochondrial gene therapy has been elusive, due to the lack of any mitochondria-specific transfection vector. We review here the current state of the development of mitochondrial DNA delivery systems. In particular, we are summarizing our own efforts in exploring the mitochondriotropic properties of dequalinium, a cationic bolaamphiphile with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells.

  5. The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns.

    PubMed

    Férandon, Cyril; Moukha, Serge; Callac, Philippe; Benedetto, Jean-Pierre; Castroviejo, Michel; Barroso, Gérard

    2010-11-18

    In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a "Homing Endonuclease Gene" (heg) encoding a DNA endonuclease acting in transfer and site-specific integration ("homing") and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.

  6. Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes.

    PubMed

    Pichaud, Nicolas; Ballard, J William O; Tanguay, Robert M; Blier, Pierre U

    2011-07-01

    In ectotherms, the external temperature is experienced by the mitochondria, and the mitochondrial respiration of different genotypes is likely to change as a result. Using high-resolution respirometry with permeabilized fibers (an in situ approach), we tried to identify differences in mitochondrial performance and thermal sensitivity of two Drosophila simulans populations with two different mitochondrial types (siII and siIII) and geographical distributions. Maximal state 3 respiration rates obtained with electrons converging at the Q junction of the electron transport system (ETS) differed between the mitotypes at 24°C. Catalytic capacities were higher in flies harboring siII than in those harboring siIII mitochondrial DNA (2,129 vs. 1,390 pmol O(2)·s(-1)·mg protein(-1)). The cytochrome c oxidase activity was also higher in siII than siIII flies (3,712 vs. 2,688 pmol O(2)·s(-1)·mg protein(-1)). The higher catalytic capacity detected in the siII mitotype could provide an advantage in terms of intensity of aerobic activity, endurance, or both, if the intensity of exercise that can be aerobically performed is partly dictated by the aerobic capacity of the tissue. Moreover, thermal sensitivity results showed that even if temperature affects the catalytic capacity of the different enzymes of the ETS, both mitotypes revealed high tolerance to temperature variation. Previous in vitro study failed to detect any consistent functional mitochondrial differences between the same mitotypes. We conclude that the in situ approach is more sensitive and that the ETS is a robust system in terms of functional and regulatory properties across a wide range of temperatures.

  7. Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes.

    PubMed Central

    Stern, D B; Palmer, J D

    1984-01-01

    Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes. Images PMID:6473104

  8. Rapid evolution and gene-specific patterns of selection for three genes of spermatogenesis in Drosophila.

    PubMed

    Civetta, Alberto; Rajakumar, Sujeetha A; Brouwers, Barb; Bacik, John P

    2006-03-01

    Hybrid males resulting from crosses between closely related species of Drosophila are sterile. The F1 hybrid sterility phenotype is mainly due to defects occurring during late stages of development that relate to sperm individualization, and so genes controlling sperm development may have been subjected to selective diversification between species. It is also possible that genes of spermatogenesis experience selective constraints given their role in a developmental pathway. We analyzed the molecular evolution of three genes playing a role during the sperm developmental pathway in Drosophila at an early (bam), a mid (aly), and a late (dj) stage. The complete coding region of these genes was sequenced in different strains of Drosophila melanogaster and Drosophila simulans. All three genes showed rapid divergence between species, with larger numbers of nonsynonymous to synonymous differences between species than polymorphisms. Although this could be interpreted as evidence for positive selection at all three genes, formal tests of selection do not support such a conclusion. Departures from neutrality were detected only for dj and bam but not aly. The role played by selection is unique and determined by gene-specific characteristics rather than site of expression. In dj, the departure was due to a high proportion of neutral synonymous polymorphisms in D. simulans, and there was evidence of purifying selection maintaining a high lysine amino acid protein content that is characteristic of other DNA-binding proteins. The earliest spermatogenesis gene surveyed, which plays a role in both male and female gametogenesis, was bam, and its significant departure from neutrality was due to an excess of nonsynonymous substitutions between species. Bam is degraded at the end of mitosis, and rapid evolutionary changes among species might be a characteristic shared with other degradable transient proteins. However, the large number of nonsynonymous changes between D. melanogaster and

  9. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer

    PubMed Central

    Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.

    2013-01-01

    Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265

  10. The selfish Segregation Distorter gene complex of Drosophila melanogaster.

    PubMed

    Larracuente, Amanda M; Presgraves, Daven C

    2012-09-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.

  11. The Agaricus bisporus cox1 Gene: The Longest Mitochondrial Gene and the Largest Reservoir of Mitochondrial Group I Introns

    PubMed Central

    Férandon, Cyril; Moukha, Serge; Callac, Philippe; Benedetto, Jean-Pierre; Castroviejo, Michel; Barroso, Gérard

    2010-01-01

    In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote. PMID:21124976

  12. Loss of BOSS Causes Shortened Lifespan with Mitochondrial Dysfunction in Drosophila

    PubMed Central

    Kohyama-Koganeya, Ayako; Kurosawa, Mizuki; Hirabayashi, Yoshio

    2017-01-01

    Aging is a universal process that causes deterioration in biological functions of an organism over its lifetime. There are many risk factors that are thought to contribute to aging rate, with disruption of metabolic homeostasis being one of the main factors that accelerates aging. Previously, we identified a new function for the putative G-protein-coupled receptor, Bride of sevenless (BOSS), in energy metabolism. Since maintaining metabolic homeostasis is a critical factor in aging, we investigated whether BOSS plays a role in the aging process. Here, we show that BOSS affects lifespan regulation. boss null mutants exhibit shortened lifespans, and their locomotor performance and gut lipase activity—two age-sensitive markers—are diminished and similar to those of aged control flies. Reactive oxygen species (ROS) production is also elevated in boss null mutants, and their ROS defense system is impaired. The accumulation of protein adducts (advanced lipoxidation end products [ALEs] and advanced glycation end products [AGEs]) caused by oxidative stress are elevated in boss mutant flies. Furthermore, boss mutant flies are sensitive to oxidative stress challenges, leading to shortened lives under oxidative stress conditions. Expression of superoxide dismutase 2 (SOD2), which is located in mitochondria and normally regulates ROS removal, was decreased in boss mutant flies. Systemic overexpression of SOD2 rescued boss mutant phenotypes. Finally, we observed that mitochondrial mass was greater in boss mutant flies. These results suggest that BOSS affects lifespan by modulating the expression of a set of genes related to oxidative stress resistance and mitochondrial homeostasis. PMID:28045997

  13. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.

    PubMed

    Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge

    2007-08-01

    Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.

  14. A family of Turandot-related genes in the humoral stress response of Drosophila.

    PubMed

    Ekengren, S; Hultmark, D

    2001-06-22

    The Drosophila Turandot A (TotA) gene was recently shown to encode a stress-induced humoral factor which gives increased resistance to the lethal effects of high temperature. Here we show that TotA belongs to a family of eight Tot genes distributed at three different sites in the Drosophila genome. All Tot genes are induced under stressful conditions such as bacterial infection, heat shock, paraquat feeding or exposure to ultraviolet light, suggesting that all members of this family play a role in Drosophila stress tolerance. The induction of the Tot genes differs in important respects from the heat shock response, such as the strong but delayed response to bacterial infection seen for several of the genes.

  15. Heixuedian (heix), a potential melanotic tumor suppressor gene, exhibits specific spatial and temporal expression pattern during Drosophila hematopoiesis.

    PubMed

    Xia, Yan; Midoun, Samira Zohra; Xu, Zhiliang; Hong, Ling

    2015-02-15

    The Drosophila heixuedian (heix) is the ortholog of human UBIAD1 gene (a.k.a TERE1). The protein product of UBIAD1/heix has multiple enzymatic activities, including the vitamin K2 and the non-mitochondrial CoQ10 biosynthesis. However, the expression pattern of UBIAD1/Heix during metazoan development has not been systematically studied. In this paper, we found that loss of function of heix resulted in pathological changes of larval hematopoietic system, including lymph gland hypertrophy, hemocyte overproliferation and aberrant differentiation, and melanin mass formation. Overexpression of heix cDNA under the tubulin Gal4 driver rescued the above hematopoietic defects. Interestingly, Heix was specifically expressed in plasmatocyte/macrophage lineage in srp driven EGFP positive cells on the head mesoderm during embryogenesis, while it was highly expressed in crystal cells in the primary lobes of the third instar larval lymph gland. Using qRT-PCR analysis, loss of function of heix caused aberrant activation of multiple hemocyte proliferation-related as well as immune-related pathways, including JAK/STAT pathway, Ras/MAPK pathway, IMD pathway and Toll pathway. These data suggested that heix is a potential melanotic tumor suppressor gene and plays a pivotal role in both hemocytes proliferation and differentiation in Drosophila.

  16. Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila.

    PubMed Central

    Harding, K; Levine, M

    1988-01-01

    The maintenance of selective patterns of homeotic gene expression within the Drosophila CNS involves cross-regulatory interactions among the genes of the antennapedia and bithorax complexes (ANT-C and BX-C). Such a mechanism does not appear to be responsible for the establishment of these selective expression patterns during early development. Here we show that mutations in several of the gap genes strongly alter the early patterns of Antp and Abd-B expression. The altered patterns that are observed do not always correlate with simple expectations based on cuticular pattern defects observed in advanced-stage mutants. It appears that the initial patterns of Antp and Abd-B expression involve their differential regulation by a common set of gap genes. We propose that the gap genes are largely responsible for integrating the processes of segmentation and homeosis. Images PMID:2896123

  17. Transcriptional regulation of the Drosophila glial gene repo.

    PubMed

    Lee, Bruce P; Jones, Bradley W

    2005-06-01

    reversed polarity (repo) is a putative target gene of glial cells missing (gcm), the primary regulator of glial cell fate in Drosophila. Transient expression of Gcm is followed by maintained expression of repo. Multiple Gcm binding sites are found in repo upstream DNA. However, while repo is expressed in Gcm positive glia, it is not expressed in Gcm positive hemocytes. These observations suggest factors in addition to Gcm are required for repo expression. Here we have undertaken an analysis of the cis-regulatory DNA elements of repo using lacZ reporter activity in transgenic embryos. We have found that a 4.2 kb DNA region upstream of the repo start site drives the wild-type repo expression pattern. We show that expression is dependent on multiple Gcm binding sites. By ectopically expressing Repo, we show that Repo can regulate its own enhancer. Finally, by systematically analyzing fragments of repo upstream DNA, we show that expression is dependent on multiple elements that are responsible for activity in subsets of glia, as well as repressing inappropriate expression in the epidermis. Our results suggest that Gcm acts synergistically with other factors to control repo transcription in glial cells.

  18. Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila

    PubMed Central

    Hauck, Bernd; Gehring, Walter J.; Walldorf, Uwe

    1999-01-01

    The development of the Drosophila compound eye requires the function of a set of evolutionarily conserved genes. Among these, the Drosophila Pax-6 gene eyeless (ey) plays a major role. ey has been considered a master control gene of eye development in the animal kingdom because targeted expression of ey and vertebrate as well as invertebrate homologs lead to the formation of ectopic eyes in Drosophila. We demonstrate that an intron of the ey gene contains an enhancer that regulates the eye specific expression of the gene in the eye disc primordia of embryos and in the eye imaginal discs of third instar larvae. Moreover, a 212-bp enhancer element is necessary and sufficient for the enhancer function. It is partially conserved in Drosophila hydei and contains putative Pax-6 Paired domain binding sites. We show that several binding sites are required for the eye specific expression, and, therefore, we propose a Pax-6-like molecule to be a positive transactivator for the eye specific ey expression. This transactivator recently has been identified as twin of eyeless, the second Pax-6 gene in Drosophila. PMID:9892673

  19. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    PubMed

    Behura, Susanta K; Haugen, Morgan; Flannery, Ellen; Sarro, Joseph; Tessier, Charles R; Severson, David W; Duman-Scheel, Molly

    2011-01-01

    Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  20. Inferring the History of Interchromosomal Gene Transposition in Drosophila Using n-Dimensional Parsimony

    PubMed Central

    Han, Mira V.; Hahn, Matthew W.

    2012-01-01

    Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila. PMID:22095076

  1. Recurrent tandem gene duplication gave rise to functionally divergent genes in Drosophila.

    PubMed

    Fan, Chuanzhu; Chen, Ying; Long, Manyuan

    2008-07-01

    Tandem gene duplication is one of the major gene duplication mechanisms in eukaryotes, as illustrated by the prevalence of gene family clusters. Tandem duplicated paralogs usually share the same regulatory element, and as a consequence, they are likely to perform similar biological functions. Here, we provide an example of a newly evolved tandem duplicate acquiring novel functions, which were driven by positive selection. CG32708, CG32706, and CG6999 are 3 clustered genes residing in the X chromosome of Drosophila melanogaster. CG6999 and CG32708 have been examined for their molecular population genetic properties (Thornton and Long 2005). We further investigated the evolutionary forces acting on these genes with greater sample sizes and a broader approach that incorporate between-species divergence, using more variety of statistical methods. We explored the possible functional implications by characterizing the tissue-specific and developmental expression patterns of these genes. Sequence comparison of species within D. melanogaster subgroup reveals that this 3-gene cluster was created by 2 rounds of tandem gene duplication in the last 5 Myr. Based on phylogenetic analysis, CG32708 is clearly the parental copy that is shared by all species. CG32706 appears to have originated in the ancestor of Drosophila simulans and D. melanogaster about 5 Mya, and CG6999 is the newest duplicate that is unique to D. melanogaster. All 3 genes have different expression profiles, and CG6999 has in addition acquired a novel transcript. Biased polymorphism frequency spectrum, linkage disequilibrium, nucleotide substitution, and McDonald-Kreitman analyses suggested that the evolution of CG6999 and CG32706 were driven by positive Darwinian selection.

  2. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila

    PubMed Central

    Nagoshi, Emi; Sugino, Ken; Kula, Ela; Okazaki, Etsuko; Tachibana, Taro; Nelson, Sacha; Rosbash, Michael

    2013-01-01

    Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits. PMID:19966839

  3. Do the genes of the innate immune response contribute to neuroprotection in Drosophila?

    PubMed

    Cantera, Rafael; Barrio, Rosa

    2015-01-01

    A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.

  4. Role of metabolic rate and DNA-repair in Drosophila aging Implications for the mitochondrial mutation theory of aging

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Binnard, R.; Fleming, J. E.

    1983-01-01

    The notion that injury to mitochondrial DNA is a cause of intrinsic aging was tested by correlating the different respiration rates of several wild strains of Drosophila melanogaster with the life-spans. Respiration rate and aging in a mutant of D. melanogaster deficient in postreplication repair were also investigated. In agreement with the rate of living theory, there was an inverse relation between oxygen consumption and median life-span in flies having normal DNA repair. The mutant showed an abnormally low life-span as compared to the controls and also exhibited significant deficiency in mating fitness and a depressed metabolic rate. Therefore, the short life-span of the mutant may be due to the congenital condition rather than to accelerated aging.

  5. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus.

    PubMed

    Ting, Chau-Ti; Tsaur, Shun-Chern; Sun, Sha; Browne, William E; Chen, Yung-Chia; Patel, Nipam H; Wu, Chung-I

    2004-08-17

    The importance of gene duplication in evolution has long been recognized. Because duplicated genes are prone to diverge in function, gene duplication could plausibly play a role in species differentiation. However, experimental evidence linking gene duplication with speciation is scarce. Here, we show that a hybrid-male sterility gene, Odysseus (OdsH), arose by gene duplication in the Drosophila genome. OdsH has evolved at a very high rate, whereas its most immediate paralog, unc-4, is nearly identical among species in the Drosophila melanogaster subgroup. The disparity in their sequence evolution is echoed by the divergence in their expression patterns in both soma and reproductive tissues. We suggest that duplicated genes that have yet to evolve a stable function at the time of speciation may be candidates for "speciation genes," which is broadly defined as genes that contribute to differential adaptation between species.

  6. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle

    PubMed Central

    Gutzwiller, Florence; Carmo, Catarina R.; Miller, Danny E.; Rice, Danny W.; Newton, Irene L. G.; Hawley, R. Scott; Teixeira, Luis; Bergman, Casey M.

    2015-01-01

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146

  7. Birth of a new gene on the Y chromosome of Drosophila melanogaster.

    PubMed

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A M; Swenor, Bonnielin; Clark, Andrew G

    2015-10-06

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.

  8. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle.

    PubMed

    Gutzwiller, Florence; Carmo, Catarina R; Miller, Danny E; Rice, Danny W; Newton, Irene L G; Hawley, R Scott; Teixeira, Luis; Bergman, Casey M

    2015-10-23

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.

  9. Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

    PubMed Central

    Hong, C. S.; Ganetzky, B.

    1996-01-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894

  10. Two-locus mitochondrial and nuclear gene models for mitochondrial disorders.

    PubMed

    Bu, X; Yang, H Y; Shohat, M; Rotter, J I

    1992-01-01

    Stimulated by a large pedigree with a cochlear form of deafness, for which we considered a two-locus mitochondrial and nuclear gene model, we have extended the classic methods of segregation analysis to these classes of two-locus disorders. Based on the unique maternal transmission pattern of the mitochondria, we demonstrate that utilization of the maternal line pedigree allows us to simplify the various two-locus mitochondrial models to "one nuclear locus" models. Classifying the nuclear families into different independent groups by the mother's phenotypes allows us to estimate the nuclear gene frequency in one group and to use this estimate as the expected value to test the fitness of the model on the other group. In addition, if we restrict the analysis to specific subsets of the mating type(s), we can also test the model on specific groups of nuclear families without estimating the gene frequency. Goodness-of-fit tests can be performed on pooled sibship data as well as individual sibship data. These methods of analysis should assume increasing importance as more disorders with features of mitochondrial inheritance are identified.

  11. Mental Retardation Genes in Drosophila: New Approaches to Understanding and Treating Developmental Brain Disorders

    ERIC Educational Resources Information Center

    Restifo, Linda L.

    2005-01-01

    "Drosophila melanogaster" is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron…

  12. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    SciTech Connect

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  13. Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis.

    PubMed

    Pavlopoulos, Anastasios; Akam, Michael

    2011-02-15

    Hox genes encode highly conserved transcription factors that regionalize the animal body axis by controlling complex developmental processes. Although they are known to operate in multiple cell types and at different stages, we are still missing the batteries of genes targeted by any one Hox gene over the course of a single developmental process to achieve a particular cell and organ morphology. The transformation of wings into halteres by the Hox gene Ultrabithorax (Ubx) in Drosophila melanogaster presents an excellent model system to study the Hox control of transcriptional networks during successive stages of appendage morphogenesis and cell differentiation. We have used an inducible misexpression system to switch on Ubx in the wing epithelium at successive stages during metamorphosis--in the larva, prepupa, and pupa. We have then used extensive microarray expression profiling and quantitative RT-PCR to identify the primary transcriptional responses to Ubx. We find that Ubx targets range from regulatory genes like transcription factors and signaling components to terminal differentiation genes affecting a broad repertoire of cell behaviors and metabolic reactions. Ubx up- and down-regulates hundreds of downstream genes at each stage, mostly in a subtle manner. Strikingly, our analysis reveals that Ubx target genes are largely distinct at different stages of appendage morphogenesis, suggesting extensive interactions between Hox genes and hormone-controlled regulatory networks to orchestrate complex genetic programs during metamorphosis.

  14. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline.

    PubMed

    Meiklejohn, Colin D; Presgraves, Daven C

    2012-01-01

    Male-biased genes-those expressed at higher levels in males than in females-are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally "demasculinizing" the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes.

  15. Ancient Out-of-Africa Mitochondrial DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns

    PubMed Central

    Mishmar, Dan

    2016-01-01

    Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world. PMID:27812116

  16. Genes and languages in Europe: an analysis of mitochondrial lineages.

    PubMed

    Sajantila, A; Lahermo, P; Anttinen, T; Lukka, M; Sistonen, P; Savontaus, M L; Aula, P; Beckman, L; Tranebjaerg, L; Gedde-Dahl, T; Issel-Tarver, L; DiRienzo, A; Pääbo, S

    1995-08-01

    When mitochondrial DNA sequence variation is analyzed from a sample of 637 individuals in 14 European populations, most populations show little differentiation with respect to each other. However, the Saami distinguish themselves by a comparatively large amount of sequence difference when compared with the other populations, by a different distribution of sequence diversity within the population, and by the occurrence of particular sequence motifs. Thus, the Saami seem to have a long history distinct from other European populations. Linguistic affiliations are not reflected in the patterns of relationships of mitochondrial lineages in European populations, whereas prior studies of nuclear gene frequencies have shown a correlation between genetic and linguistic evolution. It is argued that this apparent contradiction is attributable to the fact that genetic lineages and gene frequencies reflect different time perspectives on population history, the latter being more in concordance with linguistic evolution.

  17. Massive Mitochondrial Gene Transfer in a Parasitic Flowering Plant Clade

    PubMed Central

    Bradley, Robert K.; Sugumaran, M.; Marx, Christopher J.; Rest, Joshua S.; Davis, Charles C.

    2013-01-01

    Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%–41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms. PMID:23459037

  18. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    PubMed

    Xi, Zhenxiang; Wang, Yuguo; Bradley, Robert K; Sugumaran, M; Marx, Christopher J; Rest, Joshua S; Davis, Charles C

    2013-01-01

    Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  19. The gene structure of the Drosophila melanogaster proto-oncogene, kayak, and its nested gene, fos-intronic gene.

    PubMed

    Hudson, Stephanie Gidget; Goldstein, Elliott S

    2008-08-15

    We present herein a new model for the structure of the Drosophila kayak gene as well as preliminary data on the functional differences of its various isoforms. kayak is a homolog of the human proto-oncogene, c-fos. kayak has three different starts of transcription, and therefore promoters (P)kay-alpha, (P)kay-beta and (P)kay-gamma. These three promoters lead to four different transcripts: kay-alpha, kay(sro), kay-beta and kay-gamma. (P)kay-alpha produces two different transcripts: kay-alpha and kay(sro) where the other two promoters, (P)kay-beta and (P)kay-gamma, produce a single transcript each. The transcripts kay-alpha, beta and gamma all splice into the mainbody of the kay gene, which codes for the DNA binding domain and leucine zipper; kay(sro) is not spliced. Also, within this region is a nested gene, fos-intronic gene (fig) which is transcribed in the opposite direction. fig codes for a predicted PP2C phosphatase. fig has two different promoters which produce two different transcripts, both in the same reading frame, fig-alpha and beta. This is an unusual gene structure for Drosophila. Only 13% of Drosophila genes have multiple promoters and only 7% have a nested gene. RT-PCR was performed on each transcript to determine the relative amounts of each RNA produced. All spliced kay transcripts appear to have equal abundance. The unspliced kay(sro) transcript has a lower abundance than kay-alpha. Both fig transcripts are also detected in all stages tested. Lethal phase analysis and complementation testing suggest that the three isoforms of kayak may have different functions.

  20. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease.

    PubMed

    Jia, Haiqun; Li, Xin; Gao, Hongxiang; Feng, Zhihui; Li, Xuesen; Zhao, Lei; Jia, Xu; Zhang, Hongyu; Liu, Jiankang

    2008-07-01

    Nicotinamide, the principal form of niacin (vitamin B3), has been proposed to be neuroprotective in Parkinson's disease. However, the effects and mechanisms of nicotinamide on motor function in animals and on mitochondrial function in cellular systems have not been well studied. We hypothesized that niacin-derived NAD(P)H as antioxidants and enzyme cofactors could inhibit oxidative damage and improve mitochondrial function and thus protect neurodegeneration and improve motor function. In the present study, the effects of nicotinamide on mitochondrial function and oxidative stress were studied in a 1-methyl-4-phenylpyridinium (MPP(+))-induced cellular model of Parkinson's disease, and the effects of improving motor dysfunction were studied in an alpha-synuclein transgenic Drosophila Parkinson's model. Mitochondrial function was tested by measuring the activity of mitochondrial complex I and alpha-ketoglutarate dehydrogenase, and oxidative damage was tested by measuring reactive oxygen species, DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine and Comet assay), and protein oxidation (protein carbonyls) levels. Nicotinamide at a relatively higher concentration, that is, 100-fold of the level in the cell culture medium (101 mg/L), significantly protected SK-N-MC human neuroblastoma cells from an MPP(+)-induced decrease in cell viability, complex I and alpha-ketoglutarate dehydrogenase activity, and an increase in oxidant generation, DNA damage, and protein oxidation. In the Drosophila model, nicotinamide at 15 and 30 mg/100 g diet significantly improved climbing ability. These results suggest that nutritional supplementation of nicotinamide at high doses decreases oxidative stress and improves mitochondrial and motor function in cellular and/or Drosophila models and may be an effective strategy for preventing and ameliorating Parkinson's disease.

  1. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster.

    PubMed

    Ma, Hansong; Xu, Hong; O'Farrell, Patrick H

    2014-04-01

    It is not known how selection affects mutations in the multiple copies of the mitochondrial genome. We transferred cytoplasm between D. melanogaster embryos carrying mitochondrial mutations to create heteroplasmic lines transmitting two mitochondrial genotypes. Increased temperature imposed selection against a temperature-sensitive mutation affecting cytochrome oxidase, driving decreases in the abundance of the mutant genome over successive generations. Selection did not influence the health or fertility of the flies but acted during midoogenesis to influence competition between the genomes. Mitochondria might incur an advantage through selective localization, survival or proliferation, yet timing and insensitivity to park mutation suggest that preferential proliferation underlies selection. Selection drove complete replacement of the temperature-sensitive mitochondrial genome by a wild-type genome but also stabilized the multigenerational transmission of two genomes carrying complementing detrimental mutations. While they are so balanced, these stably transmitted mutations have no detrimental phenotype, but their segregation could contribute to disease phenotypes and somatic aging.

  2. Leigh Syndrome in Drosophila melanogaster

    PubMed Central

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LSSurf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R+ cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. PMID:25164807

  3. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion.

    PubMed

    Park, Sangbin; Alfa, Ronald W; Topper, Sydni M; Kim, Grace E S; Kockel, Lutz; Kim, Seung K

    2014-08-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.

  4. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  5. Divergence of the gene aly in experimentally evolved cytoraces, the members of the nasuta-albomicans complex of Drosophila.

    PubMed

    Radhika, P N; Ramachandra, N B

    2014-08-01

    We generated cytoraces by crossing the chromosomal races (Drosophila nasuta nasuta and Drosophila nasuta albomicans) of the nasuta subgroup of Drosophila and maintained the offspring over many generations through sibling mating. These cytoraces, along with their parents, are members of the nasuta-albomicans complex of Drosophila. The gene always early (aly) is one of the rapidly evolving genes in the genus Drosophila and plays a central role in regulating meiosis. Here we examined the rate of molecular evolution of aly in cytoraces of Drosophila and demonstrated that the rate of substitutions amongst cytoraces is around eight times greater than their parents and even amongst species of subgenera. Thus, the presence of positive selection in the laboratory-derived cytoraces based on the analysis of the synonymous and nonsynonymous substitution rates of aly suggests the rapid evolution in cytoraces.

  6. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    SciTech Connect

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  7. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster.

    PubMed

    Guan, Delong; Mo, Fei; Han, Yan; Gu, Wei; Zhang, Min

    2015-01-01

    Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.

  8. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough.

    PubMed

    Perez, D E; Wu, C I

    1995-05-01

    Previously we mapped by genetical and molecular means a gene that contributes to hybrid-male sterility between Drosophila mauritiana and D. simulans to the cytological interval of 16D. In this report, we refine the mapping of this gene, Odysseus (Ods) and show that it can be delineated to a region the size of an average gene. We further demonstrate that, while Ods appears to be a discrete element, it requires other nearby gene(s) to be cointrogressed to confer full hybrid sterility effect. This observation is in agreement with the view that reproductive isolation between closely related species of Drosophila is usually caused by several genes of weak effect from the same species that interact strongly among themselves as well as with the foreign genetic background.

  9. Evolution of Three Parent Genes and Their Retrogene Copies in Drosophila Species

    PubMed Central

    O'Neill, Ryan S.; Clark, Denise V.

    2013-01-01

    Retrogenes form a class of gene duplicate lacking the regulatory sequences found outside of the mRNA-coding regions of the parent gene. It is not clear how a retrogene's lack of parental regulatory sequences affects the evolution of the gene pair. To explore the evolution of parent genes and retrogenes, we investigated three such gene pairs in the family Drosophilidae; in Drosophila melanogaster, these gene pairs are CG8331 and CG4960, CG17734 and CG11825, and Sep2 and Sep5. We investigated the embryonic expression patterns of these gene pairs across multiple Drosophila species. Expression patterns of the parent genes and their single copy orthologs are relatively conserved across species, whether or not a species has a retrogene copy, although there is some variation in CG8331 and CG17734. In contrast, expression patterns of the retrogene orthologs have diversified. We used the genome sequences of 20 Drosophila species to investigate coding sequence evolution. The coding sequences of the three gene pairs appear to be evolving predominantly under negative selection; however, the parent genes and retrogenes show some distinct differences in amino acid sequence. Therefore, in general, retrogene expression patterns and coding sequences are distinct compared to their parents and, in some cases, retrogene expression patterns diversify. PMID:23841016

  10. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila.

    PubMed

    Beumer, Kelly J; Trautman, Jonathan K; Christian, Michelle; Dahlem, Timothy J; Lake, Cathleen M; Hawley, R Scott; Grunwald, David J; Voytas, Daniel F; Carroll, Dana

    2013-10-03

    Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-to-one-base-pair recognition code, and they have been very productively incorporated into nucleases (TALENs) for genome engineering. In this report we describe the design of TALENs for a number of different genes in Drosophila, and we explore several parameters of TALEN design. The rate of success with TALENs was substantially greater than for zinc-finger nucleases , and the frequency of mutagenesis was comparable. Knockout mutations were isolated in several genes in which such alleles were not previously available. TALENs are an effective tool for targeted genome manipulation in Drosophila.

  11. Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene.

    PubMed Central

    Cabrera, H L; Barrio, R; Arribas, C

    1992-01-01

    Ubiquitin belongs to a multigene family. In Drosophila two members of this family have been previously described. We report here the organization and expression of a third member, the DUb52 gene, isolated by screening a Drosophila melanogaster genomic library. This gene encodes an ubiquitin monomer fused to a 52-amino acid extension protein. There are no introns interrupting the coding sequence. Recently, it has been described that this extension encodes a ribosomal protein in Saccharomyces, Dictyostelium, and Arabidopsis. The present results show that the 5' regulatory region of DUb52 shares common features with the ribosomal protein genes of Drosophila, Xenopus and mouse, including GC- and pyrimidine-rich regions. Moreover, sequences similar to the consensus Ribo-box in Neurospora crassa have been identified. Furthermore, a sequence has been found that is similar to the binding site for the TFIIIA distal element factor from Xenopus laevis. The DUb52 gene is transcribed to a 0.9 kb mRNA that is expressed constitutively throughout development and is particularly abundant in ovaries. In addition, the DUb52 gene has been found to be preferentially transcribed in exponentially growing Drosophila cells. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1381584

  12. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.

    PubMed

    Manu; Surkova, Svetlana; Spirov, Alexander V; Gursky, Vitaly V; Janssens, Hilde; Kim, Ah-Ram; Radulescu, Ovidiu; Vanario-Alonso, Carlos E; Sharp, David H; Samsonova, Maria; Reinitz, John

    2009-03-01

    Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic

  13. Tumor suppressor gene OSCP1/NOR1 regulates apoptosis, proliferation, differentiation, and ROS generation during eye development of Drosophila melanogaster.

    PubMed

    Huu, Nguyen Tho; Yoshida, Hideki; Yamaguchi, Masamitsu

    2015-12-01

    OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.

  14. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster.

    PubMed

    Robinson, Scott W; Herzyk, Pawel; Dow, Julian A T; Leader, David P

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25-17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13,250 Drosophila genes, detecting 12,533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax 'autosuggest' facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues.

  15. A Role of Polycomb Group Genes in the Regulation of Gap Gene Expression in Drosophila

    PubMed Central

    Pelegri, F.; Lehmann, R.

    1994-01-01

    Anteroposterior polarity of the Drosophila embryo is initiated by the localized activities of the maternal genes, bicoid and nanos, which establish a gradient of the hunchback (hb) morphogen. nanos determines the distribution of the maternal Hb protein by regulating its translation. To identify further components of this pathway we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are expressed in spite of high Hb levels. The suppressors are alleles of Enhancer of zeste (E(z)) a member of the Polycomb group (Pc-G) of genes. We show that E(z), and likely other Pc-G genes, are required for maintaining the expression domains of knirps and giant initiated by the maternal Hb protein gradient. We have identified a small region of the knirps promoter that mediates the regulation by E(z) and hb. Because Pc-G genes are thought to control gene expression by regulating chromatin, we propose that imprinting at the chromatin level underlies the determination of anteroposterior polarity in the early embryo. PMID:8013911

  16. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans.

    PubMed

    Quiring, R; Walldorf, U; Kloter, U; Gehring, W J

    1994-08-05

    A Drosophila gene that contains both a paired box and a homeobox and has extensive sequence homology to the mouse Pax-6 (Small eye) gene was isolated and mapped to chromosome IV in a region close to the eyeless locus. Two spontaneous mutations, ey2 and eyR, contain transposable element insertions into the cloned gene and affect gene expression, particularly in the eye primordia. This indicates that the cloned gene encodes ey. The finding that ey of Drosophila, Small eye of the mouse, and human Aniridia are encoded by homologous genes suggests that eye morphogenesis is under similar genetic control in both vertebrates and insects, in spite of the large differences in eye morphology and mode of development.

  17. Limited gene misregulation is exacerbated by allele-specific upregulation in lethal hybrids between Drosophila melanogaster and Drosophila simulans.

    PubMed

    Wei, Kevin H-C; Clark, Andrew G; Barbash, Daniel A

    2014-07-01

    Misregulation of gene expression is often observed in interspecific hybrids and is generally attributed to regulatory incompatibilities caused by divergence between the two genomes. However, it has been challenging to distinguish effects of regulatory divergence from secondary effects including developmental and physiological defects common to hybrids. Here, we use RNA-Seq to profile gene expression in F1 hybrid male larvae from crosses of Drosophila melanogaster to its sibling species D. simulans. We analyze lethal and viable hybrid males, the latter produced using a mutation in the X-linked D. melanogaster Hybrid male rescue (Hmr) gene and compare them with their parental species and to public data sets of gene expression across development. We find that Hmr has drastically different effects on the parental and hybrid genomes, demonstrating that hybrid incompatibility genes can exhibit novel properties in the hybrid genetic background. Additionally, we find that D. melanogaster alleles are preferentially affected between lethal and viable hybrids. We further determine that many of the differences between the hybrids result from developmental delay in the Hmr(+) hybrids. Finally, we find surprisingly modest expression differences in hybrids when compared with the parents, with only 9% and 4% of genes deviating from additivity or expressed outside of the parental range, respectively. Most of these differences can be attributed to developmental delay and differences in tissue types. Overall, our study suggests that hybrid gene misexpression is prone to overestimation and that even between species separated by approximately 2.5 Ma, regulatory incompatibilities are not widespread in hybrids.

  18. Decrypting the Mitochondrial Gene Pool of Modern Panamanians

    PubMed Central

    Angerhofer, Norman; Ekins, Jayne E.; Olivieri, Anna; Woodward, Scott R.; Pascale, Juan Miguel; Cooke, Richard; Motta, Jorge; Achilli, Alessandro

    2012-01-01

    The Isthmus of Panama–the narrow neck of land connecting the northern and southern American landmasses–was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ∼14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (∼2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (∼83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama. PMID:22675545

  19. Decrypting the mitochondrial gene pool of modern Panamanians.

    PubMed

    Perego, Ugo A; Lancioni, Hovirag; Tribaldos, Maribel; Angerhofer, Norman; Ekins, Jayne E; Olivieri, Anna; Woodward, Scott R; Pascale, Juan Miguel; Cooke, Richard; Motta, Jorge; Achilli, Alessandro

    2012-01-01

    The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (~83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama.

  20. Strong purifying selection on the Odysseus gene in two clades of sibling species of the Drosophila montium species subgroup.

    PubMed

    Wen, Shuo-Yang; Shimada, Kimio; Kawai, Kuniko; Toda, Masanori J

    2006-05-01

    The Odysseus (OdsH) gene was duplicated from its ancestral neuron-expressed gene, unc-4, and then evolved very rapidly under strong positive Darwinian selection as a speciation gene causing hybrid-male sterility between closely related species of the Drosophila simulans clade. Has OdsH also experienced similar positive selection between Drosophila sibling species other than those of the simulans clade? We cloned and sequenced OdsH and unc-4 from two clades of the Drosophila montium species subgroup, the Drosophila lini and the Drosophila kikkawai clades. The ratios of Ka/Ks for OdsH were remarkably low between sibling species of these two clades, suggesting that OdsH has been subjected to strong purifying selection in these two clades.

  1. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes.

    PubMed

    Choi, Jae Young; Aquadro, Charles F

    2015-10-27

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system.

  2. Interspecific Comparisons of the Structure and Regulation of the Drosophila Ecdysone-Inducible Gene E74

    PubMed Central

    Jones, C. W.; Dalton, M. W.; Townley, L. H.

    1991-01-01

    The Drosophila melanogaster E74 gene is induced directly by the steroid hormone ecdysone and is a member of a small set of ``early'' genes that appear to trigger the onset of metamorphosis. The gene consists of three overlapping transcription units encoding two proteins, E74A and E74B, which possess a common C terminus. According to the Ashburner model for ecdysone's action, an E74 protein product potentially functions as a transcriptional activator of ``late'' genes as well as a repressor of early genes. We have taken an evolutionary approach to understand the function and regulation of E74 by isolating the homologous genes from Drosophila pseudoobscura and Drosophila virilis and comparing them to D. melanogaster E74 sequences. Conserved characteristics of the E74 genes include ecdysone inducibility, localization to ecdysone-induced polytene chromosome puffs, and gene size. Amino acid sequence comparisons of the E74A protein reveal a highly conserved C-terminal region that is rich in basic amino acid residues and which has been proposed to possess sequence-specific DNA binding activity. The moderately conserved N-terminal region has maintained its overall acidic character and is a potential transcriptional activator domain. The central region contains conserved glutamine and alanine homopolymeric repeats of variable lengths. Nucleotide sequence comparisons of the E74A promoter region fail to reveal ecdysone-response elements but do identify conserved sequences that may function in E74A regulation. PMID:2016053

  3. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila

    PubMed Central

    Zhu, Jun-yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-01

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors. DOI: http://dx.doi.org/10.7554/eLife.22617.001 PMID:28084990

  4. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  5. Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth.

    PubMed Central

    Stewart, M J; Denell, R

    1993-01-01

    We have characterized two P-element-induced, lethal mutations in Drosophila melanogaster which affect the larval hemocytes, mediators of the insect immune response. Each mutant displays larval melanotic tumors characteristic of mutations affecting the insect cellular immune system, and the moribund animals develop grossly hypertrophied hematopoietic organs because of increased cell proliferation and extra rounds of endoreduplication in some hematopoietic cells. Surprisingly, these mutations are due to P element insertions in the 5' regulatory region of the Drosophila gene encoding ribosomal protein S6 and cause a reduction of S6 transcript abundance in mutant larvae. Images PMID:8384310

  6. Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes.

    PubMed

    Choi, Catherine; Liu, Zhenlan; Adams, Keith L

    2006-01-01

    The transfer of mitochondrial genes to the nucleus is an ongoing evolutionary process in flowering plants. Evolutionarily recent gene transfers provide insights into the evolutionary dynamics of the process and the way in which transferred genes become functional in the nucleus. Genes that are present in the mitochondrion of some angiosperms but have been transferred to the nucleus in the Populus lineage were identified by searches of Populus sequence databases. Sequence analyses and expression experiments were used to characterize the transferred genes. Two succinate dehydrogenase genes and six mitochondrial ribosomal protein genes have been transferred to the nucleus in the Populus lineage and have become expressed. Three transferred genes have gained an N-terminal mitochondrial targeting presequence from other pre-existing genes and two of the transferred genes do not contain an N-terminal targeting presequence. Intact copies of the succinate dehydrogenase gene Sdh4 are present in both the mitochondrion and the nucleus. Both copies of Sdh4 are expressed in multiple organs of two Populus species and RNA editing occurs in the mitochondrial copy. These results provide a genome-wide perspective on mitochondrial genes that were transferred to the nucleus and became expressed, functional genes during the evolutionary history of Populus.

  7. Role of DREF in transcriptional regulation of the Drosophila p53 gene.

    PubMed

    Trong-Tue, N; Thao, D T P; Yamaguchi, M

    2010-04-08

    The tumor suppressor protein p53 has a critical role in safeguarding the integrity of the genome. Its functions are well understood but factors responsible for the transcriptional regulation of the p53 gene are almost entirely unknown. The DNA replication-related element (DRE)/DNA replication-related element-binding factor (DREF) transcriptional regulatory system is established as a master key to cell proliferation in Drosophila. DREF binds specifically to DRE sequences in the Drosophila p53 (dmp53) gene promoter as shown using anti-DREF antibodies in chromatin immunoprecipitation assays. Furthermore, a rough eye phenotype because of overexpression of DREF in Drosophila eye imaginal disks could be suppressed by half dose reduction of the dmp53 gene. In addition, the level of mRNA of dmp53 was decreased in DREF-knockdown cells and transient expression of the luciferase gene under control of the wild-type dmp53 gene promoter showed strong promoter activity in S2 cells, but this was almost completely abrogated with a DRE-mutated promoter. Requirement of DREs for dmp53 promoter activity was further confirmed by anti-beta-galactosidase antibody-staining of various tissues from transgenic flies carrying dmp53 promoter-lacZ fusion genes. These results indicate that DREF is necessary for dmp53 gene promoter activity.

  8. The pink gene encodes the Drosophila orthologue of the human Hermansky-Pudlak syndrome 5 (HPS5) gene.

    PubMed

    Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M

    2007-06-01

    Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.

  9. Characterization of two Drosophila melanogaster cytochrome c genes and their transcripts.

    PubMed

    Limbach, K J; Wu, R

    1985-01-25

    Analysis of total Drosophila melanogaster DNA by genomic blot hybridization indicates that two cytochrome c-like sequences exist in the Drosophila genome. These two sequences, DC3 and DC4, have been isolated from a Charon 4A-D. melanogaster genomic library. DC3 and DC4 are located within a 4 kb region of DNA, at position 36A 10-11, on the left arm of chromosome 2. The nucleotide sequence of these two clones has been determined. Both DC3 and DC4 can encode functional cytochrome c proteins. The polypeptide sequences predicted by these two genes, however, differ at 32 amino acid residues. DC4 is expressed at varying, but relatively high levels throughout Drosophila development. In contrast, DC3 is expressed at constant, but relatively low levels throughout development.

  10. Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes.

    PubMed

    Proshkina, Ekaterina N; Shaposhnikov, Mikhail V; Sadritdinova, Asiya F; Kudryavtseva, Anna V; Moskalev, Alexey A

    2015-11-01

    Drosophila is one of the most convenient model organisms in the genetics of aging and longevity. Unlike the nematodes, which allow for the detection of new pro-aging genes by knockout and RNAi-mediated knock-down, Drosophila also provides an opportunity to find new pro-longevity genes by driver-induced overexpression. Similar studies on other models are extremely rare. In this review, we focused on genes whose overexpression prolongs the life of fruit flies. The majority of longevity-associated genes regulates metabolism and stress resistance, and belongs to the IGF-1R, PI3K, PKB, AMPK and TOR metabolic regulation cluster and the FOXO, HDAC, p53 stress response cluster.

  11. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Massabuau, Jean-Charles; Gilbin, Rodolphe; Simon, Olivier

    2014-08-01

    The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication.

  12. Syllidae mitochondrial gene order is unusually variable for Annelida.

    PubMed

    Aguado, M Teresa; Richter, Sandy; Sontowski, Rebekka; Golombek, Anja; Struck, Torsten H; Bleidorn, Christoph

    2016-12-05

    Complete mitochondrial genomes of five syllids (Streptosyllis sp., Eusyllis blomstrandi, Myrianida brachycephala, Typosyllis antoni and Typosyllis sp.) have been obtained using Illumina sequencing. Together with two previous studied taxa (Ramisyllis multicaudata and Trypanobia cryptica), the analysed sequences represent most of the main lineages within the family Syllidae (Anoplosyllinae, Eusyllinae, Autolytinae and Syllinae). The genomic features, gene order and phylogenetic relationships are examined. Unusual for annelids, syllid mitochondrial genomes are highly variable in their gene order. Considering genomic features, such as length, skewness, gene content, and codon bias, most similar to the rest of annelids are the genomes of E. blomstrandi and M. brachycephala, while Streptosyllis sp. and the analysed sylline taxa (R. multicaudata, T. cryptica, T. antoni and Typosyllis sp.) are the most dissimilar. Two methionine tRNA's (trnM) have been found in T. antoni and Typosyllis sp. The mt genomes of these latter taxa are the longest with numerous non-coding regions. The 13 protein coding genes, as well as the rRNA's are used to perform phylogenetic analyses that recovered the relationships within the family explored before by previous authors. The gene order in Syllidae shows very different patterns. E. blomstrandi and M. prolifera show a similar pattern to the one found in Pleistoannelida; however this might have changed at least twice within Syllidae: in Streptosyllis sp. and within Syllinae. All analysed Syllinae show different gene orders, thereby illustrating more variability as all other pleistoannelids analysed so far. The information provided herein allows a more accurate reconstruction of the possible evolutionary scenarios in Syllidae.

  13. The Molecular Evolution of Cytochrome P450 Genes within and between Drosophila Species

    PubMed Central

    Good, Robert T.; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-01-01

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes—with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. PMID:24751979

  14. Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt

    PubMed Central

    Tootle, Tina L.; Williams, Dianne; Hubb, Alexander; Frederick, Rebecca; Spradling, Allan

    2011-01-01

    Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals. PMID:21637834

  15. The warts gene as a novel target of the Drosophila DRE/DREF transcription pathway.

    PubMed

    Fujiwara, Shunsuke; Ida, Hiroyuki; Yoshioka, Yasuhide; Yoshida, Hideki; Yamaguchi, Masamitsu

    2012-01-01

    The Hippo tumor suppressor pathway in Drosophila represses expression of DIAP1 and Cyclin E via inactivation of the transcription co-activator Yorkie, resulting in cell cycle arrest and induction of apoptosis. The warts (wts) gene is well known as a core kinase in this pathway, but its transcriptional regulation has yet to be clarified. In Drosophila, DREF binds to a target sequence named DRE (5'-TATCGATA) and regulates transcription of cell proliferation-related genes containing the DRE sequence in their promoter regions. Here we found half reduction of the wts gene dose to enhance the DREF-induced rough eye phenotype, suggesting a DREF genetic interaction with the Hippo pathway in vivo. Three DREs indentified in the wts gene promoter region exhibited strong promoter activity with a luciferase transient expression assay in Drosophila S2 cells, this decreasing under DREF-RNAi conditions. In addition, knockdown of DREF in S2 cells reduced the level of endogenous wts mRNA. Chromatin immunoprecipitation assays with anti-DREF antibody revealed that DREF binds specifically to the wts gene promoter region containing DREs in vivo. These results indicate that the DRE/DREF pathway is required for transcriptional regulation of the wts gene, indicating a novel link between the DRE/DREF and the Hippo pathways.

  16. The twisted Gene Encodes Drosophila Protein O-Mannosyltransferase 2 and Genetically Interacts With the rotated abdomen Gene Encoding Drosophila Protein O-Mannosyltransferase 1

    PubMed Central

    Lyalin, Dmitry; Koles, Kate; Roosendaal, Sigrid D.; Repnikova, Elena; Van Wechel, Laura; Panin, Vladislav M.

    2006-01-01

    The family of mammalian O-mannosyltransferases includes two enzymes, POMT1 and POMT2, which are thought to be essential for muscle and neural development. Similar to mammalian organisms, Drosophila has two O-mannosyltransferase genes, rotated abdomen (rt) and DmPOMT2, encoding proteins with high homology to their mammalian counterparts. The previously reported mutant phenotype of the rt gene includes a clockwise rotation of the abdomen and defects in embryonic muscle development. No mutants have been described so far for the DmPOMT2 locus. In this study, we determined that the mutation in the twisted (tw) locus, tw1, corresponds to a DmPOMT2 mutant. The twisted alleles represent a complementation group of recessive mutations that, similar to the rt mutants, exhibit a clockwise abdomen rotation phenotype. Several tw alleles were isolated in the past; however, none of them was molecularly characterized. We used an expression rescue approach to confirm that tw locus represents DmPOMT2 gene. We found that the tw1 allele represents an amino acid substitution within the conserved PMT domain of DmPOMT2 (TW) protein. Immunostaining experiments revealed that the protein products of both rt and tw genes colocalize within Drosophila cells where they reside in the ER subcellular compartment. In situ hybridization analysis showed that both genes have essentially overlapping patterns of expression throughout most of embryogenesis (stages 8–17), while only the rt transcript is present at early embryonic stages (5 and 6), suggesting its maternal origin. Finally, we analyzed the genetic interactions between rt and tw using several mutant alleles, RNAi, and ectopic expression approaches. Our data suggest that the two Drosophila O-mannosyltransferase genes, rt and tw, have nonredundant functions within the same developmental cascade and that their activities are required simultaneously for possibly the same biochemical process. Our results establish the possibility of using

  17. Evidence for the fixation of gene duplications by positive selection in Drosophila

    PubMed Central

    Cardoso-Moreira, Margarida; Arguello, J. Roman; Gottipati, Srikanth; Harshman, L.G.; Grenier, Jennifer K.; Clark, Andrew G.

    2016-01-01

    Gene duplications play a key role in the emergence of novel traits and in adaptation. But despite their centrality to evolutionary processes, it is still largely unknown how new gene duplicates are initially fixed within populations and later maintained in genomes. Long-standing debates on the evolution of gene duplications could be settled by determining the relative importance of genetic drift vs. positive selection in the fixation of new gene duplicates. Using the Drosophila Global Diversity Lines (GDL), we have combined genome-wide SNP polymorphism data with a novel set of copy number variant calls and gene expression profiles to characterize the polymorphic phase of new genes. We found that approximately half of the roughly 500 new complete gene duplications segregating in the GDL lead to significant increases in the expression levels of the duplicated genes and that these duplications are more likely to be found at lower frequencies, suggesting a negative impact on fitness. However, we also found that six of the nine gene duplications that are fixed or close to fixation in at least one of the five populations in our study show signs of being under positive selection, and that these duplications are likely beneficial because of dosage effects, with a possible role for additional mutations in two duplications. Our work suggests that in Drosophila, theoretical models that posit that gene duplications are immediately beneficial and fixed by positive selection are most relevant to explain the long-term evolution of gene duplications in this species. PMID:27197209

  18. From vestigial to vestigial-like: the Drosophila gene that has taken wing.

    PubMed

    Simon, Emilie; Faucheux, Corinne; Zider, Alain; Thézé, Nadine; Thiébaud, Pierre

    2016-07-01

    The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.

  19. The Tolkin Gene Is a Tolloid/Bmp-1 Homologue That Is Essential for Drosophila Development

    PubMed Central

    Finelli, A. L.; Xie, T.; Bossie, C. A.; Blackman, R. K.; Padgett, R. W.

    1995-01-01

    The Drosophila decapentaplegic (dpp) gene, a member of the tranforming growth factor β superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interaction between tolloid and dpp suggests a model in which the tolloid protein participates in a complex containing the DPP ligand, its protease serving to activate DPP, either directly or indirectly. We report here the identification and cloning of another Drosophila member of the tolloid/bone morphogenic protein (BMP) 1 family, tolkin, which is located 700 bp 5' to tolloid. Its overall structure is like tolloid, with an N-terminal metalloprotease domain, five complement subcomponents C1r/C1s, Uegf, and Bmp1 (CUB) repeats and two epidermal growth factor (EGF) repeats. Its expression pattern overlaps that of tolloid and dpp in early embryos and diverges in later stages. In larval tissues, both tolloid and tolkin are expressed uniformly in the imaginal disks. In the brain, both tolloid and tolkin are expressed in the outer proliferation center, whereas tolkin has another stripe of expression near the outer proliferation center. Analysis of lethal mutations in tolkin indicate it is vital during larval and pupal stages. Analysis of its mutant phenotypes and expression patterns suggests that its functions may be mostly independent of tolloid and dpp. PMID:8536976

  20. Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene

    PubMed Central

    Hess, Norbert K.; Singer, Phillip A.; Trinh, Kien; Nikkhoy, Massoud; Bernstein, Sanford I.

    2007-01-01

    We show that a 2.6 kb fragment of the muscle myosin heavy-chain gene (Mhc) of Drosophila melanogaster (containing 458 base pairs of upstream sequence, the first exon, the first intron and the beginning of the second exon) drives expression in all muscles. Comparison of the minimal promoter to Mhc genes of ten Drosophila species identified putative regulatory elements in the upstream region and in the first intron. The first intron is required for expression in four small cells of the tergal depressor of the trochanter (jump) muscle and in the indirect flight muscle. The 3′ end of this intron is important for Mhc transcription in embryonic body wall muscle and contains AT–rich elements that are protected from DNase I digestion by nuclear proteins of Drosophila embryos. Sequences responsible for expression in embryonic, adult body wall and adult head muscles are present both within and outside the intron. Elements important for expression in leg muscles and in the large cells of the jump muscle flank the intron. We conclude that multiple transcriptional regulatory elements are responsible for Mhc expression in specific sets of Drosophila muscles. PMID:17194628

  1. Local similarity search to find gene indicators in mitochondrial genomes.

    PubMed

    Moritz, Ruby L V; Bernt, Matthias; Middendorf, Martin

    2014-03-11

    Given a set of nucleotide sequences we consider the problem of identifying conserved substrings occurring in homologous genes in a large number of sequences. The problem is solved by identifying certain nodes in a suffix tree containing all substrings occurring in the given nucleotide sequences. Due to the large size of the targeted data set, our approach employs a truncated version of suffix trees. Two methods for this task are introduced: (1) The annotation guided marker detection method uses gene annotations which might contain a moderate number of errors; (2) The probability based marker detection method determines sequences that appear significantly more often than expected. The approach is successfully applied to the mitochondrial nucleotide sequences, and the corresponding annotations that are available in RefSeq for 2989 metazoan species. We demonstrate that the approach finds appropriate substrings.

  2. Regulation of the segmentation gene fushi tarazu has been functionally conserved in Drosophila.

    PubMed Central

    Maier, D; Preiss, A; Powell, J R

    1990-01-01

    An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila. Images Fig. 2. Fig. 6. PMID:2174353

  3. sry h-1, a new Drosophila melanogaster multifingered protein gene showing maternal and zygotic expression.

    PubMed Central

    Vincent, A; Kejzlarovà-Lepesant, J; Segalat, L; Yanicostas, C; Lepesant, J A

    1988-01-01

    Low-stringency hybridization of the Drosophila serendipity (sry) finger-coding sequences revealed copies of homologous DNA sequences in the genomes of members of the family Drosophilidae and higher vertebrates. sry h-1, a new Drosophila finger protein-coding gene isolated on the basis of this homology, encodes a 3.2-kilobase (kb) mRNA accumulating in eggs and abundant in early embryos. The predicted sry h-1 protein product, starting at an internal initiation site of translation, is a 868-amino-acid basic polypeptide containing eight TFIIIA-like fingers encoded by three separate exons. Links separating individual fingers in the sry h-1 protein are variable in length and sequence, in contrast with the invariant H/C link found in most multi-fingered proteins. The similarity of the developmental pattern of transcription of sry h-1 with that of several other Drosophila finger protein genes suggests the existence of a complex set of such genes encoding an information which is, at least partly, maternally provided to the embryo and required for activation of gene transcription in early embryos or maintenance of gene activity during subsequent development. Images PMID:3141791

  4. Neutral evolution of the sex-determining gene transformer in Drosophila.

    PubMed Central

    McAllister, B F; McVean, G A

    2000-01-01

    The amino acid sequence of the transformer (tra) gene exhibits an extremely rapid rate of evolution among Drosophila species, although the gene performs a critical step in sex determination. These changes in amino acid sequence are the result of either natural selection or neutral evolution. To differentiate between selective and neutral causes of this evolutionary change, analyses of both intraspecific and interspecific patterns of molecular evolution of tra gene sequences are presented. Sequences of 31 tra alleles were obtained from Drosophila americana. Many replacement and silent nucleotide variants are present among the alleles; however, the distribution of this sequence variation is consistent with neutral evolution. Sequence evolution was also examined among six species representative of the genus Drosophila. For most lineages and most regions of the gene, both silent and replacement substitutions have accumulated in a constant, clock-like manner. In exon 3 of D. virilis and D. americana we find evidence for an elevated rate of nonsynonymous substitution, but no statistical support for a greater rate of nonsynonymous relative to synonymous substitutions. Both levels of analysis of the tra sequence suggest that, although the gene is evolving at a rapid pace, these changes are neutral in function. PMID:10747064

  5. Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone

    SciTech Connect

    Amin, J.; Voellmy, R. ); Mestril, R. )

    1991-12-01

    Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been stimulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. The authors report here that the shp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reported constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.

  6. Higher frequency of intron loss from the promoter proximally paused genes of Drosophila melanogaster.

    PubMed

    Jiang, Li; Li, Xue-Nan; Niu, Deng-Ke

    2014-01-01

    Although intron losses have been widely reported, it is not clear whether they are neutral and therefore random or driven by positive selection. Intron transcription and splicing are time-consuming and can delay the expression of its host gene. For genes that must be activated quickly to respond to physiological or stress signals, intron delay may be deleterious. Promoter proximally paused (PPP) genes are a group of rapidly expressed genes. To respond quickly to activation signals, they generally initiate transcription competently but stall after synthesizing a short RNA. In this study, performed in Drosophila melanogaster, the PPP genes were found to have a significantly higher rate of intron loss than control genes. However, further analysis did not find more significant shrinkage of intron size in PPP genes. Referring to previous studies on the rates of transcription and splicing and to the time saved by deletion of the introns from mouse gene Hes7, it is here suggested that transcription delay is comparable to splicing delay only when the intron is 28.5 kb or larger, which is greater in size than 95% of vertebrate introns, 99.5% of Drosophila introns, and all the annotated introns of Saccharomyces cerevisiae and Arabidopsis thaliana. Delays in intron splicing are probably a selective force, promoting intron loss from quickly expressed genes. In other genes, it may have been an exaptation during the emergency of developmental clocks.

  7. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.

    PubMed

    Casola, Claudio; Lawing, A Michelle; Betrán, Esther; Feschotte, Cédric

    2007-08-01

    The P instability factor or PIF superfamily of DNA transposons constitutes an important group of transposable elements (TEs) in plants, but it is still poorly characterized in metazoans. Taking advantage of the availability of draft genome sequences for twelve Drosophila species, we discovered 4 different lineages of Drosophila PIF-like transposons, named DPLT1-4. These lineages have experienced a complex evolutionary history during the Drosophila radiation, involving differential amplification and retention among species and probable events of horizontal transmission. Like previously described plant and animal PIF transposons, full-length DPLTs encode a putative transposase as well as a second predicted protein containing a Myb/SANT domain. In DPLTs, this domain is most closely related to the MADF DNA-binding domain found in several Drosophila transcription factors. In addition, we identified 7 distinct genes distributed across the Drosophila genus that encode proteins related to PIF transposases, but lack the hallmarks of transposons. Instead, these sequences show features of functional genes, such as an intact coding region evolving under purifying selection, the presence of orthologs in at least 2 Drosophila species, and the conservation of intron/exon structure across orthologs. We also provide evidence that most of these genes are transcribed and that some are developmentally regulated. Together the data indicate that these genes derived from PIF-transposons that have been "domesticated" to serve cellular functions. In one instance the recruitment of the transposase gene was accompanied by the co-recruitment of the adjacent second PIF gene, which raises the hypothesis that both proteins now function in the same pathway. The second PIF gene has retained the capacity to encode a protein with an intact MADF domain, suggesting that it may function as a transcription factor. We conclude that PIF transposons are common in the Drosophila lineage and have been a

  8. The Complete Mitochondrial Genome of Aleurocanthus camelliae: Insights into Gene Arrangement and Genome Organization within the Family Aleyrodidae

    PubMed Central

    Chen, Shi-Chun; Wang, Xiao-Qing; Li, Pin-Wu; Hu, Xiang; Wang, Jin-Jun; Peng, Ping

    2016-01-01

    There are numerous gene rearrangements and transfer RNA gene absences existing in mitochondrial (mt) genomes of Aleyrodidae species. To understand how mt genomes evolved in the family Aleyrodidae, we have sequenced the complete mt genome of Aleurocanthus camelliae and comparatively analyzed all reported whitefly mt genomes. The mt genome of A. camelliae is 15,188 bp long, and consists of 13 protein-coding genes, two rRNA genes, 21 tRNA genes and a putative control region (GenBank: KU761949). The tRNA gene, trnI, has not been observed in this genome. The mt genome has a unique gene order and shares most gene boundaries with Tetraleurodes acaciae. Nineteen of 21 tRNA genes have the conventional cloverleaf shaped secondary structure and two (trnS1 and trnS2) lack the dihydrouridine (DHU) arm. Using ARWEN and homologous sequence alignment, we have identified five tRNA genes and revised the annotation for three whitefly mt genomes. This result suggests that most absent genes exist in the genomes and have not been identified, due to be lack of technology and inference sequence. The phylogenetic relationships among 11 whiteflies and Drosophila melanogaster were inferred by maximum likelihood and Bayesian inference methods. Aleurocanthus camelliae and T. acaciae form a sister group, and all three Bemisia tabaci and two Bemisia afer strains gather together. These results are identical to the relationships inferred from gene order. We inferred that gene rearrangement plays an important role in the mt genome evolved from whiteflies. PMID:27827992

  9. The Complete Mitochondrial Genome of Aleurocanthus camelliae: Insights into Gene Arrangement and Genome Organization within the Family Aleyrodidae.

    PubMed

    Chen, Shi-Chun; Wang, Xiao-Qing; Li, Pin-Wu; Hu, Xiang; Wang, Jin-Jun; Peng, Ping

    2016-11-07

    There are numerous gene rearrangements and transfer RNA gene absences existing in mitochondrial (mt) genomes of Aleyrodidae species. To understand how mt genomes evolved in the family Aleyrodidae, we have sequenced the complete mt genome of Aleurocanthus camelliae and comparatively analyzed all reported whitefly mt genomes. The mt genome of A. camelliae is 15,188 bp long, and consists of 13 protein-coding genes, two rRNA genes, 21 tRNA genes and a putative control region (GenBank: KU761949). The tRNA gene, trnI, has not been observed in this genome. The mt genome has a unique gene order and shares most gene boundaries with Tetraleurodes acaciae. Nineteen of 21 tRNA genes have the conventional cloverleaf shaped secondary structure and two (trnS₁ and trnS₂) lack the dihydrouridine (DHU) arm. Using ARWEN and homologous sequence alignment, we have identified five tRNA genes and revised the annotation for three whitefly mt genomes. This result suggests that most absent genes exist in the genomes and have not been identified, due to be lack of technology and inference sequence. The phylogenetic relationships among 11 whiteflies and Drosophila melanogaster were inferred by maximum likelihood and Bayesian inference methods. Aleurocanthus camelliae and T. acaciae form a sister group, and all three Bemisia tabaci and two Bemisia afer strains gather together. These results are identical to the relationships inferred from gene order. We inferred that gene rearrangement plays an important role in the mt genome evolved from whiteflies.

  10. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition

    PubMed Central

    Artiga, Daniel J.; Abiria, Sunday A.; Clapham, David E.

    2016-01-01

    During the mitochondrial permeability transition, a large channel in the inner mitochondrial membrane opens, leading to the loss of multiple mitochondrial solutes and cell death. Key triggers include excessive reactive oxygen species and mitochondrial calcium overload, factors implicated in neuronal and cardiac pathophysiology. Examining the differential behavior of mitochondrial Ca2+ overload in Drosophila versus human cells allowed us to identify a gene, MCUR1, which, when expressed in Drosophila cells, conferred permeability transition sensitive to electrophoretic Ca2+ uptake. Conversely, inhibiting MCUR1 in mammalian cells increased the Ca2+ threshold for inducing permeability transition. The effect was specific to the permeability transition induced by Ca2+, and such resistance to overload translated into improved cell survival. Thus, MCUR1 expression regulates the Ca2+ threshold required for permeability transition. PMID:26976564

  11. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition.

    PubMed

    Chaudhuri, Dipayan; Artiga, Daniel J; Abiria, Sunday A; Clapham, David E

    2016-03-29

    During the mitochondrial permeability transition, a large channel in the inner mitochondrial membrane opens, leading to the loss of multiple mitochondrial solutes and cell death. Key triggers include excessive reactive oxygen species and mitochondrial calcium overload, factors implicated in neuronal and cardiac pathophysiology. Examining the differential behavior of mitochondrial Ca(2+) overload in Drosophila versus human cells allowed us to identify a gene, MCUR1, which, when expressed in Drosophila cells, conferred permeability transition sensitive to electrophoretic Ca(2+) uptake. Conversely, inhibiting MCUR1 in mammalian cells increased the Ca(2+) threshold for inducing permeability transition. The effect was specific to the permeability transition induced by Ca(2+), and such resistance to overload translated into improved cell survival. Thus, MCUR1 expression regulates the Ca(2+) threshold required for permeability transition.

  12. TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila.

    PubMed

    Hochheimer, Andreas; Zhou, Sharleen; Zheng, Shuang; Holmes, Michael C; Tjian, Robert

    2002-11-28

    Drosophila TATA-box-binding protein (TBP)-related factor 2 (TRF2) is a member of a family of TBP-related factors present in metazoan organisms. Recent evidence suggests that TRF2s are required for proper embryonic development and differentiation. However, true target promoters and the mechanisms by which TRF2 operates to control transcription remain elusive. Here we report the antibody affinity purification of a Drosophila TRF2-containing complex that contains components of the nucleosome remodelling factor (NURF) chromatin remodelling complex as well as the DNA replication-related element (DRE)-binding factor DREF. This latter finding led us to potential target genes containing TRF2-responsive promoters. We have used a combination of in vitro and in vivo assays to show that the DREF-containing TRF2 complex directs core promoter recognition of the proliferating cell nuclear antigen (PCNA) gene. We also identified additional TRF2-responsive target genes involved in DNA replication and cell proliferation. These data suggest that TRF2 functions as a core promoter-selectivity factor responsible for coordinating transcription of a subset of genes in Drosophila.

  13. New candidate genes for heat resistance in Drosophila melanogaster are regulated by HSF.

    PubMed

    Jensen, Louise Toft; Nielsen, Morten Muhlig; Loeschcke, Volker

    2008-01-01

    The cellular heat stress response is well studied in Drosophila in respect to the role of heat shock proteins (Hsp). Hsps are molecular chaperones, highly expressed during and after exposure to numerous stress types. Hsps are all regulated by a common transcription factor, the heat shock factor (HSF), and it is known that HSF is controlling other, so far uncharacterised, heat-responsive genes. In this study, we investigate whether novel candidate genes for heat resistance, identified by microarray experiments, are regulated by HSF. The microarray experiments recently identified several strongly upregulated genes in response to a short, non-lethal heat treatment in Drosophila melanogaster. To test whether or not a subset of these genes are HSF-induced, we studied 11 currently unannotated genes using quantitative polymerase chain reaction on HSF mutant flies with a non-functional HSF at elevated temperatures. We found indication of HSF regulation in most of the studied genes, suggesting a role of these unknown genes in heat tolerance. Surprisingly, some of the genes seemed to be upregulated independent of HSF function. The high induction in response to heat, which mimics the expression profile of Hsps, implies a role in the cellular heat response of these genes as well.

  14. No effect of mitochondrial genotype on reproductive plasticity following exposure to a non-infectious pathogen challenge in female or male Drosophila

    PubMed Central

    Nystrand, M.; Cassidy, E. J.; Dowling, D. K.

    2017-01-01

    Mitochondrial genetic variation shapes the expression of life-history traits associated with reproduction, development and survival, and has also been associated with the prevalence and progression of infectious bacteria and viruses in humans. The breadth of these effects on multifaceted components of health, and their link to disease susceptibility, led us to test whether variation across mitochondrial haplotypes affected reproductive success following an immune challenge in the form of a non-infectious pathogen. We test this, by challenging male and female fruit flies (Drosophila melanogaster), harbouring each of three distinct mitochondrial haplotypes in an otherwise standardized genetic background, to either a mix of heat-killed bacteria, or a procedural control, prior to measuring their subsequent reproductive performance. The effect of the pathogen challenge on reproductive success did not differ across mitochondrial haplotypes; thus there was no evidence that patterns of reproductive plasticity were modified by the mitochondrial genotype following a non-infectious pathogen exposure. We discuss the implications of our data, and suggest future research avenues based on these results. PMID:28181526

  15. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    PubMed

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  16. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

    PubMed Central

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-01

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325

  17. Evolutionary Techniques for Image Processing a Large Dataset of Early Drosophila Gene Expression

    NASA Astrophysics Data System (ADS)

    Spirov, Alexander; Holloway, David M.

    2003-12-01

    Understanding how genetic networks act in embryonic development requires a detailed and statistically significant dataset integrating diverse observational results. The fruit fly ( Drosophila melanogaster) is used as a model organism for studying developmental genetics. In recent years, several laboratories have systematically gathered confocal microscopy images of patterns of activity (expression) for genes governing early Drosophila development. Due to both the high variability between fruit fly embryos and diverse sources of observational errors, some new nontrivial procedures for processing and integrating the raw observations are required. Here we describe processing techniques based on genetic algorithms and discuss their efficacy in decreasing observational errors and illuminating the natural variability in gene expression patterns. The specific developmental problem studied is anteroposterior specification of the body plan.

  18. Testing for asymmetrical gene flow in a Drosophila melanogaster body-size cline.

    PubMed Central

    Kennington, W Jason; Gockel, Julia; Partridge, Linda

    2003-01-01

    Asymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations. PMID:14573478

  19. Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila.

    PubMed

    Liao, Jennifer; Seggio, Joseph A; Ahmad, S Tariq

    2016-04-01

    Clock genes, such as period, which maintain an organism's circadian rhythm, can have profound effects on metabolic activity, including ethanol metabolism. In turn, ethanol exposure has been shown in Drosophila and mammals to cause disruptions of the circadian rhythm. Previous studies from our labs have shown that larval ethanol exposure disrupted the free-running period and period expression of Drosophila. In addition, a recent study has shown that arrhythmic flies show no tolerance to ethanol exposure. As such, Drosophila period mutants, which have either a shorter than wild-type free-running period (perS) or a longer one (perL), may also exhibit altered responses to ethanol due to their intrinsic circadian differences. In this study, we tested the initial sensitivity and tolerance of ethanol exposure on Canton-S, perS, and perL, and then measured their Alcohol Dehydrogenase (ADH) and body ethanol levels. We showed that perL flies had slower sedation rate, longer recovery from ethanol sedation, and generated higher tolerance for sedation upon repeated ethanol exposure compared to Canton-S wild-type flies. Furthermore, perL flies had lower ADH activity and had a slower ethanol clearance compared to wild-type flies. The findings of this study suggest that period mutations influence ethanol induced behavior and ethanol metabolism in Drosophila and that flies with longer circadian periods are more sensitive to ethanol exposure.

  20. An enhancer trap screen for ecdysone-inducible genes required for Drosophila adult leg morphogenesis.

    PubMed Central

    Gates, J; Thummel, C S

    2000-01-01

    Although extensive studies of Drosophila imaginal disc development have focused on proliferation and patterning, relatively little is known about how the patterned imaginal discs are transformed into adult structures during metamorphosis. Studies focused primarily on leg development have shown that this remarkable transformation is coordinated by pulses of the steroid hormone ecdysone and requires the function of ecdysone-inducible transcription factors as well as proteases and components of the contractile cytoskeleton and adherens junctions. Here, we describe a genetic screen aimed at expanding our understanding of the hormonal regulation of Drosophila adult leg morphogenesis. We screened 1300 lethal P-element enhancer trap insertions on the second chromosome for a series of sequential parameters including pupal lethality, defects in leg morphogenesis, and ecdysone-induced lacZ reporter gene expression. From this screen we identified four mutations, one of which corresponds to bancal, which encodes the Drosophila homolog of hnRNP K. We also identified vulcan, which encodes a protein that shares sequence similarity with a family of rat SAPAP proteins. Both bancal and vulcan are inducible by ecdysone, thus linking the hormone signal with leg morphogenesis. This screen provides new directions for understanding the hormonal regulation of leg development during Drosophila metamorphosis. PMID:11102372

  1. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles.

    PubMed

    Huang, Yanmei; Ng, Fanny S; Jackson, F Rob

    2015-02-04

    The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translating Ribosome Affinity Purification (TRAP)-RNA-seq methods to derive the genome-wide expression profile of Drosophila larval astrocyte-like cells (hereafter referred to as astrocytes) for the first time. These studies identified hundreds of larval astrocyte-enriched genes that encode proteins important for metabolism, energy production, and protein synthesis, consistent with the known role of astrocytes in the metabolic support of neurons. Comparison of the larval profile with that observed for adults has identified genes with astrocyte-enriched expression specific to adulthood. These include genes important for metabolism and energy production, translation, chromatin modification, protein glycosylation, neuropeptide signaling, immune responses, vesicle-mediated trafficking or secretion, and the regulation of behavior. Among these functional classes, the expression of genes important for chromatin modification and vesicle-mediated trafficking or secretion is overrepresented in adult astrocytes based on Gene Ontology analysis. Certain genes with selective adult enrichment may mediate functions specific to this stage or may be important for the differentiation or maintenance of adult astrocytes, with the latter perhaps contributing to population heterogeneity.

  2. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes

    PubMed Central

    Lin, Michael F.; Carlson, Joseph W.; Crosby, Madeline A.; Matthews, Beverley B.; Yu, Charles; Park, Soo; Wan, Kenneth H.; Schroeder, Andrew J.; Gramates, L. Sian; St. Pierre, Susan E.; Roark, Margaret; Wiley, Kenneth L.; Kulathinal, Rob J.; Zhang, Peili; Myrick, Kyl V.; Antone, Jerry V.; Celniker, Susan E.; Gelbart, William M.; Kellis, Manolis

    2007-01-01

    The availability of sequenced genomes from 12 Drosophila species has enabled the use of comparative genomics for the systematic discovery of functional elements conserved within this genus. We have developed quantitative metrics for the evolutionary signatures specific to protein-coding regions and applied them genome-wide, resulting in 1193 candidate new protein-coding exons in the D. melanogaster genome. We have reviewed these predictions by manual curation and validated a subset by directed cDNA screening and sequencing, revealing both new genes and new alternative splice forms of known genes. We also used these evolutionary signatures to evaluate existing gene annotations, resulting in the validation of 87% of genes lacking descriptive names and identifying 414 poorly conserved genes that are likely to be spurious predictions, noncoding, or species-specific genes. Furthermore, our methods suggest a variety of refinements to hundreds of existing gene models, such as modifications to translation start codons and exon splice boundaries. Finally, we performed directed genome-wide searches for unusual protein-coding structures, discovering 149 possible examples of stop codon readthrough, 125 new candidate ORFs of polycistronic mRNAs, and several candidate translational frameshifts. These results affect >10% of annotated fly genes and demonstrate the power of comparative genomics to enhance our understanding of genome organization, even in a model organism as intensively studied as Drosophila melanogaster. PMID:17989253

  3. Cytogenetic and Molecular Characterization of Heterochromatin Gene Models in Drosophila melanogaster

    PubMed Central

    Rossi, Fabrizio; Moschetti, Roberta; Caizzi, Ruggiero; Corradini, Nicoletta; Dimitri, Patrizio

    2007-01-01

    In the past decade, genome-sequencing projects have yielded a great amount of information on DNA sequences in several organisms. The release of the Drosophila melanogaster heterochromatin sequence by the Drosophila Heterochromatin Genome Project (DHGP) has greatly facilitated studies of mapping, molecular organization, and function of genes located in pericentromeric heterochromatin. Surprisingly, genome annotation has predicted at least 450 heterochromatic gene models, a figure 10-fold above that defined by genetic analysis. To gain further insight into the locations and functions of D. melanogaster heterochromatic genes and genome organization, we have FISH mapped 41 gene models relative to the stained bands of mitotic chromosomes and the proximal divisions of polytene chromosomes. These genes are contained in eight large scaffolds, which together account for ∼1.4 Mb of heterochromatic DNA sequence. Moreover, developmental Northern analysis showed that the expression of 15 heterochromatic gene models tested is similar to that of the vital heterochromatic gene Nipped-A, in that it is not limited to specific stages, but is present throughout all development, despite its location in a supposedly “silent” region of the genome. This result is consistent with the idea that genes resident in heterochromatin can encode essential functions. PMID:17110485

  4. Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system.

    PubMed

    Park, So Young; Kim, Young-Shin; Yang, Dong-Jin; Yoo, Mi-Ae

    2004-01-01

    Reactive oxygen species (ROS) cause oxidative stress and aging. The catalase gene is a key component of the cellular antioxidant defense network. However, the molecular mechanisms that regulate catalase gene expression are poorly understood. In this study, we have identified a DNA replication-related element (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila catalase gene. Gel mobility shift assays revealed that a previously identified factor called DREF (DRE- binding factor) binds to the DRE sequence in the Drosophila catalase gene. We used site-directed mutagenesis and in vitro transient transfection assays to establish that expression of the catalase gene is regulated by DREF through the DRE site. To explore the role of DRE/DREF in vivo, we established transgenic flies carrying a catalase-lacZ fusion gene with or without mutation in the DRE. The beta-galactosidase expression patterns of these reporter transgenic lines demonstrated that the catalase gene is upregulated by DREF through the DRE sequence. In addition, we observed suppression of the ectopic DREF-induced rough eye phenotype by a catalase amorphic Cat(n1) allele, indicating that DREF activity is modulated by the intracellular redox state. These results indicate that the DRE/DREF system is a key regulator of catalase gene expression and provide evidence of cross-talk between the DRE/DREF system and the antioxidant defense system.

  5. Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells.

    PubMed

    Grönholm, Juha; Kaustio, Meri; Myllymäki, Henna; Kallio, Jenni; Saarikettu, Juha; Kronhamn, Jesper; Valanne, Susanna; Silvennoinen, Olli; Rämet, Mika

    2012-03-01

    The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.

  6. A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes

    PubMed Central

    Yang, Shuang; Jiang, Yu; Chen, Yuan; Zhao, Ruoping; Zhang, Yue; Zhang, Guojie; Dong, Yang; Yu, Haijing; Zhou, Qi; Wang, Wen

    2010-01-01

    Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes. PMID:21203494

  7. Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome.

    PubMed

    Meisel, Richard P; Hilldorfer, Benedict B; Koch, Jessica L; Lockton, Steven; Schaeffer, Stephen W

    2010-08-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to "escape" X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined--one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are fixed

  8. Head and tail development of the Drosophila embryo involves spalt, a novel homeotic gene

    PubMed Central

    Jürgens, Gerd

    1988-01-01

    Mutations in spalt (sal), a novel homeotic gene on the second chromosome of Drosophila, cause opposite transformations in two subterminal regions of the embryo: posterior head segments are transformed into anterior thoracic structures and anterior tail segments are transformed into posterior abdominal structures. The embryonic phenotypes of double mutants for sal and various Antennapedia (ANT-C) or bithorax (BX-C) genes indicate that sal acts independently of the hierarchical order of the latter gene complexes. Trans-regulatory gene mutations causing ectopic expression of ANT-C and BX-C genes do not change the realms of sal action. It is proposed that the region-specific action of the sal gene primarily promotes head as opposed to trunk development, while the BX-C gene AbdB distinguishes tail from head. Images PMID:16453820

  9. Gene trees reveal repeated instances of mitochondrial DNA introgression in orangethroat darters (percidae: etheostoma).

    PubMed

    Bossu, Christen M; Near, Thomas J

    2009-02-01

    Phylogenies of closely related animal species are often inferred using mitochondrial DNA (mtDNA) gene sequences. The accuracy of mtDNA gene trees is compromised through hybridization that leads to introgression of mitochondrial genomes. Using DNA sequences from 6 single-copy nuclear genes and 2 regions of the mitochondrial genome, we investigated the temporal and geographic signature of mitochondrial and nuclear introgression in the Etheostoma spectabile darter clade. Phylogenetic analyses of the nuclear genes result in the monophyly of the E. spectabile clade; however, with respect to sampled specimens of 5 species (Etheostoma fragi, Etheostoma uniporum, Etheostoma pulchellum, Etheostoma burri, and E. spectabile), the mitochondrial phylogeny is inconsistent with E. spectabile clade monophyly. Etheostoma uniporum and E. fragi are both fixed for heterospecific mitochondrial genomes. Limited nuclear introgression is restricted to E. uniporum. Our analyses show that the pattern of introgression is consistently asymmetric, with movement of heterospecific mitochondrial haplotypes and nuclear alleles into E. spectabile clade species; introgressive hybridization spans broad temporal scales; and introgression is restricted to species and populations in the Ozarks. The introgressed mitochondrial genome observed in E. fragi has an obscure phylogenetic placement among darters, an ancient age, and is possibly a mitochondrial fossil from an Etheostoma species that has subsequently gone extinct. These results indicate that introgression, both ancient and more contemporaneous, characterizes the history of diversification in the E. spectabile species clade and may be relatively common among clades comprising the species-rich North American freshwater fauna.

  10. Structure and expression of the Drosophila ubiquitin-80-amino-acid fusion-protein gene.

    PubMed Central

    Barrio, R; del Arco, A; Cabrera, H L; Arribas, C

    1994-01-01

    In the fruitfly Drosophila, as in all eukaryotes examined so far, some ubiquitin-coding sequences appear fused to unrelated open reading frames. Two of these fusion genes have been previously described (the homologues of UBI1-UBI2 and UBI4 in yeast), and we report here the organization and expression of a third one, the DUb80 gene (the homologue of UBI3 in yeast). This gene encodes a ubiquitin monomer fused to an 80-amino-acid extension which is homologous with the ribosomal protein encoded by the UB13 gene. The 5' regulatory region of DUb80 shares common features with another ubiquitin fusion gene, DUb52, and with the ribosomal protein genes of Drosophila, Xenopus and mouse. We also find helix-loop-helix protein-binding sequences (E-boxes). The DUb80 gene is transcribed to a 0.9 kb mRNA which is particularly abundant under conditions of high protein synthesis, such as in ovaries and exponentially growing cells. Images Figure 3 Figure 4 PMID:8068011

  11. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    PubMed

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  12. Transcriptional regulation of the Drosophila orc2 gene by the DREF pathway.

    PubMed

    Okudaira, Koji; Ohno, Katsuhito; Yoshida, Hideki; Asano, Maki; Hirose, Fumiko; Yamaguchi, Masamitsu

    2005-12-30

    DNA replication-related element (DRE) and the DRE-binding factor (DREF) play an important role in regulating DNA replication-related genes such as PCNA and DNA polymerase alpha in Drosophila. We have previously reported that overexpression of DREF in developing eye imaginal discs induced ectopic DNA synthesis and apoptosis, which results in rough eyes. To identify genetic interactants with the DREF gene, we have carried out a screen for modifiers of the rough eye phenotype. One of the suppressor genes identified was the Drosophila orc2 gene. A search for known transcription factor recognition sites revealed that the orc2 gene contains three DREs, named DRE1 (+14 to +21), DRE2 (-205 to -198), and DRE3 (-709 to -702). Band mobility shift analysis using Kc cell nuclear extracts detected the specific complex formed between DREF and the DRE1 or DRE2. Specific binding of DREF to genomic region containing the DRE1 or DRE2 was further demonstrated by chromatin immunoprecipitation assays, suggesting that these are the genuine complexes formed in vivo. The luciferase assay in Kc cells indicated that the DRE sites in the orc2 promoter are involved in a transcriptional regulation of the orc2 gene. The results, taken together, demonstrate that the orc2 gene is under the control of DREF pathway.

  13. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities

    PubMed Central

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L.; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-01-01

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1–4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Polpo) and aldehyde oxidase-1 (Aldox-1n1) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Polpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Polpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1n1 phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays. PMID:24737760

  14. Identification of Genes Underlying Hypoxia Tolerance in Drosophila by a P-element Screen

    PubMed Central

    Azad, Priti; Zhou, Dan; Zarndt, Rachel; Haddad, Gabriel G.

    2012-01-01

    Hypoxia occurs in physiologic conditions (e.g. high altitude) or during pathologic states (e.g. ischemia). Our research is focused on understanding the molecular mechanisms that lead to adaptation and survival or injury to hypoxic stress using Drosophila as a model system. To identify genes involved in hypoxia tolerance, we screened the P-SUP P-element insertion lines available for all the chromosomes of Drosophila. We screened for the eclosion rates of embryos developing under 5% O2 condition and the number of adult flies surviving one week after eclosion in the same hypoxic environment. Out of 2187 lines (covering ∼1870 genes) screened, 44 P-element lines representing 44 individual genes had significantly higher eclosion rates (i.e. >70%) than those of the controls (i.e. ∼7–8%) under hypoxia. The molecular function of these candidate genes ranged from cell cycle regulation, DNA or protein binding, GTP binding activity, and transcriptional regulators. In addition, based on pathway analysis, we found these genes are involved in multiple pathways, such as Notch, Wnt, Jnk, and Hedgehog. Particularly, we found that 20 out of the 44 candidate genes are linked to Notch signaling pathway, strongly suggesting that this pathway is essential for hypoxia tolerance in flies. By employing the UAS/RNAi-Gal4 system, we discovered that genes such as osa (linked to Wnt and Notch pathways) and lqf (Notch regulator) play an important role in survival and development under hypoxia in Drosophila. Based on these results and our previous studies, we conclude that hypoxia tolerance is a polygenic trait including the Notch pathway. PMID:23050227

  15. Drosophila melanogaster genes for U1 snRNA variants and their expression during development.

    PubMed Central

    Lo, P C; Mount, S M

    1990-01-01

    We have cloned and characterized a complete set of seven U1-related sequences from Drosophila melanogaster. These sequences are located at the three cytogenetic loci 21D, 82E, and 95C. Three of these sequences have been previously studied: one U1 gene at 21D which encodes the prototype U1 sequence (U1a), one U1 gene at 82E which encodes a U1 variant with a single nucleotide substitution (U1b), and a pseudogene at 82E. The four previously uncharacterized genes are another U1b gene at 82E, two additional U1a genes at 95C, and a U1 gene at 95C which encodes a new variant (U1c) with a distinct single nucleotide change relative to U1a. Three blocks of 5' flanking sequence similarity are common to all six full length genes. Using specific primer extension assays, we have observed that the U1b RNA is expressed in Drosophila Kc cells and is associated with snRNP proteins, suggesting that the U1b-containing snRNP particles are able to participate in the process of pre-mRNA splicing. We have also examined the expression throughout Drosophila development of the two U1 variants relative to the prototype sequence. The U1c variant is undetectable by our methods, while the U1b variant exhibits a primarily embryonic pattern reminiscent of the expression of certain U1 variants in sea urchin, Xenopus, and mouse. Images PMID:2124674

  16. Genes of the Mitochondrial Apoptotic Pathway in Mytilus galloprovincialis

    PubMed Central

    Figueras, Antonio; Novoa, Beatriz

    2013-01-01

    Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress. PMID:23626691

  17. SlgA, the homologue of the human schizophrenia associated PRODH gene, acts in clock neurons to regulate Drosophila aggression.

    PubMed

    Zwarts, Liesbeth; Vulsteke, Veerle; Buhl, Edgar; Hodge, James J L; Callaerts, Patrick

    2017-03-22

    Mutations in proline dehydrogenase (PRODH) are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. We here establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knock-down and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of mechanisms impaired in neuropsychiatric disorders.

  18. A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster

    PubMed Central

    Patel, Maulik R; Miriyala, Ganesh K; Littleton, Aimee J; Yang, Heiko; Trinh, Kien; Young, Janet M; Kennedy, Scott R; Yamashita, Yukiko M; Pallanck, Leo J; Malik, Harmit S

    2016-01-01

    Due to their strict maternal inheritance in most animals and plants, mitochondrial genomes are predicted to accumulate mutations that are beneficial or neutral in females but harmful in males. Although a few male-harming mtDNA mutations have been identified, consistent with this ‘Mother’s Curse’, their effect on females has been largely unexplored. Here, we identify COIIG177S, a mtDNA hypomorph of cytochrome oxidase II, which specifically impairs male fertility due to defects in sperm development and function without impairing other male or female functions. COIIG177S represents one of the clearest examples of a ‘male-harming’ mtDNA mutation in animals and suggest that the hypomorphic mtDNA mutations like COIIG177S might specifically impair male gametogenesis. Intriguingly, some D. melanogaster nuclear genetic backgrounds can fully rescue COIIG177S -associated sterility, consistent with previously proposed models that nuclear genomes can regulate the phenotypic manifestation of mtDNA mutations. DOI: http://dx.doi.org/10.7554/eLife.16923.001 PMID:27481326

  19. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm.

    PubMed

    Fowlkes, Charless C; Hendriks, Cris L Luengo; Keränen, Soile V E; Weber, Gunther H; Rübel, Oliver; Huang, Min-Yu; Chatoor, Sohail; DePace, Angela H; Simirenko, Lisa; Henriquez, Clara; Beaton, Amy; Weiszmann, Richard; Celniker, Susan; Hamann, Bernd; Knowles, David W; Biggin, Mark D; Eisen, Michael B; Malik, Jitendra

    2008-04-18

    To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos. We establish the method's accuracy by showing that relationships between a pair of genes' expression inferred from the model are nearly identical to those measured in embryos costained for the pair. We present a VirtualEmbryo containing data for 95 genes at six time cohorts. We show that known gene-regulatory interactions can be automatically recovered from this data set and predict hundreds of new interactions.

  20. Origin and Evolution of a Chimeric Fusion Gene in Drosophila subobscura, D. madeirensis and D. guanche

    PubMed Central

    Jones, Corbin D.; Custer, Andrew W.; Begun, David J.

    2005-01-01

    An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5′ promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions. PMID:15781692

  1. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants.

    PubMed

    Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun

    2009-12-01

    Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.

  2. Dietary fatty acids affect mitochondrial phospholipid compositions and mitochondrial gene expression of rainbow trout liver at different ages.

    PubMed

    Almaida-Pagán, P F; De Santis, C; Rubio-Mejía, O L; Tocher, D R

    2015-01-01

    Mitochondria are among the first responders to various stressors that challenge the homeostasis of cells and organisms. Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL), particularly cardiolipin (CL), and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, liver mitochondrial membrane PL compositions, lipid peroxidation, and mtDNA gene expression were analyzed in rainbow trout fed three diets with the same base formulation but with lipid supplied either by fish oil (FO), rapeseed oil (RO), or high DHA oil (DHA) during 6 weeks. Specifically, two feeding trials were performed using fish from the same population of two ages (1 and 3 years), and PL class compositions of liver mitochondria, fatty acid composition of individual PL classes, TBARS content, and mtDNA expression were determined. Dietary fatty acid composition strongly affected mitochondrial membrane composition from trout liver but observed changes did not fully reflect the diet, particularly when it contained high DHA. The changes were PL specific, CL being particularly resistant to changes in DHA. Some significant differences observed in expression of mtDNA with diet may suggest long-term dietary effects in mitochondrial gene expression which could affect electron transport chain function. All the changes were influenced by fish age, which could be related to the different growth rates observed between 1- and 3-year-old trout but that could also indicate age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.

  3. Regulatory Autonomy and Molecular Characterization of the Drosophila Out at First Gene

    PubMed Central

    Bergstrom, D. E.; Merli, C. A.; Cygan, J. A.; Shelby, R.; Blackman, R. K.

    1995-01-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3' of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. PMID:7768442

  4. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  5. Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth.

    PubMed

    Migeon, J C; Garfinkel, M S; Edgar, B A

    1999-06-01

    We identified a new Drosophila gene, peter pan (ppan), in a screen for larval growth-defective mutants. ppan mutant larvae do not grow and show minimal DNA replication but can survive until well after their heterozygotic siblings have pupariated. We cloned the ppan gene by P-element plasmid rescue. ppan belongs to a highly conserved gene family that includes Saccharomyces cerevisiae SSF1 and SSF2, as well as Schizosaccharomyces pombe, Arabidopsis, Caenorhabditis elegans, mouse, and human homologues. Deletion of both SSF1 and SSF2 in yeast is lethal, and depletion of the gene products causes cell division arrest. Mosaic analysis of ppan mutant clones in Drosophila imaginal disks and ovaries demonstrates that ppan is cell autonomous and required for normal mitotic growth but is not absolutely required for general biosynthesis or DNA replication. Overexpression of the wild-type gene causes cell death and disrupts the normal development of adult structures. The ppan gene family appears to have an essential and evolutionarily conserved role in cell growth.

  6. Differential activity of Drosophila Hox genes induces myosin expression and can maintain compartment boundaries.

    PubMed

    Curt, Jesús R; de Navas, Luis F; Sánchez-Herrero, Ernesto

    2013-01-01

    Compartments are units of cell lineage that subdivide territories with different developmental potential. In Drosophila, the wing and haltere discs are subdivided into anterior and posterior (A/P) compartments, which require the activity of Hedgehog, and into dorsal and ventral (D/V) compartments, needing Notch signaling. There is enrichment in actomyosin proteins at the compartment boundaries, suggesting a role for these proteins in their maintenance. Compartments also develop in the mouse hindbrain rhombomeres, which are characterized by the expression of different Hox genes, a group of genes specifying different structures along their main axis of bilaterians. We show here that the Drosophila Hox gene Ultrabithorax can maintain the A/P and D/V compartment boundaries when Hedgehog or Notch signaling is compromised, and that the interaction of cells with and without Ultrabithorax expression induces high levels of non-muscle myosin II. In the absence of Ultrabithorax there is occasional mixing of cells from different segments. We also show a similar role in cell segregation for the Abdominal-B Hox gene. Our results suggest that the juxtaposition of cells with different Hox gene expression leads to their sorting out, probably through the accumulation of non-muscle myosin II at the boundary of the different cell territories. The increase in myosin expression seems to be a general mechanism used by Hox genes or signaling pathways to maintain the segregation of different groups of cells.

  7. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    SciTech Connect

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  8. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  9. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila.

    PubMed Central

    Bonin, Christopher P; Mann, Richard S

    2004-01-01

    P-element-based gene and enhancer trap strategies have provided a wealth of information on the expression and function of genes in Drosophila melanogaster. Here we present a new vector that utilizes the simple insertion requirements of the piggyBac transposon, coupled to a splice acceptor (SA) site fused to the sequence encoding enhanced green fluorescent protein (EGFP) and a transcriptional terminator. Mobilization of the piggyBac splice site gene trap vector (PBss) was accomplished by heat-shock-induced expression of piggyBac transposase (PBase). We show that insertion of PBss into genes leads to fusions between the gene's mRNA and the PBss-encoded EGFP transcripts. As heterozygotes, these fusions report the normal pattern of expression of the trapped gene. As homozygotes, these fusions can inactivate the gene and lead to lethality. Molecular characterization of PBss insertion events shows that they are single copy, that they always occur at TTAA sequences, and that splicing utilizes the engineered splice site in PBss. In those instances where protein-EGFP fusions are predicted to occur, the subcellular localization of the wild-type protein can be inferred from the localization of the EGFP fusion protein. These experiments highlight the utility of the PBss system for expanding the functional genomics tools that are available in Drosophila. PMID:15342518

  10. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster.

    PubMed Central

    Toba, G; Ohsako, T; Miyata, N; Ohtsuka, T; Seong, K H; Aigaki, T

    1999-01-01

    We have constructed a P-element-based gene search vector for efficient detection of genes in Drosophila melanogaster. The vector contains two copies of the upstream activating sequence (UAS) enhancer adjacent to a core promoter, one copy near the terminal inverted repeats at each end of the vector, and oriented to direct transcription outward. Genes were detected on the basis of phenotypic changes caused by GAL4-dependent forced expression of vector-flanking DNA, and the transcripts were identified with reverse transcriptase PCR (RT-PCR) using the vector-specific primer and followed by direct sequencing. The system had a greater sensitivity than those already in use for gain-of-function screening: 64% of the vector insertion lines (394/613) showed phenotypes with forced expression of vector-flanking DNA, such as lethality or defects in adult structure. Molecular analysis of 170 randomly selected insertions with forced expression phenotypes revealed that 21% matched the sequences of cloned genes, and 18% matched reported expressed sequence tags (ESTs). Of the insertions in cloned genes, 83% were upstream of the protein-coding region. We discovered two new genes that showed sequence similarity to human genes, Ras-related protein 2 and microsomal glutathione S-transferase. The system can be useful as a tool for the functional mapping of the Drosophila genome. PMID:9927464

  11. Restoration of Mitochondrial Gene Expression Using a Cloned Human Gene in Chinese Hamster Lung Cell Mutant

    PubMed Central

    Sherif, Zaki A; Broome, Carolyn W

    2015-01-01

    Background Gal−32 is a Chinese hamster lung cell nuclear mutant that is unable to grow in galactose due to a defect in mitochondrial protein synthesis. Since the product of the Gal−32 gene was unknown, it was imperative to use phenotypic complementation to clone a human gene that corrected the Gal−32 mutation. Results Recessive Gal−32 cells were co-transformed with pSV2-neo plasmid DNA and recombinant DNA from a human genomic library containing the dominant human Gal+ gene and a chloramphenicol-resistance (camr) gene present in the pSV13 vector. Primary transformants were selected by growth in galactose and the neomycin analog G418. In order to rescue the human Gal+ gene, a genomic library was constructed with primary transformant DNA and the pCV108 cosmid vector. The camr gene was used to identify clones with the nearby human sequences. DNA from two camr, Alu-hybridizing clones was able to transform the recessive Gal−32 cells to the Gal+ phenotype and to restore mitochondrial protein synthesis. Conclusion These data demonstrate the isolation of two pCV108-transformant recombinant clones containing a human gene that complements the Chinese hamster Gal−32 mutation and restores galactose metabolism. PMID:26052559

  12. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  13. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  14. A new paramutation-like example at the Delta gene of Drosophila

    PubMed Central

    Capovilla, Maria; Robichon, Alain; Rassoulzadegan, Minoo

    2017-01-01

    The hereditary transmission of a phenotype independent from DNA sequence implies epigenetic effects. Paramutation is a heritable epigenetic phenomenon observed in plants and animals. To investigate paramutation in Drosophila, we used the P{ry+t7.2 = PZ}Dl05151 P-element insertion in the Drosophila melanogaster genome that causes a dominant visible phenotype: the presence of characteristic extra-veins in the fly wings. This extra-vein phenotype presents variable expressivity and incomplete penetrance. The insert is a PZ element located 680 bp upstream from the ATG of the Delta (Dl) gene, encoding the Notch ligand involved in wing vein development, and acts as a null allele. In the G2 offspring from a cross between the heterozygous transgenic stock and wild-type flies, we observed the transmission of the extra-vein phenotype to wild-type flies without the transgene, independently of gender and across many generations. This is a “paramutation-like” example in the fly: the heritable transmission of a phenotypic change not linked to a classical genetic mutation. A “paramutagenic” allele in heterozygotes transmits the phenotype of the heterozygotes to the wild-type allele (“paramutant”) in a stable manner through generations. Distinct from paramutation events so far described in Drosophila, here we deal with a dominant effect on a single gene involving variable hereditary signals. PMID:28355214

  15. [Analysis of Phenotypic Manifestation of peanut Gene Expression Suppression by RNAi in Drosophila Oogenesis].

    PubMed

    Akhmetova, K A; Dorogova, C N; Chesnokov, I N; Fedorova, S A

    2015-09-01

    The peanut gene functions in Drosophila melanogaster oogenesis were studied. It was demonstrated that the suppression of peanut expression by RNA interference in the ovary follicular cells results in the violation of oocyte polarization, anomalous cytokinesis in the chorion cells, and violation of the chromatin condensation in follicular cells. No oogenesis violations were observed in females with decreased peanut gene expression or an absence of the Pnut protein in the ovary generative cells. However, embryos produced by such females had a decreased survival rate caused by two death peaks.

  16. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    PubMed

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor.

  17. Misexpression of the white (w) gene triggers male-male courtship in Drosophila.

    PubMed Central

    Zhang, S D; Odenwald, W F

    1995-01-01

    We report here that the general ectopic expression of a tryptophan/guanine transmembrane transporter gene, white (w), induces male-male courtship in Drosophila. Activation of a hsp-70/miniwhite (mini-w) transgene in mature males results in a marked change in their sexual behavior such that they begin to vigorously court other mature males. In transformant populations containing equal numbers of both sexes, most males participate, thus forming male-male courtship chains, circles, and lariats. Mutations that ablate the w transgene function also abolish this inducible behavior. Female sexual behavior does not appear to be altered by ectopic w expression. By contrast, when exposed to an active homosexual courtship environment, non-transformant males alter their behavior and actively participate in the male-male chaining. These findings demonstrate that, in Drosophila, both genetic and environmental factors play a role in male sexual behavior. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7777542

  18. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera: pteromalidae).

    PubMed

    Oliveira, Deodoro C S G; Raychoudhury, Rhitoban; Lavrov, Dennis V; Werren, John H

    2008-10-01

    We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a "Compensation-Draft Feedback"; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus

  19. Rapidly Evolving Mitochondrial Genome and Directional Selection in Mitochondrial Genes in the Parasitic Wasp Nasonia (Hymenoptera: Pteromalidae)

    PubMed Central

    Raychoudhury, Rhitoban; Lavrov, Dennis V.; Werren, John H.

    2008-01-01

    We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a “Compensation-Draft Feedback”; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus

  20. Drosophila polytene chromosome bands formed by gene introns.

    PubMed

    Zhimulev, I F; Boldyreva, L V; Demakova, O V; Poholkova, G V; Khoroshko, V A; Zykova, T Yu; Lavrov, S A; Belyaeva, E S

    2016-01-01

    Genetic organization of bands and interbands in polytene chromosomes has long remained a puzzle for geneticists. It has been recently demonstrated that interbands typically correspond to the 5'-ends of house-keeping genes, whereas adjacent loose bands tend to be composed of coding sequences of the genes. In the present work, we made one important step further and mapped two large introns of ubiquitously active genes on the polytene chromosome map. We show that alternative promoter regions of these genes map to interbands, whereas introns and coding sequences found between those promoters correspond to loose grey bands. Thus, a gene having its long intron "sandwiched" between to alternative promoters and a common coding sequence may occupy two interbands and one band in the context of polytene chromosomes. Loose, partially decompacted bands appear to host large introns.

  1. The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa.

    PubMed

    Braband, Anke; Cameron, Stephen L; Podsiadlowski, Lars; Daniels, Savel R; Mayer, Georg

    2010-10-01

    The ancestral genome composition in Onychophora (velvet worms) is unknown since only a single species of Peripatidae has been studied thus far, which shows a highly derived gene order with numerous translocated genes. Due to this lack of information from Onychophora, it is difficult to infer the ancestral mitochondrial gene arrangement patterns for Panarthropoda and Ecdysozoa. Hence, we analyzed the complete mitochondrial genome of the onychophoran Opisthopatus cinctipes, a representative of Peripatopsidae. Our data show that O. cinctipes possesses a highly conserved gene order, similar to that found in various arthropods. By comparing our results to those from different outgroups, we reconstruct the ancestral gene arrangement in Panarthropoda and Ecdysozoa. Our phylogenetic analysis of protein-coding gene sequences from 60 protostome species (including outgroups) provides some support for the sister group relationship of Onychophora and Arthropoda, which was not recovered by using a single species of Peripatidae, Epiperipatus biolleyi, in a previous study. A comparison of the strand-specific bias between onychophorans, arthropods, and a priapulid suggests that the peripatid E. biolleyi is less suitable for phylogenetic analyses of Ecdysozoa using mitochondrial genomic data than the peripatopsid O. cinctipes.

  2. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.

    PubMed Central

    Virbasius, J V; Scarpulla, R C

    1994-01-01

    Mitochondrial transcription factor A (mtTFA), the product of a nuclear gene, stimulates transcription from the two divergent mitochondrial promoters and is likely the principal activator of mitochondrial gene expression in vertebrates. Here we establish that the proximal promoter of the human mtTFA gene is highly dependent upon recognition sites for the nuclear respiratory factors, NRF-1 and NRF-2, for activity. These factors have been previously implicated in the activation of numerous nuclear genes that contribute to mitochondrial respiratory function. The affinity-purified factors from HeLa cells specifically bind to the mtTFA NRF-1 and NRF-2 sites through guanine nucleotide contacts that are characteristic for each site. Mutations in these contacts eliminate NRF-1 and NRF-2 binding and also dramatically reduce promoter activity in transfected cells. Although both factors contribute, NRF-1 binding appears to be the major determinant of promoter function. This dependence on NRF-1 activation is confirmed by in vitro transcription using highly purified recombinant proteins that display the same binding specificities as the HeLa cell factors. The activation of the mtTFA promoter by both NRF-1 and NRF-2 therefore provides a link between the expression of nuclear and mitochondrial genes and suggests a mechanism for their coordinate regulation during organelle biogenesis. Images PMID:8108407

  3. Spatial regulation of the Antennapedia and Ultrabithorax homeotic genes during Drosophila early development.

    PubMed Central

    Irish, V F; Martinez-Arias, A; Akam, M

    1989-01-01

    Both maternally supplied products and zygotically acting segmentation genes are required to establish the segment pattern of the Drosophila embryo. These genes are thought to act in part by regulating the expression of the homeotic genes. Products of the maternal and zygotic gap genes are present in the egg prior to blastoderm formation, when the homeotic genes are initially expressed within precisely bounded domains. In order to assess the first regulatory interactions between some of these gap gene products and the homeotic genes, we have examined the spatial distribution of transcripts arising from the homeotic Antp and Ubx genes during early embryogenesis in various mutant backgrounds. Here we show that mutations in both maternally and zygotically acting gap genes differentially affect the initial spatial domains of transcripts arising from each of these homeotic gene promoters. Later in embryogenesis, the patterns of homeotic gene expression change in both the wild-type and mutant cases, suggesting that other regulatory activities come into play. We propose a model in which the initial activation of each homeotic gene promoter depends on a unique combination of gap and pair-rule gene activities. Images PMID:2569971

  4. Chimeric Genes as a Source of Rapid Evolution in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Hartl, Daniel L.

    2012-01-01

    Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (dS < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster. PMID:21771717

  5. Interaction between genes Mos and mwh expressed in somatic cells of Drosophila melanogaster

    SciTech Connect

    Vaisman, N.Ya.; Zakharov, I.K.

    1995-07-01

    Gene Mosaic (Mos) of chromosome 3 of Drosophila melanogaster was located by means of dominant markers Ly, Sb, and Dr. This gene was shown to be located between Ly and Sb in the centromeric region (45-50 map units). An analysis of interaction between Mos and mwh genes in cis- and trans-heterozygotes showed a significant effect of the Mos gene on mutability (recombinogenesis) of chromosome mwh in somatic cells. In the cis heterozygote mwh Mos/++, the frequency of small mutant clones on wings of flies increased. In mwh/Mos heterozygotes, the Mos gene caused a significant reduction of dorsocentral and scutellar bristles (78% in mwh/Mos, 85% in mwh +/+ Mos, and 98% in mwh Mos/mwh +). 20 refs., 3 tabs.

  6. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    SciTech Connect

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter; Hong, Ling; Carninci, Piero; Shiraki, Toshiyuki; Hayashizaki, Yoshihide; Champe, Mark; Pacleb, Joanne; Wan, Ken; Yu, Charles; Carlson, Joe; George, Reed; Celniker, Susan; Rubin, Gerald M.

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remaining genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.

  7. Extensive mitochondrial gene rearrangement in a genus of plant parasitic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nematodes Globodera pallida and G. rostochiensis are two of the only animals known to have multipartite mitochondrial genomes. In such genomes, mitochondrial genes are distributed on multiple circles. The entire sequence of a nematode (Radopholus similis) that belongs to the same superfamily (...

  8. The conditional inhibition of gene expression in cultured Drosophila cells by antisense RNA.

    PubMed Central

    Bunch, T A; Goldstein, L S

    1989-01-01

    Genes producing antisense RNA are becoming important tools for the selective inhibition of gene expression. Experiments in different biological systems, targeting different mRNAs have yielded diverse results with respect to the success of the technique and its mechanism of action. We have examined the potential of three antisense genes, whose transcription is driven by a Drosophila metallothionein promoter, to inhibit the expression of alcohol dehydrogenase (ADH) or a microtubule associated protein (205K MAP) in cultured Drosophila cells. Expression of ADH was significantly reduced upon induction of the anti-ADH genes. The ADH mRNA does not appear to be destabilized by the presence of antisense RNA but rather exists at similar levels in hybrid form. Hybrids are detected with both spliced and unspliced ADH RNA. In contrast to these results, antisense genes producing antisense RNA in great excess to 205K MAP mRNA, which is itself far less abundant than the ADH mRNA, failed to show any inhibition of 205K MAP expression. Images PMID:2481266

  9. Divergent Functions Through Alternative Splicing: The Drosophila CRMP Gene in Pyrimidine Metabolism, Brain, and Behavior

    PubMed Central

    Morris, Deanna H.; Dubnau, Josh; Park, Jae H.; Rawls, John M.

    2012-01-01

    DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals. PMID:22649077

  10. Identification and Functional Analysis of Antifungal Immune Response Genes in Drosophila

    PubMed Central

    Jin, Li Hua; Shim, Jaewon; Yoon, Joon Sun; Kim, Byungil; Kim, Jihyun; Kim-Ha, Jeongsil; Kim, Young-Joon

    2008-01-01

    Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-κB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila. PMID:18833296

  11. 20-Hydroxyecdysone stimulates the accumulation of translatable yolk polypeptide gene transcript in adult male Drosophila melanogaster.

    PubMed

    Shirk, P D; Minoo, P; Postlethwait, J H

    1983-01-01

    Yolk polypeptide (YP) synthesis is hormonally stimulated during maturation of adult female Drosophila melanogaster. Synthesis of the three YPs is sex specific and occurs in fat body cells and follicle cells of adult females. However, males have been shown to produce YPs when treated with the steroid hormone 20-hydroxyecdysone (20-HE). By using a cell-free translation system as an assay for YP mRNA, we found that 20-HE also causes the accumulation of translatable YP message in males. In addition, hybridization of cloned copies of genes for both YP1 and YP3 to total RNA from males showed that 20-HE caused the appearance of YP gene transcripts in males. Eight hours after treatment of males with 20-HE, YP gene transcript levels had increased at least 25-fold to approximately 2.7 x 10(6) copies of YP1 gene transcript per adult male fly. In normal adult females, there were 42 x 10(6) copies per fly by 24 hr. There was neither detectable YP synthesis nor translatable YP gene transcript in either normal 1- to 3-day-old males or 24-hr-old males treated with a juvenile hormone analogue. This evidence shows that 20-HE acts to regulate the levels of translatable YP mRNA in male Drosophila.

  12. Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster

    SciTech Connect

    Slusarski, D.C.; Motzny, C.K.; Holmgren, R.

    1995-01-01

    The cubitus interruptus (ci) gene is a member of the Drosophila segment polarity gene family and encodes a protein with a zinc finger domain homologous to the vertebrate Gli genes and the nematode tra-1 gene. Three classes of existing mutations in the ci locus alter the regulation of ci expression and can be used to examine ci function during development. The first class of ci mutations causes interruptions in wing veins four and five due to inappropriate expression of the ci product in the posterior compartment of imaginal discs. The second class of mutations eliminates ci protein early in embryogenesis and causes the deletion of structures that are derived from the region including and adjacent to the engrailed expressing cells. The third class of mutations eliminates ci protein later in embryogenesis and blocks the formation of the ventral naked cuticle. The loss of ci expression at these two different stages in embryonic development correlates with the subsequent elimination of wingless expression. Adults heterozygous for the unique ci{sup Ce} mutation have deletions between wing veins three and four. A similar wing defect is present in animals mutant for the segment polarity gene fused that encodes a putative serine/threonine kinase. In ci{sup Ce}/+ and fused mutants, the deletions between wing veins three and four correlate with increased ci protein levels in the anterior compartment. Thus, proper regulation of both the ci mRNA and protein appears to be critical for normal Drosophila development. 47 refs., 9 figs., 1 tab.

  13. Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development.

    PubMed Central

    Walldorf, U; Gehring, W J

    1992-01-01

    The empty spiracles (ems) gene of Drosophila melanogaster is necessary for proper head formation and the development of the posterior spiracles. We have isolated a homeobox-containing gene, W13, by cross-homology using the Drosophila muscle segment homeobox gene (msh) as a probe. The W13 gene maps at 88A, where the ems locus has been previously localized genetically. The sequence alterations found in the W13 coding region from two mutant ems alleles show that W13 is the ems gene. A 2.4 kb RNA corresponding to the ems transcript is expressed from cellular blastoderm throughout all embryonic and larval stages. In situ hybridization to whole mount embryos reveals two domains of expression. During the cellular blastoderm stage ems is expressed in the developing head in a single anterior band. This is correlated with its possible function as an anterior gap gene that is expressed in the preantennal, antennal and intercalary segments and is required for the development of the antennal sense organ, the optic lobe and parts of the head skeleton. The early expression of the ems gene is controlled by the anterior morphogen bicoid (bcd). Using a gene fusion we identified a cis-acting element which is a target for the bcd gene product. Later during embryogenesis ems is expressed in lateral regions of each segment, where the tracheal pits form and lateral neuroblasts originate, as well as in the posterior spiracles. This late expression partially correlates with defects seen in the tracheal tree of ems embryos. In addition to a homeodomain, the N-terminal portion of the predicted protein sequence is very proline-rich, whereas the C-terminus has an acidic profile consistent with the role of the ems gene product as a transcription factor. Images PMID:1376248

  14. Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications.

    PubMed

    Akasaki, Tetsuya; Nikaido, Masato; Tsuchiya, Kotaro; Segawa, Susumu; Hasegawa, Masami; Okada, Norihiro

    2006-03-01

    We determined the complete mitochondrial genomes of five cephalopods of the Subclass Coleoidea (Suborder Oegopsida: Watasenia scintillans, Todarodes pacificus, Suborder Myopsida: Sepioteuthis lessoniana, Order Sepiida: Sepia officinalis, and Order Octopoda: Octopus ocellatus) and used them to infer phylogenetic relationships. In our Maximum Likelihood (ML) tree, sepiids (cuttlefish) are at the most basal position of all decapodiformes, and oegopsids and myopsids form a monophyletic clade, thus supporting the traditional classification of the Order Teuthida. We detected extensive gene rearrangements in the mitochondrial genomes of broad cephalopod groups. It is likely that the arrangements of mitochondrial genes in Oegopsida and Sepiida were derived from those of Octopoda, which is thought to be the ancestral order, by entire gene duplication and random gene loss. Oegopsida in particular has undergone long-range gene duplications. We also found that the mitochondrial gene arrangement of Sepioteuthis lessoniana differs from that of Loligo bleekeri, although they belong to the same family. Analysis of both the phylogenetic tree and mitochondrial gene rearrangements of coleoid Cephalopoda suggests that each mitochondrial gene arrangement was acquired after the divergence of each lineage.

  15. Gene Expression in Adult Metafemales of Drosophila Melanogaster

    PubMed Central

    Birchler, J. A.; Hiebert, J. C.; Krietzman, M.

    1989-01-01

    The expression of selected X-linked and autosomal genes was examined in metafemales (3X:2A) compared to diploid sisters. Three enzyme activities (glucose-6-phosphate dehydrogenase, 6-phospho-gluconate dehydrogenase, β-hydroxyacid dehydrogenase) encoded by X-linked genes are not significantly different in the two classes of flies. In contrast, three autosomally encoded enzyme activities (alcohol dehydrogenase, α-glycerophosphate dehydrogenase, isocitrate dehydrogenase) are reduced in metafemales. Protein and DNA comparisons between metafemales and diploid sisters show a lowered level of total protein whereas the total DNA measurements are similar. Thus, the total cell number in metafemales is basically unchanged but gene expression is reduced. Phenotypic analysis of three autosomal loci, glass (gl), purple (pr) and pink-peach (p(p)), show that all three have lowered expression in metafemales while the X-linked loci, white-apricot (w(a)) and Bar (B), are dosage compensated. Quantitative dot blot analysis of messenger RNA levels of the second chromosomal locus, alcohol dehydrogenase (Adh), and the X chromosomal locus, rudimentary (r), show that Adh has reduced expression and r is partially compensated per total RNA in metafemales. It is proposed that the increased dosage of the X chromosome inversely affects both the X and autosomal gene expression but the simultaneous increased dosage of the structural genes on the X results in dosage compensation. The reduced levels of expression of autosomal genes could contribute to the great inviability of metafemales. PMID:2503426

  16. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes

    PubMed Central

    2013-01-01

    Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted

  17. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster.

    PubMed Central

    Jaeger, Johannes; Blagov, Maxim; Kosman, David; Kozlov, Konstantin N; Manu; Myasnikova, Ekaterina; Surkova, Svetlana; Vanario-Alonso, Carlos E; Samsonova, Maria; Sharp, David H; Reinitz, John

    2004-01-01

    Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system. PMID:15342511

  18. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  19. On the origins of tandemly repeated genes: does histone gene copy number in Drosophila reflect chromosomal location?

    PubMed

    Fitch, D H; Strausbaugh, L D; Barrett, V

    1990-04-01

    Widely regarded beliefs about Drosophila histone gene copy numbers and developmental requirements have been generalized from fairly limited data since studies on histone gene arrangements and copy numbers have been largely confined to a single species, D. melanogaster. Histone gene copy numbers and chromosomal locations were examined in three species: D. melangaster, D. hydei and D. hawaiiensis. Quantitative whole genome blot analysis of DNA from diploid tissues revealed a tenfold variability in histone gene copy numbers for these three species. In situ hybridization to polytene chromosomes showed that the histone DNA (hDNA) chromosomal location is different in all three species. These observations lead us to propose a relationship between histone gene reiteration and chromosomal position.

  20. Genes expressed in the ring gland, the major endocrine organ of Drosophila melanogaster.

    PubMed Central

    Harvie, P D; Filippova, M; Bryant, P J

    1998-01-01

    We have used an enhancer-trap approach to begin characterizing the function of the Drosophila endocrine system during larval development. Five hundred and ten different lethal PZ element insertions were screened to identify those in which a reporter gene within the P element showed strong expression in part or all of the ring gland, the major site of production and release of developmental hormones, and which had a mutant phenotype consistent with an endocrine defect. Nine strong candidate genes were identified in this screen, and eight of these are expressed in the lateral cells of the ring gland that produce ecdysteroid molting hormone (EC). We have confirmed that the genes detected by these enhancer traps are expressed in patterns similar to those detected by the reporter gene. Two of the genes encode proteins, protein kinase A and calmodulin, that have previously been implicated in the signaling pathway leading to EC synthesis and release in other insects. A third gene product, the translational elongation factor EF-1alpha F1, could play a role in the translational regulation of EC production. The screen also identified the genes couch potato and tramtrack, previously known from their roles in peripheral nervous system development, as being expressed in the ring gland. One enhancer trap revealed expression of the gene encoding the C subunit of vacuolar ATPase (V-ATPase) in the medial cells of the ring gland, which produce the juvenile hormone that controls progression through developmental stages. This could reveal a function of V-ATPase in the response of this part of the ring gland to adenotropic neuropeptides. However, the gene identified by this enhancer trap is ubiquitously expressed, suggesting that the enhancer trap is detecting only a subset of its control elements. The results show that the enhancer trap approach can be a productive way of exploring tissue-specific genetic functions in Drosophila. PMID:9584098

  1. A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    PubMed Central

    Ghabrial, Amin S.; Levi, Boaz P.; Krasnow, Mark A.

    2011-01-01

    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system. PMID:21750678

  2. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    PubMed Central

    2009-01-01

    Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64%) consisted of both mitochondrial and cytosolic (non-mitochondrial) proteins (mt-cy families) while the remaining 33 (36%) were composed of mitochondrial proteins (mt-mt families). Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1) relocalization from mitochondria to cytosol, 2) from cytosol to mitochondria and 3) multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on the genomic scale was

  3. Behavioral responses to odorants in drosophila require nervous system expression of the beta integrin gene myospheroid.

    PubMed

    Bhandari, Poonam; Gargano, Julia Warner; Goddeeris, Matthew M; Grotewiel, Michael S

    2006-09-01

    Integrins are cell adhesion molecules that mediate numerous developmental processes in addition to a variety of acute physiological events. Two reports implicate a Drosophila beta integrin, betaPS, in olfactory behavior. To further investigate the role of integrins in Drosophila olfaction, we used Gal4-driven expression of RNA interference (RNAi) transgenes to knock down expression of myospheroid (mys), the gene that encodes betaPS. Expression of mys-RNAi transgenes in the wing reduced betaPS immunostaining and produced morphological defects associated with loss-of-function mutations in mys, demonstrating that this strategy knocked down mys function. Expression of mys-RNAi transgenes in the antennae, antennal lobes, and mushroom bodies via two Gal4 lines, H24 and MT14, disrupted olfactory behavior but did not alter locomotor abilities or central nervous system structure. Olfactory behavior was normal in flies that expressed mys-RNAi transgenes via other Gal4 lines that specifically targeted the antennae, the projection neurons, the mushroom bodies, bitter and sweet gustatory neurons, or Pox neuro neurons. Our studies confirm that mys is important for the development or function of the Drosophila olfactory system. Additionally, our studies demonstrate that mys is required for normal behavioral responses to both aversive and attractive odorants. Our results are consistent with a model in which betaPS mediates events within the antennal lobes that influence odorant sensitivity.

  4. A novel muscle LIM-only protein is generated from the paxillin gene locus in Drosophila

    PubMed Central

    Yagi, Ryohei; Ishimaru, Satoshi; Yano, Hajime; Gaul, Ulrike; Hanafusa, Hidesaburo; Sabe, Hisataka

    2001-01-01

    Paxillin is a protein containing four LIM domains, and functions in integrin signaling. We report here that two transcripts are generated from the paxillin gene locus in Drosophila; one encodes a protein homolog of the vertebrate Paxillin (DPxn37), and the other a protein with only three LIM domains, partly encoded by its own specific exon (PDLP). At the myotendinous junctions of Drosophila embryos where integrins play important roles, both DPxn37 and PDLP are highly expressed with different patterns; DPxn37 is predominantly concentrated at the center of the junctions, whereas PDLP is highly enriched at neighboring sides of the junction centers, primarily expressed in the mesodermal myotubes. Northern blot analysis revealed that DPxn37 is ubiquitously expressed throughout the life cycle, whereas PDLP expression exhibits a biphasic pattern during development, largely concomitant with muscle generation and remodeling. Our results collectively reveal that a unique system exists in Drosophila for the generation of a novel type of LIM-only protein, highly expressed in the embryonic musclature, largely utilizing the Paxillin LIM domains. PMID:11520860

  5. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.

  6. Age-dependent chromosomal distribution of male-biased genes in Drosophila.

    PubMed

    Zhang, Yong E; Vibranovski, Maria D; Krinsky, Benjamin H; Long, Manyuan

    2010-11-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.

  7. Age-dependent chromosomal distribution of male-biased genes in Drosophila

    PubMed Central

    Zhang, Yong E.; Vibranovski, Maria D.; Krinsky, Benjamin H.; Long, Manyuan

    2010-01-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales. PMID:20798392

  8. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    PubMed Central

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  9. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster.

    PubMed Central

    Robin, Stéphanie; Chambeyron, Séverine; Bucheton, Alain; Busseau, Isabelle

    2003-01-01

    Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing. PMID:12807773

  10. Shaped singular spectrum analysis for quantifying gene expression, with application to the early Drosophila embryo.

    PubMed

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns.

  11. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    PubMed

    Ma, Lingling; Ma, Jun; Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  12. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  13. The Embryonically Active Gene, Unkempt, of Drosophila Encodes a Cys(3)his Finger Protein

    PubMed Central

    Mohler, J.; Weiss, N.; Murli, S.; Mohammadi, S.; Vani, K.; Vasilakis, G.; Song, C. H.; Epstein, A.; Kuang, T.; English, J.; Cherdak, D.

    1992-01-01

    The unkempt gene of Drosophila encodes a set of embryonic RNAs, which are abundant during early stages of embryogenesis and are present ubiquitously in most somatic tissues from the syncytial embryo through stage 15 of embryogenesis. Expression of unkempt RNAs becomes restricted predominantly to the central nervous system in stages 16 and early 17. Analysis of cDNAs from this locus reveals the presence of five Cys(3)His fingers in the protein product. Isolation and analysis of mutations affecting the unkempt gene, including complete deletions of this gene, indicate that there is no zygotic requirement for unkempt during embryogenesis, presumably due to the contribution of maternally supplied RNA, although the gene is essential during post-embryonic development. PMID:1339381

  14. An essential cell cycle regulation gene causes hybrid inviability in Drosophila.

    PubMed

    Phadnis, Nitin; Baker, EmilyClare P; Cooper, Jacob C; Frizzell, Kimberly A; Hsieh, Emily; de la Cruz, Aida Flor A; Shendure, Jay; Kitzman, Jacob O; Malik, Harmit S

    2015-12-18

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

  15. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  16. [MITO-Porter; a cutting-edge technology for mitochondrial gene therapy].

    PubMed

    Furukawa, Ryo; Yamada, Yuma; Harashima, Hideyoshi

    2012-01-01

    Gene therapy is an attractive strategy, for not only targeting nuclear genome, but the mitochondrial genome as well. Human mitochondrial DNA (mtDNA) encodes 13 subunits of the electron transport chain, 22 tRNAs, and 2 rRNAs and their mutations cause a wide range of mitochondrial diseases. Each cell contains hundreds to thousands of mtDNAs, and in the case of a diseased cell, the mitochondrion possesses both mutant mtDNA and wild-type mtDNA. It is generally accepted that the disease phenotype appears when the proportion of the pathogenic mutant mtDNA exceeds a certain threshold. Therefore, the suppression of mutant mtDNA or supplementing wild-type mtDNA will control the onset of mitochondrial disease. To achieve the transfection of an exogenous therapeutic gene to the mitochondrial matrix where mtDNA is transcribed and translated, it is necessary to transfer cargos through mitochondrial outer and inner membranes. Several methods have been examined for mitochondrial transfection, but a universal, wide-ranging transfection technique has yet not been established. We recently developed a mitochondrial targeting delivery system, namely the MITO-Porter. The MITO-Porter is liposomal nanocarrier with a mitochondrial fusogenic lipid composition. We reported that the MITO-Porter could deliver chemical compounds and proteins to the mitochondrial matrix via membrane fusion. In this review, we report (1) on the pharmacological enhancement of lecithinized superoxide dismutase (PC-SOD) using MITO-Porter, (2) the transcription activation of exogenous DNA by mitochondrial transcription factor A (TFAM), and (3) perspectives on a mitochondrial targeting device.

  17. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals

    PubMed Central

    Popova, Olga V.; Mikhailov, Kirill V.; Nikitin, Mikhail A.; Logacheva, Maria D.; Penin, Aleksey A.; Muntyan, Maria S.; Kedrova, Olga S.; Petrov, Nikolai B.; Panchin, Yuri V.

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha—an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia

  18. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    PubMed

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  19. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary indepe...

  20. Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    PubMed Central

    Thimgan, Matthew S.; Seugnet, Laurent; Turk, John; Shaw, Paul J.

    2015-01-01

    Background and Study Objectives: Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. Design: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Setting: Laboratory. Patients or Participants: Drosophila melanogaster. Interventions: Sleep deprivation and starvation. Measurements and Results: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. Conclusions: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. Citation: Thimgan MS

  1. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles.

    PubMed

    Ikmi, Aissam; Netter, Sophie; Coen, Dario

    2008-05-15

    The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.

  2. The goddard and saturn genes are essential for Drosophila male fertility and may have arisen de novo.

    PubMed

    Gubala, Anna M; Schmitz, Jonathan F; Kearns, Michael J; Vinh, Tery T; Bornberg-Bauer, Erich; Wolfner, Mariana F; Findlay, Geoffrey D

    2017-01-19

    New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from non-coding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown males fail to produce mature sperm, while saturn knockdown males produce fewer sperm that function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the non-coding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can evolve essential roles in male reproduction.

  3. Mitochondrial respiratory gene expression is suppressed in many cancers

    PubMed Central

    Reznik, Ed; Wang, Qingguo; La, Konnor; Schultz, Nikolaus; Sander, Chris

    2017-01-01

    The fundamental metabolic decision of a cell, the balance between respiration and fermentation, rests in part on expression of the mitochondrial genome (mtDNA) and coordination with expression of the nuclear genome (nuDNA). Previously we described mtDNA copy number depletion across many solid tumor types (Reznik et al., 2016). Here, we use orthogonal RNA-sequencing data to quantify mtDNA expression (mtRNA), and report analogously lower expression of mtRNA in tumors (relative to normal tissue) across a majority of cancer types. Several cancers exhibit a trio of mutually consistent evidence suggesting a drop in respiratory activity: depletion of mtDNA copy number, decreases in mtRNA levels, and decreases in expression of nuDNA-encoded respiratory proteins. Intriguingly, a minority of cancer types exhibit a drop in mtDNA expression but an increase in nuDNA expression of respiratory proteins, with unknown implications for respiratory activity. Our results indicate suppression of respiratory gene expression across many cancer types. DOI: http://dx.doi.org/10.7554/eLife.21592.001 PMID:28099114

  4. A systematic phenotypic screen of F-box genes through a tissue-specific RNAi-based approach in Drosophila.

    PubMed

    Dui, Wen; Lu, Wei; Ma, Jun; Jiao, Renjie

    2012-08-20

    F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes, acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation. In humans, at least 22 out of 75 F-box proteins have experimentally documented substrates, whereas in Drosophila 12 F-box proteins have been characterized with known substrates. To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila, we performed a survey of the literature and databases. We identified 45 Drosophila genes that encode proteins containing at least one F-box domain. We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen. Here, we present our systematic phenotypic dataset from the eye, the wing and the notum. This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila. Our results show that, as expected, F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation, cell growth, signal transduction, and cellular and animal survival.

  5. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes.

    PubMed

    Hafez, Mohamed; Guha, Tuhin Kumar; Shen, Chen; Sethuraman, Jyothi; Hausner, Georg

    2014-01-01

    Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing and gene therapy applications. Bioprospecting and characterization of naturally occurring homing endonucleases offers an alternative to synthesizing artificial endonucleases. Here, we describe methods for PCR-based screening of fungal mitochondrial rRNA genes for homing endonuclease encoding sequences, and we also provide protocols for the purification and biochemical characterization of putative native homing endonucleases.

  6. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  7. Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster

    PubMed Central

    2011-01-01

    Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging. PMID:21538136

  8. FlyBase: establishing a Gene Group resource for Drosophila melanogaster.

    PubMed

    Attrill, Helen; Falls, Kathleen; Goodman, Joshua L; Millburn, Gillian H; Antonazzo, Giulia; Rey, Alix J; Marygold, Steven J

    2016-01-04

    Many publications describe sets of genes or gene products that share a common biology. For example, genome-wide studies and phylogenetic analyses identify genes related in sequence; high-throughput genetic and molecular screens reveal functionally related gene products; and advanced proteomic methods can determine the subunit composition of multi-protein complexes. It is useful for such gene collections to be presented as discrete lists within the appropriate Model Organism Database (MOD) so that researchers can readily access these data alongside other relevant information. To this end, FlyBase (flybase.org), the MOD for Drosophila melanogaster, has established a 'Gene Group' resource: high-quality sets of genes derived from the published literature and organized into individual report pages. To facilitate further analyses, Gene Group Reports also include convenient download and analysis options, together with links to equivalent gene groups at other databases. This new resource will enable researchers with diverse backgrounds and interests to easily view and analyse acknowledged D. melanogaster gene sets and compare them with those of other species.

  9. Drosophila Dynein intermediate chain gene, Dic61B, is required for spermatogenesis.

    PubMed

    Fatima, Roshan

    2011-01-01

    This study reports the identification and characterization of a novel gene, Dic61B, required for male fertility in Drosophila. Complementation mapping of a novel male sterile mutation, ms21, isolated in our lab revealed it to be allelic to CG7051 at 61B1 cytogenetic region, since two piggyBac insertion alleles, CG7051(c05439) and CG7051(f07138) failed to complement. CG7051 putatively encodes a Dynein intermediate chain. All three mutants, ms21, CG7051(c05439) and CG7051(f07138), exhibited absolute recessive male sterility with abnormally coiled sperm axonemes causing faulty sperm individualization as revealed by Phalloidin staining in Don Juan-GFP background. Sequencing of PCR amplicons uncovered two point mutations in ms21 allele and confirmed the piggyBac insertions in CG7051(c05439) and CG7051(f07138) alleles to be in 5'UTR and 4(th) exon of CG7051 respectively, excision of which reverted the male sterility. In situ hybridization to polytene chromosomes demonstrated CG7051 to be a single copy gene. RT-PCR of testis RNA revealed defective splicing of the CG7051 transcripts in mutants. Interestingly, expression of cytoplasmic dynein intermediate chain, α, β, γ tubulins and α-spectrin was normal in mutants while ultra structural studies revealed defects in the assembly of sperm axonemes. Bioinformatics further highlighted the homology of CG7051 to axonemal dynein intermediate chain of various organisms, including DNAI1 of humans, mutations in which lead to male sterility due to immotile sperms. Based on these observations we conclude that CG7051 encodes a novel axonemal dynein intermediate chain essential for male fertility in Drosophila and rename it as Dic61B. This is the first axonemal Dic gene of Drosophila to be characterized at molecular level and shown to be required for spermatogenesis.

  10. Structure and transcription of the Drosophila mulleri alcohol dehydrogenase genes.

    PubMed

    Fischer, J A; Maniatis, T

    1985-10-11

    The D. melanogaster Adh gene is transcribed from two different promoters; a proximal (larval) promoter is active during late embryonic and larval stages, and a distal (adult) promoter is active primarily in third instar larvae and in adult flies (1). Genetic analyses suggest that several species of the mulleri subgroup (distant relatives of D. melanogaster) have two closely-linked Adh genes, Adh-1 and Adh-2, each of which expresses a different ADH protein (2). The temporal pattern of expression of Adh-1 and Adh-2 is similar to the expression of D. melanogaster Adh from the proximal and distal promoters (2,3,4). We are interested in the molecular basis for the pattern of Adh expression in the mulleri subgroup species and in the mechanism of the switch in Adh promoter utilization. For these reasons, we have studied the structure and transcription of the Adh locus of D. mulleri, a species of the mulleri subgroup. We show that the ADH-1 and ADH-2 proteins are expressed from two distinct genes separated by 2 kilobase pairs, and that Adh-1 and Adh-2 are transcribed in the expected temporal pattern. In addition, we find a pseudogene 1.2 kb upstream from Adh-2, which is transcribed in a temporal pattern similar to Adh-2.

  11. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  12. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  13. Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene.

    PubMed

    Wallingford, John B; Goto, Toshiyasu; Keller, Ray; Harland, Richard M

    2002-08-01

    We have cloned Xenopus orthologues of the Drosophila planar cell polarity (PCP) gene Prickle. Xenopus Prickle (XPk) is expressed in tissues at the dorsal midline during gastrulation and early neurulation. XPk is later expressed in a segmental pattern in the presomitic mesoderm and then in recently formed somites. XPk is also expressed in the tailbud, pronephric duct, retina, and the otic vesicle. The complex expression pattern of XPk suggests that PCP signaling is used in a diverse array of developmental processes in vertebrate embryos.

  14. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder

    PubMed Central

    Grotewiel, Mike; Bettinger, Jill C.

    2015-01-01

    Background Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral–genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. Methods In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. Results Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. Conclusions Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD. PMID:26173477

  15. A single gene causes an interspecific difference in pigmentation in Drosophila.

    PubMed

    Ahmed-Braimah, Yasir H; Sweigart, Andrea L

    2015-05-01

    The genetic basis of species differences remains understudied. Studies in insects have contributed significantly to our understanding of morphological evolution. Pigmentation traits in particular have received a great deal of attention and several genes in the insect pigmentation pathway have been implicated in inter- and intraspecific differences. Nonetheless, much remains unknown about many of the genes in this pathway and their potential role in understudied taxa. Here we genetically analyze the puparium color difference between members of the virilis group of Drosophila. The puparium of Drosophila virilis is black, while those of D. americana, D. novamexicana, and D. lummei are brown. We used a series of backcross hybrid populations between D. americana and D. virilis to map the genomic interval responsible for the difference between this species pair. First, we show that the pupal case color difference is caused by a single Mendelizing factor, which we ultimately map to an ∼11-kb region on chromosome 5. The mapped interval includes only the first exon and regulatory region(s) of the dopamine N-acetyltransferase gene (Dat). This gene encodes an enzyme that is known to play a part in the insect pigmentation pathway. Second, we show that this gene is highly expressed at the onset of pupation in light brown taxa (D. americana and D. novamexicana) relative to D. virilis, but not in the dark brown D. lummei. Finally, we examine the role of Dat in adult pigmentation between D. americana (heavily melanized) and D. novamexicana (lightly melanized) and find no discernible effect of this gene in adults. Our results demonstrate that a single gene is entirely or almost entirely responsible for a morphological difference between species.

  16. Culex tarsalis Vitellogenin Gene Promoters Investigated In Silico and In Vivo Using Transgenic Drosophila melanogaster

    PubMed Central

    Chen, Song; Rasgon, Jason L.

    2014-01-01

    Introduction Genetic modification, or transgenesis, is a powerful technique to investigate the molecular interactions between vector-borne pathogens and their arthropod hosts, as well as a potential novel approach for vector-borne disease control. Transgenesis requires the use of specific regulatory regions, or promoters, to drive expression of genes of interest in desired target tissues. In mosquitoes, the vast majority of described promoters are from Anopheles and Aedes mosquitoes. Results Culex tarsalis is one of the most important vectors of arboviruses (including West Nile virus) in North America, yet it has not been the subject of molecular genetic study. In order to facilitate molecular genetic work in this important vector species, we isolated four fat body-specific promoter sequences located upstream of the Cx. tarsalis vitellogenin genes (Vg1a, Vg1b, Vg2a and Vg2b). Sequences were analyzed in silico to identify requisite cis-acting elements. The ability for promoter sequences to drive expression of green fluorescent protein (GFP) in vivo was investigated using transgenic Drosophila melanogaster. All four promoters were able to drive GFP expression but there was dramatic variation between promoters and between individual Drosophila lines, indicating significant position effects. The highest expression was observed in line Vg2bL3, which was >300-fold higher than the lowest line Vg1aL2. Conclusions These new promoters will be useful for driving expression of genes of interest in transgenic Cx. tarsalis and perhaps other insects. PMID:24586476

  17. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  18. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia

    PubMed Central

    McBride, Carolyn S.

    2007-01-01

    Our understanding of the genetic basis of host specialization in insects is limited to basic information on the number and location of genetic factors underlying changes in conspicuous phenotypes. We know nothing about general patterns of molecular evolution that may accompany host specialization but are not traceable to a single prominent phenotypic change. Here, I describe changes in the entire repertoire of 136 olfactory receptor (Or) and gustatory receptor (Gr) genes of the recently specialized vinegar fly Drosophila sechellia. I find that D. sechellia is losing Or and Gr genes nearly 10 times faster than its generalist sibling Drosophila simulans. Moreover, those D. sechellia receptors that remain intact have fixed amino acid replacement mutations at a higher rate relative to silent mutations than have their D. simulans orthologs. Comparison of these patterns with those observed in a random sample of genes indicates that the changes at Or and Gr loci are likely to reflect positive selection and/or relaxed constraint associated with the altered ecological niche of this fly. PMID:17360391

  19. Ectopic mitotic recombination in Drosophila probed with bacterial beta-galactosidase gene-based reporter transgenes.

    PubMed Central

    Bärtsch, S; Dücker, K; Würgler, F E; Sengstag, C

    1997-01-01

    Plasmids were constructed to investigate homologous mitotic recombination in Drosophila cells. Heteroalleles containing truncated but overlapping segments of the bacterial beta-galactosidase gene (lacZ) were positioned either on separate plasmids or as direct repeats on the same chromosome. Recombination reconstituted a functional lacZgene leading to expression of LacZ+activity detectable by histochemical staining. High extrachromosomal recombination (ECR) frequencies between unlinked heteroalleles were observed upon transient co-transfection into Drosophila melanogaster Schneider line 2 (S2) cells. Stably transfected cells containing the lacZ heteroalleles linked on a chromosome exhibited intrachromosomal recombination (ICR) frequencies two orders of magnitude lower than ECR frequencies. Recombination was inducible by exposing the cells to ethyl methanesulphonate or mitomycin C. Recombination products were characterized by multiplex PCR analysis and unequal sister chromatid recombination was found as the predominant mechanism reconstituting the lacZ gene. To investigate recombination in vivo imaginal disc cells from transgenic larvae carrying the reporter gene on the X chromosome were isolated and stained for LacZ+ activity. The presence of a few LacZ+ clones indicated that mitotic recombination events occurred at frequencies two orders of magnitude lower than the corresponding event in cultured cells and late during larval development. PMID:9380517

  20. A Maternal Screen for Genes Regulating Drosophila Oocyte Polarity Uncovers New Steps in Meiotic Progression

    PubMed Central

    Barbosa, Vitor; Kimm, Naomi; Lehmann, Ruth

    2007-01-01

    Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFα-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis. PMID:17507684

  1. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster

    PubMed Central

    Lee, Hangnoh; Cho, Dong-Yeon; Roote, John; Kaufman, Thomas; Cook, Kevin; Przytycka, Teresa; Oliver, Brian

    2016-01-01

    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds. PMID:27599372

  2. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    PubMed Central

    2010-01-01

    Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors. PMID:20925960

  3. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  4. Functional Interactions between Unlinked Muscle Genes within Haploinsufficient Regions of the Drosophila Genome

    PubMed Central

    Homyk-Jr., T.; Emerson-Jr., C. P.

    1988-01-01

    Mutations in 13 genes affecting muscle development in Drosophila have been examined in pairwise combinations for evidence of genetic interactions. Heterozygous combinations of mutations in five genes, including the gene coding for myosin heavy chain, result in more severe phenotypes than respective single heterozygous mutant controls. The various mutant interactions include examples showing allele-specific intergenic interactions, gene specific interactions, and allele-specific intragenic complementations, suggesting that some interactions result from the manner in which mutant gene products associate. Interactions that result from alterations in ``+'' gene copy number were also uncovered, suggesting that normal myofibril development requires that the relative amounts of respective gene products produced be tightly regulated. The importance of the latter parameter is substantiated by the finding that all five interacting loci map to disperse haploinsufficient or haplolethal regions of the genome. The implications of the present findings are discussed in relation to pursuing the phenomena involving genetic interactions to identify new genes encoding interacting myofibrillar proteins, to examine the nature of intermolecular interactions in mutant and normal development and to decipher the quantitative and temporal regulation of a large family of functionally related gene products. PMID:3135237

  5. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila.

    PubMed

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-10-13

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H(+) ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes.

  6. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer.

    PubMed

    Goremykin, Vadim V; Salamini, Francesco; Velasco, Riccardo; Viola, Roberto

    2009-01-01

    The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.

  7. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  8. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  9. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker.

  10. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  11. The function of the Drosophila argos gene product in the development of embryonic chordotonal organs.

    PubMed

    Okabe, M; Sawamoto, K; Okano, H

    1996-04-10

    We characterized the embryonic expression pattern and mutant phenotypes of the Drosophila gene argos, which encodes a secreted protein with an epidermal growth factor motif. The argos null mutation caused an increase in chordotonal (Ch) organs in both the thoracic and the abdominal segments, whereas overexpression of the argos gene resulted in a decrease in these organs. We showed that the argos transcripts are expressed transiently in the cells surrounding the Ch organ precursor and that the gene rhomboid (rho), which is involved in the regulation of the number of Ch organs, acts epistatically to argos in this event. Our findings suggest that argos plays a role in Ch organ precursor formation and regulates the final number of Ch organs.

  12. EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation.

    PubMed

    zur Lage, Petra I; Powell, Lynn M; Prentice, David R A; McLaughlin, Paul; Jarman, Andrew P

    2004-11-01

    In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.

  13. Stochastic model for gene transcription on Drosophila melanogaster embryos

    NASA Astrophysics Data System (ADS)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  14. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    PubMed Central

    2011-01-01

    Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes. PMID:21542906

  15. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs

    PubMed Central

    2010-01-01

    Background Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. Results Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. Conclusions We have uncovered major changes in gene

  16. Extraordinary number of gene rearrangements in the mitochondrial genomes of lice (Phthiraptera: Insecta).

    PubMed

    Covacin, C; Shao, R; Cameron, S; Barker, S C

    2006-02-01

    The arrangement of genes in the mitochondrial (mt) genomes of most insects is the same, or near-identical, to that inferred to be ancestral for insects. We sequenced the entire mt genome of the small pigeon louse, Campanulotes bidentatus compar, and part of the mt genomes of nine other species of lice. These species were from six families and the three main suborders of the order Phthiraptera. There was no variation in gene arrangement among species within a family but there was much variation in gene arrangement among the three suborders of lice. There has been an extraordinary number of gene rearrangements in the mitochondrial genomes of lice!

  17. Regulatory autonomy and molecular characterization of the Drosophila out at first gene

    SciTech Connect

    Bergstrom, D.E.; Merli, C.A.; Cygan, J.A.; Shelby, R.; Blackman, R.K.

    1995-03-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3{prime} of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. 67 refs., 10 figs., 1 tab.

  18. dyschronic, a Drosophila Homolog of a Deaf-Blindness Gene, Regulates Circadian Output and Slowpoke Channels

    PubMed Central

    Jepson, James E. C.; Peterson, Drew; Pan, Huihui; Koh, Kyunghee

    2012-01-01

    Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc). dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO), an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein–protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system. PMID:22532808

  19. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    PubMed Central

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  20. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster.

    PubMed Central

    Terracol, R; Prud'homme, N

    1986-01-01

    In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus. Images PMID:3023865

  1. Identification of Genes That Promote or Inhibit Olfactory Memory Formation in Drosophila

    PubMed Central

    Walkinshaw, Erica; Gai, Yunchao; Farkas, Caitlin; Richter, Daniel; Nicholas, Eric; Keleman, Krystyna; Davis, Ronald L.

    2015-01-01

    Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources. PMID:25644700

  2. Weigh and wait: the prospect of mitochondrial gene replacement.

    PubMed

    Xu, Liang; Shi, Rui

    2016-12-01

    Mitochondrial DNA transfer has recently received attention from physicians. The transfer techniques place genetic material from the egg nucleus of a woman with a mitochondrial DNA mutation into a healthy donated egg from which the nuclear DNA was removed. This technology intends to reconstruct a mitochondria-competent egg to produce a baby. Three approaches: (1) pronuclear transfer; (2) metaphase II spindle transfer (ST); and (3) polar body (PB) transfer, have been proposed and applied in animal models with very low levels of heteroplasmy. Because there is no curative treatment for patients with mitochondrial dysfunction, the UK government has allowed the use of this pioneering technique to prevent the transmission of rare and devastating mitochondrial diseases. Despite general safety in the observation period, this technology involves germline modification, raising scientific and ethical questions in the public. In this review, we focus on this unprecedented technology and discuss its clinical application in the future.

  3. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5.

    PubMed

    Telford, M J

    2000-03-23

    The DNA-binding homeobox motif was first identified in several Drosophila homeotic genes but also in fushi tarazu, a gene found in the Hox cluster yet involved in segmentation, not anteroposterior patterning [1]. Homeotic transformations are not seen in insect ftz mutants, and insect ftz genes do not have Hox-like expression except within the nervous system [2] [3]. Insect ftz homeobox sequences link them to the Antp-class genes and Tribolium and Schistocerca orthologs have Antp-class YPWM motifs amino-terminal to the homeobox [2] [3]. Orthologs of ftz cloned from a centipede and an onychophoran [4] show that it predates the emergence of the arthropods, but the inability to pinpoint non-arthropodan orthologs suggested that ftz is the product of a Hox gene duplication in the arthropod ancestor [4] [5]. I have cloned ftz orthologs from a mite and a tardigrade, arthropod outgroups of the insects [6]. Mite ftz is expressed in a Hox-like pattern, confirming its ancestral role in anteroposterior patterning. Phylogenetic analyses indicate that arthropod ftz genes are orthologous to the Lox5 genes of lophotrochozoans (a group that includes molluscs) [7] and, possibly, with the Mab-5 genes of nematodes and Hox6 genes of deuterostomes and would therefore have been present in the triploblast ancestor.

  4. Phylogenetic incongruence inferred with two mitochondrial genes in Mepraia spp. and Triatoma eratyrusiformis(Hemiptera, Reduviidae)

    PubMed Central

    Campos-Soto, Ricardo; Torres-Pérez, Fernando; Solari, Aldo

    2015-01-01

    Mitochondrial DNA (mtDNA) is widely used to clarify phylogenetic relationships among and within species, and to determine population structure. Due to the linked nature of mtDNA genes it is expected that different genes will show similar results. Phylogenetic incongruence using mtDNA genes may result from processes such as heteroplasmy, nuclear integration of mitochondrial genes, polymerase errors, contamination, and recombination. In this study we used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase subunit I) from the wild vectors of Chagas disease, Triatoma eratyrusiformis and Mepraia species to test for topological congruence. The results showed some cases of phylogenetic incongruence due to misplacement of four haplotypes of four individuals. We discuss the possible causes of such incongruence and suggest that the explanation is an intra-individual variation likely due to heteroplasmy. This phenomenon is an independent evidence of common ancestry between these taxa. PMID:26500444

  5. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster

    PubMed Central

    Wu, Xianwen; Li, Rongni; Li, Qianqian; Bao, Haigang; Wu, Changxin

    2016-01-01

    We observed heteroses for body weight in Drosophila melanogaster after generating hybrids from three inbred lines. To better understand the mechanism for this phenomenon at the mRNA level, we compared the mRNA profiles of the parental and hybrid lines using high-throughput RNA-seq. A total of 5877 differentially expressed genes (DEGs) were found and about 92% of these exhibited parental expression level dominance. Genes in the dominance category were functionally characterized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene classifications offered by the Gene Ontology (GO) Consortium. The analysis identified genes associated with crucial processes such as development and growth in all three crosses. Functional assignments involving aminoglycan metabolism, starch and sucrose metabolism, and galactose metabolism are significantly overrepresented amongst the 215 common dominance DEGs. We conclude that dominance DEGs are important in heteroses in Drosophila melanogaster and contribute specifically to body weight heterosis. PMID:26928435

  6. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster.

    PubMed

    Wu, Xianwen; Li, Rongni; Li, Qianqian; Bao, Haigang; Wu, Changxin

    2016-03-01

    We observed heteroses for body weight in Drosophila melanogaster after generating hybrids from three inbred lines. To better understand the mechanism for this phenomenon at the mRNA level, we compared the mRNA profiles of the parental and hybrid lines using high-throughput RNA-seq. A total of 5877 differentially expressed genes (DEGs) were found and about 92% of these exhibited parental expression level dominance. Genes in the dominance category were functionally characterized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene classifications offered by the Gene Ontology (GO) Consortium. The analysis identified genes associated with crucial processes such as development and growth in all three crosses. Functional assignments involving aminoglycan metabolism, starch and sucrose metabolism, and galactose metabolism are significantly overrepresented amongst the 215 common dominance DEGs. We conclude that dominance DEGs are important in heteroses in Drosophila melanogaster and contribute specifically to body weight heterosis.

  7. Classical and Novel TSPO Ligands for the Mitochondrial TSPO Can Modulate Nuclear Gene Expression: Implications for Mitochondrial Retrograde Signaling.

    PubMed

    Yasin, Nasra; Veenman, Leo; Singh, Sukhdev; Azrad, Maya; Bode, Julia; Vainshtein, Alex; Caballero, Beatriz; Marek, Ilan; Gavish, Moshe

    2017-04-07

    It is known that knockdown of the mitochondrial 18 kDa translocator protein (TSPO) as well as TSPO ligands modulate various functions, including functions related to cancer. To study the ability of TSPO to regulate gene expression regarding such functions, we applied microarray analysis of gene expression to U118MG glioblastoma cells. Within 15 min, the classical TSPO ligand PK 11195 induced changes in expression of immediate early genes and transcription factors. These changes also included gene products that are part of the canonical pathway serving to modulate general gene expression. These changes are in accord with real-time, reverse transcriptase (RT) PCR. At the time points of 15, 30, 45, and 60 min, as well as 3 and 24 h of PK 11195 exposure, the functions associated with the changes in gene expression in these glioblastoma cells covered well known TSPO functions. These functions included cell viability, proliferation, differentiation, adhesion, migration, tumorigenesis, and angiogenesis. This was corroborated microscopically for cell migration, cell accumulation, adhesion, and neuronal differentiation. Changes in gene expression at 24 h of PK 11195 exposure were related to downregulation of tumorigenesis and upregulation of programmed cell death. In the vehicle treated as well as PK 11195 exposed cell cultures, our triple labeling showed intense TSPO labeling in the mitochondria but no TSPO signal in the cell nuclei. Thus, mitochondrial TSPO appears to be part of the mitochondria-to-nucleus signaling pathway for modulation of nuclear gene expression. The novel TSPO ligand 2-Cl-MGV-1 appeared to be very specific regarding modulation of gene expression of immediate early genes and transcription factors.

  8. I-R system of hybrid dysgenesis in Drosophila melanogaster: analysis of the mitochondrial DNA in reactive strains exhibiting different potentials for I factor transposition.

    PubMed

    Azou, Y; Bregliano, J C

    2001-01-01

    In the I-R hybrid dysgenesis system, Drosophila melanogaster strains fall into two categories denoted inducer (I) and reactive (R). Among the reactive strains we can distinguish strains with weak, medium or strong reactivity levels. These levels are inherited in a complex way involving both chromosomal and nonchromosomal determinants, the nonchromosomal determinant being mainly maternally inherited. We were interested in determining the molecular basis of this maternal transmission. In this article we analyse the possible implication of the mitochondrial DNA in the determination of the reactivity levels. The mtDNA was analysed in lines with very different reactivity levels with the aim of correlating sequence differences with reactivity levels. The mtDNA was analysed by sequencing and restriction fragment length. No correlation was established between reactivity level and mtDNA sequence. This may favour the hypothesis that epigenetic changes would be responsible for the different reactivity levels and their transgenerational transmission.

  9. Females with a mutation in a nuclear-encoded mitochondrial protein pay a higher cost of survival than do males in Drosophila.

    PubMed

    Melvin, Richard G; Ballard, J William O

    2011-07-01

    Males and females age at different rates in a variety of species, but the mechanisms underlying the difference is not understood. In this study, we investigated sex-specific costs of a naturally occurring mildly deleterious deletion (DTrp85, DVal86) in cytochrome c oxidase subunit 7A (cox7A) in Drosophila simulans. We observed that females and males homozygous for the mutation had 30% and 26% reduced Cox activity, respectively, compared with wild type. Furthermore, 4-day-old females had 34%-42% greater physical activity than males. Greater physical activity in mutant females was correlated with a 19% lower 50% survival compared with wild-type females. Mutant and wild-type males had equal survival. These data suggest that females paid a higher cost of the mutation than did males. The data demonstrate linking population genetics and structural modeling to experimental manipulations that lead to functional predictions of mitochondrial bioenergetics and organism aging.

  10. Females With a Mutation in a Nuclear-Encoded Mitochondrial Protein Pay a Higher Cost of Survival Than Do Males in Drosophila

    PubMed Central

    Ballard, J. William O.

    2011-01-01

    Males and females age at different rates in a variety of species, but the mechanisms underlying the difference is not understood. In this study, we investigated sex-specific costs of a naturally occurring mildly deleterious deletion (DTrp85, DVal86) in cytochrome c oxidase subunit 7A (cox7A) in Drosophila simulans. We observed that females and males homozygous for the mutation had 30% and 26% reduced Cox activity, respectively, compared with wild type. Furthermore, 4-day-old females had 34%–42% greater physical activity than males. Greater physical activity in mutant females was correlated with a 19% lower 50% survival compared with wild-type females. Mutant and wild-type males had equal survival. These data suggest that females paid a higher cost of the mutation than did males. The data demonstrate linking population genetics and structural modeling to experimental manipulations that lead to functional predictions of mitochondrial bioenergetics and organism aging. PMID:21498433

  11. Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro

    PubMed Central

    Okada, Masahiro; Hirose, Susumu

    1998-01-01

    GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template. PMID:9566866

  12. The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP.

    PubMed

    Cabrero, Pablo; Radford, Jonathan C; Broderick, Kate E; Costes, Laurence; Veenstra, Jan A; Spana, Eric P; Davies, Shireen A; Dow, Julian A T

    2002-12-01

    Dh, the gene that encodes a CRF-like peptide in Drosophila melanogaster, is described. The product of this gene is a 44-amino-acid peptide (Drome-DH(44)) with a sequence almost identical to the Musca domestica and Stomoxys calcitrans diuretic hormones. There are no other similar peptides encoded within the known Drosophila genomic sequence. Functional studies showed that the deduced peptide stimulated fluid production, and that this effect was mediated by cyclic AMP in principal cells only: there was no effect on the levels of either cyclic GMP or intracellular calcium. Stimulation also elevated levels of cyclic AMP (but not cyclic GMP) phosphodiesterase, a new mode of action for this class of hormone. The transcript was localised by in situ hybridisation, and the peptide by immunocytochemistry, to two groups of three neurones in the pars intercerebralis within the brain. These cells also express receptors for leucokinin, another major diuretic peptide, implying that the cells may be important in homeostatic regulation.

  13. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster

    SciTech Connect

    Kirby, D.A.; Stephan, W.

    1995-12-01

    Restriction map studies previously revealed extensive linkage disequilibria in the transcriptional unit of the white locus in natural Drosophila melanogaster populations. To understand the causes of these disequilibria, we sequenced a 4722-bp region of the white gene from 15 lines of D. melanogaster and 1 line of Drosophila simulans. Statistical tests applied to the entire 4722-bp region do not reject neutrality. In contrast, a test for high-frequency haplotypes ({open_quotes}Haplotype test{close_quotes}) revealed an 834-bp segment, encompassing the 3{prime} end of intron 1 to the 3{prime} end of intron 2, in which the structure of variation deviates significantly from the predictions of a neutral equilibrium model. The variants in this 834-bp segment segregate as single haplotype blocks. We propose that these unusually large haplotype blocks are due to positive selection on polymorphisms within the white gene, including a replacement polymorphism, Arg{yields}Leu, within this segment. 45 refs., 4 figs., 1 tab.

  14. Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos.

    PubMed

    Stemerdink, C; Jacobs, J R

    1997-10-01

    The midline glia of the Drosophila embryonic nerve cord undergo a reduction in cell number after facilitating commissural tract morphogenesis. The numbers of midline glia entering apoptosis at this stage can be increased by a loss or reduction of function in genes of the spitz group or Drosophila EGF receptor (DER) pathway. Argos, a secreted molecule with an atypical EGF motif, is postulated to function as a DER antagonist. In this work, we assess the role of argos in the determination of midline glia cell number. Although all midline glia express DER, argos expression is restricted to the midline glia which do not enter apoptosis. Fewer midline glia enter apoptosis in embryos lacking argos function. Ectopic expression of argos is sufficient to remove all DER-expressing midline glia from the nerve cord, even those that already express argos. DER expression is not terminated in the midline glia after spitz group signaling triggers changes in gene expression. It is therefore likely that an attenuation of DER signaling by Argos is integrated with the augmentation of DER signaling by Spitz throughout the period of reduction of midline glia number. We suggest that signaling by Spitz but not Argos is restricted to adhesive junctions. In this manner, midline glia not forming signaling junctions remain sensitive to juxtacrine Argos signaling, while an autocrine Argos signal is excluded by the adhesive junction.

  15. Protease Gene Duplication and Proteolytic Activity in Drosophila Female Reproductive Tracts

    PubMed Central

    Kelleher, Erin S.; Pennington, James E.

    2009-01-01

    Secreted proteases play integral roles in sexual reproduction in a broad range of taxa. In the genetic model Drosophila melanogaster, these molecules are thought to process peptides and activate enzymes inside female reproductive tracts, mediating critical postmating responses. A recent study of female reproductive tract proteins in the cactophilic fruit fly Drosophila arizonae, identified pervasive, lineage-specific gene duplication amongst secreted proteases. Here, we compare the evolutionary dynamics, biochemical nature, and physiological significance of secreted female reproductive serine endoproteases between D. arizonae and its congener D. melanogaster. We show that D. arizonae lower female reproductive tract (LFRT) proteins are significantly enriched for recently duplicated secreted proteases, particularly serine endoproteases, relative to D. melanogaster. Isolated lumen from D. arizonae LFRTs, furthermore, exhibits significant trypsin-like and elastase-like serine endoprotease acitivity, whereas no such activity is seen in D. melanogaster. Finally, trypsin- and elastase-like activity in D. arizonae female reproductive tracts is negatively regulated by mating. We propose that the intense proteolytic environment of the D. arizonae female reproductive tract relates to the extraordinary reproductive physiology of this species and that ongoing gene duplication amongst these proteases is an evolutionary consequence of sexual conflict. PMID:19546158

  16. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  17. Drosophila lilliputian is required for proneural gene expression in retinal development

    PubMed Central

    DiStefano, Ginnene M.; Gangemi, Andrew J.; Khandelwal, Preeti J.; Saunders, Aleister J.; Marenda, Daniel R.

    2012-01-01

    Background Proper neurogenesis in the developing Drosophila retina requires the regulated expression of the basic helix-loop-helix (bHLH) proneural transcription factors Atonal (Ato) and Daughterless (Da). Factors that control the timing and spatial expression of these bHLH proneural genes in the retina are required for the proper formation and function of the adult eye and nervous system. Results Here, we report that lilliputian (lilli), the Drosophila homolog of the FMR2/AF4 family of proteins regulates the transcription of ato and da in the developing fly retina. We find that lilli controls ato expression at multiple enhancer elements. We also find that lilli contributes to ato auto-regulation in the morphogenetic furrow by first regulating the expression of da prior to ato. We show that FMR2 regulates the ato and da homologs MATH5 and TCF12 in human cells, suggesting a conservation of this regulation from flies to humans. Conclusions We conclude that lilliputian is part of the genetic program that regulates the expression of proneural genes in the developing retina. PMID:22275119

  18. Multiple transcription factor codes activate epidermal wound-response genes in Drosophila.

    PubMed

    Pearson, Joseph C; Juarez, Michelle T; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-02-17

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes-Ddc, ple, msn, and kkv-that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound-response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view.

  19. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF

    SciTech Connect

    Dang Thi Phuong Thao; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu . E-mail: myamaguc@kit.ac.jp

    2006-11-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF.

  20. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF.

    PubMed

    Phuong Thao, Dang Thi; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu

    2006-11-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF.

  1. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle.

    PubMed

    Sparks, Lauren M; Xie, Hui; Koza, Robert A; Mynatt, Randall; Hulver, Matthew W; Bray, George A; Smith, Steven R

    2005-07-01

    Obesity and type 2 diabetes have been associated with a high-fat diet (HFD) and reduced mitochondrial mass and function. We hypothesized a HFD may affect expression of genes involved in mitochondrial function and biogenesis. To test this hypothesis, we fed 10 insulin-sensitive males an isoenergetic HFD for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarray analysis revealed 297 genes were differentially regulated by the HFD (Bonferonni adjusted P < 0.001). Six genes involved in oxidative phosphorylation (OXPHOS) decreased. Four were members of mitochondrial complex I: NDUFB3, NDUFB5, NDUFS1, and NDUFV1; one was SDHB in complex II and a mitochondrial carrier protein SLC25A12. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC1) alpha and PGC1beta mRNA were decreased by -20%, P < 0.01, and -25%, P < 0.01, respectively. In a separate experiment, we fed C57Bl/6J mice a HFD for 3 weeks and found that the same OXPHOS and PGC1 mRNAs were downregulated by approximately 90%, cytochrome C and PGC1alpha protein by approximately 40%. Combined, these results suggest a mechanism whereby HFD downregulates genes necessary for OXPHOS and mitochondrial biogenesis. These changes mimic those observed in diabetes and insulin resistance and, if sustained, may result in mitochondrial dysfunction in the prediabetic/insulin-resistant state.

  2. Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion

    PubMed Central

    Bejarano-García, José Antonio; Millán-Uclés, África; Rosado, Iván V; Sánchez-Abarca, Luís Ignacio; Caballero-Velázquez, Teresa; Durán-Galván, María José; Pérez-Simón, José Antonio; Piruat, José I

    2016-01-01

    It is established that hematopoietic stem cells (HSC) in the hypoxic bone marrow have adapted their metabolism to oxygen-limiting conditions. This adaptation includes suppression of mitochondrial activity, induction of anerobic glycolysis, and activation of hypoxia-inducible transcription factor 1α (Hif1α)-dependent gene expression. During progression of hematopoiesis, a metabolic switch towards mitochondrial oxidative phosphorylation is observed, making this organelle essential for determining cell fate choice in bone marrow. However, given that HSC metabolism is essentially oxygen-independent, it is still unclear whether functional mitochondria are absolutely required for their survival. To assess the actual dependency of these undifferentiated cells on mitochondrial function, we have performed an analysis of the hematopoiesis in a mouse mutant, named SDHD-ESR, with inducible deletion of the mitochondrial protein-encoding SdhD gene. This gene encodes one of the subunits of the mitochondrial complex II (MCII). In this study, we demonstrate that, in contrast to what has been previously established, survival of HSC, and also myeloid and B-lymphoid progenitors, depends on proper mitochondrial activity. In addition, gene expression analysis of these hematopoietic lineages in SDHD-ESR mutants calls into question the proposed activation of Hif1α in response to MCII dysfunction. PMID:27929539

  3. Complete mitochondrial genomes of Trisidos kiyoni and Potiarca pilula: Varied mitochondrial genome size and highly rearranged gene order in Arcidae

    PubMed Central

    Sun, Shao’e; Li, Qi; Kong, Lingfeng; Yu, Hong

    2016-01-01

    We present the complete mitochondrial genomes (mitogenomes) of Trisidos kiyoni and Potiarca pilula, both important species from the family Arcidae (Arcoida: Arcacea). Typical bivalve mtDNA features were described, such as the relatively conserved gene number (36 and 37), a high A + T content (62.73% and 61.16%), the preference for A + T-rich codons, and the evidence of non-optimal codon usage. The mitogenomes of Arcidae species are exceptional for their extraordinarily large and variable sizes and substantial gene rearrangements. The mitogenome of T. kiyoni (19,614 bp) and P. pilula (28,470 bp) are the two smallest Arcidae mitogenomes. The compact mitogenomes are weakly associated with gene number and primarily reflect shrinkage of the non-coding regions. The varied size in Arcidae mitogenomes reflect a dynamic history of expansion. A significant positive correlation is observed between mitogenome size and the combined length of cox1-3, the lengths of Cytb, and the combined length of rRNAs (rrnS and rrnL) (P < 0.001). Both protein coding genes (PCGs) and tRNA rearrangements is observed in P. pilula and T. kiyoni mitogenomes. This analysis imply that the complicated gene rearrangement in mitochondrial genome could be considered as one of key characters in inferring higher-level phylogenetic relationship of Arcidae. PMID:27653979

  4. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate Drosophila genes

    PubMed Central

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2017-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Due to the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a two-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. PMID:27009801

  5. Dietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster

    PubMed Central

    Ding, Feifei; Tatar, Marc; Helfand, Stephen L.; Neretti, Nicola

    2014-01-01

    Dietary restriction (DR) reduces age-specific mortality and increases lifespan in many organisms. DR elicits a large number of physiological changes, however many are undoubtedly not related to longevity. Whole-genome gene expression studies have typically revealed hundreds to thousands of differentially expressed genes in response to DR, and a key open question is which subset of genes mediates longevity. Here we performed transcriptional profiling of fruit flies in a closely spaced time series immediately following a switch to the DR regime and identified four patterns of transcriptional dynamics. Most informatively we find 144 genes rapidly switched to the same level observed in the DR cohort and are hence strong candidates as proximal mediators of reduced mortality upon DR. This class was enriched for genes involved in carbohydrate and fatty acid metabolism. Folate biosynthesis was the only pathway enriched for gene up-regulated upon DR. Four among the down-regulated genes are involved in key regulatory steps within the pentose phosphate pathway, which has been previously associated with lifespan extension in Drosophila. Combined analysis of dietary switch with whole-genome time-course profiling can identify transcriptional responses that are closely associated with and perhaps causal to longevity assurance conferred by dietary restriction. PMID:24864304

  6. The Drosophila wings apart Gene Anchors a Novel, Evolutionarily Conserved Pathway of Neuromuscular Development

    PubMed Central

    Morriss, Ginny R.; Jaramillo, Carmelita T.; Mikolajczak, Crystal M.; Duong, Sandy; Jaramillo, MaryAnn S.; Cripps, Richard M.

    2013-01-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes. PMID:24026097

  7. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.

    PubMed

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M

    2016-05-06

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.

  8. Gene length may contribute to graded transcriptional responses in the Drosophila embryo

    PubMed Central

    McHale, Peter; Mizutani, Claudia M.; Kosman, David; MacKay, Danielle L.; Belu, Mirela; Hermann, Anita; McGinnis, William; Bier, Ethan; Hwa, Terence

    2011-01-01

    An important question in developmental biology is how relatively shallow gradients of morphogens can reliably establish a series of distinct transcriptional readouts. Current models emphasize interactions between transcription factors binding in distinct modes to cis-acting sequences of target genes. Another recent idea is that the cis-acting interactions may amplify preexisting biases or prepatterns to establish robust transcriptional responses. In this study, we examine the possible contribution of one such source of prepattern, namely gene length. We developed quantitative imaging tools to measure gene expression levels for several loci at a time on a single-cell basis and applied these quantitative imaging tools to dissect the establishment of a gene expression border separating the mesoderm and neuroectoderm in the early Drosophila embryo. We first characterized the formation of a transient ventral-to-dorsal gradient of the Snail (Sna) repressor and then examined the relationship between this gradient and repression of neural target genes in the mesoderm. We found that neural genes are repressed in a nested pattern within a zone of the mesoderm abutting the neuroectoderm, where Sna levels are graded. While several factors may contribute to the transient graded response to the Sna gradient, our analysis suggests that gene length may play an important, albeit transient, role in establishing these distinct transcriptional responses. One prediction of the gene-length-dependent transcriptional patterning model is that the co-regulated genes knirps (a short gene) and knirps-related (a long gene) should be transiently expressed in domains of differing widths, which we confirmed experimentally. These findings suggest that gene length may contribute to establishing graded responses to morphogen gradients by providing transient prepatterns that are subsequently amplified and stabilized by traditional cis-regulatory interactions. PMID:21920356

  9. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  10. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data.

    PubMed

    Matthews, Beverley B; Dos Santos, Gilberto; Crosby, Madeline A; Emmert, David B; St Pierre, Susan E; Gramates, L Sian; Zhou, Pinglei; Schroeder, Andrew J; Falls, Kathleen; Strelets, Victor; Russo, Susan M; Gelbart, William M

    2015-06-24

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.

  11. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype.

  12. Global variability in gene expression and alternative splicing is modulated by mitochondrial content

    PubMed Central

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J.

    2015-01-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  13. Brief Report: High Frequency of Biochemical Markers for Mitochondrial Dysfunction in Autism: No Association with the Mitochondrial Aspartate/Glutamate Carrier "SLC25A12" Gene

    ERIC Educational Resources Information Center

    Correia, Catarina; Coutinho, Ana M.; Diogo, Luisa; Grazina, Manuela; Marques, Carla; Miguel, Teresa; Ataide, Assuncao; Almeida, Joana; Borges, Luis; Oliveira, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2006-01-01

    In the present study we confirm the previously reported high frequency of biochemical markers of mitochondrial dysfunction, namely hyperlactacidemia and increased lactate/pyruvate ratio, in a significant fraction of 210 autistic patients. We further examine the involvement of the mitochondrial aspartate/glutamate carrier gene ("SLC25A12") in…

  14. CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations.

    PubMed

    Fogleman, Sarah; Santana, Casey; Bishop, Casey; Miller, Alyssa; Capco, David G

    2016-01-01

    Thousands of mothers are at risk of transmitting mitochondrial diseases to their offspring each year, with the most severe form of these diseases being fatal [1]. With no cure, transmission prevention is the only current hope for decreasing the disease incidence. Current methods of prevention rely on low mutant maternal mitochondrial DNA levels, while those with levels close to or above threshold (>60%) are still at a very high risk of transmission [2]. Two novel approaches may offer hope for preventing and treating mitochondrial disease: mitochondrial replacement therapy, and CRISPR/Cas9. Mitochondrial replacement therapy has emerged as a promising tool that has the potential to prevent transmission in patients with higher mutant mitochondrial loads. This method is the subject of many ethical concerns due its use of a donor embryo to transplant the patient's nuclear DNA; however, it has ultimately been approved for use in the United Kingdom and was recently declared ethically permissible by the FDA. The leading-edge CRISPR/Cas9 technology exploits the principles of bacterial immune function to target and remove specific sequences of mutated DNA. This may have potential in treating individuals with disease caused by mutant mitochondrial DNA. As the technology progresses, it is important that the ethical considerations herein emerge and become more established. The purpose of this review is to discuss current research surrounding the procedure and efficacy of the techniques, compare the ethical concerns of each approach, and look into the future of mitochondrial gene replacement therapy.

  15. CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations

    PubMed Central

    Fogleman, Sarah; Santana, Casey; Bishop, Casey; Miller, Alyssa; Capco, David G

    2016-01-01

    Thousands of mothers are at risk of transmitting mitochondrial diseases to their offspring each year, with the most severe form of these diseases being fatal [1]. With no cure, transmission prevention is the only current hope for decreasing the disease incidence. Current methods of prevention rely on low mutant maternal mitochondrial DNA levels, while those with levels close to or above threshold (>60%) are still at a very high risk of transmission [2]. Two novel approaches may offer hope for preventing and treating mitochondrial disease: mitochondrial replacement therapy, and CRISPR/Cas9. Mitochondrial replacement therapy has emerged as a promising tool that has the potential to prevent transmission in patients with higher mutant mitochondrial loads. This method is the subject of many ethical concerns due its use of a donor embryo to transplant the patient’s nuclear DNA; however, it has ultimately been approved for use in the United Kingdom and was recently declared ethically permissible by the FDA. The leading-edge CRISPR/Cas9 technology exploits the principles of bacterial immune function to target and remove specific sequences of mutated DNA. This may have potential in treating individuals with disease caused by mutant mitochondrial DNA. As the technology progresses, it is important that the ethical considerations herein emerge and become more established. The purpose of this review is to discuss current research surrounding the procedure and efficacy of the techniques, compare the ethical concerns of each approach, and look into the future of mitochondrial gene replacement therapy. PMID:27725916

  16. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  17. Position effect variegation of an acid phosphatase gene in Drosophila melanogaster.

    PubMed

    Frisardi, M C; MacIntyre, R J

    1984-01-01

    X-ray mutagenesis has produced a series of deficiencies in a duplication of part of the third chromosome containing the acid phosphatase gene (Acph-1) in Drosophila melanogaster. In one of these deficiencies, Acph-1 is shown to be undergoing position effect variegation. Naturally occurring electrophoretic variants of the enzyme were used to visualize and determine quantitatively the extent of variegation of the allele which is cis to the heterochromatic breakpoint. Alteration of genotypic background and temperature provided further evidence for position effect. Rocket immunoelectrophoresis was used to correlate the levels of acid phosphatase activity and protein in flies containing the deficiency. A novel result indicates that the variegation is not the consequence of an averaging of active and inactive cells, but rather due to a quantitative alteration of gene activity within at least some individual cells.

  18. Adaptive response due to changes in gene regulation: a study with Drosophila.

    PubMed Central

    McDonald, J F; Chambers, G K; David, J; Ayala, F J

    1977-01-01

    In spite of the critical role of the process of adaptation in evolution, there are few detailed studies of the genotypic and molecular basis of the process. Drosophila melanogaster flies selected for increased tolerance to ethanol exhibited higher levels of alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1) activity than unselected controls. A series of tests (electrophoresis, product inhibition, temperature stability, pH optima, substrate specificity, and Michaelis constants) gave no evidence of structural differences in the enzyme of the selected and the control flies. However, quantitative immunological assays showed that the selected flies contained significantly higher amounts of alcohol dehydrogenase. Adaptation of the selected flies to higher alcohol tolerance has most likely taken place by changes not in the structural gene locus coding for the enzyme, but by regulatory changes affecting the amount of gene product. Images PMID:412190

  19. Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein

    PubMed Central

    Gontijo, Alisson M.; Miguela, Veronica; Whiting, Michael F.; Woodruff, R.C.; Dominguez, Maria

    2011-01-01

    Genomes can encode a variety of proteins with unrelated architectures and activities. It is known that protein-coding genes of de novo origin have significantly contributed to this diversity. However, the molecular mechanisms and evolutionary processes behind these originations are still poorly understood. Here we show that the last 102 codons of a novel gene, Noble, assembled directly from non-coding DNA following an intronic deletion that induced alternative intron retention at the Drosophila melanogaster Rieske Iron Sulphur Protein (RFeSP) locus. A systematic analysis of the evolutionary processes behind the origin of Noble showed that its emergence was strongly biased by natural selection on and around the RFeSP locus. Noble mRNA is shown to encode a bona fide protein that lacks an iron sulphur domain and localizes to mitochondria. Together, these results demonstrate the generation of a novel protein at a naturally selected site. PMID:21610726

  20. Using Database Matches with HMMGene for Automated Gene Detection in Drosophila

    PubMed Central

    Krogh, Anders

    2000-01-01

    The application of the gene finder HMMGene to the Adh region of the Drosophila melanogaster is described, and the prediction results are analyzed. HMMGene is based on a probabilistic model called a hidden Markov model, and the probabilistic framework facilitates the inclusion of database matches of varying degrees of certainty. It is shown that database matches clearly improve the performance of the gene finder. For instance, the sensitivity for coding exons predicted with both ends correct grows from 62% to 70% on a high-quality test set, when matches to proteins, cDNAs, repeats, and transposons are included. The specificity drops more than the sensitivity increases when ESTs are used. This is due to the high noise level in EST matches, and it is discussed in more detail why this is and how it might be improved. PMID:10779492

  1. Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene.

    PubMed

    Xu, S Y; Cang, C L; Liu, X F; Peng, Y Q; Ye, Y Z; Zhao, Z Q; Guo, A K

    2006-11-01

    Nociception, warning of injury that should be avoided, serves an important protective function in animals. In this study, we show that adult Drosophila avoids noxious heat by a jump response. To quantitatively analyze this nociceptive behavior, we developed two assays. In the CO2 laser beam assay, flies exhibit this behavior when a laser beam heats their abdomens. The consistency of the jump latency in this assay meets an important criterion for a good nociceptive assay. In the hot plate assay, flies jump quickly to escape from a hot copper plate (>45 degrees C). Our results demonstrate that, as in mammals, the latency of the jump response is inversely related to stimulus intensity, and innoxious thermosensation does not elicit this nociceptive behavior. To explore the genetic mechanisms of nociception, we examined several mutants in both assays. Abnormal nociceptive behavior of a mutant, painless, indicates that painless, a gene essential for nociception in Drosophila larvae, is also required for thermal nociception in adult flies. painless is expressed in certain neurons of the peripheral nervous system and thoracic ganglia, as well as in the definite brain structures, the mushroom bodies. However, chemical or genetic insults to the mushroom bodies do not influence the nociceptive behavior, suggesting that different painless-expressing neurons play diverse roles in thermal nociception. Additionally, no-bridge(KS49), a mutant that has a structural defect in the protocerebral bridge, shows defective response to noxious heat. Thus, our results validate adult Drosophila as a useful model to study the genetic mechanisms of thermal nociception.

  2. Integrating Circadian Activity and Gene Expression Profiles to Predict Chronotoxicity of Drosophila suzukii Response to Insecticides

    PubMed Central

    Hamby, Kelly A.; Kwok, Rosanna S.; Zalom, Frank G.; Chiu, Joanna C.

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as

  3. CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development.

    PubMed

    Yu, Zhongsheng; Wu, Honggang; Chen, Hanqing; Wang, Ruoqi; Liang, Xuehong; Liu, Jiyong; Li, Changqing; Deng, Wu-Min; Jiao, Renjie

    2013-09-01

    The histone chaperone CAF-1 is known for its role in DNA replication-coupled histone deposition. However, loss of function causes lethality only in higher multicellular organisms such as mice and flies, but not in unicellular organisms such as yeasts, suggesting that CAF-1 has other important functions than histone deposition during animal development. Emerging evidence indicates that CAF-1 also has a role in higher order chromatin organization and heterochromatin-mediated gene expression; it remains unclear whether CAF-1 has a role in specific signaling cascades to promote gene expression during development. Here, we report that knockdown of one of the subunits of Drosophila CAF-1, dCAF-1-p105 (Caf1-105), results in phenotypes that resemble those of, and are augmented synergistically by, mutations of Notch positive regulatory pathway components. Depletion of dCAF-1-p105 leads to abrogation of cut expression and to downregulation of other Notch target genes in wing imaginal discs. dCAF-1-p105 is associated with Suppressor of Hairless [Su(H)] and regulates its binding to the enhancer region of E(spl)mβ. The association of dCAF-1-p105 with Su(H) on chromatin establishes an active local chromatin status for transcription by maintaining a high level of histone H4 acetylation. In response to induced Notch activation, dCAF-1 associates with the Notch intracellular domain to activate the expression of Notch target genes in cultured S2 cells, manifesting the role of dCAF-1 in Notch signaling. Together, our results reveal a novel epigenetic function of dCAF-1 in promoting Notch pathway activity that regulates normal Drosophila development.

  4. Uniparental Inheritance of Mitochondrial Genes in Yeast: Dependence on Input Bias of Mitochondrial DNA and Preliminary Investigations of the Mechanism

    PubMed Central

    Birky, C. William; Demko, Catherine A.; Perlman, Philip S.; Strausberg, Robert

    1978-01-01

    In Saccharomyces cerevisiae, previous studies on the inheritance of mitochondrial genes controlling antibiotic resistance have shown that some crosses produce a substantial number of uniparental zygotes , which transmit to their diploid progeny mitochondrial alleles from only one parent. In this paper, we show that uniparental zygotes are formed especially when one parent (majority parent) contributes substantially more mitochondrial DNA molecules to the zygote than does the other (minority) parent. Cellular contents of mitochondrial DNA (mtDNA) are increased in these experiments by treatment with cycloheximide, alpha-factor, or the uvsρ5 nuclear mutation. In such a biased cross, some zygotes are uniparental for mitochondrial alleles from the majority parent, and the frequency of such zygotes increases with increasing bias. In two- and three-factor crosses, the cap1, ery1, and oli1 loci behave coordinately, rather than independently; minority markers tend to be transmitted or lost as a unit, suggesting that the uniparental mechanism acts on entire mtDNA molecules rather than on individual loci. This rules out the possibility that uniparental inheritance can be explained by the conversion of minority markers to the majority alleles during recombination. Exceptions to the coordinate behavior of different loci can be explained by marker rescue via recombination. Uniparental inheritance is largely independent of the position of buds on the zygote. We conclude that it is due to the failure of minority markers to replicate in some zygotes, possibly involving the rapid enzymatic destruction of such markers. We have considered two general classes of mechanisms: (1) random selection of molecules for replication, as for example by competition for replicating sites on a membrane; and (2) differential marking of mtDNA molecules in the two parents, possibly by modification enzymes, followed by a mechanism that "counts" molecules and replicates only the majority type. These

  5. The Drosophila Hrb87F gene encodes a new member of the A and B hnRNP protein group.

    PubMed Central

    Haynes, S R; Johnson, D; Raychaudhuri, G; Beyer, A L

    1991-01-01

    Nascent premessenger RNA transcripts are packaged into heterogeneous nuclear ribonucleoprotein (hnRNP) complexes containing specific nuclear proteins, the hnRNP proteins. The A and B group proteins constitute a major class of small basic proteins found in mammalian hnRNP complexes. We have previously characterized the Drosophila melanogaster Hrb98DE gene, which is alternatively spliced to encode four protein isoforms closely related to the A and B proteins. We report here that the Drosophila genome contains a family of genes related to the Hrb98DE gene. One member of the family, Hrb87F, is very homologous to Hrb98DE in both sequence and structure. The Hrb87F transcripts (1.7 and 2.2 kb) utilize two alternative polyadenylation sites, are abundant in ovaries and early embryos, and are present in lesser amounts throughout development. In one wildtype strain of Drosophila there is a naturally-occurring polymorphism in this gene due to the insertion of a 412 transposable element in the 3' untranslated region. The larger transcript is not produced in these files and thus is not required for viability. Sequence identities among the Drosophila Hrb proteins and the vertebrate A and B hnRNP proteins suggest that these proteins may form a distinct subfamily within the larger family of related RNA binding proteins. Images PMID:1849257

  6. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  7. A Direct Role for Cohesin in Gene Regulation and Ecdysone Response in Drosophila Salivary Glands

    PubMed Central

    Pauli, Andrea; van Bemmel, Joke G.; Oliveira, Raquel A.; Itoh, Takehiko; Shirahige, Katsuhiko; van Steensel, Bas; Nasmyth, Kim

    2015-01-01

    Summary Background Developmental abnormalities observed in Cornelia de Lange syndrome have been genetically linked to mutations in the cohesin machinery. These and other recent experimental findings have led to the suggestion that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. Results We report that cleavage of cohesin’s kleisin subunit in postmitotic Drosophila salivary glands induces major changes in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Among these genes are several that are regulated by the steroid hormone ecdysone. Cytological visualization of transcription at selected ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in ecdysone receptor could be detected at this locus. Conclusion We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the ecdysone response. PMID:20933422

  8. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    SciTech Connect

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  9. A genetic analysis of the Drosophila closely linked interacting genes bulge, argos and soba.

    PubMed

    Wemmer, T; Klämbt, C

    1995-06-01

    The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype associated with overexpression of argos; conversely, amorphic argos mutations suppress the eye phenotype seen in flies bearing a single dominant bulge allele. Recombination mapping localized bulge 0.15 cM distal to argos. A second gene, suppressor of bulge and argos (soba), corresponds to the recently described lethal complementation group 73Aj. soba alleles suppress the eye phenotypes seen in flies expressing either the dominant bulge allele or the hs-argos construct. soba resides 120 kb proximal to argos. In addition, we have identified one allele of a new gene, clown, which like soba suppresses the eye phenotypes associated with hs-argos and bulgeDominant. clown maps on chromosome 3 at the cytological position 68CD.

  10. A Genetic Analysis of the Drosophila Closely Linked Interacting Genes Bulge, Argos and Soba

    PubMed Central

    Wemmer, T.; Klambt, C.

    1995-01-01

    The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype associated with overexpression of argos; conversely, amorphic argos mutations suppress the eye phenotype seen in flies bearing a single dominant bulge allele. Recombination mapping localized bulge 0.15 cM distal to argos. A second gene, suppressor of bulge and argos (soba), corresponds to the recently described lethal complementation group 73Aj. soba alleles suppress the eye phenotypes seen in flies expressing either the dominant bulge allele or the hs-argos construct. soba resides 120 kb proximal to argos. In addition, we have identified one allele of a new gene, clown, which like soba suppresses the eye phenotypes associated with hs-argos and bulge(Dominant). clown maps on chromosome 3 at the cytological position 68CD. PMID:7498742

  11. A gene expression map for the euchromatic genome of Drosophila melanogaster.

    PubMed

    Stolc, Viktor; Gauhar, Zareen; Mason, Christopher; Halasz, Gabor; van Batenburg, Marinus F; Rifkin, Scott A; Hua, Sujun; Herreman, Tine; Tongprasit, Waraporn; Barbano, Paolo Emilio; Bussemaker, Harmen J; White, Kevin P

    2004-10-22

    We used a maskless photolithography method to produce DNA oligonucleotide microarrays with unique probe sequences tiled throughout the genome of Drosophila melanogaster and across predicted splice junctions. RNA expression of protein coding and nonprotein coding sequences was determined for each major stage of the life cycle, including adult males and females. We detected transcriptional activity for 93% of annotated genes and RNA expression for 41% of the probes in intronic and intergenic sequences. Comparison to genome-wide RNA interference data and to gene annotations revealed distinguishable levels of expression for different classes of genes and higher levels of expression for genes with essential cellular functions. Differential splicing was observed in about 40% of predicted genes, and 5440 previously unknown splice forms were detected. Genes within conserved regions of synteny with D. pseudoobscura had highly correlated expression; these regions ranged in length from 10 to 900 kilobase pairs. The expressed intergenic and intronic sequences are more likely to be evolutionarily conserved than nonexpressed ones, and about 15% of them appear to be developmentally regulated. Our results provide a draft expression map for the entire nonrepetitive genome, which reveals a much more extensive and diverse set of expressed sequences than was previously predicted.

  12. FlpStop, a tool for conditional gene control in Drosophila

    PubMed Central

    Fisher, Yvette E; Yang, Helen H; Isaacman-Beck, Jesse; Xie, Marjorie; Gohl, Daryl M; Clandinin, Thomas R

    2017-01-01

    Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation. DOI: http://dx.doi.org/10.7554/eLife.22279.001 PMID:28211790

  13. On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster

    PubMed Central

    Cogni, Rodrigo; Kuczynski, Kate; Koury, Spencer; Lavington, Erik; Behrman, Emily L.; O’Brien, Katherine R.; Schmidt, Paul S.; Eanes, Walter F.

    2017-01-01

    Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline. PMID:28220806

  14. Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development

    PubMed Central

    Eggert, Tanja; Hauck, Bernd; Hildebrandt, Nicole; Gehring, Walter J.; Walldorf, Uwe

    1998-01-01

    Vertebrate and invertebrate eye development require the activity of several evolutionarily conserved genes. Among these the Pax-6 genes play a major role in the genetic control of eye development. Mutations in Pax-6 genes affect eye development in humans, mice, and Drosophila, and misexpression of Pax-6 genes in Drosophila can induce ectopic eyes. Here we report the identification of a paired-like homeobox gene, DRx, which is also conserved from flies to vertebrates. Highly conserved domains in the Drosophila protein are the octapeptide, the identical homeodomain, the carboxyl-terminal OAR domain, and a newly identified Rx domain. DRx is expressed in the embryo in the procephalic region and in the clypeolabrum from stage 8 on and later in the brain and the central nervous system. Compared with eyeless, the DRx expression in the embryo starts earlier, similar to the pattern in vertebrates, where Rx expression precedes Pax-6 expression. Because the vertebrate Rx genes have a function during brain and eye development, it was proposed that DRx has a similar function. The DRx expression pattern argues for a conserved function at least during brain development, but we could not detect any expression in the embryonic eye primordia or in the larval eye imaginal discs. Therefore DRx could be considered as a homolog of vertebrate Rx genes. The Rx genes might be involved in brain patterning processes and specify eye fields in different phyla. PMID:9482887

  15. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    PubMed Central

    Landeen, Emily L.; Muirhead, Christina A.; Meiklejohn, Colin D.; Presgraves, Daven C.

    2016-01-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  16. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    PubMed

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  17. Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum.

    PubMed

    Troll, H; Winckler, T; Lascu, I; Müller, N; Saurin, W; Véron, M; Mutzel, R

    1993-12-05

    We have previously isolated cDNA clones for the gip17 gene encoding the cytosolic nucleoside diphosphate (NDP) kinase from Dictyostelium discoideum, and partial cDNAs for guk, a second member of the NDP kinase gene family (Wallet, V., Mutzel, R., Troll, H., Barzu, O., Wurster, B., Véron, M., and Lacombe, M. L. (1990) J. Natl. Cancer Inst. 80, 1199-1202). We now characterize genomic DNA clones for both NDP kinase genes, and we show that guk defines a nuclear-encoded mitochondrial NDP kinase. Isolated D. discoideum mitochondria contain 3% of the total cellular NDP kinase activity. Antibodies which specifically recognize and inhibit the activity of either cytosolic or mitochondrial NDP kinase unambiguously distinguish between these activities. The nascent mitochondrial NDP kinase contains a presequence of 57 amino acids that is removed during import into the organelle as shown by determination of the NH2 terminus of the mature protein from mitochondria. The genes for mitochondrial and cytosolic NDP kinases contain four and two introns, respectively. The positions of the of the introns in the gene for the cytosolic enzyme match exactly the positions of the second and fourth introns in the coding region of its mitochondrial homologue. From these results we conclude that the isozymes diverged from a common ancestor, and we discuss possible phylogenetic pathways for the evolution of cytosolic and organelle NDP kinases.

  18. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites

    PubMed Central

    Parrish, Jay Z.; Emoto, Kazuo; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da) neurons. In esc, Su(z)12, or Pc mutants, dendritic fields are established normally, but class IV neurons display a gradual loss of dendritic coverage, while axons remain normal in appearance, demonstrating that PcG genes are specifically required for dendrite maintenance. Both multiprotein Polycomb repressor complexes (PRCs) involved in transcriptional silencing are implicated in regulation of dendrite arborization in class IV da neurons, likely through regulation of homeobox (Hox) transcription factors. We further show genetic interactions and association between PcG proteins and the tumor suppressor kinase Warts (Wts), providing evidence for their cooperation in multiple developmental processes including dendrite maintenance. PMID:17437999

  19. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster

    PubMed Central

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-01-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control. PMID:26495040

  20. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster.

    PubMed

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-10-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.

  1. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  2. Prenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster

    PubMed Central

    Yu, Suyeun; Lee, Eunil; Tsogbadrakh, Bodokhsuren; Son, Gwang-Ic; Kim, Mari

    2016-01-01

    Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O2) induces a cytoprotective response in vitro by regulating fibronectin. In the present study, we investigated the hormetic effects of prenatal HN exposure on Drosophila healthspan related to molecular defense mechanisms. HN exposure had no disruptive effect on developmental rate or adult body weight. However, lifespan was clearly enhanced, as was resistance to oxidative and heat stress. In addition, levels of reactive oxygen species were significantly decreased and motor performance was increased. HN stress has been shown to trigger molecular changes in the heat shock response and ROS scavenging system, including hsp70, catalase, glutathione synthase, and MnSOD. Furthermore, to determine the hormetic mechanism underlying these phenotypic and molecular changes, we performed a genome-wide profiling in HN-exposed and control flies. Genes encoding chitin metabolism were highly up-regulated, which could possibly serve to scavenge free radicals. These results identify prenatal HN exposure as a potential hormetic factor that may improve longevity and healthspan by enhancing defense mechanisms in Drosophila. PMID:27777382

  3. Mutation in a structural gene for a beta-tubulin specific to testis in Drosophila melanogaster.

    PubMed Central

    Kemphues, K J; Raff, R A; Kaufman, T C; Raff, E C

    1979-01-01

    By two-dimensional gel electrophoresis of tubulins prepared from tissues of Drosophila melanogaster we have identified a beta-tubulin subunit that is present only in the testis. Furthermore, we have isolated, as a male sterile, a third chromosome dominant mutation [ms(3)KKD] in the structural gene for this beta-tubulin. Males heterozygous for this mutation produce no motile spermatozoa. Beginning with meiosis, all processes in spermatogenesis are abnormal to some extent. Many microtubules (including both cytoplasmic microtubules and doublet tubules of the axoneme) show aberrant structure in cross section, and the overall morphology of the developing spermatids is disorganized. Testes from these males were shown, by two-dimensional gel electrophoresis, to contain both the normal testis-specific beta-tubulin and an electrophoretic variant of this tubulin in equal amounts. Both wild-type and mutant testis-specific beta-tubulins were characterized by vinblastine sulfate precipitation, coassembly with purified Drosophila embryo tubulin, and peptide mapping. Images PMID:115008

  4. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  5. The Effects of Royal Jelly on Fitness Traits and Gene Expression in Drosophila melanogaster.

    PubMed

    Shorter, John R; Geisz, Matthew; Özsoy, Ergi; Magwire, Michael M; Carbone, Mary Anna; Mackay, Trudy F C

    2015-01-01

    Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan.

  6. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior.

    PubMed

    Evans, Daniel S; Cline, Thomas W

    2013-11-19

    The switch gene Sex-lethal (Sxl) was thought to elicit all aspects of Drosophila female somatic differentiation other than size dimorphism by controlling only the switch gene transformer (tra). Here we show instead that Sxl controls an aspect of female sexual behavior by acting on a target other than or in addition to tra. We inferred the existence of this unknown Sxl target from the observation that a constitutively feminizing tra transgene that restores fertility to tra(-) females failed to restore fertility to Sxl-mutant females that were adult viable but functionally tra(-). The sterility of these mutant females was caused by an ovulation failure. Because tra expression is not sufficient to render these Sxl-mutant females fertile, we refer to this pathway as the tra-insufficient feminization (TIF) branch of the sex-determination regulatory pathway. Using a transgene that conditionally expresses two Sxl feminizing isoforms, we find that the TIF branch is required developmentally for neurons that also sex-specifically express fruitless, a tra gene target controlling sexual behavior. Thus, in a subset of fruitless neurons, targets of the TIF and tra pathways appear to collaborate to control ovulation. In most insects, Sxl has no sex-specific functions, and tra, rather than Sxl, is both the target of the primary sex signal and the gene that maintains the female developmental commitment via positive autoregulation. The TIF pathway may represent an ancestral female-specific function acquired by Sxl in an early evolutionary step toward its becoming the regulator of tra in Drosophila.

  7. Cytogenetic mapping of the Muller F element genes in Drosophila willistoni group.

    PubMed

    Pita, Sebastián; Panzera, Yanina; Lúcia da Silva Valente, Vera; de Melo, Zilpa das Graças Silva; Garcia, Carolina; Garcia, Ana Cristina Lauer; Montes, Martín Alejandro; Rohde, Claudia

    2014-10-01

    Comparative genomics in Drosophila began in 1940, when Muller stated that the ancestral haploid karyotype of this genus is constituted by five acrocentric chromosomes and one dot chromosome, named A to F elements. In some species of the willistoni group such as Drosophila willistoni and D. insularis, the F element, instead of a dot chromosome, has been incorporated into the E element, forming chromosome III (E + F fusion). The aim of this study was to investigate the scope of the E + F fusion in the willistoni group, evaluating six other species. Fluorescent in situ hybridization was used to locate two genes of the F element previously studied-cubitus interruptus (ci) and eyeless (ey)-in species of the willistoni and bocainensis subgroups. Moreover, polytene chromosome photomaps corresponding to the F element (basal portion of chromosome III) were constructed for each species studied. In D. willistoni, D. paulistorum and D. equinoxialis, the ci gene was located in subSectction 78B and the ey gene in 78C. In D. tropicalis, ci was located in subSection 76B and ey in 76C. In species of the bocainensis subgroup, ci and ey were localized, respectively, at subsections 76B and 76C in D. nebulosa and D. capricorni, and 76A and 76C in D. fumipennis. Despite the differences in the subsection numbers, all species showed the same position for ci and ey. The results confirm the synteny of E + F fusion in willistoni and bocainensis subgroups, and allow estimating the occurrence of this event at 15 Mya, at least.

  8. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids

    PubMed Central

    Liénard, Marjorie A.; Araripe, Luciana O.; Hartl, Daniel L.

    2016-01-01

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1. Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1. Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation. PMID:27357670

  9. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    SciTech Connect

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  10. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor.

    PubMed

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (-40 to -47), DRE2 (-48 to -55), and DRE3 (-267 to -274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  11. The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5).

    PubMed

    Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C

    2007-02-01

    Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.

  12. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    PubMed Central

    Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-01-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  13. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster.

    PubMed

    Gibert, Jean-Michel; Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-08-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  14. Autoregulation of the Drosophila disconnected gene in the developing visual system.

    PubMed

    Lee, K J; Mukhopadhyay, M; Pelka, P; Campos, A R; Steller, H

    1999-10-15

    The Drosophila disconnected (disco) gene is required for the formation of appropriate connections between the larval optic nerve and its target cells in the brain. The disco gene encodes a nuclear protein with two zinc fingers, which suggests that the gene product is a transcription factor. Here, we present data supporting this notion. We find that disco expression in the optic lobe primordium, a group of cells contacted by the developing optic nerve, depends on an autoregulatory feedback loop. We show that wild-type disco function is required for maintenance of disco mRNA and protein expression in the developing optic lobe. In addition, we demonstrate that ubiquitous Disco activity supplied by a heat-inducible gene construct activates expression from the endogenous disco gene specifically in the optic lobe primordium. Consistent with a role of Disco as a transcriptional regulatory protein, we show that portions of the Disco protein are capable of activating the transcription of reporter constructs in a heterologous system. Moreover, we find that the zinc finger portion of Disco binds in vitro to sequences located near the disco transcription unit, suggesting that Disco autoregulates its transcription in the optic lobe primordium by direct binding to a regulatory element in its own promoter.

  15. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed

    Lyckegaard, E M; Clark, A G

    1989-03-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes.

  16. The Drosophila over compensating males gene genetically inhibits dosage compensation in males.

    PubMed

    Lim, Chiat Koo; Kelley, Richard L

    2013-01-01

    Male Drosophila are monosomic for the X chromosome, but survive due to dosage compensation. They use the Male Specific Lethal (MSL) complex composed of noncoding roX RNA and histone modifying enzymes to hypertranscribe most genes along the X ∼1.6-1.8 fold relative to each female allele. It is not known how the MSL complex achieves this precise adjustment to a large and diverse set of target genes. We carried out a genetic screen searching for novel factors that regulate dosage compensation in flies. This strategy generated thirty alleles in a previously uncharacterized gene, over compensating males (ocm) that antagonizes some aspect of MSL activity. The mutations were initially recovered because they derepressed an MSL-dependent eye color reporter. Null ocm mutations are lethal to both sexes early in development revealing an essential function. Combinations of hypomorphic ocm alleles display a male specific lethality similar to mutations in the classic msl genes, but ocm males die due to excessive, rather than lack of dosage compensation. Males that die due to very low MSL activity can be partially rescued by ocm mutations. Likewise, males that would die from ocm mutations can be rescued by reducing the dose of various msl and roX genes. ocm encodes a large nuclear protein that shares a novel cysteine rich motif with known transcription factors.

  17. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    PubMed

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species